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In plasma wakefield acceleration, the witness beam’s emittance needs to be preserved when it propagates
through a plasma stage. The plasma includes density ramps at both the entrance and the exit. Using the
Wentzel-Kramers-Brillouin solution of a single particle’s motion, analytical expressions for the evolution
of the beam emittance and the Twiss parameters in an arbitrary adiabatic plasma profile are provided
neglecting the acceleration of the beam inside the plasma. It is shown that the beam emittance can be
preserved under the matching condition even when the beam has an initial energy spread. It is also shown
that the emittance growth for an unmatched beam is minimized when it is focused to the same vacuum
plane for a matched beam. The emittance evolution from 3D QuickPIC simulation results agree well with
the theoretical results. In the some of the proposed experiments on nearly completed FACET II facility, the
matching condition may not be perfectly satisfied and the wake may not be perfectly symmetric. It is shown
that for a given set of beam parameters that are consistent with FACET II capabilities, even when the
assumptions of the theory are not satisfied, the emittance growth can still be minimized by choosing the
optimal focal plane. Last, another issue that may cause emittance growth in realistic plasmas is also
examined. When using a lithium plasma source in FACET II experiments a helium buffer gas is used. The
plasma is formed from field ionization which can lead to a nonlinear focusing force when there are
nonuniform helium ions due to its high ionization potential. For an initial beam emittance of 20 μm, the
helium ionization is found to be small and the witness beam’s emittance can be preserved.

DOI: 10.1103/PhysRevAccelBeams.23.011302

I. INTRODUCTION

During the past two decades of research, a number of
impressive advances have been made in the beam-driven
plasma wakefield acceleration (PWFA) concept. For in-
stance, experiments have shown that these wakes can
sustain accelerating gradients exceeding 50 GeV=m over
∼ meter in length [1], and the acceleration of the witness
beam in PWFA can be highly efficient while maintaining a
high acceleration gradient and small energy spread [2]. In
PWFA, an ultrarelativistic electron beam (the drive beam)
is used to form a plasma wake that accelerates a second

electron beam (the witness beam) that is properly loaded
inside the wake. In the so-called blowout regime, the drive
beam density is much higher than the plasma density. The
electric field of the drive beam will expel all the plasma
electrons away and leave an ion channel (i.e., a bubble)
after it. As shown in Fig. 1, when the witness beam is
located at a proper position inside the wake, the accelerat-
ing field can be flattened in order to preserve the energy
spread. At the back of the bubble, where the witness beam
is located, not only is there a longitudinal electric field that
provides a high acceleration gradient, but there is also a
transverse focusing force. In addition, when there is
azimuthal symmetry, in these nonlinear wakes the longi-
tudinal electric field (the accelerating field) does not
depend on r and the transverse focusing force is linear
(proportional to r), points radially inward, and does not
depend on ξ ¼ ct − z inside the bubble [3]. The fact that
the accelerating field does not depend on r ensures that the
beam particles will not gain additional slice energy spread
when undergoing acceleration and betatron oscillations
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inside the bubble. Furthermore, the fact that the transverse
linear focusing force does not depend on ξ ensures that
the beam particles at different longitudinal positions will
oscillate at the same betatron frequency, if they have the
same energy. If one of these properties is satisfied then the
Panofsky Wenzel theorem [4,5] guarantees that the other is
as well.
When the beam has no energy spread, its emittance is

conserved under a linear focusing force inside the sym-
metric bubble. When the beam has an energy spread, and/or
there is acceleration with imperfect beam loading (particles
at different longitudinal positions in the beam feel a
different accelerating field, Ez), the beam’s emittance
may increase during its propagation in the plasma. The
topic of emittance growth and preservation is very impor-
tant and is being actively studied [6–13].
Recently, expressions for emittance evolution in uniform

plasma, both for cases when the beam does [10] or does not
have [11] longitudinal acceleration have been published. It
has also been shown that several plasma density profiles
provide exact solutions to single particle motion [10,12],
therefore the evolution of the beam’s Twiss parameters can
be calculated and used to match the beam into a plasma. In
this paper, we investigate how the emittance grows when a
beam is not matched in an adiabatic plasma ramp. In
complimentary work, R. Ariniello et al. [13] have recently
shown that if a beam is matched to an adiabatic plasma
profile, the emittance will oscillate around its initial value
with a small amplitude (10−4 times the initial emittance) for
a 2% energy spread (and the amplitude of oscillations
scales as σ2γ ).
In typical experiments (e.g., the FACET II experiments at

SLAC [14]), the plasma density profile is usually fixed with
density ramps at the entrance and the exit. Therefore the
beam parameters need to be optimized to match the beam to

the plasma. It has been shown that if the witness beam is
initially matched to the plasma, its emittance can be
preserved very well [14]. However, if the witness beam
parameters are fixed, it usually cannot be perfectly matched
to an arbitrary plasma density ramp. In this paper, we
investigate the witness beam’s emittance evolution in this
situation. We first derive an analytical expression for the
beam’s emittance evolution in an arbitrary adiabatic plasma
profile, assuming the beam has no longitudinal acceler-
ation. This analytical expression can be used to predict the
emittance growth when the beam has an energy spread and
is not initially matched. This analysis is complimentary to
that in [13] where it was assumed that the beam was nearly
matched and the emittance growth was small. We also
discuss how to choose the relative focal plane by either
moving the plasma or the focal position of the beam to
minimize the emittance growth for an unmatched beam
with fixed parameters. It is found that the beam emittance
growth can be minimized when choosing the focal plane
to be the vacuum focus for a beam that was matched.
Another issue that may cause emittance growth in recently
proposed energy doubling of the witness beam experiment
at FACET II experiments [1] is the ionization of helium
buffer gas when using the Lithium plasma source.
Additional self-ionization [15] by the beam can modify
the focusing fields in the buffer region. In the last section,
we show that under that situation the emittance growth is
due to the nonlinear focusing force felt by the beam, which
is caused by the nonuniform helium ion density in the
plasma. The helium ionization can be minimized by using a
20 μm initial emittance witness bunch. Therefore such a
bunch can be propagated while gaining energy without
measurable emittance growth.

