
 

Constrained multiobjective shape optimization of superconducting
rf cavities considering robustness against geometric perturbations

Marija Kranjčević ,1,* Shahnam Gorgi Zadeh,2 Andreas Adelmann,3

Peter Arbenz,1,† and Ursula van Rienen2,‡
1Department of Computer Science, ETH Zurich, 8092 Zürich, Switzerland

2Institute of General Electrical Engineering, University of Rostock, 18059 Rostock, Germany
3Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland

(Received 31 May 2019; published 23 December 2019)

High current storage rings, such as the Z-pole operating mode of the FCC-ee, require accelerating
cavities that are optimized with respect to both the fundamental mode and the higher order modes.
Furthermore, the cavity shape needs to be robust against geometric perturbations which could, for example,
arise from manufacturing inaccuracies or harsh operating conditions at cryogenic temperatures. This leads
to a constrained multiobjective shape optimization problem which is computationally expensive even for
axisymmetric cavity shapes. In order to decrease the computation cost, a global sensitivity analysis is
performed and its results are used to reduce the search space and redefine the objective functions.
A massively parallel implementation of an evolutionary algorithm, combined with a fast axisymmetric
Maxwell eigensolver and a frequency-tuning method is used to find an approximation of the Pareto front.
The computed Pareto front approximation and a cavity shape with desired properties are shown. Further,
the approach is generalized and applied to another type of cavity.
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I. INTRODUCTION

Accelerating cavities are metallic chambers with a
resonating electromagnetic field that are used to impart
energy to charged particles in many particle accelerators.
Over the last few decades, a lot of research has been carried
out on improving the shape and material properties of
accelerating cavities. Many attractive features of super-
conducting radio frequency (rf) cavities, such as high
intrinsic quality factor, have made them a favorable choice
in applications where high continuous wave voltage is
required [1]. The shape of the cavity, on the other hand,
determines many figures of merit, such as the normalized
peak electric and magnetic field on the surface of the cavity
(Epk=Eacc and Bpk=Eacc, respectively), geometric shunt
impedance (R=Q), cell-to-cell coupling, etc. Therefore,

based on the requirements of each specific accelerator,
the shape of the cavity needs to be carefully optimized.
In many accelerators it is desirable to achieve a high

accelerating field (Eacc) in order to improve efficiency and
save on equipment cost. In superconducting rf cavities the
maximumachievableEacc is limitedby themaximumelectric
and magnetic field on the surface of the cavity. Thus, many
cavity optimization methods have focused on minimizing
Epk=Eacc and Bpk=Eacc in order to provide room for increas-
ing Eacc [2–6]. In addition to the maximum achievable Eacc,
the surface losses of the cavity should be minimized, which
can be achieved by maximizing G · R=Q (where G is the
geometry factor). It was shown in [2] that high G · R=Q
typically goes along with low Bpk=Eacc, so either of the two
can be considered in the optimization. Since various con-
flicting objective functions are usually optimized simulta-
neously, a trade-off between these objective functions has to
be considered. In [2,3] Bpk=Eacc is minimized, or G · R=Q
maximized,while other figures ofmerit such asEpk=Eacc, the
wall slope angle, and the aperture radius of the cavity are kept
fixed. In [4] a Pareto front between Epk=Eacc and Bpk=Eacc

was obtained by analyzingmore than a thousand geometries.
A geometry was then selected from this Pareto front based
on the machine requirements (high gradient applications
favor a smaller Epk=Eacc, while low loss applications favor a
smaller Bpk=Eacc).
The optimization methods proposed in the literature

mainly focus on optimizing the inner cells of a multicell
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cavity. The end half-cells are then optimized to get high
field flatness in the cavity and ease the higher order mode
(HOM) damping [2]. The optimization of single-cell
cavities is slightly different than that of multicell cavities.
The length of the inner cells of a multicell cavity is usually
fixed to βλ=2, where λ is the wavelength of the fundamental
mode (FM), and β is the ratio of the particle velocity to the
speed of light (β ≈ 1 for particle velocities close to the
speed of light). This restriction improves acceleration,
since, as a particle traverses a cell, the direction of the
electric field changes and the particle receives a force in the
same direction. In single-cell cavities, the particle passes
through only one cell, so there is no such restriction on the
length of the cavity. Consequently, in single-cell optimi-
zation there is one more degree of freedom. Furthermore,
since part of the field leaks into the beam pipe, in single-cell
optimization the cell and the beam pipe have to be
simulated together. This is in contrast to the optimization
of the inner cells of multicell cavities, where only one cell,
with appropriate boundary conditions, is considered.
Many future accelerators, such as the Future Circular

Collider (FCC), aim at colliding beams with unprecedented
luminosities [7]. The FCC design study includes three
colliders: a hadron collider (FCC-hh), a lepton collider
(FCC-ee), and a lepton-hadron collider. The aim of FCC-ee
is to study properties of Z, W and Higgs bosons, as well as
top quark, with collision energies ranging from 90 GeV to
365 GeV. The high luminosity requirements demand a
significant increase in the beam current of the machine,
which in turn increases the HOM power deposited into the
cavities by the traversing beam. Preliminary studies have
suggested using single-cell cavities for FCC-hh and the Z-
pole operating mode of FCC-ee (FCC-ee-Z) [8,9]. In the
case of FCC-ee-Z, the main reasons for selecting a single-
cell cavity are the issues related to the beam instability and
high HOM power. In the FCC-ee-Z, the operating Eacc is a
few MV/m [8–10]. Reaching higher Eacc is precluded due
to limitations on the fundamental power coupler in provid-
ing high input power per cavity (e.g., for FCC-ee-Z this is
around 1 MW per cavity). In such low Eacc and high-
current operations, minimizing surface peak fields should
not be the primary goal. Instead, other figures of merit, in
particular the HOM aspects, have to be taken into account
right from the early design stages of the cavity. Enlarging
the beam pipe radius is a common approach to untrap many
HOMs and reduce the loss factor. However, even with an
enlarged beam pipe radius, the first dipole band usually
stays trapped and cannot propagate out of the cavity [11].
Additionally, the modes in the first dipole band usually
have a large transverse impedance, which can cause
transverse beam instability. Therefore, and in order to
simplify their damping via HOM couplers, special attention
should be given to the modes in the first dipole band.
In addition to the rf properties of the cavity, the cavity

