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We present here analytical formulas derived for sector coils with 2N poles, an iron screen and optional
iron poles. These formulas can be used to produce optimized conceptual electromagnetic designs of
superconducting cosine-theta corrector magnets with 2N poles. The main guidelines of the corresponding
algorithm, i.e., design algorithm for sextupoles and higher, which has been used to produce valid
conceptual electromagnetic designs of the Future Circular Collider sextupole and octupole magnets, are
also presented. Generic conceptual design studies performed with DASH and DASH2in1 (for nested
corrector magnets configurations) are also shown and their outcome is discussed.
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I. INTRODUCTION

During the design phase of particle accelerators, such as
the High-Energy Large Hadron Collider (HE-LHC) or the
hadron-hadron Future Circular Collider (FCC-hh) [1], the
functional specifications of lattice or spool piece corrector
magnets (sextupoles, octupoles, decapoles, and dodeca-
poles) are evolving alongside the accelerator design. The
parameters of these corrector magnets are driven mainly by
the requirements of linear and nonlinear [2] beam dynamics
to allow for correction of multipole errors and effects from
the insertion regions. Many design iterations with large
variations in the required field strength and the integrated
gradient are typically required. In order to explore quickly
the possible parameter space we developed the design
algorithm for sextupoles and higher (DASH). This algo-
rithm, based on analytical formulas, allows to calculate a
wide parameter range for superconducting cost efficient
multipole magnets including the iron yoke, and if desired,
iron poles. As the achievable magnetic field in multipole
magnets decreases with increasing pole number, the field
contributed by the iron is important and cannot be
neglected as often done as a first approximation for
high-field dipoles and quadrupoles [3].
The derived formulas have been benchmarked with

ROXIE on configurations representative of LHC corrector
magnets, and on specific electromagnetic designs estab-
lished for the FCC-hh. The results always showed an
agreement within the 5% range.

The sector coil geometry has been selected for the
derivation of the formulas, as this geometry simplifies
largely the required equations and is for multipole magnets
very close to the geometry of the real magnet. Figure 1
shows as an example a sextupole magnet with all features
implemented in the here presented algorithm DASH. In
addition, in this paper comprehensive analytical formulas
of the magnet strength and peak field on conductor in sector
coils with 2N poles and with an iron screen and optional
iron poles are derived. These analytical expressions are
complemented with equations allowing setting a specific
margin along the magnet load line and taking into account
magnet protection in a heuristic way, so that protection of
the magnets without active individual extraction resistors
remains possible.

FIG. 1. Sketch of a 2N-poles sector coil with iron screen and
optional iron poles for N ¼ 3 (i.e., sextupole).
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Furthermore, the here presented analytical formulas of
the magnetic vector potential, of the magnet strength and of
the peak field on conductor in sector coils with 2N poles,
with iron screen and optional iron poles allow, contrary to
published equations for sector coils [4–7], the following.
(i) First, they can be used for sector coils with any

number of poles while the previous formulas were stopping
at the octupole level. This allows to model decapoles and
dodecapoles, as these magnets are used in present particle
accelerators (e.g., LHC), and are also required for future
ones (e.g., HE-LHC, FCC-hh). The general formulation
also eases the implementation of these formulas in an
algorithm.
(ii) Second, they take into account the partial saturation

of the iron screen. They thus bring the analytical evaluation
closer to the results of numerical models (e.g., ROXIE [7]).
(iii) Third, they are also able to take into account the

magnetic effect of saturated iron poles in an accurate way.

II. VECTOR POTENTIAL IN A SECTOR COIL

In order to derive the magnetic vector potential generated
in a sector coil, we have used a methodology that differs
from the ones adopted in previously presented approaches.
Indeed, in [4] Asner used the Biot-Savart law to express the
magnetic field created by a field line and integrated this
expression over the sector coil winding to obtain the
magnetic field generated by the sector coil. In addition,
he considered an unsaturated (i.e., infinite μr) magnetic
screen around the sector coil winding.

A. Vector potential generated in a sector coil with iron
screen and without iron poles

Alternatively, we have first considered an infinite iron
screen with permeability μr and have used the Laplace
equation for the axial component Az of the magnetic vector
potential, i.e., ΔAz ¼ 0, whose solution for a thin
Kn cosðnθÞ surface current located at r ¼ r0 is, in polar
coordinates (r; θ),

AðkÞ
z ðr; θÞ ¼ rs

Xþ∞

i¼−∞

�
r
rs

�i

βðkÞi ðr0Þ cosðiθÞ; ð1Þ

where rs is the internal radius of the iron screen as shown in
Fig. 1. The index k ¼ 1, 2, 3 refers respectively to the zones
inside the thin current shell (i.e., r ≤ r0), outside the thin
current shell but inside the iron screen (i.e., r0 ≤ r ≤ rs),

and in the iron screen (i.e., r ≥ rs). The β
ðkÞ
i are coefficients

depending on r0; to compute them, we have combined the
following magnetic field interface conditions at the boun-
daries between the three zones

Br
ð2Þðr0; θÞ ¼ Br

ð1Þðr0; θÞ
Bθ

ð2Þðr0; θÞ ¼ Bθ
ð1Þðr0; θÞ þ μ0Kn cosðnθÞ

Br
ð3Þðrs; θÞ ¼ Br

ð1Þðrs; θÞ
Bθ

ð3Þðrs; θÞ ¼ μrBθ
ð2Þðrs; θÞ ð2Þ

as well as the equation linking the magnetic field to the

vector potential, i.e., B⃗ ¼ ∇⃗ × A⃗, and Eq. (1). Following
this approach, we have been able to derive the following
formulas for the magnetic vector potential in zones 1 and 2:

Að1Þ
z ðr;θ;r0Þ ¼ μ0Kn

2n
cosðnθÞrn½r01−nþaμr−2ns r0nþ1�;

Að2Þ
z ðr;θ;r0Þ ¼ μ0Kn

2n
cosðnθÞ½r−nþaμr−2ns rn�r0nþ1; ð3Þ

where Kn is the amplitude of the thin cosðnθÞ surface
current and

aμ ¼ ðμr − 1Þ=ðμr þ 1Þ: ð4Þ

Second, we have extended these formulas to the case of a
thick Jnðr0Þ cosðnθÞ current, considering a dependence
of its amplitude Jn on the radial position r0 with
ra ≤ r0 ≤ ra þ w, where ra is the aperture radius of the
sector coil and w is its width as shown in Fig. 1. Using the
fact that Kn ¼ Jnðr0Þdr0, this intermediate step in our
calculation of the sector coil vector potential has led us

to the following expressions of AðaÞ
z in the aperture (i.e.,

r ≤ ra) and of AðbÞ
z in the sector coil winding (i.e.,

ra ≤ r ≤ ra þ w):

AðaÞ
z ðr; θÞ ¼ μ0

2n
cosðnθÞ

�
rn
� Zraþw

r0¼ra

Jnðr0Þr01−ndr0
�

þ aμr−2ns rn
� Zraþw

r0¼ra

Jnðr0Þr0nþ1dr0
��

AðbÞ
z ðr; θÞ ¼ μ0

2n
cosðnθÞ

�
r−n

� Zr
r0¼ra

Jnðr0Þr0nþ1dr0
�

þ rn
� Zraþw

r0¼r

Jnðr0Þr01−ndr0
�

þ aμrs−2nrn
� Zraþw

r0¼ra

Jnðr0Þr0nþ1dr0
��

: ð5Þ

Third, the current distribution in a sector coil with 2N
poles (see Fig. 1) is given for ra ≤ r0 ≤ ra þ w by
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Jsecðr0;θÞ¼
�ð−1Þk−1J if θ∈∪1≤k≤2N ½φk−αN ;φkþαN �
0 otherwise;

ð6Þ

where J is the engineering current density in each sector, N
is half the number of poles, φk ¼ πðk − 1Þ=N and

αN ¼ π=ð3NÞ ð7Þ
is half the angular thickness of a sector, as shown in Fig. 1.
Since the Jsecðr0; θÞ distribution is a 2π-periodic function

of θ, it can be decomposed as a Fourier series, and, using
the fact that it is symmetric with respect to the x axis (see
Fig. 1), we can directly express it as

Jsecðr0; θÞ ¼
X∞
n¼1

Jn cosðnθÞ; ð8Þ

where Jn are the harmonics given for n ∈ N� by

Jn ¼
1

π

Z2π
θ¼0

Jsecðr0; θÞ cosðnθÞdθ ð9Þ

which is equivalent to

Jn ¼
2J
nπ

sinðnαNÞ
X2N−1

k¼0

eikπð1þ
n
NÞ ð10Þ

where i is the imaginary unit.
Finally, we have summed the AðaÞ

z contributions given by
Eq. (5) for each harmonic Jn given by Eq. (10) from n ¼ 1
to infinity to obtain the following total magnetic vector
potential in the aperture of a sector coil:

Aða;totÞ
z ðr; θÞ ¼ μ0Jr2a

X∞
n¼1

Xa;J
ðnÞðrÞ cosðnθÞ

n
ð11Þ

with Xa;J
ðnÞðrÞ a dimensionless function of r given by

Xa;J
ðnÞðrÞ ¼

X2N−1

k¼0

eikπð1þn
NÞ sinðnαNÞ

nπ

�
r
ra

�
n

×
�

1

n − 2

�
1 −

�
ra

ra þ w

�
n−2�

þ aμ
nþ 2

�
ra þ w
ra

�
2
�
ra
rs

�
n
�
ra þ w
rs

�
n

×

�
1 −

�
ra

ra þ w

�
nþ2

��
; ð12Þ

where the term

1

n − 2

�
1 −

�
ra

ra þ w

�
n−2�

has to be replaced by lnð1þ w=raÞ if n ¼ 2. Similarly, we

have summed the AðbÞ
z contributions given by Eq. (5) for

each harmonic Jn given by Eq. (10) from n ¼ 1 to infinity
to obtain the following total magnetic vector potential in the
winding of a sector coil:

Aðb;totÞ
z ðr;θÞ

¼ μ0Jra2
X∞
n¼1

½Xb;J
ðnÞðrÞþYb;J

ðnÞðrÞþZb;J
ðnÞðrÞ�cosðnθÞ

n

ð13Þ

with Xb;J
ðnÞðrÞ; Yb;J

ðnÞðrÞ; Zb;J
ðnÞðrÞ dimensionless

functions of r given by

Xb;J
ðnÞðrÞ ¼ sinðnαNÞ

πnðnþ 2Þ
X2N−1

k¼0

eikπð1þn
NÞ
�
r
ra

�
2
�
1 −

�
ra
r

�
nþ2

�
;

Yb;J
ðnÞðrÞ ¼ sinðnαNÞ

πnðn − 2Þ
X2N−1

k¼0

eikπð1þn
NÞ
�
r
ra

�
2
�
1 −

�
r

ra þ w

�
n−2�

;

Zb;J
ðnÞðrÞ ¼ sinðnαNÞ

πnðnþ 2Þ
X2N−1

k¼0

eikπð1þn
NÞaμ

�
rar
rs2

�
n
��

1þ w
ra

�
nþ2 − 1

�
:

If n ¼ 2; replace
1 − ½r=ðra þ wÞ�n−2

n − 2
by ln

�
ra þ w

r

�
inYb;J

ðnÞðrÞ: ð14Þ

To assess the validity of the vector potential formulas
obtained in Eqs. (11) to (14), we have derived the magnetic
field associated with it using B⃗ ¼ ∇⃗ × A⃗ (see the
Appendix) and have compared it in [8] to the magnetic

field expressions in the aperture and in the winding of a
sector coil given by Asner in [4] for the case aμ ¼ 1 [see
Eq. (4) above], i.e., considering the iron screen as unsatu-
rated [see discussion on Eq. (31) below]. The obtained
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expressions were in exact analytical agreement with the
ones presented in [4].

B. Contribution of saturated iron poles to the vector
potential generated in a sector coil

In the presence of iron poles, under the assumptions that
they are fully saturated (i.e., magnetic field larger than
about 2.5 T in their volume) and that their magnetization is
purely radial (see Fig. 2), it is possible to take into account
their contribution in the magnetic vector potential analyti-
cally. Indeed, these two assumptions, which are usually
fulfilled under nominal operating conditions of supercon-
ducting corrector magnets (e.g., LHC MS, see [8]), have
enabled us to express the iron poles magnetization as
M⃗ ¼ �Msate⃗r, where Msat is the saturation magnetization
of the iron poles (e.g., Msat ¼ 1.7 × 106 A=m for standard
iron). This means that the magnetization distribution in a
sector coil with saturated iron poles (see Fig. 2) is given for
ra ≤ r0 ≤ ra þ w by

Msecðr0;θÞ¼
�ð−1ÞkMsat if θ∈∪1≤k≤2N ½φkþαN ;φkþ1−αN �
0 otherwise;

ð15Þ

where φk ¼ πðk − 1Þ=N and αN is given by Eq. (7). Since
the Msecðr0; θÞ distribution is a 2π-periodic function of θ, it
can be decomposed as a Fourier series, and, using the fact
that it is antisymmetric with respect to the x axis (see
Fig. 2), we can directly express it as

Msecðr0; θÞ ¼
X∞
n¼1

Mn sinðnθÞ; ð16Þ

where Mn are the harmonics given for n ∈ N� by

Mn ¼
1

π

Z2π
θ¼0

Msecðr0; θÞ sinðnθÞdθ ð17Þ

which is equivalent to

Mn ¼ − 2Msat

nπ
sin

�
nαN
2

�
sin

�
3nαN
2

� X2N−1

k¼0

eikπð1þn
NÞ; ð18Þ

where i is the imaginary unit. We have then converted the
magnetization distribution Msecðr0; θÞ into an equivalent
current distribution JMsecðr0; θÞ using the equation

JM
�! ¼ ∇⃗ × M⃗; this has led us to

JMsecðr0; θÞ ¼ − 1

r0
∂Msec

∂θ ðr0; θÞ: ð19Þ

Using Eqs. (16), (18) and (19), we can finally express
JMsecðr0; θÞ as

JMsecðr0; θÞ ¼
X∞
n¼1

JMn ðr0Þ cosðnθÞ; ð20Þ

where JMn ðr0Þ are the harmonics given for n ∈ N� by

JMn ðr0Þ ¼
2Msat

πr0
sin

�
nαN
2

�
sin

�
3nαN
2

�X2N−1

k¼0

eikπð1þn
NÞ: ð21Þ

From this result, it has then been straightforward to
calculate the magnetic contribution of the saturated iron
poles in the aperture and in the winding of a sector coil
following the methodology described in Sec. II A. Indeed,
we have again summed the AðaÞ

z contributions given by
Eq. (5) for each harmonic JMn ðr0Þ given by Eq. (21) from
n ¼ 1 to infinity to obtain the following total magnetic
vector potential in the aperture due to the saturated iron
poles of a sector coil:

Aða;totÞ
z ðr; θÞ ¼ μ0Msatra

X∞
n¼1

Xa;M
ðnÞðrÞ cosðnθÞ

n
ð22Þ

with Xa;M
ðnÞðrÞ a dimensionless function of r given by

Xa;M
ðnÞðrÞ ¼ 1

π
sin

�
nαN
2

�
sin

�
3nαN
2

��
r
ra

�
n

×

�
1

n − 1

�
1 −

�
ra

ra þ w

�
n−1�

þ aμ
nþ 1

�
ra þ w
ra

��
ra
rs

�
n
�
ra þ w
rs

�
n

×

�
1 −

�
ra

ra þ w

�
nþ1

�� X2N−1

k¼0

eikπð1þn
NÞ; ð23Þ

FIG. 2. Sketch of a 2N-poles sector coil with iron screen,
saturated iron poles and associated magnetization field for N ¼ 3
(i.e., sextupole).
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where the term

1

n − 1

�
1 −

�
ra

ra þ w

�
n−1�

has to be replaced by lnð1þ w=raÞ if n ¼ 1.
Using the same approach, but summing the AðbÞ

z con-
tributions given by Eq. (5) instead, the total magnetic vector
potential in the winding due to the saturated iron poles is

Aðb;totÞ
z ðr;θÞ

¼μ0Msatra
X∞
n¼1

½Xb;M
ðnÞðrÞþYb;M

ðnÞðrÞþZb;M
ðnÞðrÞ�cosðnθÞ

n

ð24Þ

with Xb;M
ðnÞðrÞ; Yb;M

ðnÞðrÞ; Zb;M
ðnÞ dimensionless func-

tions of r given by

Xb;M
ðnÞðrÞ ¼ sinðnαN

2
Þ sinð3nαN

2
Þ

πðnþ 1Þ
X2N−1

k¼0

eikπð1þn
NÞ r
ra

�
1 −

�
ra
r

�
nþ1

�
;

Yb;M
ðnÞðrÞ ¼ sinðnαN

2
Þ sinð3nαN

2
Þ

πðn − 1Þ
X2N−1

k¼0

eikπð1þ
n
NÞ r
ra

�
1 −

�
r

ra þ w

�
n−1�

;

Zb;M
ðnÞðrÞ ¼ sinðnαN

2
Þ sinð3nαN

2
Þ

πðnþ 1Þ
X2N−1

k¼0

eikπð1þ
n
NÞaμ

�
rar
rs2

�
n
��

1þ w
ra

�
nþ1 − 1

�

If n ¼ 1; replace
1 − ½r=ðra þ wÞ�n−1

n − 1
by ln

�
ra þ w

r

�
in Yb;M

ðnÞðrÞ: ð25Þ

III. MAGNET STRENGTH AND PEAK FIELD ON
CONDUCTOR IN A SECTOR COIL

From the analytical formulas of the vector potential in a
sector coil, expressions of the magnet strength and peak
field on conductor are derived here. These equations are
intended to provide analytical tools to the magnet designer
to rapidly and trustworthily evaluate the magnet perfor-
mance and stability.

A. Magnet strength

The classical expression of the magnetic vector potential
inside the aperture [5–7] is

Aða;totÞ
z ðr; θÞ ¼

X∞
n¼1

rn

r0n−1
Anðr0Þ sinðnθÞ − Bnðr0Þ cosðnθÞ

n
;

ð26Þ

where r0 is the reference radius. Using this expression,
Eqs. (11) and (22), and the fact that cos ðnθÞn∈N� and
sin ðnθÞn∈N� are linearly independent families, we can
deduce that, for n ∈ N�

Anðr0Þ¼0;

Bnðr0Þ¼−μ0rar0
n−1
rn

½JraXa;J
ðnÞðrÞþMsatXa;M

ðnÞðrÞ�: ð27Þ

Since the magnet strength S-which corresponds to the
magnetic field in T for a dipole, the gradient in T/m for a
quadrupole and so on for higher order magnets—is defined as

S ¼ BNðr0Þ
r0N−1 ; ð28Þ

we can combine Eqs. (27) and (28) to express S as

S ¼ −μ0 rarN ½JraXa;J
ðNÞðrÞ þMsatXa;M

ðnÞðrÞ�: ð29Þ

Finally, using Eqs. (7), (12) and (23), we find

S¼ −μ0
ðraþwÞN−2

�
J:ðXJþAμXJ;sÞþ

Msat

raþw
:ðXMþAμXM;sÞ

�
:

ð30Þ

This formula applies for the magnet strength of a sector
coil with 2N poles, an iron screen and saturated iron poles,
with aperture ra, coil width w, coil to iron screen gap g (as
defined in Fig. 1), engineering current density J and
saturation magnetization of the iron poles Msat (Msat ¼ 0

if no iron poles, Msat ¼ 1.7 × 106 A=m for standard iron).
Moreover, Aμ is a correction factor for the iron screen

contribution given by

Aμ ¼ aμ

�
ra þ w
rs

�
2N
; ð31Þ

where rs ¼ ra þ wþ g. The parameter aμ given in Eq. (4)
is a coefficient linked to the iron screen saturation and thus
depends on the relative magnetic permeability μr of the iron
screen. Its value is bounded between 0 and 1, the two
extreme cases corresponding to the absence of iron screen
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(for which μr ¼ 1 and thus aμ ¼ 0) and to an unsaturated
iron screen (for which μr ≫ 1 and thus aμ ¼ 1, which is the
case considered in [4]). The exact value of aμ cannot be
determined analytically but its average from 0 to 4 T
(typical range of magnetic field in iron screen for corrector
magnets) leads to a good approximation of its effect in real
magnet designs; this average gives aμ ≃ 0.8 from the iron
B-H curve used in ROXIE.
In addition, XJ, XJ;s, XM and XM;s are dimensionless

coefficients given by

XJ ¼
ffiffiffi
3

p

πðN − 2Þ
��

1þ w
ra

�
N−2 − 1

�
;

XJ;s ¼
ffiffiffi
3

p

πðN þ 2Þ
�
1 −

�
1þ w

ra

�−N−2�
;

XM ¼ N
πðN − 1Þ

��
1þ w

ra

�
N−1 − 1

�
;

XM;s ¼
N

πðN þ 1Þ
�
1 −

�
1þ w

ra

�−N−1�
: ð32Þ

XJ accounts for the magnetic contribution of the coil
current, XJ;s for its image by the iron screen, XM for the
saturated iron poles and XM;s for their image by the iron
screen. If N ¼ 2 (i.e., for the quadrupole), XJ must be
replaced by

XJ ¼
ffiffiffi
3

p

π
ln

�
1þ w

ra

�
:

If N ¼ 1 (i.e., for the dipole), XM must be replaced by

XM ¼ 1

π
ln

�
1þ w

ra

�
:

Furthermore, for comparison purposes we have derived
the magnet strength from the magnetic field expressions
given by Asner in [4] for the cases he explored (i.e., from
the dipole up to the octupole). It has then appeared that
Eq. (30) with aμ ¼ 1 and Msat ¼ 0 (i.e., unsaturated iron
screen and no iron poles) is in exact analytical agreement
with the strength derived from Asner’s formulas.
Consequently, for the case without iron poles the difference
between the strengths depends on the iron screen saturation
and thus on the value of aμ: as an example, not considering
the saturation (i.e., aμ ¼ 1) would lead to a discrepancy that
would not necessarily be negligible but that would

nonetheless not exceed 25% compared to the taking into
account of the saturation (i.e., aμ ≃ 0.8, typical average
value discussed above). In addition, in [8] we have
shown that the relative difference between the magnet
strength computed analytically with Eq. (30) and its
numerical evaluation with Roxie on cases representative
of the LHC lattice sextupole (MS) and the FCC lattice
octupole (MO) is less than 3%, even in the presence of
iron poles.
Finally, note that, unlike dipoles, the magnet strength

does not scale linearly with the coil width w for quadru-
poles and higher order magnets, as shown in Fig. 3.
However, under the assumptions that the coil width is
negligible with respect to the aperture radius and that the
coil to iron screen gap is zero, i.e., w=ra ≪ 1 and g ¼ 0,
using a first-order Taylor series approximation on Eq. (30),
the magnet strength becomes close to

S ≃ − μ0
π

w
raN−1

�
J

ffiffiffi
3

p
þ N

Msat

ra

�
½1þ aμ�: ð33Þ

B. Peak field on conductor

From the expressions of the magnetic vector potential in
the sector coil winding Aðb;totÞ

z given by Eqs. (13) and (24)

and using B⃗ ¼ ∇⃗ × A⃗, we have been able to express the
magnetic field in the sector coil winding as a finite sum (see
the Appendix) using a methodology inspired by [9]. This
has enabled us to express the peak field on conductor Bp in
a sector coil as

Bp ¼ max
r

fμ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½JrabðJÞr ðrÞ þMsatb

ðMÞ
r ðrÞ�2 þ ½JrabðJÞθ ðrÞ þMsatb

ðMÞ
θ ðrÞ�2

q
g; ð34Þ

where r ∈ ½ra þ wi; ra þ w − wi� with wi the radial insulation thickness of the conductor and with

FIG. 3. Normalized strength versus w=ra for sector coils
without iron screen with different number of poles (BQSODT:
from dipole to dodecapole).
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bðJ orMÞ
r ðrÞ ¼ − X2N−1

k¼0

ð−1ÞkIm½UðkÞ
J orMðrÞ þ VðkÞ

J orMðrÞ þWðkÞ
JorMðrÞ�

bðJ orMÞ
θ ðrÞ ¼ − X2N−1

k¼0

ð−1ÞkRe½−UðkÞ
JorMðrÞ þ VðkÞ

J orMðrÞ þWðkÞ
J orMðrÞ�; ð35Þ

where ReðxÞ and ImðxÞ are the real and imaginary parts of x respectively, and UðkÞ
J ðrÞ; VðkÞ

J ðrÞ;WðkÞ
J ðrÞ are dimensionless

complex functions of r given by

UðkÞ
J ðrÞ ¼ 1

2iπ
r
ra

�
fJ

�
ra
r
; 1; a−k

�
− fJ

�
ra
r
; 1; aþk

��

VðkÞ
J ðrÞ ¼ 1

2iπ
r
ra

�
gJ

�
r

ra þ w
; 1; a−k

�
− gJ

�
r

ra þ w
; 1; aþk

��

WðkÞ
J ðrÞ ¼ aμ

�
rs
r

�
4 1

2iπ
r
ra

�
fJ

�
rar
rs2

;
ðra þ wÞr

rs2
; a−k

�
− fJ

�
rar
rs2

;
ðra þ wÞr

rs2
; aþk

��
ð36Þ

and UðkÞ
M ðrÞ; VðkÞ

M ðrÞ;WðkÞ
M ðrÞ are dimensionless complex functions of r given by

UðkÞ
M ðrÞ ¼ 1

4π

�
−fM

�
ra
r
; 1; a−k

�
− fM

�
ra
r
; 1; aþk

�
þ fM

�
ra
r
; 1; a2−k

�
þ fM

�
ra
r
; 1; a2þk

��

VðkÞ
M ðrÞ ¼ 1

4π

�
−gM

�
r

ra þ w
; 1; a−k

�
− gM

�
r

ra þ w
; 1; aþk

�
þ gM

�
r

ra þ w
; 1; a2−k

�
þ gM

�
r

ra þ w
; 1; a2þk

��

WðkÞ
M ðrÞ ¼ aμ

�
rs
r

�
2 1

4π

�
−fM

�
rar
rs2

;
ðra þ wÞr

rs2
; a−k

�
− fM

�
rar
rs2

;
ðra þ wÞr

rs2
; aþk

�

þ fM

�
rar
rs2

;
ðra þ wÞr

rs2
; a2−k

�
þ fM

�
rar
rs2

;
ðra þ wÞr

rs2
; a2þk

��
; ð37Þ

where i is the imaginary unit and where

a�k ¼ eiðθ0þkπ=N�αNÞ; a2�k ¼ eiðθ0þkπ=N�2αNÞ ð38Þ

and

fJðρ1;ρ2;aÞ¼
1

4a2
½2ða2ρ2−1Þ lnð1−aρÞ−aρðaρþ2Þ�ρ2ρ1

gJðρ1;ρ2;aÞ¼
1

2

�
a2ρ2−1

ρ2
lnð1−aρÞ−a2 lnðρÞþa

ρ

�
ρ2

ρ1

ð39Þ

and

fMðρ1; ρ2; aÞ ¼
�
1

a
lnð1 − aρÞ þ ρ

�
ρ2

ρ1

gMðρ1; ρ2; aÞ ¼ a½lnð1 − aρÞ − lnðρÞ�ρ2ρ1 ð40Þ

where ½fðρÞ�ρ2ρ1 ¼ fðρ2Þ − fðρ1Þ, θ0 ¼ αN − arctanðhi=raÞ,
with hi the azimuthal insulation thickness of the conductor.

From experience, the peak field is always located on the
side of the winding in the azimuthal direction, i.e., on the
θ ¼ αN line (see Fig. 1) and at different values of r
depending on the number of magnet poles and on the
presence of iron poles. However, the above logarithmic
formulas fM and gM diverge in the corners of the iron pole,
i.e., for the value θ ¼ αN and r ¼ ra or r ¼ ra þ w; this
comes from singularities of the equivalent current distri-

bution JM
�! ¼ ∇⃗ × M⃗ in the corners of the iron poles. To

avoid evaluating the peak field in these points, we compute
it inside the bare conductor and not inside the insulation,
i.e., slightly before the iron pole in the azimuthal direction
at θ0 ¼ αN − arctanðhi=raÞ and slightly after the aperture
radius at r ¼ ra þ wi; hence the use of the radial and
azimuthal insulation thicknesses wi and hi in the peak field
formulas above.
In [8] we have shown that the relative difference between

the peak field on conductor computed analytically with
Eq. (34) and its numerical evaluation with Roxie on cases
representative of the LHC lattice sextupole (MS) and the
FCC lattice octupole (MO) is less than 5%, even in
presence of iron poles.
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IV. DESIGN OF COSINE-THETA CORRECTOR
MAGNETS: DASH ALGORITHM

In this section, we will discuss the main assumptions and
guidelines we use in DASH to design cosine-theta corrector
magnets.