II. THEORETICAL ANALYSIS OF EMITTANCE
EVOLUTION IN ARBITRARY ADIABATIC

PLASMA DENSITY PROFILE

In the blowout regime of PWFA with the assumption
of azimuthal symmetry (we will henceforth use this
assumption), the focusing force felt by an electron in the
witness beam is F⊥ ¼ −meω

2
pr=2 (whereme is the electron

mass, ωp ¼
ffiffiffiffiffiffiffi
npe2

ϵ0me

q
is the plasma frequency, np is the

plasma density, ϵ0 is the vacuum permittivity, e is the
elementary charge), which is proportional to the radial
distance r and independent of ξ ¼ ct − z. Therefore the
motions of the beam particle in x and y directions are
decoupled, and we will only study the beam particle motion
in the x direction. If we assume a beam particle’s energy is a
constant, the equation of motion for this particle is

x00ðzÞ þ kβðzÞ2xðzÞ ¼ 0 ð1Þ

where z is the coordinate along the direction of propaga-

tion, kβðzÞ ¼ ωpðzÞffiffiffiffi
2γ

p
c
, ωpðzÞ is the plasma frequency at

FIG. 1. A snapshot of the drive and witness beam of a sample
simulation of a two bunch PWFA. A data is in the x − ξ plane at
y ¼ 0. Both beams (blue) are propagating to the left. The green
area shows the unperturbed plasma electron density, the white
area is the uniform plasma ions (ion channel/bubble). The red
curve is the lineout of the accelerating field Ez on the axis (in
arbitrary units).
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position z, γ is the relativistic factor of the beam particle, c
is the speed of light. In a uniform plasma, ωpðzÞ is a
constant, so the solution to Eq. (1) is a simple harmonic
oscillation. With a given initial phase space distribution for
the beam, we can obtain an analytical expression for the
emittance evolution [10,11]. For nonuniform plasma, there
is no general analytical solution to equation (1). However,
as long as the plasma density is changing adiabatically, i.e.,

jk0βðzÞj 2π
kβðzÞ

kβðzÞ
≪ 1 ð2Þ

or

π

kβðzÞnpðzÞ
���� dnpðzÞdz

���� ≪ 1

we can use Wentzel-Kramers-Brillouin (WKB) method
[16] to get an approximate solution to Eq. (1), and calculate
the emittance evolution with the WKB solution.
The WKB solution to Eq. (1) is

xðzÞ ¼ xð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
βmðzÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffi
βmð0Þ

p cos½ϕðzÞ�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βmðzÞβmð0Þ

p �
x0ð0Þ þ αmð0Þ

βmð0Þ
xð0Þ

�
sin½ϕðzÞ�

ð3Þ

where

βmðzÞ ¼ 1=kβðzÞ; αmðzÞ ¼ −
1

2

dβmðzÞ
dz

ð4Þ

are the Twiss parameters for a single particle in an
adiabatically changing profile, and ϕðzÞ ¼ R

z
0 kβðsÞds is

the phase advance. xð0Þ and x0ð0Þ are the initial values for
the beam particle. Then the adiabatic condition (2) can be
simplified to [13]

jαmðzÞj ≪ 1 ð5Þ

We note that if the plasma density profile is npðzÞ ¼ np0
ð1þz=lÞ4

(where l is a constant), then Eq. (1) has an exact solution
[12], which is the same as its WKB solution described in
equation (3).
For brevity, we henceforth denote xðzÞ by x, xð0Þ by xi,

βmðzÞ by βm, βmð0Þ by βmi, αmðzÞ by αm, αmð0Þ by αmi, ϕðzÞ
by ϕ. From (3) and its derivative, we can obtain

�
x

x0

�
¼ M

�
xi
x0i

�
¼

�
M11 M12

M21 M22

��
xi
x0i

�

where M is the transport matrix and

M11 ¼
ffiffiffiffiffiffiffi
βm
βmi

s
ðcosϕþ αmi sinϕÞ

M12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
βmβmi

p
sinϕ

M21 ¼
ðαmi − αmÞ cosϕ − ð1þ αmiαmÞ sinϕffiffiffiffiffiffiffiffiffiffiffiffi

βmβmi
p

M22 ¼
ffiffiffiffiffiffiffi
βmi

βm

s
ðcosϕ − αm sinϕÞ

The geometric emittance is defined as

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihx02i − hxx0i2

q
ð6Þ

where hi is the ensemble average. It then follows that (see
Appendix A for details)

hx2i ¼ hðM11xi þM12x0iÞ2i
¼ ϵiβmðAþ B1Cþ B2SÞ; ð7Þ

where:

A ¼ βiγmi þ γiβmi − 2αiαmi

2
;

B1 ¼
βi
βmi

− A ¼ βi
βmi

−
βiγmi þ γiβmi − 2αiαmi

2
;

B2 ¼
βi
βmi

αmi − αi;

C ¼
Z

dϕfϕðϕÞ cos 2ϕ;

S ¼
Z

dϕfϕðϕÞ sin 2ϕ;

and ϵi¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2i ihx0i2i−hxix0ii2

p
, βi ¼ hxi2i=ϵi, γi ¼ hx0i2i=ϵi,

αi ¼ −hxix0ii=ϵi are the beam’s initial geometric emittance
and Twiss parameters, γm ¼ ð1þ α2mÞ=βm, and fϕðϕÞ is the
distribution function for the beam particles’ phase advance.
For a beam with no energy spread, fϕðϕÞ ¼ δðϕ − ϕ0Þ
where ϕ0 ¼

R
z
0 kβðsÞds ¼

R
z
0

ωpðsÞffiffiffiffi
2γ

p
c ds.