shape needs to be robust against geometric perturbations

[12–15], which could, for example, arise from harsh operat-
ing conditions at cryogenic temperatures or manufacturing
inaccuracies. Most importantly, the frequency of the FM has
to remain at its nominal value in order to avoid excessive
power being fed into the cavity for maintaining Eacc, and the
frequencies of the modes in the first dipole band should not
be very sensitive to geometric changes in order to avoid
unwantedly hitting a beam spectral line or harming their
damping when coaxial HOM couplers are used.
The major contribution of this paper lies in finding a

robust cavity shape while several properties of the FM and
the first dipole band are optimized at the same time. For this
purpose an optimization method for constrained multi-
objective shape optimization of superconducting rf cavities
is proposed. The focus of optimization is on axisymmetric
single-cell cavities used in high-current accelerators, e.g.,
FCC-ee-Z, which unlike the multicell cavities have not
been extensively studied before. As a part of the proposed
optimization approach, a global sensitivity analysis is
carried out in order to quantify the relative influence of
each of the geometric parameters on the figures of merit of
the cavity. The novel approach makes use of the most
influential parameters, reduces the search space by dis-
carding noninfluential parameters, and provides valuable
insights into the optimization of rf cavities.
The structure of the paper is as follows. The parametriza-

tion of the cavity cross section and the quantities of interest
are described in Sec. II. The results of the sensitivity analysis
are shown in Sec. III, and used for search space reduction in
Sec. IV. The constrained multiobjective optimization prob-
lem is defined in Sec. V, the algorithm described in Sec. VI,
and the results presented in Sec. VII. The approach described
in Secs. II–VI is generalized to a different type of cavity in
Sec. VIII. Conclusions are drawn in Sec. IX.

II. QUANTITIES OF INTEREST

Elliptical cavities are a commonly used cavity shape for
the acceleration of particles with β ≈ 1. As shown in Fig. 1,
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FIG. 1. The parametrization of the cross section of a single-cell
elliptical cavity. The variables Req, L, A, B, a, b, and Ri
parametrize the cell, and Lbp is the beam pipe length.
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the cross section of the cell of such cavities can be para-
metrized by seven variables, i.e., geometric parameters: Req,
L, A, B, a, b, and Ri. The wall slope angle α is then
determined by these geometric parameters. The beam pipe
lengthLbp is not an optimization variable. It is shown here to
fully depict the simulation setup that was considered in the
optimization.
In constrained multiobjective shape optimization the aim

is to find the geometric parameters that best satisfy the
given objectives and constraints. The objectives and con-
straints that need to be satisfied are determined by the
requirements of the accelerator. The first constraint is to
tune the frequency of the FM (fFM), which is typically the
TM010 mode, to a desired value. Focusing on FCC-ee-Z, in
this paper fFM is tuned to 400.79 MHz, which is the
proposed value for both FCC-ee-Z and FCC-hh. In order to
have a sufficient distance for decaying the FM leaked into
the beam pipe, the beam pipe length Lbp is set to the value
of the wave length, i.e., to λ ¼ 748 mm. The second
constraint is α½degree� ≥ 90 in order to avoid reentrant
cavity shapes (due to the problems associated with chemi-
cal treatment).
In comparison with the middle-cells of multicell cavities,

the electric field concentration around the iris region of
single-cell cavities is lower because part of the electric field
leaks into the beam pipe. Due to this reason and relatively
low Eacc of FCC-ee-Z, the surface peak fields are not the
primary concern in the optimization. Lowering the surface
losses helps to decrease the power released into the helium
bath, which consequently reduces the amount of power
required to maintain the cryogenic temperature. The surface
losses of the FM are given by

Pc ¼
ðV jjðr¼0ÞÞ2
G · R=Q

Rs; ð1Þ

where Rs is the surface resistance of the cavity, which
depends on its material properties, V jjðr¼0Þ the longitudinal
voltage calculated along the longitudinal axis, and G and
R=Q the geometry factor and the geometric shunt imped-
ance of the FM, respectively. Both G and R=Q depend on
the shape of the cavity [5]. Equation (1) indicates that Pc
can be minimized by maximizingG · R=Q [the correspond-
ing objective function is labeled as F4 in Eq. (3)].
In addition to the properties of the FM, the properties of

the HOM spectrum also have to be taken into account. The
longitudinal loss factor is inversely proportional to the
aperture radius Ri of the cavity [[16] p. 372]. Therefore,
increasing the aperture radius lowers the longitudinal loss
factor and consequently the HOM power deposited into the
cavity by the beam. Larger aperture radius also helps to
untrap the dangerous higher order monopole modes. As
shown in Fig. 2, an aperture radius roughly above 145 mm
untraps the monopole modes which typically have a large
longitudinal geometric shunt impedance, i.e., the TM011

and TM020 modes. Therefore, a larger aperture radius is
preferable (in Eq. (3), this is denoted by F5). The first
dipole band, however, stays trapped in the cavity, in
particular the TE111 mode whose frequency approaches
the FM with enlarged Ri.
The damping of the HOMs is usually done using coaxial