A. Equivalent sector coil

As mentioned previously, the geometry of cosine-theta
coils is similar to that of sector coils for sextupoles and
higher order magnets as each sector does not need to be
split in different blocks for the optimization of its field
quality (conversely to dipoles). Similarly to the approach
presented in [10], we thus approximate the strength and
peak field on the conductor of a cosine-theta coil using its
equivalent sector coil and the formulas derived in Sec. II.
To define the equivalent sector coil (see Fig. 4), we adjust

its coil width w such that its area is equal to that of the
cosine-theta coil, as in [10], considering that every other
parameter is the same (e.g., same engineering current
density J, same ampere-turn value per coil, same aperture
radius ra, same iron screen radius rs). For a cosine-theta
coil made of NC Ribbon cables [11], each cable having a
height hC and a width wC (as depicted in Fig. 4), the coil
width w of its equivalent sector coil can be derived from the
equality of coil areas, as in [10], and is given by

w ¼ ra

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2wCNChC

αNra2

s
− 1

#
; ð41Þ

where αN ¼ π=ð3NÞ and 2N is the number of poles.
Here we have considered the use of Ribbon cables, but

this conversion method can be applied to cosine-theta coils
with any other type of conductor (e.g., Rutherford cables);

Eq. (3) just needs to be updated with the relevant conductor
parameters starting back from the equality of coil areas.

B. Cancellation of the first nonfundamental harmonic

During the design phase of a cosine-theta magnet,
another important point is to control the magnetic field
quality. For magnets with 2N-poles and N ≥ 3, this usually
just requires to cancel the first nonfundamental harmonic
b3N as the second one b5N will in practice already be
negligible. However, for cosine-theta coils there is no
straightforward condition on the winding to fulfill this
requirement, conversely to sector coils for which αN ¼
π=ð3NÞ is sufficient. For a given width of Ribbon cable wC,
it is nevertheless possible to determine the height NChC of
the cosine-theta half-coil (see Fig. 4) such that b3N is almost
zero. Indeed, from the magnetic field expressions we have
derived in [8], this can be achieved through the numerical
resolution for NChC of the following equation:Z

raþwC

r¼ra

fsin½3Nθ2ðrÞ� − sin½3Nθ1ðrÞ�g
�
ra
r

�
3N−1

dr ¼ 0

ð42Þ

with θ1ðrÞ ¼ arcsinðdir Þ and θ2ðrÞ ¼ arcsinðNChCþdi
r Þ, where

di is half the insulation thickness between one coil and the
adjacent one (see Fig. 4).

C. Load line and quench protection

In addition, to generate a magnet design which can be
operated in the shadow of the dipole magnets, we define a
percentage l at which the magnet should be operated along
its load line and limit the copper current density to JCu;max

such that the magnet can be safely discharged without
individual extraction resistor in case of quench (typically
JCu;max ¼ 1000 A=mm2). These design requirements cor-
respond to the following system of equations

J ¼ lf
1þ λ

Jc½BpðJ=lÞ�

J ¼ fλ
1þ λ

JCu;max;

where f is the filling factor of the coil (i.e., copper and
superconductor area over total coil area including insula-
tion), λ is the copper to noncopper ratio of the conductor.
JcðBÞ is the fit of critical current density of the super-
conductor and BpðJÞ is the peak field on conductor whose
formula has been given in Sec. III B. The resolution of this
system can be achieved through the numerical solving
for the operating engineering current density Jop of the
following equation:

ðf − Jop=JCu;maxÞlJc½BpðJop=lÞ� − Jop ¼ 0 ð43Þ
FIG. 4. Sketch of a 2N-poles cosine-theta magnet with iron
screen and its equivalent sector coil (dashed lines) for N ¼ 3 (i.e.,
sextupole).

ALEXANDRE LOUZGUITI and DANIEL SCHOERLING PHYS. REV. ACCEL. BEAMS 23, 012402 (2020)

012402-8



and by using the following formula to deduce the copper to
noncopper ratio λ:

λ ¼ Jop=ðfJCu;max − JopÞ: ð44Þ

D. Magnet cost and complexity reduction

It shall be noted that for high-energy circular colliders
equipped with high field dipole magnets, an overall cost
optimization calls for covering as much as possible the
collider circumference with these magnets. By this
approach the highest integrated field and energy can be
obtained with the lowest magnetic field in the dipoles (and
associated cost). Following this reasoning, to reach the
integrated strengths required by the beam dynamics, the
corrector magnets shall then be short and shall thus have
high magnetic strengths. However, as explained in [12], it is
not recommended to select the highest magnetic strength
possible for corrector magnets as the save in their length
will eventually become marginal compared to the increase
in their cost and complexity. Consequently, a reasonable
compromise has to be found between corrector magnets
length, cost and complexity; we have presented in [12] a
first order optimization method with respect to this
problem.
In this approach that we will not detail here, we

considered that the efficiency of a corrector magnet with
respect to cost and complexity was increasing with
decreasing ratio Vsc=Sint of superconductor volume over
integrated strength, which is equivalent to the ratio Asc=S of
superconductor area over magnet strength, given by

Vsc

Sint
¼ Asc

S
¼ 4N

f
1þ λ

NChCwC

S
ð45Þ

for a Ribbon cable magnet.

E. DASH design methodology

As mentioned in the Introduction, the purpose of DASH
is to automatically design reliable and cost efficient
superconducting cosine-theta corrector magnets. To fulfill
these requirements, we have implemented the following
methodology.
(i) DASH user inputs correspond to the aperture radius

ra, the order of the corrector magnet N, the operating
temperature, the presence of iron screen and poles and the
percentage along the load line l at which the magnet will be
operated. A required strength Sreq can also be specified by
the user.
(ii) DASH generates a loop over the cosine-theta coil

width wC in which: (i) it numerically solves Eq. (4) to
determine the height NChC of the cosine-theta half coil
such that its first nonfundamental harmonic b3N is almost
zero; (ii) it deduces the width w of the equivalent sector coil
from the values of wC and NChC and Eq. (3); (iii) from the

Nb-Ti fit of the critical current density Jc used in ROXIE
[13] and the peak field formula given by Eq. (2), it defines
and numerically solves Eq. (5) to determine the operating
engineering current density Jop and corresponding magnet
strength Sop, and it deduces the copper to noncopper ratio λ
using Eq. (6).
(iii) From this parametric study, it selects the optimal

cosine-theta coil width wC
� that allows to either reach the

required strength Sreq with the minimum superconductor
volume or to obtain a reasonable compromise between
magnet length, cost and complexity (following the method
described in [12]).
(iv) From the parameters associated with the optimal

cosine-theta coil width wC
� (e.g., corresponding NChC�,

Jop�, λ�, etc.), it defines the real conductor parameters (e.g.,
nominal current, strand dimensions, number of strands per
cable, etc.) and generates the corresponding 2D ROXIE
model for a numerical evaluation of the proposed optimal
design. DASH also computes a reliable estimate of the
inductance and stored energy per unit length of the magnet;
these values are useful for first considerations on the
quench protection.
In practice, the evaluation of the 2D ROXIE model

generated by DASH leads to a good approximation of the
requested percentage l along the load line (within 1%, see
[8]). Moreover, if needed DASH can automatically read the
ROXIE output file to refine the copper to noncopper ratio λ
and the current per conductor in order to be closer to l.
After the refinement, the new percentage along the load line
computed by ROXIE is matching the one requested by the
DASH user (within 0.01%, see [8]).

V. APPLICATION OF DASH
TO GENERIC STUDIES

DASH has turned out to be a useful tool during the
design phase of the FCC lattice sextupoles (MS), lattice
octupoles (MO) and sextupole spool piece corrector mag-
nets (MCS) [12]. This design study has led to consistent
results with respect to FCC requirements and has thus
established the validity of this algorithm as an automatic
design tool.
Furthermore, in order to both illustrate the design

abilities of DASH and to provide premade designs and
useful considerations on Nb-Ti corrector magnets ranging
from sextupole to dodecapole to the community, we will
present here the DASH designs obtained with the opti-
mization method described in [12] (compromise between
magnet length, cost and complexity). In addition, since
DASH can also handle the presence of iron poles and
nested magnet configurations (using DASH2in1
algorithm [8]), we will present the results of these generic
design studies as well.
To define a common baseline between these different

design studies, we have set the following realistic

ELECTROMAGNETIC DESIGN OF SUPERCONDUCTING … PHYS. REV. ACCEL. BEAMS 23, 012402 (2020)

012402-9



parameters: aperture radius ra ¼ 25 mm, percentage along
the magnet load line l ¼ 80%, operating temperature
Top ¼ 1.9 K, distance between coil and iron screen g ¼
3.78 mm (taken identical to the one of LHC MS, as a
conservative reference), maximum copper current density
JCu;max ¼ 1000 A=mm2. To avoid any ambiguity, the term
“iron screen” refers to the iron scissor laminations used in
the LHC corrector magnets (see [11]).

A. Corrector magnets without iron poles

The results of the generic design study we have per-
formed on corrector magnets without iron poles are
presented through Fig. 5 and Table I. In Fig. 5, we have
displayed the strength that a cosine-theta magnet (ranging
from sextupole to dodecapole) reaches at 80% along its
load line with a maximum copper current density of
JCu;max ¼ 1000 A=mm2 as a function of its coil width
wC; we have normalized each strength versus width curve

to its maximum value (red crosses on the right in Fig. 5).
The green crosses on the left in Fig. 5 correspond to the
result of the optimization made in DASH as discussed in
the introduction of this section; the corresponding optimal
design parameters are detailed in Table I. The coil width,
number of turns, current per wire, copper to noncopper
ratio, wire dimensions and the estimates of the inductance
and stored energy per unit magnet length displayed in
Table I are directly computed by DASH while the magnet
strength, peak field on conductor and magnetic field
harmonics are computed using the ROXIE model generated
by DASH. Note that the results of the optimization for the
sextupole and octupole magnets are slightly different than
those presented in [12] for which we chose to slightly
decrease their coil width to reduce their inductance.
The magnet parameters presented in Table I can directly

be used as premade designs. If the design requirements are
different than those presented at the beginning of the
section, the parameters of Table I can be used as a starting
point; as an indication, for l < 80%, or for ra > 25 mm, the
corresponding optimal coil width will be slightly lower.