We can also obtain

hx02i ¼ ϵi

�
Aγm þ −B1 − 2B2αm þ B1α

2
m

βm
C

þ −B2 þ 2B1αm þ B2α
2
m

βm
S

�
ð8Þ

and

hxx0i ¼ −ϵi½Aαm þ ðB1αm − B2ÞCþ ðB2αm þ B1ÞS� ð9Þ
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Using Eqs. (7)–(9), and noting that A, B1, and B2 satisfy
B2
1 þ B2

2 ¼ A2 − 1, we can obtain an analytical expression
of emittance growth for arbitrary fϕðϕÞ with small energy
spread

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihx02i − hxx0i2

q
¼ ϵi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − ðA2 − 1ÞðC2 þ S2Þ

q
ð10Þ

denote the average relativistic factor of the beam as γ̄.
When the relative energy spread of the beam is very small
(i.e., for every particle jΔγj ¼ jγ − γ̄j ≪ γ̄), the particle’s
phase advance in the plasma ϕ will become ϕðγÞ ¼
ϕ̄ − ϕ̄

2γ̄Δγ, where ϕ̄ ¼ ϕðγ̄Þ (See Appendix C for details).
Assuming a Gaussian energy distribution, for the beam
particles we have:

fγðγÞ ¼
1ffiffiffiffiffiffi
2π

p
σγ

exp

�
−
ðγ − γ̄Þ2
2σ2γ

�

As a result, ϕ will also have a Gaussian distribution

fϕðϕÞ ¼
1ffiffiffiffiffiffi
2π

p
σϕ

exp

�
−
ðϕ − ϕ̄Þ2

2σ2ϕ

�

where

σϕ ¼ ϕ̄

2

σγ
γ̄

ð11Þ

σγ
γ̄ is the relative energy spread of the beam. With this
Gaussian distribution of ϕ, we can obtain:

C ¼ expð−2σ2ϕÞ cosð2ϕ̄Þ; S ¼ expð−2σ2ϕÞ sinð2ϕ̄Þ ð12Þ

Inserting (12) into (10) and using (11), we get an
analytical expression of emittance growth for a beam that
has a Gaussian energy distribution with a small energy
spread:

ϵ

ϵi
¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

A2 − 1

A2
exp

h
−
�σγ
γ̄
ϕ̄
	
2
is

ð13Þ

where σγ
γ̄ is the energy spread, and ϕ̄ ¼ 1ffiffiffiffi

2γ̄
p

c

R
z
0 ωpðsÞds is

the phase change of an electron with energy γ̄ after it
propagates for a longitudinal distance of z inside the
plasma. Because we assume the beam’s energy, γ̄, does
not change, then

ϵ

ϵi
¼ γ̄ϵ

γ̄ϵi
≈

ϵn
ϵni

where ϵn ¼ 1
mec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihp2

xi − hxpxi2
p

is the normalized
emittance and px is the transverse momentum of the
particle. This means the normalized emittance growth is
approximately the same as the geometric emittance growth.
Note that in order to keep the analysis tractable we have
only kept the effects of the energy spread in the betatron
phase advance and not on the amplitude of the betatron
oscillation in the elements of the transport matrix. The
amplitudes are functions of the local values of the Twiss
parameters while the phase is an integral in z over 1=βm.
Therefore, only the phase terms can deviate substantially
between particles with small energy differences. Thus, the
small amplitude oscillation of the emittance seen in
Ref. [13] when a matched beam has finite energy spread
is absent here.
In Fig. 2, we compare the theoretical results from (13)

with QuickPIC [17,18] simulation results. We choose a
plasma density profile npðzÞ ¼ np0

ð1þz=lÞ2, for which the

adiabatic condition is independent of z. In the simulation,
we turn off the longitudinal acceleration for the beam
particles (i.e., the energy of the beam particle essentially

(a) (b)

(c) (d)

FIG. 2. Emittance evolution in plasma ramp: npðzÞ ¼ np0
ð1þz=lÞ2

(l ¼ 5, l and z are normalized to βmi). For (a) the beam is initially
matched: βi ¼ βmi; αi ¼ αmi ¼ − 1

2l ¼ −0.1, and the beam has a
5% energy spread. For (b) the beam is initially unmatched:
βi ¼ 10βmi; αi ¼ 2αmi, and the beam has 1%, 5%, 10% initial
energy spreads respectively. For (c) the beam is initially un-
matched: βi ¼ 10βmi; αi ¼ 2αmi; 100αmi;−100αmi respectively,
and the beam has a 5% energy spread. For (d) the beam is initially
unmatched: αi ¼ 2αmi; βi ¼ 5βmi; 10βmi; 20βmi respectively, and
the beam has a 5% energy spread. In (b)(c)(d), the solid lines are
from QuickPIC simulations, and the dashed lines are from the
analytical expression (13). In these three plots, the solid black
lines correspond to the same simulation result, and the dashed
black lines correspond to the same analytical expression.
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does not change), and choose reasonable parameters to
make the simulation in the blowout regime. Figure 2(a)
shows that when the beam is initially matched, the beam’s
emittance is a constant during its propagation inside the
plasma. As shown in Fig. 2(b)–2(d), if the beam is not
initially matched, the theoretical results based on the WKB
solution agree with the simulation result very well.
Note that in (13), A ≥ 1 is always true (see the