couplers, waveguide (WG) couplers, beam pipe absorbers,
or their combination. Coaxial and WG HOM couplers
provide better damping of trapped modes as they can be
placed close to the cell. In order to allow the propagation of
the HOMs into the WG, the cutoff frequency of the first
mode of theWG (the TE01 mode) has to be between the FM
and the first dipole mode. If the frequency of the first dipole
mode is very close to fFM, a WG coupler with larger
dimensions is required, which occupies more space in the
cryomodule, in particular at 400.79 MHz. In that case the
WG has to be wider in order to decrease the cutoff
frequency of its TE01 mode, and also longer in order to
have a sufficient distance for decaying the FM leaked into
the WG. Therefore, as another objective function, the
distance between fFM and the frequency of the first dipole
mode (f1), which is typically the TE111 mode, has to be
maximized. Since f1 is larger than fFM, this is equivalent to
minimizing the negative value fFM − f1 (in Eq. (3), the
corresponding objective function is labeled as F1).
Coaxial HOM couplers act like 3D resonant circuits that

are optimized to have a notch at the FM and resonances
(with a high transmission) at certain frequencies that
require strong damping, such as the frequency of the
TE111 and TM110 modes. A smaller difference between
the frequencies of the first two dipole modes simplifies
using a narrow band coaxial HOM coupler for damping
them (such as the Hook-type coupler used in LHC cavities
[18–20]). Therefore, another objective is to minimize the
difference between the frequencies of the two trapped
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FIG. 2. The dependency of the frequency of the TE111, TM110,
TM011 and TM020 modes on Ri. For each case, the frequency of
the FM, i.e., the TM010 mode is tuned to 400.79 MHz by varying
Req. The parameter sweep is carried out around the geometric
parameters taken from [17]. An aperture radius Ri approximately
above 145 mm helps to untrap the dangerous monopole HOMs.
Note that the cavity in [17] is optimized such that the frequencies
of the TE111 and TM110 modes are almost equal.
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dipole modes [this is denoted by F2 in Eq. (3)].
Additionally, the sum of the transverse impedances of
the first two dipole modes is minimized [F3 in Eq. (3)]. The
following definition of the transverse impedance is used

R
Q⊥

¼ ðV jjðr¼r0Þ − V jjðr¼0ÞÞ2
k2r20ωU

;

where k is the wave number, r0 the offset from the axis, ω
the angular frequency, and U the stored energy.
The optimized cavity should be robust against geometric

changes that might arise due to manufacturing inaccuracies
or perturbations during operation. If the FM is detuned
from its nominal value, additional power has to be fed into
the cavity to maintain the same Eacc. Thus, tuners are used
to adjust the frequency to the desired value. Frequency
tuning is usually carried out by changing the length of the
cells via applying a longitudinal force to the cavity [[1]
p. 431]. A large tuning force should be avoided as it might
plastically deform the cavity. Therefore, the cavities have to
be fabricated with a high precision to avoid large tunings
afterwards. On the other hand, a cavity fabricated with a
higher precision is more expensive to fabricate and handle.
As shown in Fig. 3, different cavity shapes can have
different sensitivities with respect to geometric perturba-
tions. E.g., cavities with a larger wall slope angle have a
less sensitive fFM against changes in Req (up to around
30% difference between different shapes).
The frequency of the trapped dipolemodes could also vary

due to perturbations or during the tuning of the frequency of
the FM. Figure 4 shows the local sensitivity of the frequency
of the TM110 mode with respect to Ri against the geometric
variableA. Sensitivity of the TM110 mode against changes in
Ri can vary up to a factor of seven between different shapes.
A change in the frequency of the dipole modes could harm

their dampingwhen coaxialHOMcouplers are used.Coaxial
HOM couplers are usually tuned to have a resonance at the
frequency of the targetedHOMs and amismatch between the
frequency of the HOM and the coaxial HOM coupler could
result in a poor damping of that mode. Therefore, in addition
to the robustness of fFM, the robustness of the frequencies of
the first two dipole modes is of importance. In Eq. (3), the
objective functions corresponding to the minimization of the
local sensitivities of fFM, fTE111

and fTM110
against geometric

changes are denoted by F̂6, F̂7 and F̂8, respectively.
To summarize, denoting by f2 the frequency of the second

dipole mode (which is typically the TM110 mode) and

d ¼ ðd1;…; d7Þ ¼ ðReq; Ri; L; A; B; a; bÞ; ð2Þ

the constrained multiobjective optimization problem con-
sidered in this paper can be written as

min
d

�
fFM−f1|fflfflfflfflffl{zfflfflfflfflffl}

F1

; jf1−f2j|fflfflfflffl{zfflfflfflffl}
F2

;
R
Q⊥1

þR
Q⊥2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

F3

;−G ·
R
Q|fflfflffl{zfflfflffl}

F4

;−Ri|{z}
F5

;

X
j

����∂fFM∂dj
����

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
F̂6

;
X
j

����∂fTE111

∂dj
����

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
F̂7

;
X
j

����∂fTM110

∂dj
����

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
F̂8

�
;

subject to fFM¼ 400.79MHz and α½degree�≥ 90: ð3Þ

In this formulation the local sensitivities of the FM and
the dipole modes are calculated with respect to all seven
geometric parameters, which entails a very expensive
computation. In the following section a global sensitivity
analysis is carried out in order to find the most influential
geometric parameters on each of the frequencies. This
information is then used to redefine objective functions F̂6,
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FIG. 3. The local sensitivity of fFM with respect to Req plotted
versus the wall slope angle α. Around 5’000 samples of cavities
with different values of Req, L, A, B, a, b and Ri are studied. The
frequency of each sample is tuned to 400.79 MHz. The local
sensitivity is calculated using the forward difference method with
the step h ¼ 1 mm. Generally, a higher wall slope angle yields a
less sensitive fFM against changes in Req.
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F̂7 and F̂8, reduce the search space and, consequently,
reduce the computational cost of the problem.

III. SENSITIVITY ANALYSIS

In order to determine which geometric parameters have
the greatest influence on fFM, fTE111

and fTM110
, a variance-

based global sensitivity analysis is performed [21,22]. The
geometric parameters are considered to be independent,
uniformly distributed random variables. The first-order
Sobol’ indices and total Sobol’ indices [23], representing
the individual and total influences of these random vari-
ables on the variance of the quantities of interest (QoIs),
are computed using polynomial chaos (PC) expansion
[22,24–27]. The coefficients of the PC expansion are
obtained nonintrusively, because nonintrusive methods
allow the use of an existing solver as a black box, requiring
only an evaluation of the QoIs in a set of either determin-
istic or random points. Since some of the deterministic
points may correspond to infeasible cavity shapes, a
random sample, i.e., a collection of random points, is used.
According to [24], it is enough to use a sample of size

ðN − 1Þ ðN þ pÞ!
N! · p!