B. Corrector magnets with iron poles

We have also performed the same generic design study
on corrector magnets with iron poles; the results are
presented through Fig. 6 and Table II.
As a summary of this generic design study, the use of

iron poles allows to reach higher strengths (by about 15%
for the sextupole, 20% for the octupole, 25% for the
decapole and 30% for the dodecapole) for the same coil
width (and thus the same superconductor volume) and for
the same percentage along the magnet load line. At the
same time, their use will inevitably degrade the magnetic
field quality in the aperture, as visible in Table II.
Nevertheless, this negative impact could be compatible
with the beam dynamics requirements of a particle

FIG. 5. Strength at 80% along the magnet load line normalized
to its maximum value versus coil width wC for cosine-theta
magnets ranging from sextupole to dodecapole (SODT) without
iron poles.

TABLE I. Optimal parameters obtained with DASH for cosine-theta magnets without iron poles ranging from sextupole to
dodecapole. The number of turns and wire size are expressed as “radial × azimuthal”. Harmonics are expressed at reference radius
r0 ¼ 17 mm.

Magnet order S (N ¼ 3) O (N ¼ 4) D (N ¼ 5) T (N ¼ 6)

Coil width (mm) 21.9 18.1 15.3 13.3
Number of turns 18 × 13 15 × 9 12 × 7 11 × 6
Current per wire (A) 555 616 678 622
Cu:NonCu ratio 2.6 3.5 4.2 4.9
Wire size (mm) Bare 1.16 × 0.66 1.15 × 0.69 1.22 × 0.69 1.15 × 0.65

Insa 1.22 × 0.72 1.21 × 0.75 1.28 × 0.75 1.21 × 0.71
Inductance (mH/m) 314 122 54 37
Energy (kJ/m) 48.4 23.2 12.4 7.2
Strength (T=mN−1) 7.69 × 103 2.30 × 105 7.22 × 106 2.33 × 108

Peak field (T) 5.89 4.73 3.92 3.29
Harmonics (10−4 units) max b15 < 3 b20 < 1 b15 < 0.2 b18 < 0.1

Other <0.5 <0.2 <0.1 <0.1
aIns ¼ Insulated.
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accelerator. Indeed, having b9sextupole ¼ 66 units at r0 ¼
17 mm in the aperture along one meter of a sextupole with
strength Ssextupole ¼ 9.32 × 103 T=m2 is equivalent to
having b9dipole ¼ b9sextupoleSsextupoler3−10 =16 T ¼ 11 units
along one meter of the 16T FCC-hh main dipole. In
addition, taking into account the difference in the total
lengths [1] of the FCC-hh main dipoles (65.8 km) and
lattice sextupoles (0.84 km), the corresponding b9dipole after
rescaling with respect to length would be b9dipole integrated ¼
b9dipole × 0.84=65.8 ¼ 0.14 units only.

C. Nested corrector magnet configurations

In order to save space in particle accelerators, spool-
piece corrector magnets can be nested as they do not
usually have large strength requirements. However, design-
ing such configurations is more complex than for single
corrector magnets, as one has to consider the magnetic
contribution of the inner magnet on the peak field of the
outer magnet and vice versa. Consequently, we have

extended the design abilities of DASH to the case of
nested corrector magnets through the development of
DASH2in1. This algorithm operates with the same method
as DASH (see Sec. IV), except that the problem is two-
dimensional. In addition, it uses the magnetic field for-
mulas we have derived in [8] to evaluate the contribution of
one magnet on the peak field of the other.
To illustrate the capabilities of DASH2in1, we will

present here a case study for the HE(high energy)-LHC
which consists in knowing whether it is possible to nest a
sextupole spool piece corrector magnet (MCS) inside a
decapole spool piece corrector magnet (MCD) such that
they can safely reach strengths of SMCS ¼ 3 × 103 T=m2

and SMCD ¼ 1.4 × 106 T=m4. To carry out this design
study, we have used DASH2in1 assuming ra ¼ 25 mm
for the inner magnet and l ¼ 60%, Top ¼ 1.9 K,
g ¼ 3.78 mm, JCu;max ¼ 1000 A=mm2 for both magnets.
Moreover, we have set the distance between the inner and
outer coils to gc ¼ 1.27 mm, which is the one used in LHC
MCDO (MCO inside MCD). In order to optimize the
nested magnets cost, DASH2in1 selects the configuration
that allows reaching the required strengths with the least
total superconductor volume (as discussed in Sec. IV E).
The results of this optimization, i.e., the corresponding
magnet parameters are displayed in Table III; note that the
required strengths are reached with a high level of accuracy.
Moreover, DASH2in1 is also able to compute reliable

estimates of the self and mutual inductances per unit length
of the nested magnets as well as the corresponding stored
energy per unit length using the formulas of the magnetic
vector potential given in [8]. From these formulas, it also
possible to show—and interesting to remark—that the
mutual inductance between nested cosine-theta corrector
magnets is always zero for N1 ≥ 3 (number of pairs of
poles in the inner magnet) and N2 ≥ 3 (number of pairs of
poles in the outer magnet), except if N1 ¼ N2, which has
no use in particle accelerators.

TABLE II. Optimal parameters obtained with DASH for cosine-theta magnets with iron poles ranging from sextupole to dodecapole.
The number of turns and wire size are expressed as “radial × azimuthal.” Harmonics are expressed at reference radius r0 ¼ 17 mm.

Magnet order S (N ¼ 3) O (N ¼ 4) D (N ¼ 5) T (N ¼ 6)

Coil width (mm) 24.8 19.9 17.0 14.8
Number of turns 20 × 13 16 × 9 14 × 7 12 × 6
Current per wire (A) 556 634 644 635
Cu:NonCu ratio 2.4 3.4 4.3 5.0
Wire size (mm) Bare 1.18 × 0.66 1.18 × 0.69 1.15 × 0.69 1.17 × 0.65

Insa 1.24 × 0.72 1.24 × 0.75 1.21 × 0.75 1.23 × 0.71
Inductance (mH/m) 417 154 83 52
Energy (kJ/m) 64.5 30.9 17.2 10.4
Strength (T=mN−1) 9.32 × 103 2.92 × 105 9.59 × 106 3.26 × 108

Peak field (T) 5.89 4.99 4.07 3.42
Harmonics (10−4 units) max b9 < 66 b12 < 38 b15 < 20 b18 < 10

other <0.6 <0.3 <0.1 <0.1
aIns ¼ Insulated.

FIG. 6. Strength at 80%along themagnet load line normalized to
its maximum value versus coil width wC for cosine-theta magnets
ranging from sextupole to dodecapole (SODT) with iron poles.
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VI. CONCLUSION

We have developed new analytical formulas for sector
coils. Compared to the already existing formulas that can be
found in the literature [4,7], the innovation lies in the
generalization to sector coils with any number of poles, the
consideration of the iron screen saturation and of the
magnetic effect of saturated iron poles. In [8], we have
cross-checked these formulas with previous ones [4] and
with ROXIE results, and have thus established their
validity.
Furthermore, thanks to these analytical formulas and to

analogies we have made between sector coils and cosine-
theta coils (similar to the ones considered in [10,14]), we
have been able to develop DASH and DASH2in1, which
can reliably and rapidly design single or nested cosine-theta
magnets with at least six poles and can automatically
generate the corresponding 2D ROXIE models.
Throughout this development, we have been able to
propose methods to rationalize the design of corrector
cosine-theta magnets. Moreover, the broad range of com-
parisons with ROXIE we have presented in [8] has
established the reliability of these tools which have
been used to design the FCC sextupole and octupole
magnets [12].
As a summary, in this paper the reader can find practical

and accurate analytical expressions of the magnet strength
and peak field on conductor as well as the explicit steps of
the algorithm we have defined for the design of corrector
magnets designs.
With these new tools in hand, we have been able to carry

out generic design studies whose results can be directly
used as premade designs or can be considered as reliable
starting points for designs with different requirements.
They have also shown that the use of iron poles allows
reaching higher strengths for a similar cost (i.e., same
superconductor volume) and stability (i.e., same percentage

along magnet load line) and that their negative impact on
the magnetic field quality can still be compatible with beam
dynamics requirements of particle accelerators. These
generic studies have also shown that DASH and
DASH2in1 can automatically design magnets with a good
trade-off along their cost and length or to optimize their
cost with respect to specific strength requirements in single
or nested magnet configurations. These algorithms could be
improved in the future to take into account additional
design constraints such as mechanical limits or quench
simulations.

APPENDIX: DERIVATION
OF PEAK FIELD FORMULAS

In this Appendix, we will provide the methodology
(inspired by [9]) to compute the analytical expressions of
the peak field on conductor Bp presented in Sec. III B
through Eqs. (34) to (40). In order to do so, we first need to
derive the magnetic field in the sector coil winding, which
can be expressed either as an infinite series—as for the

associated vector potential Aðb;totÞ
z given in Eqs. (13) and

(24)—or as a finite sum of complex functions, i.e., as in
Eqs. (34) to (40). Both formulations can be used since they
are equivalent and can be evaluated numerically. The main
difference lies in the required computation time, which is
lower using the finite sum of complex functions; this is the
reason why we have chosen to present this formu-
lation here.