Appendix B). So ϵ=ϵi ≤ A. When the beam propagates
in the plasma for a very long distance, ϕ̄ will become very
large, and the beam will have a saturated emittance:

ϵsat
ϵi

¼ A ¼ βiγmi þ γiβmi − 2αiαmi

2
ð14Þ

For the special case when the plasma is uniform along z,
we have αm ¼ αmi ¼ 0, so γm ¼ γmi ¼ 1=βmi, then

A ¼ γiβmi þ βi=βmi

2

Therefore, the emittance growth in a longitudinally uniform
plasma will be

ϵ

ϵi
¼ γiβmi þ βi=βmi

2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðγiβmi þ βi=βmiÞ2 − 4

ðγiβmi þ βi=βmiÞ2
exp

h
−
�σγ
γ̄
ϕ̄
	
2
is

ð15Þ

which is mathematically equivalent to Eq. (7) in [11], and
similar to Eq. (1) in [10] [difference is due to the different
assumptions for fϕðϕÞ].
We define the beam to be initially matched when

αi ¼ αmi; βi ¼ βmi; γi ¼ γmi ð16Þ

Then we have A ¼ 1; B1 ¼ 0; B2 ¼ 0. Therefore, from
Eqs. (7)–(9) and (13), we have hx2i=ϵi¼βm, hx02i=ϵi¼
γm, −hxx0i=ϵi ¼ αm and ϵ ¼ ϵi. So β ¼ hx2i=ϵ ¼ βm,
γ ¼ hx02i=ϵ ¼ γmi, α ¼ −hxx0i=ϵ ¼ αm. Therefore, with
an adiabatic plasma density profile, when neglecting the
beam’s energy change, if the beam is initially matched,
the beam’s Twiss parameters along z will be βm, γm, αm,
and the beam’s geometric emittance will not change. We
can therefore interpret βm, αm defined in (4) and γm as the
matched Twiss parameters.
If the beam’s initial Twiss parameters deviate from the

matched ones, i.e.,

αi ¼ αmi þ Δα; βi ¼ βmi þ Δβ

where jΔαj ≪ 1 and jΔβj=βmi ≪ 1, then

A ≈ 1þ 1

2
Δα2 þ γmi

2βmi
Δβ2 −

αmi

βmi
ΔαΔβ ð17Þ

Inserting this into (13) gives

ϵ

ϵi
≈ 1þ

�
1

2
Δα2 þ γmi

2βmi
Δβ2 −

αmi

βmi
ΔαΔβ

�h
1 − e−ð

σγ
γ̄ ϕ̄Þ2

i

We can also get the expression for β from the above
equations. Inserting (12) into (7) and using (11) leads to

hx2i ¼ ϵiβmfAþ ½B1 cosð2ϕ̄Þ þ B2 sinð2ϕ̄Þ�e−
1
2
ðσγγ̄ ϕ̄Þ2g:

Dividing both sides by ϵ and using (13) gives

β ¼ βm
Aþ ½B1 cosð2ϕ̄Þ þ B2 sinð2ϕ̄Þ� exp½− 1

2
ðσγγ̄ ϕ̄Þ2�

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2−1

A2 exp½−ðσγγ̄ ϕ̄Þ2�
q :

ð18Þ

If there is no energy spread (σγ ¼ 0), this equation can be
simplified

β ¼ βm½Aþ B1 cosð2ϕÞ þ B2 sinð2ϕÞ� ð19Þ
which is similar in form to Eq. (11) in [13] but with
different coefficients.

III. ON MINIMIZING THE EMITTANCE
GROWTH FOR A FIXED BEAM

In the previous section, it was shown that the beam
emittance will be preserved as long as the beam satisfies the
matching condition [Eq. (16)]. In this case β� ¼ 1=γmi (β�
is β when α ¼ 0) which we define as the matched β�, β�m.
It was also shown how the emittance grows if the beam is
slightly mismatched as might be the case if there are shot to
shot variations of the beam and/or plasma conditions. In
addition, in a controlled experiment that might for example
be conducted at FACET II [14], the beam emittance and
optics are relatively fixed so that β� can be assume to be
fixed. However, for a given plasma profile the plasma
conditions at the plasma entrance are such that it will not be
possible to match a beam with a given β� (i.e., β� ≠ β�m).
It is therefore useful to determine the best location to focus
such a beam. This is defined to be the focal position
in vacuum (z ¼ s) that minimizes the emittance growth for
a given beam and plasma profile, assuming the plasma
entrance is at z ¼ 0.
Therefore,

αðsÞ ¼ 0; βðsÞ ¼ β�

where β� is β at the focal plane. According to the evolution
of Twiss parameters in a drift space [19], the beam’s initial
Twiss parameters at the plasma entrance (z ¼ 0) are
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αi ¼ αð0Þ ¼ s
β�

; βi ¼ βð0Þ ¼ β� þ s2

β�
; γi ¼ γð0Þ ¼ 1

β�

ð20Þ

Using Eq. (13), we can calculate the emittance growth
using the above initial condition, and find the optimal s
defined to be when dϵ=ds ¼ 0. For a fixed plasma density
profile, dϵ=ds ¼ 0 reduces to dA=ds ¼ 0, which gives us
the optimal s,

so ¼
αmi

γmi
ð21Þ

This optimal s ¼ so is actually the focal position in vacuum
for the matched beam (whose initial Twiss parameters at the
plasma entrance are αmi, βmi and γmi). In other words, by
putting the unmatched beam’s focal plane at the same
position as the matched beam’s focal plane in vacuum, the
unmatched beam will have minimal emittance growth in the
plasma. We can calculate this minimal emittance growth by
evaluating A using the initial Twiss parameters from (20)
and (21), giving A ¼ Ao ≡ 1

2
ðβ�γmi þ 1

β�γmi
Þ. We then insert

this into (13) to get the minimal emittance growth.
If the witness beam’s focal plane in vacuum deviates

from the optimal position (21): s ¼ so þ Δs, from (20)
and (21) we can obtain:

A ¼ Ao þ
γmi

2β�
Δs2

We can see that for s ¼ so þ Δs and s ¼ so − Δs, the
corresponding A are the same, so according to (13), the
emittance growth are the same as well. In other words,
the emittance growth as a function of s is symmetric
about s ¼ so.
If we assume Δs is a small quantity, then for a fixed z

we get,

ϵ

ϵi
≈
ϵo
ϵi

þ


1 − exp

�
−
�
σγ
γ̄
ϕ̄Þ2

��
Ao

ϵo=ϵi

γmi

2β�
Δs2

where ϵo ≡ ϵðAoÞ is the emittance when Δs ¼ 0
(or s ¼ so).
This analysis also permits examining how the shot to

shot variance of the plasma density at the entrance of the
profile affects the emittance growth (essentially A), assum-
ing the beam profile and the position of the plasma entrance
(β� and s) are fixed. From Eq. (14) and the relation
γmi ¼ ð1þ α2miÞ=βmi, we have

A ¼ βið1þ α2miÞ=βmi þ γiβmi − 2αiαmi

2

Since we assume the beam profile and the position of the
plasma entrance are fixed, from Eq. (20) we know αi, βi, γi

are fixed. The shot to shot changes to the plasma profile
lead to the variances of αmi and βmi, which leads to the first
order variance of A:

δA1 ¼
∂A
∂αmi

δαmi þ
∂A
∂βmi

δβmi

¼
�
βi
βmi

αmi − αi

�
δαmi þ

1

2

�
γi − γmi

βi
βmi

�
δβmi ð22Þ

Especially, we can see that at the matching point, the
variance of αmi and βmi will not cause the variance of A to
the first order. The second order variation of A is

δA2 ¼
1

2
δα2mi þ

γmi

2βmi
δβ2mi −

αmi

βmi
δαmiδβmi

which is consistent with equation (17). Essentially, varia-
tions can arise from either the plasma profile or beam
profile at the plasma entrance.
Next we carry out some QuickPIC simulations using

plasma and beam parameters that are close to the ones in
the proposed FACET II experiment, while satisfying all the
theoretical assumptions (adiabatic plasma profile, azimu-
thal symmetry in plasma wake, etc). We turn off the
longitudinal push in the simulation so that the beam has
no longitudinal acceleration. The plasma density profile we
use is shown in Fig. 3(b). This profile is the region between
5 cm and 75 cm of the full profile [Fig. 3(a)]. The adiabatic
condition (jαmj < 1) is now satisfied throughout the entire
profile. At the entrance and exit jαmj ¼ 0.24 and 0.56
respectively. In addition, αmi ¼ 0.24, βmi ¼ 0.0194 m for
the simulation. The theory could be easily modified to
include a matching section [10] or a perturbative section as
in [13]. We use a nonevolving symmetric drive beam to
create a well formed ion bubble, and the witness beam is
the same as the one in FACET II (See Tables I and II).
Figure 4 shows the simulation results and the good

(a) (b)

FIG. 3. Plasma density profile. The green dashed line is the
entrance of the plasma, and the red dashed line is the position of
the witness beam’s focal plane in vacuum. The beams propagate
to the right in the plot. (a) The FACET II plasma density profile.
(b) The profile used for the simulation results in Fig. 4. Only the
region between 5 cm and 75 cm of the profile in (a) is used. In this
region the adiabatic condition is always satisfied.

YUJIAN ZHAO et al. PHYS. REV. ACCEL. BEAMS 23, 011302 (2020)

011302-6



agreement between the simulations and the theory. It also
shows that the expression for emittance growth in a uniform
plasma [Eq. (15)] cannot describe the emittance growth in
an adiabatic plasma precisely.

IV. EMITTANCE EVOLUTION IN PREFORMED
PLASMA USING FACET II PARAMETERS

Table I shows a possible set of beams parameters for the
two-bunch FACET II experiments.

Both beams are tri-Gaussian with nb ¼ N

ð2πÞ32
e
− x2

2σ2xe
− y2

2σ2y

e
− z2

2σ2z . The σz is the rms pulse length for the beam, and ϵnx
and ϵny are the normalized emittance in x, y directions

respectively. The distance between the drive and witness
beam is 150 μm. The initial relative rms energy spread for
both beams is 0.25%. Table II shows the Twiss parameters
for both beams at the exit of the final focusing magnet. Note
that in this setup the drive beam is asymmetric and the
witness beam is symmetric, so the wake felt by the witness
beam is not azimuthally symmetric.
The plasma density profile in the simulation is shown in

the Fig. 3(a), which is close to the plasma density profile of
the lithium source used in the FACET II experiment. The
peak plasma density is 3.5 × 1016 cm−3, which is chosen to
ensure that the witness beam is located inside the bubble
wake at a position that flattens the accelerating field (as
shown in Fig. 1).
With such a plasma density profile, the initial matched