; ð4Þ

where N is the number of geometric parameters and p the
polynomial degree used. The values of Eq. (4), for a few
relevant values of N and p, are given in Table I.
For this analysis, the Uncertainty Quantification Toolkit

(UQTk) [25,28] is used. The random sample is evaluated in
parallel, taking into account only feasible cavity shapes
with α½degree� ≥ 90. The changes in the sensitivity plots
obtained for p ¼ 3 (which needs 720 random points) are
almost imperceptible, so only the case p ¼ 2 (216 random
points) is shown. The main sensitivities (i.e., first-order
Sobol’ indices), with p ¼ 2 and with geometric parameters
in the intervals shown in s II and III, are shown in Figs. 5
and 6, respectively.
These plots show the influence of the geometric param-

eters [cf. Eq. (2)] on the frequencies

fFM; fTE111
; fTM110

;

but also on other QoIs

R
Q
;
R
Q⊥;TE111

;
R
Q⊥;TM110

; G ·
R
Q
; α;

Epk

Eacc
;
Bpk

Eacc
:

Sobol’ indices are, by definition, normalized with respect to
the total variance, so they (the first-order and higher-order
indices) sumup to 1. Consequently, the sumof the first-order
indices, representing the individual influences of the param-
eters, is at most 1. The higher-order indices represent mixed
influences of the parameters, so the fact that the sum of the
first-order indices, i.e., the height of the bars in the plots, is
close to 1 indicates a low correlation between parameters.

TABLE I. Eq. (4) for a few relevant values of N and p.

N

p 4 5 6 7

2 45 84 140 216
3 105 224 420 720

TABLE II. Wide intervals for the geometric parameters.

Variable [mm] Req Ri L A B a b

Lower bound 325 145 240 65 65 10 10
Upper bound 375 160 380 140 140 60 60

TABLE III. Narrow intervals for the geometric parameters.

Variable [mm] Req Ri L A B a b

Lower bound 345 145 280 70 70 45 45
Upper bound 355 155 300 80 80 55 55

FIG. 5. Main sensitivities. The intervals for the geometric
parameters Req; Ri; L; A; B; a; b are given in Table II. The
polynomial degree is p ¼ 2, so the size of the sample is 216
[cf. Table I].

FIG. 6. Main sensitivities. The intervals for the geometric
parameters Req; Ri; L; A; B; a; b are given in Table III. The
polynomial degree is p ¼ 2, so the size of the sample is 216
[cf. Table I].
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The geometric parameter Req has the greatest influence
on the frequency of the FM, fFM, (closely followed by A),
so it is used to tune fFM to 400.79 MHz, i.e., to enforce the
first constraint [cf. Eq. (3)]. This is explained in detail in the
next section.

IV. SEARCH SPACE REDUCTION

According to Figs. 5 and 6, Req has the greatest influence
on fFM. Therefore, it is possible to use Req to tune the
frequency to 400.79 MHz. Specifically, for a point

ðd2;…; d7Þ ¼ ðRi; L; A; B; a; bÞ
[cf. Eq. (2)], d1 ¼ Req½mm� ∈ ½dlower; dupper� is found such
that

fFMðdÞ ¼ 400.79 MHz:

The QoIs are then computed for the cavity corresponding
to d (the details are given in Sec. VI B and Algorithm 2).
The main sensitivities of the QoIs and Req with respect to
d2;…; d7, considering the wide (Table II) and narrow
(Table III) intervals are shown in Figs. 7 and 8, respectively.
The polynomial degree is again p ¼ 2, but the number of
variables is now 6, so only 140 training points are needed.
It can be seen in Figs. 5–8 that the influence of B on all of

the QoIs is very low, and that b significantly influences
only Epk=Eacc. Therefore, since Epk=Eacc is not part of any
objective function in the optimization problem [cf. Eq. (3)],
these two geometric parameters can be omitted. A natural
way to do this is to set B ¼ A and b ¼ a, i.e., to consider
circles instead of ellipses in the geometric parametrization
of the cavity cross section [cf. Fig. 1].

V. CONSTRAINED MULTIOBJECTIVE
OPTIMIZATION PROBLEM (CMOOP)

Based on the information from Figs. 5 and 6,

∂fFM
∂Req

;
∂fFM
∂A ; and

∂fTM110

∂Req

need to be taken into account. Similarly, from the infor-
mation shown in Sec. IV (Figs. 7 and 8),

∂fTE111

∂L ;
∂fTE111

∂Ri
;
∂fTM110

∂A ; and
∂fTM110

∂Ri

need to be considered as well. However, due to the
influence of A on Req (Figs. 7 and 8) and their geometric
connection (Fig. 1), in order to decrease the computation
cost the local sensitivities with respect to A are omitted.
Therefore, the constrained multiobjective optimization

problem is the following [cf. Eq. (3)]

min
Ri;L;A;a

�
fFM − f1; jf1 − f2j;

R
Q⊥1

þ R
Q⊥2

;−G ·
R
Q
;−Ri;

���� ∂fFM∂Req

����|fflfflffl{zfflfflffl}
F6

;

���� ∂fTE111

∂L
����þ

���� ∂fTE111

∂Ri

����|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F7

;

���� ∂fTM110

∂Req

����þ
���� ∂fTM110

∂Ri

����
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F8

;

subject to fFM ¼ 400.79 MHz and α½degree� ≥ 90:

ð5Þ

It is implied that, for each point I ¼ ðRi; L; A; aÞ, the
values of B and b will be set to B ¼ A and b ¼ a, and that
fFM will be tuned to 400.79 MHz using Req as described
in Sec. IV.