1. Series associated with the peak
field for the case without iron poles

In Sec. II A, we have derived the expression of the
magnetic vector potential in the winding of a sector coil;
this expression is recalled here:

TABLE III. Optimal magnet parameters for nested MCS/MCD configuration with respect to required strengths.
The number of turns and wire size are expressed as “radial × azimuthal”. Harmonics are expressed at reference
radius r0 ¼ 17 mm.

Magnet type Inner magnet MCS (N ¼ 3) Outer magnet MCD (N ¼ 5)

Coil width (mm) 4.4 2.7
Number of turns 3 × 13 2 × 9
Current per wire (A) 668 643
Cu:NonCu ratio 3.2 3.6
Wire size (mm) Bare 1.41 × 0.62 1.29 × 0.64

Insa 1.47 × 0.68 1.35 × 0.70
Self inductance (mH/m) 10.4 4.0
Mutual inductance (mH/m) 0.0 0.0
Energy (kJ/m) 2.3 0.8
Strength (T=mN−1) 3.01 × 103 1.40 × 106

Peak field (T) 3.25 3.15
Harmonics (10−4 units) max b15 < 8.2 b15 < 0.1

Other <0.6 <0.1
aIns ¼ Insulated.
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Aðb;totÞ
z ðr; θÞ

¼ μ0Jra2
X∞
n¼1

½Xb;J
ðnÞðrÞ þ Yb;J

ðnÞðrÞ þ Zb;J
ðnÞðrÞ� cosðnθÞ

n

ðA1Þ

with Xb;J
ðnÞðrÞ; Yb;J

ðnÞðrÞ; Zb;J
ðnÞðrÞ dimensionless func-

tions of r given in Eq. (14). For our purposes, we have
chosen to derive the following alternative expression of
these functions:

Xb;J
ðnÞðrÞ ¼ sinðnαNÞ

πn

X2N−1

k¼0

eikπð1þ
n
NÞra−2r−n

Zr
r0¼ra

r0nþ1dr0

Yb;J
ðnÞðrÞ ¼ sinðnαNÞ

πn

X2N−1

k¼0

eikπð1þ
n
NÞra−2rn

Zraþw

r0¼r

r01−ndr0

Zb;J
ðnÞðrÞ ¼ sinðnαNÞ

πn

X2N−1

k¼0

eikπð1þn
NÞra−2aμra−2nrn

×
Zraþw

r0¼ra

r0nþ1dr0: ðA2Þ

Note that this alternative expression is simply obtained
by not solving the integrals on r0 present in Eq. (45).
Then, using the equation B⃗ ¼ ∇⃗ × A⃗, we can express the

magnetic field components in the sector coil winding as

Bðb;totÞ
r ðr; θÞ ¼ 1

r
∂Aðb;totÞ

z

∂θ ðr; θÞ

Bðb;totÞ
θ ðr; θÞ ¼ −∂Aðb;totÞ

z

∂r ðr; θÞ ðA3Þ

which, using Eq. (A1), leads to

Bðb;totÞ
r ðr;θÞ

¼−μ0Jra2
X∞
n¼1

½Xb;J
ðnÞðrÞþYb;J

ðnÞðrÞþZb;J
ðnÞðrÞ�sinðnθÞ

r

Bðb;totÞ
θ ðr;θÞ

¼−μ0Jra2
X∞
n¼1

∂½Xb;J
ðnÞðrÞþYb;J

ðnÞðrÞþZb;J
ðnÞðrÞ�

∂r
cosðnθÞ

n
:

ðA4Þ

In addition, from the expression of Xb;J
ðnÞðrÞ; Yb;J

ðnÞðrÞ;
Zb;J

ðnÞðrÞ given in Eq. (A2), it appears that

∂½Xb;J
ðnÞðrÞ þ Yb;J

ðnÞðrÞ þ Zb;J
ðnÞðrÞ�

∂r
¼ n

r
½−Xb;J

ðnÞðrÞ þ Yb;J
ðnÞðrÞ þ Zb;J

ðnÞðrÞ�: ðA5Þ

From this, we can readily derive

Bðb;totÞ
r ðr; θÞ ¼ −μ0Jra2

X∞
n¼1

½Xb;J
ðnÞðrÞ þ Yb;J

ðnÞðrÞ þ Zb;J
ðnÞðrÞ� sinðnθÞ

r

Bðb;totÞ
θ ðr; θÞ ¼ −μ0Jra2

X∞
n¼1

½−Xb;J
ðnÞðrÞ þ Yb;J

ðnÞðrÞ þ Zb;J
ðnÞðrÞ� cosðnθÞ

r
: ðA6Þ

Replacing Xb;J
ðnÞðrÞ; Yb;J

ðnÞðrÞ; Zb;J
ðnÞðrÞ with their expressions given in Eq. (A2), it is now possible to write

Bðb;totÞ
r ðr; θÞ and Bðb;totÞ

θ ðr; θÞ as

Bðb;totÞ
r ðr; θÞ ¼ −μ0Jra

X2N−1

k¼0

ð−1ÞkIm½UðkÞ
J ðr; θÞ þ VðkÞ

J ðr; θÞ þWðkÞ
J ðr; θÞ�

Bðb;totÞ
θ ðr; θÞ ¼ −μ0Jra

X2N−1

k¼0

ð−1ÞkRe½−UðkÞ
J ðr; θÞ þ VðkÞ

J ðr; θÞ þWðkÞ
J ðr; θÞ�; ðA7Þ

where ReðxÞ and ImðxÞ are the real and imaginary parts of x respectively, and UðkÞ
J ðr; θÞ; VðkÞ

J ðr; θÞ;WðkÞ
J ðr; θÞ are

dimensionless complex functions of r and θ given by
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UðkÞ
J ðr; θÞ ¼ 1

ra

X∞
n¼1

sinðnαNÞ
πn

ei
nkπ
N einθr−n−1

Zr
r0¼ra

r0nþ1dr0

VðkÞ
J ðr; θÞ ¼ 1

ra

X∞
n¼1

sinðnαNÞ
πn

ei
nkπ
N einθrn−1

Zraþw

r0¼r

r01−ndr0

WðkÞ
J ðr; θÞ ¼ 1

ra

X∞
n¼1

sinðnαNÞ
πn

ei
nkπ
N einθaμrs

−2nrn−1
Zraþw

r0¼ra

r0nþ1dr0; ðA8Þ

where i is the imaginary unit.
Replacing sinðnαNÞ by ðeinαN − e−inαN Þ=ð2iÞ in the term

UðkÞ
J ðr; θÞ, we can write

UðkÞ
J ðr; θÞ

¼ 1

2iπra

Zr
r0¼ra

r0

r

X∞
n¼1

1

n

��
aþk ðθÞ

r0

r

�
n −

�
a−k ðθÞ

r0

r

�
n
�
dr0

ðA9Þ

with

aþk ðθÞ ¼ eiðθþkπ
NþαNÞ

a−k ðθÞ ¼ eiðθþ
kπ
N−αNÞ: ðA10Þ

We can then perform the change of variable ρ ¼ r0=r in
the integral of Eq. (A9) so that

UðkÞ
J ðr;θÞ¼ 1

2iπ
r
ra

Z1
ρ¼ra

r

ρ

�X∞
n¼1

½aþk ðθÞρ�n
n

−X∞
n¼1

½a−k ðθÞρ�n
n

�
dρ:

ðA11Þ

Since ra ≤ r ≤ ra þ w, we can conclude that 0 ≤ ra=r ≤
1 so that 0 ≤ ra=r ≤ ρ ≤ 1 inside the integral. Therefore,
we can use the following Taylor series:

X∞
n¼1

ðaρÞn
n

¼ − lnð1 − aρÞ ðA12Þ

provided that jaρj < 1. This leads to

UðkÞ
J ðr; θÞ ¼ 1

2iπ
r
ra

� Z1
ρ¼ra

r

ρ ln½1 − a−k ðθÞρ�dρ

−
Z1
ρ¼ra

r

ρ ln½1 − aþk ðθÞρ�dρ
�
: ðA13Þ

Therefore, we obtain the expressions given in Eqs. (36)
and (39), i.e.,

UðkÞ
J ðr;θÞ¼ 1

2iπ
r
ra

�
fJ

�
ra
r
;1;a−k ðθÞ

�
−fJ

�
ra
r
;1;aþk ðθÞ

��
ðA14Þ

with

fJðρ1;ρ2;aÞ¼
Zρ2
ρ¼ρ1

ρ lnð1−aρÞdρ

¼ 1

4a2
½2ða2ρ2−1Þ lnð1−aρÞ−aρðaρþ2Þ�ρ2ρ1 ;

ðA15Þ
where ½fðρÞ�ρ2ρ1 ¼ fðρ2Þ − fðρ1Þ.
Note that in the integral of the expression of UðkÞ

J ðr; θÞ
given in Eq. (A11), ρ varies between ra=r and 1. Therefore,
given the expressions of aþk ðθÞ and a−k ðθÞ presented in
Eq. (A10), we can have aþk ðθÞ ¼ 1 or a−k ðθÞ ¼ 1 and thus
aþk ðθÞρ ¼ 1 or a−k ðθÞρ ¼ 1 when ρ ¼ 1, so that the
logarithm expression cannot in principle be used.
However, we can also write