Twiss parameters for the witness beam at the plasma
entrance are:

αmi ¼ 0.916; βmi ¼ 0.068 m ð23Þ

These parameters are not calculated directly from (4) at
z ¼ 0 because the plasma near the entrance does not satisfy
the adiabatic condition (5). Instead, they are obtained by
neglecting any energy spread, and integrating the following
equation (See Appendix D for derivation) for β,

1

2
βðzÞβ00ðzÞ − 1

4
β0ðzÞ2 þ βðzÞ2kβðzÞ2 ¼ 1;

αðzÞ ¼ −
1

2
β0ðzÞ ð24Þ

from the flat-topped region of the plasma back to the
entrance of the plasma with initial Twiss parameters
β ¼ ffiffiffiffiffi

2γ̄
p c

ωp
, α ¼ 0 (where ωp is the plasma frequency

for the flat-topped plasma) [14]. According to the
matched parameters given in (23), the optimal s for the
plasma density profile can be calculated from (21),

(a)

(b)

FIG. 4. Witness beam’s emittance growth for different focal
planes, s, in the adiabatic plasma in Fig. 3(b). (a) The ratio of
final emittance (at the plasma exit) to the initial emittance (at
the plasma entrance) for different cases. (b) The evolution of ϵn
inside the plasma for 4 different cases, corresponding to the 4
orange spots for s − so ≤ 0 in (a). The solid lines are from
QuickPIC simulations, the dashed lines are from expression (13),
and the dotted lines are from expression (15).

TABLE I. Possible beam parameters for two-bunch PWFA
experiment at FACET II.

Energy(GeV) Q(nC) σzðμmÞ ϵnxðμmÞ ϵnyðμmÞ
Drive 10 1.6 6.4 3.4 3.0
Witness 10 0.5 5.0 3.15 3.15

TABLE II. The Twiss parameters of both beams at the exit of
the final focusing magnet.

αx αy βxðmÞ βyðmÞ
Drive Beam 59 12 127 27
Witness Beam 40 40 80 80
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s ¼ so ¼ 3.39 cm. Figure 5 shows the evolution of β for
the real witness beam when its focal plane in vacuum is
located at a different s ¼ so þ Δs. The solid red line is the
case if the witness beam was initially matched to the
plasma profile. We can see that for a matched beam β
evolves smoothly and stays constant in the uniform
plasma region while for an unmatched beam the beam’s
β will oscillate.
Next, we run QuickPIC simulations in which we vary s

but with the same beams as described in Tables I and II.
This time we turn on the longitudinal push in the
simulation so the witness beam is gaining energy.
Figure 6(a) shows the normalized emittance growth at
the exit of the plasma when the witness beam’s focal
plane in vacuum is located at s ¼ −10, −5, 0, 3.39, 5, 10,
15, 20 cm (note that negative s means the focal plane of
the witness beam is outside the plasma). We can clearly
see that the optimal s for minimizing the emittance
growth is at s ¼ 3.39 cm. This illustrates that experi-
ments can be performed at FACET II that provide easily
measurable differences in the emittance growth as the
focal point is changed.
We note that the different emittance growth in x and y

directions is caused by the asymmetry of the drive beam,
which excites asymmetric wakefields that have different
linear focusing forces in x and y directions [20]. We note
that even though the plasma and the beam parameters used
in these simulations do not satisfy the assumptions we
made in the previous sections (the drive beam is asym-
metric and the plasma near the entrance and the exit is not
adiabatic), (21) still appears to predict the optimal focal
position of the witness beam very well, although the initial
matched Twiss parameters αmi, βmi are calculated in a
different way. Figure 6(b) shows the evolution of witness
beam’s ϵnx along z. We can see that when s ¼ 3.39 cm, ϵnx
is almost preserved although the beam is not initially
matched.

V. EMITTANCE EVOLUTION IN LITHIUM
PLASMA WITH HELIUM BUFFER GAS

In FACET II experiments, lithium will be one of the
choices for the plasma source. The hot lithium vapor will be
confined and cooled at each end by the helium buffer gas
[1,2]. The plasma is generated by the intense electric field
of the drive/witness beams when they pass through and
ionize the lithium vapor. In the previous section, we
simulated the beams evolving in a preformed and radially
uniform plasma. In this section, we use QuickPIC to
simulate the emittance evolution when the plasma is
self-formed by field ionization of a neutral gas from the
intense electric field of the drive and witness beams.
Figure 7 shows the profile for the lithium gas and the
helium buffer gas in our simulation.
The blue line in Fig. 7 is the lithium gas density, which is

the same as the profile shown in Fig. 3(a) in the previous
section. There are two linear helium ramps (orange line

FIG. 5. The evolution of β for the witness beam for different s
from numerical calculation. The plasma density profile is in
arbitrary units.