VI. CONSTRAINED MULTIOBJECTIVE
OPTIMIZATION ALGORITHM

A. Forward solver

In order to compute the values of the objective functions
from Eq. (5) in a point d ¼ ðReq; Ri; L; A; B; a; bÞ
[cf. Eq. (2)] time-harmonic Maxwell’s equations with
perfectly electrically conducting (PEC) boundary

FIG. 7. Main sensitivities. For a point ðRi; L; A; B; a; bÞ inside
the intervals from Table II, fFM is tuned to 400.79 MHz using
Req½mm� ∈ ½325; 375�. The polynomial degree is p ¼ 2, so the
size of the sample is 140 [cf. Table I].

FIG. 8. Main sensitivities. For a point ðRi; L; A; B; a; bÞ inside
the intervals from Table III, fFM is tuned to 400.79 MHz using
Req½mm� ∈ ½345; 355�. The polynomial degree is p ¼ 2, so the
size of the sample is 140 [cf. Table I].
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conditions (BC) are solved in the evacuated axisymmetric
rf cavity parametrized by d. The mixed finite element
method (FEM) leads to a generalized eigenvalue problem
(GEVP) for each azimuthal mode number m ∈ N0 [29,30].
For monopole and dipole modes, m ¼ 0 and m ¼ 1,
respectively. If the cross section of the cavity is symmetric,
as is the case for the single-cell elliptical cavity from Fig. 1,
it is sufficient to solve time-harmonic Maxwell’s equations
for one half of it, once with PEC and once with perfectly
magnetically conducting (PMC) BC on the cross-sectional
symmetry plane (BCSP).
To compute the properties of the TM010 mode, the

smallest eigenpair of the GEVP corresponding to m ¼ 0
and PEC BCSP is found. This will be referred to as

MAXWELLdðm;BCSPÞ ¼ MAXWELLdð0; PECÞ:

In order to compute the properties of the TM110 and TE111

mode, the smallest eigenpair of the GEVPs corresponding
to m ¼ 1 and PEC and PMC BCSP, respectively, is found.
This will be referred to as

MAXWELLdð1; PECÞ andMAXWELLdð1;PMCÞ:

B. Optimization algorithm

Since the minimizers of different objective functions are
usually different points, the concept of dominance is used: a
point I1 ¼ ðRi;1; L1; A1; a1Þ dominates I2 if it is not worse
in any of the objectives, and it is strictly better in at least
one objective. A point is called Pareto optimal if it is not
dominated by any other point.
Because of conflicting objectives, the ability of an

evolutionary algorithm (EA) to escape local optima, its
suitability for parallelization, as well as good results in the
area of particle accelerator physics [31–34] a multiobjective
EA [35] is used to find an approximation of the set of
Pareto optimal points, even though other methods, such as
particle swarm optimization [36–38], ant colony optimi-
zation [39], simulated annealing [40], or artificial immune
system [41] exist. The basic steps of an EA are shown in
Algorithm 1.

Algorithm 1. Evolutionary algorithm. Geometric parameters
d1;…;dN, fFM tuned using dj, an individual is

I = ðdi1 ;…;diqÞ;fi1;…;iqg ⊂ f1;…;Ngnfjg:

1: random population of individuals I1;…; IM
2: EVALUATE (Ii; j), ∀ i ∈ f1;…;Mg
3: for a predetermined number of generations do
4: for pairs of individuals Ii, Iiþ1 do
5: crossover (Ii, Iiþ1), mutate (Ii), mutate (Iiþ1)
6: for each new individual Inew, EVALUATE (Inew; j)
7: choose M fittest individuals for the next generation

In the case of the parametrization from Fig. 1, N ¼ 7, the
geometric parameters d1;…; d7 are [cf. Eq. (2)] Req, Ri, L,
A, B, a, and b, and j ¼ 1, i.e., the frequency of the FM is
tuned using d1 ¼ Req. Since B and b are set to A and a,
respectively, a design point for the CMOOP in Eq. (5), also
called an individual in the context of an EA, is

I ¼ ðd2; d3; d4; d6Þ ¼ ðRi; L; A; aÞ:

TheM individuals (M ∈ N) comprising the first generation
are chosen randomly from the given intervals (Algorithm 1:
line 1). In this paper, in the case of the single-cell elliptical
cavity, these intervals are given in Table II. These M
individuals are then evaluated (1:2), i.e., the corresponding
objective function values are computed, as shown in
Algorithm 2, in the following way.

Algorithm 2. EVALUATE (I, j)
In: j ∈ f1;…; Ng, I ¼ ðdi1 ;…; diqÞ, where

fi1;…; iqg ⊂ f1;…; Ngnfjg

Out: Fðd ¼ ðd1;…; dNÞÞ s.t. fFMðdÞ ¼ 400.79 MHz

1: use

MAXWELLdð0;PECÞ
to compute fFMðdÞ and TOMS 748 [42] algorithm to find

dj ∈ ½dlower; dupper�
s.t.

fFMðdÞ½MHz� − 400.79 ¼ 0

2: if αðdÞ½degree� < 90, return
3: compute the properties of the dipole modes using

MAXWELLdð1;PECÞ andMAXWELLdð1;PMCÞ
4: for each partial derivative ∂fk=∂dl, with the correspondingmfk
and BCSP;fk , and dh;l ¼ ðd1;…; dl þ h;…; dNÞ, compute

MAXWELLdh;lðmfk ;BCSP;fkÞ
in order to numerically compute ∂fk=∂dl using the forward
difference method