Z1
ρ¼ra

r

ρ
X∞
n¼1

ðaρÞn
n

dρ ¼
X∞
n¼1

an

n

�
1 − ðra=rÞnþ2

nþ 2

�
; ðA16Þ

where a ¼ aþk ðθÞ or a ¼ a−k ðθÞ. This series converges even
when a ¼ 1 as its general term is dominated by 1=n2. So
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this proves that UðkÞ
J ðr; θÞ converges even when aþk ðθÞ ¼ 1

or a−k ðθÞ ¼ 1.
At the same time, the function fJðρ1; ρ2; aÞ can be

extended to the case where aρ1 ¼ 1 or aρ2 ¼ 1 since the
term ða2ρ2 − 1Þ lnð1 − aρÞ tends towards zero when aρ ¼
1 (well-known reference limit). That is why the form given

for UðkÞ
J ðr; θÞ by Eqs. (36) and (39) can be used and will

converge for any r such that ra ≤ r ≤ ra þ w and any θ.
Nevertheless, in order to evaluate the logarithm term

lnð1 − aρÞ numerically when aρ ¼ 1, it is recommended to

use the form lnð1 − aρþ εÞ in the expression of
fJðρ1; ρ2; aÞ given in Eq. (A15), where ε should be chosen
such that it is negligible compared to 1, but strictly positive,
e.g., ε ¼ 10−10.
Applying the same method to the terms VðkÞ

J ðr; θÞ and

WðkÞ
J ðr; θÞ but using the changes of variables ρ ¼ r=r0 and

ρ ¼ r0r=rs2 respectively in the integrals of Eq. (A8) instead
of ρ ¼ r0=r, we obtain the expressions given in Eqs. (36)
and (39), i.e.,

VðkÞ
J ðr; θÞ ¼ 1

2iπ
r
ra

�
gJ

�
r

ra þ w
; 1; a−k ðθÞ

�
− gJ

�
r

ra þ w
; 1; aþk ðθÞ

��

WðkÞ
J ðr; θÞ ¼ aμ

�
rs
r

�
4 1

2iπ
r
ra

�
fJ

�
rar
rs2

;
ðra þ wÞr

rs2
; a−k ðθÞ

�
− fJ

�
rar
rs2

;
ðra þ wÞr

rs2
; aþk ðθÞ

��
; ðA17Þ

where fJðρ1; ρ2; aÞ is detailed in Eq. (A15) and

gJðρ1; ρ2; aÞ ¼
Zρ2
ρ¼ρ1

lnð1 − aρÞ
ρ3

dρ ¼ 1

2

�
a2ρ2 − 1

ρ2
lnð1 − aρÞ − a2 lnðρÞ þ a

ρ

�
ρ2

ρ1

: ðA18Þ

These expressions of VðkÞ
J ðr; θÞ andWðkÞ

J ðr; θÞ also converge for any r such that ra ≤ r ≤ ra þ w and any θ, thus we can

conclude that Bðb;totÞ
r ðr; θÞ and Bðb;totÞ

θ ðr; θÞ converge for any r such that ra ≤ r ≤ ra þ w and any θ.

2. Series associated with the peak field for the case with iron poles

In Sec. II B, we have presented the following expression of the magnetic vector potential in the winding of a sector coil
which is due to the saturated iron poles:

Aðb;totÞ
z ðr; θÞ ¼ μ0Msatra

X∞
n¼1

½Xb;M
ðnÞðrÞ þ Yb;M

ðnÞðrÞ þ Zb;M
ðnÞðrÞ� cosðnθÞ

n
; ðA19Þ

where the Xb;M
ðnÞðrÞ; Yb;M

ðnÞðrÞ; Zb;M
ðnÞðrÞ dimensionless functions of r are given in Eq. (25) and whose expressions

without solving the integrals present in Eq. (5) are

Xb;M
ðnÞðrÞ ¼ sinðnαN

2
Þ sinð3nαN

2
Þ

π

X2N−1

k¼0

eikπð1þn
NÞra−1r−n

Zr
r0¼ra

r0ndr0

Yb;M
ðnÞðrÞ ¼ sinðnαN

2
Þ sinð3nαN

2
Þ

π

X2N−1

k¼0

eikπð1þ
n
NÞra−1rn

Zraþw

r0¼r

r0−ndr0

Zb;M
ðnÞðrÞ ¼ sinðnαN

2
Þ sinð3nαN

2
Þ

π

X2N−1

k¼0

eikπð1þ
n
NÞra−1aμrs−2nrn

Zraþw

r0¼ra

r0ndr0: ðA20Þ
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From Eqs. (A3) and (A19), the corresponding magnetic field components are then

Bðb;totÞ
r ðr; θÞ ¼ −μ0Msatra

X∞
n¼1

½Xb;M
ðnÞðrÞ þ Yb;M

ðnÞðrÞ þ Zb;M
ðnÞðrÞ� sinðnθÞ

r

Bðb;totÞ
θ ðr; θÞ ¼ −μ0Msatra

X∞
n¼1

∂½Xb;M
ðnÞðrÞ þ Yb;M

ðnÞðrÞ þ Zb;M
ðnÞðrÞ�

∂r
cosðnθÞ

n
: ðA21Þ

Again, from the expression of Xb;M
ðnÞðrÞ; Yb;M

ðnÞðrÞ; Zb;M
ðnÞðrÞ given in Eq. (A20), it appears that

∂½Xb;M
ðnÞðrÞ þ Yb;M

ðnÞðrÞ þ Zb;M
ðnÞðrÞ�

∂r ¼ n
r
½−Xb;M

ðnÞðrÞ þ Yb;M
ðnÞðrÞ þ Zb;M

ðnÞðrÞ�: ðA22Þ
Thus

Bðb;totÞ
r ðr; θÞ ¼ −μ0Msatra

X∞
n¼1

½Xb;M
ðnÞðrÞ þ Yb;M

ðnÞðrÞ þ Zb;M
ðnÞðrÞ� sinðnθÞ

r

Bðb;totÞ
θ ðr; θÞ ¼ −μ0Msatra

X∞
n¼1

½−Xb;M
ðnÞðrÞ þ Yb;M

ðnÞðrÞ þ Zb;M
ðnÞðrÞ� cosðnθÞ

r
ðA23Þ

which, replacing Xb;M
ðnÞðrÞ; Yb;M

ðnÞðrÞ; Zb;M
ðnÞðrÞ with their expressions given in Eq. (A20), leads to

Bðb;totÞ
r ðr; θÞ ¼ −μ0Msat

X2N−1

k¼0

ð−1ÞkIm½UðkÞ
M ðr; θÞ þ VðkÞ

M ðr; θÞ þWðkÞ
M ðr; θÞ�

Bðb;totÞ
θ ðr; θÞ ¼ −μ0Msat

X2N−1

k¼0

ð−1ÞkRe½−UðkÞ
M ðr; θÞ þ VðkÞ

M ðr; θÞ þWðkÞ
M ðr; θÞ�; ðA24Þ

where UðkÞ
M ðr; θÞ; VðkÞ

M ðr; θÞ;WðkÞ
M ðr; θÞ are dimensionless complex functions of r and θ given by

UðkÞ
M ðr; θÞ ¼

X∞
n¼1

sinðnαN
2
Þ sinð3nαN

2
Þ

π
ei

nkπ
N einθr−n−1

Zr
r0¼ra

r0ndr0

VðkÞ
M ðr; θÞ ¼

X∞
n¼1

sinðnαN
2
Þ sinð3nαN

2
Þ

π
ei

nkπ
N einθrn−1

Zraþw

r0¼r

r0−ndr0

WðkÞ
M ðr; θÞ ¼

X∞
n¼1

sinðnαN
2
Þ sinð3nαN

2
Þ

π
ei

nkπ
N einθaμrs−2nrn−1

Zraþw

r0¼ra

r0ndr0; ðA25Þ

where i is the imaginary unit. Replacing the term sinðnαN
2
Þ sinð3nαN

2
Þ by ðeinαN þ e−inαN − ei2nαN − e−i2nαN Þ=4 in UðkÞ

M ðr; θÞ,
we can write

UðkÞ
M ðr; θÞ ¼ 1

4π

Zr
r0¼ra

1

r

X∞
n¼1

��
aþk ðθÞ

r0

r

�
n
þ
�
a−k ðθÞ

r0

r

�
n −

�
a2þk ðθÞ r

0

r

�
n −

�
a2−k ðθÞ r

0

r

�
n
�
dr0; ðA26Þ

where aþk ðθÞ and a−k ðθÞ are given in Eq. (A20) and

a2þk ðθÞ ¼ eiðθþkπ
Nþ2αNÞ

a2−k ðθÞ ¼ eiðθþ
kπ
N−2αNÞ: ðA27Þ
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Using again the change of variable ρ ¼ r0=r in the

integral of Eq. (A26) as we did for UðkÞ
J ðr; θÞ in

Appendix A to transform Eq. (A9) into (A11), we obtain

UðkÞ
M ðr;θÞ¼ 1

4π

Z1
ρ¼ra=r

�X∞
n¼1

½aþk ðθÞρ�nþ
X∞
n¼1

½a−k ðθÞρ�n

−X∞
n¼1

½a2þk ðθÞρ�n−X∞
n¼1

½a2−k ðθÞρ�n
�
dρ: ðA28Þ

This time, we can use the following Taylor series:

X∞
n¼1

ðaρÞn ¼ aρ
1 − aρ

ðA29Þ

provided that jaρj < 1, so that

UðkÞ
M ðr;θÞ¼ 1

4π

� Z1
ρ¼ra=r

aþk ðθÞρ
1−aþk ðθÞρ

dρþ
Z1

ρ¼ra=r

a−k ðθÞρ
1−a−k ðθÞρ

dρ

−
Z1

ρ¼ra=r

a2þk ðθÞρ
1−a2þk ðθÞρdρ−

Z1
ρ¼ra=r

a2−k ðθÞρ
1−a2−k ðθÞρdρ

�
:

ðA30Þ
Therefore, we obtain the expressions given in Eqs. (37)

and (40), i.e.,

UðkÞ
M ðr; θÞ ¼ 1

4π

�
−fM

�
ra
r
; 1; a−k ðθÞ

�
− fM

�
ra
r
; 1; aþk ðθÞ

�

þ fM

�
ra
r
; 1; a2−k ðθÞ

�
þ fM

�
ra
r
; 1; a2þk ðθÞ

��
ðA31Þ

with

fMðρ1; ρ2; aÞ ¼
Zρ2
ρ¼ρ1

−aρ
1 − aρ

dρ ¼
�
1

a
lnð1 − aρÞ þ ρ

�
ρ2

ρ1

;

ðA32Þ

where ½fðρÞ�ρ2ρ1 ¼ fðρ2Þ − fðρ1Þ.
Again, note that in the integral of the expression of

UðkÞ
M ðr; θÞ given in Eq. (A28), ρ varies between ra=r and 1.