(a)

(b)

FIG. 6. The normalized emittance growth of the witness beam
for different s. (a) The ratio of final emittance (at the plasma exit)
to the initial emittance (at the plasma entrance) for different cases.
(b) The evolution of ϵnx inside the plasma for different cases,
corresponding to the blue line in (a).
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in Fig. 7) at the entrance and exit of the lithium gas. The
beam parameters are the same as described in the previous
section, and we choose the optimal value s ¼ 3.39 cm for
the witness beam’s focal position in vacuum. Figure 8(a)
shows the witness beam’s emittance evolution inside the
plasma. We can see that in the beginning and the end of the
simulation, emittance growth occurs. In the middle of the
lithium region where there is no helium, the emittance
essentially stays the same.
The reason for the large emittance growth is that the

beams can ionize the helium buffer gas which results in a
nonlinear focusing force inside the bubble. Figure 9(a)
shows the helium ion density snapshot when the beams
propagate for 1 cm in the plasma. The drive beam’s center
is located at ξ ¼ −5.27, and the witness beam’s center is
located at ξ ¼ 0. Both beams are propagating from right to
left. The drive beam enters the plasma with a larger spot
size than the witness beam, so it can only ionize a part of
the neutral helium while the witness beam can ionize most
of the neutral helium around it. Figure 9(b) shows the

focusing fields felt by the witness beam at different ξ at the
same propagation distance as Fig. 9(a). The focusing fields
felt by the witness beam is no longer linear when helium is
ionized by itself. Therefore, the witness beam has a large
emittance growth in the region where the helium gas is
ionized. In the region where there is only lithium, the
witness beam will still feel a linear focusing force and its
emittance only grows because the witness beam is no
longer matched in the uniform region of lithium plasma,
which causes a much smaller growth than that from the
region where helium gas exists.
In order to avoid the emittance growth in the lithium

plasma source, we can increase the initial emittances for
both the drive beam and witness beam. In Fig. 8(b), we
show the QuickPIC simulation results when using an initial
beam emittance of 20 μm while keeping the other param-
eters the same as the simulation shown in Fig. 8(a). When
the initial beam emittance becomes larger, the initial spot
sizes of both beams will increase, and the Coulomb field

FIG. 7. Helium and lithium gas density profile. The red dashed
line is the position of the witness beam’s focal plane:
z ¼ 3.39 cm.

(a) (b)

FIG. 8. The evolution of normalized emittance of the witness
beam: (a) We use the same parameters as we used in the
preformed plasma simulation in the previous section: Drive
beam: ϵnx ¼3.4 μm, ϵny ¼3.0 μm, witness beam: ϵnx ¼ ϵny ¼
3.15 μm. (b) We increase the initial emittance for both beams
to 20 μm (in both x and y directions).

(a)

(b)

FIG. 9. (a) Helium ion charge density ρHe;ion. The grey area is
the helium ions produced by the drive beam, and the red area is
the helium ions produced by the witness beam. (b) The Fx
transverse lineouts at different longitudinal positions, ξ, and the
initial beam density profiles (in arbitrary units).
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around the beam will become smaller. Therefore, when the
beams pass through the helium buffer gas, the neutral
helium is weakly ionized. However, the lithium can still be
ionized and form the plasma wake because lithium has a
lower ionization energy than helium. When there is no
helium ionization, the focusing force felt by the witness
beam is linear, and its emittance barely grows, as shown in
Fig. 8(b). The small emittance growth at the exit of the
plasma in Fig. 8(b) is still caused by the helium ionization
because the witness beam enters into the exit ramp of
helium with a smaller spot size compared to its initial spot
size at the entrance of the plasma.

VI. CONCLUSION

We have used theory and QuickPIC simulations to
examine the evolution of the emittance and the Twiss
parameters of particle beams in plasmas whose density is
changing adiabatically. We use the WKB solution for each
particle and assume the energy of each particle in the beam
does not change to obtain an analytical expression for the
beam’s emittance evolution in an arbitrary adiabatic plasma
density profile in a nonlinear PWFA. When the beam has
no initial energy spread, its emittance will remain a constant
in the azimuthally symmetric blowout regime. When there
is an initial energy spread, the beam’s emittance can be
preserved as long as its initial Twiss parameters are
matched to the density profile of the plasma ramp. We
also use this expression to analyze the emittance growth
when the position of the witness beam’s focal plane in
vacuum is changed while keeping the beam parameters and
the plasma density profile fixed. When the beam cannot be
matched, the emittance growth can be minimized by
focusing the unmatched beam to the same vacuum focal
plane position as the matched beam. We used QuickPIC
simulations for possible FACET II beam parameters to
show that the emittance can indeed be preserved very well
when we choose the focal plane position to be the same as
that for a matched beam, even when the assumptions of
symmetric blowout and adiabatic density evolution for the
entire plasma region are not satisfied. For other focal plane
positions, the witness beam’s emittance is larger at the exit
of the plasma.
In addition, we also examined through simulations the

effect of additional self-ionization of the buffer gas by the
drive beam. At FACET II a lithium gas is confined by a
helium buffer gas. When the drive and/or witness beam
emittance is small (around 3 μm), they can be focused to
small enough spot sizes so that they can ionize the helium
buffer gas. This will lead to the focusing fields felt by the
witness beam to be strongly nonlinear. We find that this can
potentially lead to the witness beam’s emittance growing by
a factor of 3 and 5 in the x and y planes respectively for
sample FACET II parameters. The different growth in x and
y directions is caused by the asymmetry of the drive beam
forming an asymmetric plasma wake. By using an initial

emittance of 20 μm, the helium buffer gas is weakly
ionized and the witness beam’s emittance can be preserved
very well.
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APPENDIX A: CALCULATION OF
BEAM MOMENT hx2i

In this Appendix we provide details on calculating the
second moment of the beam, i.e., the square of the spotsize.