5: return FðdÞ ¼ ðF1ðdÞ;…; FnðdÞÞ

First, an Req½mm� ∈ ½325; 375� [cf. Table II] is found
such that the frequency of the FM of the corresponding
cavity is fFMðdÞ ¼ 400.79 MHz (2:1). This is done using
the zero-finding method TOMS 748 [42]. Each evaluation
of fFM requires finding the smallest eigenpair of the GEVP
(which will be referred to as “solving” the GEVP)
corresponding to m ¼ 0 and PEC BCSP. In case the cavity
found this way is reentrant, the second constraint is
violated, so this individual is declared invalid and discarded
from the population (2:2). Otherwise, the rest of the
objective function values are computed (2:3–5).
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In order to compute the properties of the TM010 and
TE111, two GEVPs need to be solved (2:3). In order
to numerically compute the local sensitivity (i.e., the
partial derivative) ∂fk=∂dl using the forward difference
method, fk needs to be evaluated in the point
dh;l ¼ ðd1;…; dl þ h;…; dNÞ, i.e., another GEVP needs
to be solved for the appropriate azimuthal mode number
mfk and BC on the cross-sectional symmetry plane BCSP;fk .
Once the first generation of the EA is evaluated, a

predetermined number of cycles is performed, each result-
ing in a new generation (1:3–7). In each cycle, new
individuals are created using crossover and mutation
operators (1:4–5), and their objective function values are
again computed (1:6) as shown in Algorithm 2. The new
generation is then chosen to comprise approximately M
fittest individuals (1:7).

VII. RESULTS

A. Implementation and timings

The implementation of the optimization algorithm from
the previous section is based on a combination of a
massively parallel implementation of an EA [31,32],
written in Cþþ and parallelized using MPI, with the
axisymmetric Maxwell eigensolver [43]. For a point d, a
mesh of half of the cross section of the corresponding
cavity is created using the Gmsh [44] Cþþ API. In
the FEM linear elements are used, and the resulting
GEVPs are solved using the symmetric Jacobi–Davidson
algorithm [45].
In (2:1) a cheap solve on a coarse mesh is performed

first, in order to compute a good approximation for fFM,
fFM;coarse, (3–4 significant digits). Whenever fFM;coarse is
further away from 400.79 MHz than a given value ε (in this
paper, ε ¼ 1 MHz), the value fFM;coarse is used in order to
speed up the computation. Once the zero-finding method
gets closer to 400.79 MHz than ε, a more expensive solve,
on a much finer mesh, is performed in order to compute five
significant digits of fFM. As a zero-finding method, the
Boost1 Cþþ library implementation of the TOMS 748
algorithm is used. Additionally, the zero-finding method is
stopped as soon as five significant digits of fFM½MHz�
match 400.79. When the search interval [325, 375] is first
subdivided into three similarly-sized parts, (usually) using
coarse solves, this entire approach requires, on average,
only 2.2 fine solves in (2:1). The coarse solves use a mesh
with around 20’000 triangles, and the fine ones around
500’000 triangles. On one core of the Intel Xeon Gold 6150
a coarse solve (creating a mesh, computing five smallest
eigenpairs and the objective function values) takes around
2 s. A fine solve takes around 95 s (18 s for creating a mesh,
74 s for computing the eigenpairs, and 3 s for computing
the objective function values). Additionally, in (2:3) two

GEVPs on the same mesh need to be solved, so the mesh
can be reused. Similarly, for each partial derivative that
needs to be computed in (2:4), the solves are grouped in
such a way as to avoid remeshing (eigenproblems corre-
sponding to the same point, i.e., the same cavity shape, are
solved consecutively).
To give an impression of the computation work for the

entire optimization, using 108 processes on Euler IV (Euler
cluster2 of ETH Zurich, three Intel Xeon Gold 6150 nodes,
each with 18 cores @ 2.7 GHz and cache size 24.75 MB) it
took almost 15 h 19 min to compute 60 generations with
M ¼ 100 (around 30% of the evaluated individuals were
discarded from the optimization).

B. Optimization results

The trade-off between the eight objective functions
[cf. Eq. (5)] in the Pareto front approximation obtained
in the 60th generation of an optimization with M ¼ 100 is
illustrated in Fig. 9 using a scatter-plot matrix. The
histogram at position (i; i) (i.e., on the main diagonal)
shows the distribution of the objective function Fi. The
graph at position (i; j) where i < j (i.e., above the main
diagonal) shows the values of Fi (y axis) and Fj (x axis) for
the individuals in the last generation. The number in the ith
row and the jth column where i > j (i.e., below the main
diagonal) is the correlation coefficient between Fi and Fj.
F1 and F2 are positively correlated because f1 (in most
cases f1 is fTE111

) is more sensitive to the geometric
changes than f2, and the further it gets from fFM, the
closer it gets to f2. Improving F1 and F2 leads to a higher
transverse impedance (larger F3) and a more sensitive
fTE111

(larger F7). The V-shaped curve of F7 vs F2 is
created because the rise in F2 (F2 ¼ jf1 − f2j) corresponds
to cases where fTE111

is higher than fTM110
. In order to

simplify the damping of the dipole modes using coaxial
HOM couplers, F2 should be as close to zero as possible. A
close-to-zero value of F2 fixes F7 to around 3.1 MHz=mm.
However, in choosing a point from the Pareto front
approximation, a low importance can be assigned to F7

because the transverse impedance of the TE111 mode is
much smaller than that of the TM110 mode.
All of the individuals, i.e., rf cavities, in the last

generation are compared with four other storage ring
single-cell cavities: CESR-B [46], HL-LHC [20],
FCCHO18 [47,48] and FCCIC18 [17] in Table IV. Due to
the conflicting nature of some of the objective functions, it
is not feasible to surpass the other cavities in all objectives.
However, all of these cavities are equally good in the
Pareto sense.
The design variable and objective function values, as

well as QoIs, for a chosen cavity from the last generation,
called FCCPR19, are given in Table V. The shape of FCCPR19

1https://www.boost.org. 2https://scicomp.ethz.ch/wiki/Euler.
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is shown in Fig. 10. The chosen cavity outperforms the
other cavities in five or six objective functions. Since the
design of FCC-ee-Z demands the cavities to be operated at
low Eacc [[8] p. 120], a small value of G · R=Q does not
lead to a significantly large dynamical loss on the surface of
cavity. Therefore, the value of F4 is sacrificed in favor of

other objective functions. The cavity shapes from Table V
are shown and compared in Fig. 11. A small volume around
the equator of FCCPR19 results in a small G · R=Q. The
large iris radius of FCCPR19 ensures that the dangerous
higher order monopole modes are untrapped and propagate
out of the beam pipes. Compared to other shown cavities,
the frequency of the FM of FCCPR19 is between 9%
and 15% less sensitive against changes in Req. The local
sensitivity of FCCPR19 with respect to geometric parameters
is given in Table VI. These numbers confirm that the
assumptions made in Sec. V are valid for FCCPR19.