Therefore, given the expressions of a�k ðθÞ and a2�k ðθÞ
presented in Eqs. (A10) and (A27), we can have a�k ðθÞ ¼ 1

or a2�k ðθÞ ¼ 1 and thus a�k ðθÞρ ¼ 1 or a2�k ðθÞρ ¼ 1 for
ρ ¼ 1, so that the Taylor-series expression (A29) cannot in
principle be used. However, we can also write

Z1
ρ¼ra

r

X∞
n¼1

ðaρÞndρ ¼
X∞
n¼1

an
�
1 − ðra=rÞnþ1

nþ 1

�
; ðA33Þ

where a ¼ a�k ðθÞ or a ¼ a2�k ðθÞ, which converges only if
argðaÞ ≠ 0 as its general term is of the form ein argðaÞ=n. So
UðkÞ

M ðr; θÞ converges only if aþk ðθÞ; a−k ðθÞ; a2þk ðθÞ; a2−k ðθÞ
are all different from 1. Given the expressions of these

coefficients, this implies that UðkÞ
M ðr; θÞ converges for any r

such that ra ≤ r ≤ ra þ w and anyθ exceptwhenθ ¼ ð6p�
1ÞαN or θ ¼ ð6p − 3� 1ÞαN, with1 ≤ p ≤ N (note that this
actually corresponds to the boundaries between the sector
coil and its iron poles, see Fig. 2 and the discussion in
Sec. III B).
Finally, applying the same method to the terms VðkÞ

M ðr; θÞ
and WðkÞ

M ðr; θÞ but using the changes of variables ρ ¼ r=r0
and ρ ¼ r0r=rs2 respectively in the integrals of Eq. (A25)
instead of ρ ¼ r0=r, we obtain the expressions given in
Eqs. (37) and (40), i.e.,

VðkÞ
M ðr;θÞ¼ 1

4π

�
−gM

�
r

raþw
;1;a−k ðθÞ

�
−gM

�
r

raþw
;1;aþk ðθÞ

�
þgM

�
r

raþw
;1;a2−k ðθÞ

�
þgM

�
r

raþw
;1;a2þk ðθÞ

��

WðkÞ
M ðr;θÞ¼ aμ

�
rs
r

�
2 1

4π

�
−fM

�
rar
rs2

;
ðraþwÞr

rs2
;a−k ðθÞ

�
−fM

�
rar
rs2

;
ðraþwÞr

rs2
;aþk ðθÞ

�

þfM

�
rar
rs2

;
ðraþwÞr

rs2
;a2−k ðθÞ

�
þfM

�
rar
rs2

;
ðraþwÞr

rs2
;a2þk ðθÞ

��
; ðA34Þ

where fMðρ1; ρ2; aÞ is detailed in Eq. (A32) and

gMðρ1; ρ2; aÞ ¼
Zρ2
ρ¼ρ1

1

ρ2
−aρ
1 − aρ

dρ ¼ a½lnð1 − aρÞ − lnðρÞ�ρ2ρ1 : ðA35Þ

These expressions of VðkÞ
M ðr; θÞ andWðkÞ

M ðr; θÞ also converge for any r such that ra ≤ r ≤ ra þ w and any θ except when
θ ¼ ð6p� 1ÞαN or θ ¼ ð6p − 3� 1ÞαN, with 1 ≤ p ≤ N, and thus so do those of the magnetic field components

Bðb;totÞ
r ðr; θÞ and Bðb;totÞ

θ ðr; θÞ in the sector coil winding associated with the saturated iron poles.

ELECTROMAGNETIC DESIGN OF SUPERCONDUCTING … PHYS. REV. ACCEL. BEAMS 23, 012402 (2020)

012402-17



[1] D. Schoerling, Other magnets parameters, at the Fourth
Annual Meeting of the Future Circular Collider Study
(FCC week), Amsterdam, The Netherlands, 2018,
https://indico.cern.ch/event/656491/contributions/2920305/
attachments/1628231/2596868/Schoerling_OtherMagnets_
2018.pdf.

[2] A. Wolski, Beam Dynamics in High Energy Particle
Accelerators (Imperial College Press, London, 2014).

[3] E. Todesco, Magnetic design of superconducting magnets,
CERN Yellow Report No. CERN-2014-005, pp. 269–292,
2014, https://doi.org/10.5170/CERN-2014-005.269.

[4] A. Asner, Cylindrical aperture multipoles with constant
current density sector windings, CERN Report No. SI/Note
MAE/69-15, 1969.

[5] K. H. Mess, P. Schmüser, and S. Wolf, Field calculations,
in Superconducting Accelerator Magnets (World Scien-
tific, Singapore, 1996), pp. 45–64.

[6] K. H. Mess and P. Schmüser, Superconducting accelerator
magnets, in CAS-CERN Accelerator School: Supercon-
ductivity in Particle Accelerators, DESY, Hamburg,
Germany, 1988, Report No. CERN-1989-004, pp. 87–
148, http://cds.cern.ch/record/367115/files/87.pdf.

[7] S. Russenschuck, Field Computation for Accelerator
Magnets: Analytical and Numerical Methods for Electro-
magnetic Design and Optimization (Wiley, Weinheim,
Germany, 2010).

[8] A. Louzguiti, Analytical computation of magnetic field
inside sector coil, CERN Technical Note TE-MSC, EDMS
No. 2037178, 2019, https://edms.cern.ch/file/2037178/1/
Analytical_computation_of_magnetic_field_inside_sector_
coil_v6.docx.

[9] J. P. Boris and A. F. Kuckes, Closed expressions for the
magnetic field in two-dimensional multipole configura-
tions, Nucl. Fusion 8, 323 (1968).

[10] L. Rossi and E. Todesco, Electromagnetic design of
superconducting dipoles based on sector coils, Phys.
Rev. ST Accel. Beams 10, 112401 (2007).

[11] A. Ijspeert et al., Development of a superconducting sextu-
pole-dipole corrector magnet, in 11th International
Conference on Magnet Technology (MT-11) (Springer,
Dordrecht, 1990), Vol. 1, pp. 200–205, https://doi.org/
10.1007/978-94-009-0769-0_34.

[12] A. Louzguiti, D. M. Araujo, D. Pracht, M. Prioli, E.
Ravaioli, D. Schoerling, and G. Vallone, Optimization of
the electromagnetic design of the FCC sextupoles and
octupoles, IEEE Trans. Appl. Supercond. 29, 5 (2019).

[13] L. Bottura, A practical fit for the critical surface of NbTi,
IEEE Trans. Appl. Supercond. 10, 1 (2000).

[14] L. Rossi and E. Todesco, Electromagnetic design of
superconducting quadrupoles, Phys. Rev. STAccel. Beams
9, 102401 (2006).

ALEXANDRE LOUZGUITI and DANIEL SCHOERLING PHYS. REV. ACCEL. BEAMS 23, 012402 (2020)

012402-18

https://indico.cern.ch/event/656491/contributions/2920305/attachments/1628231/2596868/Schoerling_OtherMagnets_2018.pdf
https://indico.cern.ch/event/656491/contributions/2920305/attachments/1628231/2596868/Schoerling_OtherMagnets_2018.pdf
https://indico.cern.ch/event/656491/contributions/2920305/attachments/1628231/2596868/Schoerling_OtherMagnets_2018.pdf
https://indico.cern.ch/event/656491/contributions/2920305/attachments/1628231/2596868/Schoerling_OtherMagnets_2018.pdf
https://indico.cern.ch/event/656491/contributions/2920305/attachments/1628231/2596868/Schoerling_OtherMagnets_2018.pdf
https://indico.cern.ch/event/656491/contributions/2920305/attachments/1628231/2596868/Schoerling_OtherMagnets_2018.pdf
https://doi.org/10.5170/CERN-2014-005.269
http://cds.cern.ch/record/367115/files/87.pdf
http://cds.cern.ch/record/367115/files/87.pdf
http://cds.cern.ch/record/367115/files/87.pdf
http://cds.cern.ch/record/367115/files/87.pdf
https://edms.cern.ch/file/2037178/1/Analytical_computation_of_magnetic_field_inside_sector_coil_v6.docx
https://edms.cern.ch/file/2037178/1/Analytical_computation_of_magnetic_field_inside_sector_coil_v6.docx
https://edms.cern.ch/file/2037178/1/Analytical_computation_of_magnetic_field_inside_sector_coil_v6.docx
https://edms.cern.ch/file/2037178/1/Analytical_computation_of_magnetic_field_inside_sector_coil_v6.docx
https://edms.cern.ch/file/2037178/1/Analytical_computation_of_magnetic_field_inside_sector_coil_v6.docx
https://edms.cern.ch/file/2037178/1/Analytical_computation_of_magnetic_field_inside_sector_coil_v6.docx
https://doi.org/10.1088/0029-5515/8/4/005
https://doi.org/10.1103/PhysRevSTAB.10.112401
https://doi.org/10.1103/PhysRevSTAB.10.112401
https://doi.org/10.1007/978-94-009-0769-0_34
https://doi.org/10.1007/978-94-009-0769-0_34
https://doi.org/10.1109/TASC.2019.2892839
https://doi.org/10.1109/77.828413
https://doi.org/10.1103/PhysRevSTAB.9.102401
https://doi.org/10.1103/PhysRevSTAB.9.102401