hx2i ¼
Z

x2fðx; x0Þdxdx0

¼
Z

x2fiðxi; x0iÞdxidx0i

¼
Z

ðM11xi þM12x0iÞ2fiðxi; x0iÞdxidx0i

where fðx; x0Þ is the distribution function at z and fi is the
initial distribution function. From the Vlasov equation we
have fðx; x0Þ ¼ fiðxi; x0iÞ, and dxdx0 ¼ dxidx0i because
detðMÞ ¼ 1.
The last step above is correct only if all the particles have

the same energy. However, since different particles have
different energy γ, their corresponding transport matricesM
are different. In order to calculate the above integral with an
energy spread in the beam, we assume the main difference
in M is the phase advance ϕ. Even though the βm, αm in M
are different (because of different γ), we assume them to be
the same for all the particles and use γ ¼ γ̄ (γ̄ is the mean
energy among all the particles), while claiming the main
difference is in ϕ due to different energy γ. After the beam
propagates for a distance z, we denote the distribution of
the phase advance ϕ as fϕðϕÞ (with the normalizationR
fϕðϕÞdϕ ¼ 1). So:

hx2i ¼
ZZZ

ðM11xi þM12x0iÞ2fðxi; x0iÞfϕðϕÞdxidx0idϕ

¼ hx2i i
Z

dϕfϕðϕÞM2
11 þ hx0ii2

Z
dϕfϕðϕÞM2

12

þ hxix0ii
Z

dϕfϕðϕÞ2M11M12

¼ ϵi

�
βi

Z
dϕfϕðϕÞM2

11 þ γi

Z
dϕfϕðϕÞM2

12

− αi

Z
dϕfϕðϕÞ2M11M12

�
ðA1Þ
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where Z
dϕfϕðϕÞM2

11 ¼
βm
βmi

Z
dϕfϕðϕÞðcosϕþ αmi sinϕÞ2

¼ 1

2

βm
βmi

½ð1þ CÞ þ α2mið1 − CÞ þ 2αmiS�

¼ 1

2

βm
βmi

½βmiγmi þ ð1 − α2miÞCþ 2αmiS�Z
dϕfϕðϕÞM2

12 ¼ βmβmi

Z
dϕfϕðϕÞsin2ϕ

¼ 1

2
βmβmið1 − CÞZ

dϕfϕðϕÞ2M11M12 ¼ βm

Z
dϕfϕðϕÞð2 cosϕ sinϕþ 2αmisin2ϕÞ

¼ βm½Sþ αmið1 − CÞ� ðA2Þ

and where

C ¼
Z

dϕfϕðϕÞ cos 2ϕ;

S ¼
Z

dϕfϕðϕÞ sin 2ϕ ðA3Þ

Finally, we obtain:

hx2i ¼ ϵiβm

�
βiγmi þ γiβmi − 2αiαmi

2

þ
�
βi
βmi

−
βiγmi þ γiβmi þ 2αiαmi

2

�
C

þ
�
βi
βmi

αmi − αi

�
S

�
: ðA4Þ

We can define:

A ¼ βiγmi þ γiβmi − 2αiαmi

2

B1 ¼
βi
βmi

− A ¼ βi
βmi

−
βiγmi þ γiβmi − 2αiαmi

2

B2 ¼
βi
βmi

αmi − αi: ðA5Þ

Leading to:

hx2i ¼ ϵiβmðAþ B1Cþ B2SÞ: ðA6Þ

APPENDIX B: PROOF OF A ≥ 1

A ¼ βiγmi þ γiβmi − 2αiαmi

2

≥
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βiγmiγiβmi

p
− 2αiαmi

2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ α2i Þð1þ α2miÞ

q
− αiαmi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2i þ α2mi þ α2i α

2
mi

q
− αiαmi

≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2αiαmi þ α2i α

2
mi

q
− αiαmi

¼ j1þ αiαmij − αiαmi

≥ 1 ðB1Þ

APPENDIX C

In this Appendix we derive the first order correction to
the phase advance due to variation of the energy of the
particle. We begin with the definition for the phase

ϕ ¼
Z

z

0

ωpðsÞffiffiffiffiffi
2γ

p
c
ds

Due to the variation of γ, the variation of ϕ is

Δϕ ¼ Δ
Z

z

0

ωpðsÞffiffiffiffiffi
2γ

p
c
ds ¼

Z
z

0

Δ
�
ωpðsÞffiffiffiffiffi
2γ

p
c

�
ds

¼
Z

z

0

−
1

2

�
ωpðsÞffiffiffi
2

p
γ
3
2c

�
Δγds ¼ −

Δγ
2γ

Z
z

0

ωpðsÞffiffiffiffiffi
2γ

p
c
ds

¼ −
ϕ

2γ
Δγ ðC1Þ
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So the difference between the phase advance of a particle
with energy γ and the phase advance of a particle with the
average energy γ̄ is

ϕðγÞ − ϕðγ̄Þ ¼ −
ϕðγ̄Þ
2γ̄

Δγ ðC2Þ

and

ϕðγÞ ¼ ϕ̄ −
ϕ̄

2γ̄
Δγ: ðC3Þ

APPENDIX D: DIFFERENTIAL
EQUATION FOR β

In this Appendix, we offer a derivation of Eq. (24) in the
text. We start from the definition of the beam’s spot size:

σx ¼
ffiffiffiffiffiffiffiffi
hx2i

q
:

Taking derivatives with respect to z provide:

σ0x ¼
hxx0i
σx

σ00x ¼
hx2ihx02i − hxx0i2

σ3x
þ hxx00i

σx
:

Using the definition of geometric emittance (6) and the
equation of motion (1), leads to:

σ00x ¼
ϵ2

σ3x
− k2βσx:

If we assume the beam has no energy spread, then under a
linear focusing force, the beam’s normalized emittance ϵn is
a constant, so ϵ ¼ ϵn=γ is also a constant. Finally, if we use

the definition of β: β ¼ σ2x
ϵ , we obtain

1

2
ββ00 −

1

4
β02 þ β2k2β ¼ 1:
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