VIII. GENERALIZATION

In this section the approach described in Secs. II–VI will
be generalized and applied to a single-cell cavity with a
symmetric cross section and half of its boundary defined as
a Bézier curve of order three (cubic) with horizontal end
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 = 0.43  = -0.87

FIG. 9. A scatter plot of the objective functions for the individuals in the last generation. Only individuals with 140 ≤ Ri ≤ 160 and
200 ≤ L ≤ 400 are shown in order to preserve the scale. The numbers below the diagonal are the correlation coefficients between pairs
of objective functions.

TABLE IV. The value in ith row, jth column is the number of
distinct cavities that have at least j objectives better than the
cavity which corresponds to row i. The last (60th) generation
contains 95 distinct cavities.

j 1 2 3 4 5 6 7 8

HL-LHC 95 95 92 79 47 10 0 0
CESR-B 95 95 92 68 40 9 0 0
FCCHO18 95 94 78 51 19 1 0 0
FCCIC18 95 95 93 86 35 5 0 0
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slopes. Such a parametrization is shown in Fig. 12 and
referred to as “single-cell Bézier cavity.” Related work
includes the study of superconducting rf cavities whose
boundary is a Bézier curve [49] or a nonuniform rational
B-spline [50]. A summary of the approach described in
Secs. II–VI and its application to the single-cell Bézier
cavity is given in Fig. 13.

The derivative of the contour of the elliptical cavity is not
smooth at the intersection points of the ellipses and the
tangential straight line. This is improved using Bézier
curves. Four points, i.e., eight parameters in total, are
required to model the geometry with a cubic Bézier curve.
The cubic Bézier curve is given by

BðtÞ ¼
X3
i¼0

3!

i! · ð3 − iÞ! ð1 − tÞ3−i · ti · Pi; 0 ≤ t ≤ 1;

where the four points P0, P1, P2, and P3 are defined in the
two-dimensional space. The requirement that the end
slopes at P0 and P3 are zero is enforced by setting y0 ¼
y1 ¼ Req and y2 ¼ y3 ¼ Ri. Furthermore, x0 and x3 can be
set to 0 and L=2, respectively, so the cross section of the
cell of such cavities can be parametrized by Req, Ri, L, x1,
and x2, i.e.,

FIG. 10. The electric field of the FM in half of the chosen
elliptical cavity, denoted FCCPR19 in Table V.

TABLE V. A comparison of a cavity on the Pareto front approximation, denoted FCCPR19, with some storage ring single-cell cavities.
The dimensions of CESR-B and HL-LHC cavities are scaled and tuned such that fFM ¼ 400.79 MHz. The cavities FCCHO18 and
FCCIC18 are two other cavities, optimized with respect to a different set of objective functions, proposed for FCC by Zadeh and
Kranjčević, respectively. The italic and bold entries indicate, respectively, a better and worse value than that of FCCPR19. Note that in the
calculation of Eacc (in Epk=Eacc and Bpk=Eacc), the actual cavity length (L) is considered.

Variable FCCPR19 CESR-B HL-LHC FCCHO18 FCCIC18

Ri [mm] 153.704 150.0 150.0 156.0 141.614
L [mm] 274.199 300.0 280.0 240.0 292.54
A [mm] 53.582 103.750 104.0 70.0 103.54
B [mm] 53.582 103.750 104.0 70.0 127.521
a [mm] 36.6831 25.0 25.0 25.0 41.921
b [mm] 36.6831 25.0 25.0 25.0 45.812
Req [mm] 363.346 341.856 338.512 350.574 339.166

QoI FCCPR19 CESR-B HL-LHC FCCHO18 FCCIC18

fTE111
[MHz] 526.80 513.20 523.53 529.61 547.82

fTM110
[MHz] 526.94 542.65 543.36 528.76 548.22

R=Q [Ω] 78.2 89.5 90.6 79.0 94.9
R=Q⊥;TE111

[Ω] 3.2 5.5 4.6 2.3 5.1
R=Q⊥;TM110

[Ω] 26.8 24.1 26.7 27.8 31.2
α [degree] 109.2 104.9 99.0 102.8 91.7
Epk

Eacc
[−] 1.8 2.0 2.0 1.9 1.9

Bpk

Eacc
½ mT
MV=m� 4.7 4.2 4.0 4.1 4.2

Objective FCCPR19 CESR-B HL-LHC FCCHO18 FCCIC18

F1 [MHz] −126.01 −112.42 −122.74 −127.97 −147.03
F2 [MHz] 0.15 29.44 19.83 0.85 0.40
F3 [Ω] 30.0 29.6 31.2 30.1 36.3
F4 [kΩ2] −15.0 −21.8 −21.3 −15.5 −21.3
F5 [mm] −153.704 −150.0 −150.0 −156.0 −141.614
F6 [MHz

mm ] 1.21 1.32 1.36 1.31 1.39

F7 [MHz
mm ] 3.08 2.71 2.90 3.16 3.20

F8 [MHz
mm ] 1.68 1.98 1.99 1.79 1.92
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½P0 P1 P2 P3 � ¼
�

0 x1 x2 L=2

Req Req Ri Ri

�
:

Considering the intervals from Table VII, the main
sensitivities are shown in Fig. 14, where it can be seen
that the geometric parameter with the greatest influence on
the frequency of the FM is Req. The main sensitivities in the
case where, as in Sec. IV, Req is used to tune fFM to
400.79 MHz are shown in Fig. 15. Note that the sensitivity
of the Bézier cavity and the elliptical cavity cannot be
compared as their shapes are parametrized differently.
Based on the information from Figs. 14 and 15,

∂fFM
∂Req

;
∂fTE111

∂L ;
∂fTE111

∂Ri
;
∂fTM110

∂Req

∂fTM110

∂Ri
and

∂fTM110

∂x2
need to be taken into account. As in Sec. V, due to the
influence of x1 on Req (Fig. 15) and their geometric
connection (Fig. 12), in order to decrease the computation
cost the local sensitivities with respect to x1 are omitted.
This leads to the constrained multiobjective optimization
problem
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FIG. 11. A comparison of different cavity shapes from Table V.
The details for the Bézier cavity are given in Sec. VIII.

=(x1,y1)

=(x2,y2)

=(x3,y3)

=(x0,y0)

FIG. 12. Parametrization of a single-cell Bézier cavity. The
cross section is symmetric, and half of the curved part of the
boundary is a Bézier curve.

TABLE VI. Some of the local sensitivities for the rf cavity from
Fig. 10, denoted FCCPR19 in Table V. The magnitude of other
sensitivities is below 0.7 MHz=mm.

Sensitivity ∂fFM=∂Req ∂fFM=∂A ∂fTE111
=∂Ri

Value [MHz/mm] −1.21 −1.15 −2.62

Sensitivity ∂fTM110
=∂Req ∂fTM110

=∂A
Value [MHz/mm] −1.34 −1.00

FIG. 13. A summary of Secs. II–VI, applied to a different
parametrization. The methods are red and the conclusions blue.
The corresponding information for the single-cell Bézier cavity is
referenced in parentheses.

TABLE VII. Intervals for the single-cell Bézier cavity.

Variable [mm] Req Ri L x1 x2

Lower bound 325 145 240 50 30
Upper bound 375 160 380 120 100
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min
Ri;L;x1;x2

�
fFM − f1; jf1 − f2j;

R
Q⊥1

þ R
Q⊥2

;

−G ·
R
Q
; −Ri|{z}
¼F5

;

���� ∂fFM∂Req

����|fflfflffl{zfflfflffl}
¼F6

���� ∂fTE111

∂L
����þ

���� ∂fTE111

∂Ri

����|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼F7

;

���� ∂fTM110

∂Req

����þ
���� ∂fTM110

∂Ri

����þ
���� ∂fTM110

∂x2
����
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
FG;8

subject to fFM ¼ 400.79 MHz: ð6Þ

It is implied that, for a point I ¼ ðRi; L; x1; x2Þ, fFM will be
tuned to 400.79 MHz using Req.
The optimization problem is solved as described in

Secs. VI B and VII A. An approach similar to the one in
Sec. VII B is used to choose an interesting individual from
the Pareto front approximation. The shape of the chosen
Bézier cavity is shown in Fig. 16.

The design variables, objective function values and QoIs
for this cavity are given in Table VIII. The shape of the
cavity (also shown in Fig. 11), as well as the values of the
objective functions and QoIs are very close to the corre-
sponding values for the elliptical cavity found in Sec. VII B
(FCCPR19). The smaller Ri value of the Bézier cavity
increases R=Q and G · R=Q at the cost of a higher
R=Q⊥TE111. Having a different shape with rather similar
rf properties provides flexibility to overcome problems
such as multipactor effect that might exist in one of the
cavity shapes.

FIG. 14. Main sensitivities. The intervals for the geometric
parameters Req, Ri, L, x1, and x2 [cf. Fig. 12] are given in
Table VII. The polynomial degree is p ¼ 2, so the size of the
sample is 84 [cf. Table I].

FIG. 15. Main sensitivities. For a point ðReq; Ri; L; x1; x2Þ
[cf. Fig. 12] inside the intervals from Table VII, fFM is tuned
to 400.79 MHz using Req½mm� ∈ ½325; 375�. The polynomial
degree is p ¼ 2, so the size of the sample is 45 [cf. Table I].

E Eacc

FIG. 16. The electric field of the FM in half of the chosen
Bézier cavity.

TABLE VIII. Design variable and objective function values, as
well as QoIs, for the Bézier cavity from Fig. 16. The frequency of
the FM is fFM ¼ 400.79 MHz.

Variable Fig. 16

Ri [mm] 150.037
L [mm] 292.19
x1 [mm] 78.6565
x2 [mm] 75.4653
Req [mm] 367.265

QoI Fig. 16

fTE111
[MHz] 528.78

fTM110
[MHz] 528.76

R=Q [Ω] 79.9
R=Q⊥TE111

[Ω] 4.1
R=Q⊥TM110

[Ω] 26.7
Epk

Eacc
[−] 1.6

Bpk

Eacc
½ mT
MV=m� 4.9

Objective Fig. 16

F1 [MHz] −127.97
F2 [MHz] 0.02
F3 [Ω] 30.8
F4 [kΩ2] −15.6
F5 [mm] −150.037
F6 [MHz

mm ] 1.08

F7 [MHz
mm ] 2.79

FG;8 [MHz
mm ] 1.68
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IX. CONCLUSIONS

In this paper an algorithm for solving constrained
multiobjective rf cavity shape optimization problems was
proposed and applied to the problem of optimizing the
shape of the superconducting rf cavity for the FCC-ee-Z.
The shape of the cavity was optimized with respect to both
the properties of the fundamental mode and the first dipole
band, focusing in particular on robustness against geo-
metric perturbations.
In order to decrease the computation cost, the results of a

global sensitivity analysis were used to reduce the search
space and define the objective functions of interest. A good
single-cell elliptical cavity was found, and the algorithm
generalized and applied to a different type of cavity. The
proposed algorithm and its implementation could also be
applied to rf cavity shape optimization problems which take
into account the properties of HOMs corresponding to
arbitrary mode numbers.
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