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Plasma wakefield acceleration represents one of the most promising techniques able to overcome the
limits of conventional rf technology and make possible the development of compact accelerators. With
respect to laser-driven schemes, the particle beam-driven scenario is not limited by diffraction and
dephasing issues; thus, it allows one to achieve larger acceleration lengths. Nevertheless, one of the most
prominent drawbacks occurs at the end of the acceleration process and consists in the removal of the
depleted high-charge driver while preserving the main features (emittance and peak current) of the
accelerated witness bunch. Here we present a theoretical study demonstrating the possibility to reach these
goals by using an innovative system consisting of an array of beam collimators and discharge capillaries
operating as active-plasma lenses. Such a system allows one to extract and transport the accelerated and
highly divergent witness bunch and, at the same time, provides for the removal of the driver. The study is
completed with a set of numerical simulations conducted for different beam configurations. The physics of
the interaction of particles with collimator is also investigated.
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I. INTRODUCTION

Plasma-based acceleration, driven by either ultrashort
laser pulses [1-3] or electron bunches [4-6], represents one
of the most promising techniques able to overcome the limits
of conventional rf technology and allow the development of
compact accelerators. In both schemes the plasma is used as
an energy transformer in which the driver pulse energy is
transferred to the plasma (through the excitation of plasma
wakes) and, in turn, to a witness bunch (externally [7,8]
or self-injected [9,10]). Plasma wakefield acceleration
(PWFA) driven by one or more driver bunches offers several
advantages with respect to laser-driven schemes, mainly
limited in their overall efficiency and in the maximum
accelerating lengths that can be achieved considering the
laser diffraction, dephasing, and depletion [11]. At the
FACET facility at SLAC laboratories [6], for instance, it
has been experimentally demonstrated that by employing
driver beams with GeV energies the overall efficiency can be
boosted up to 30% on a 40-cm-long plasma stage. It
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represents the starting point for future facilities based on
plasma acceleration like, for instance, the European Plasma
Research Accelerator with excellence in applications
(EuPRAXIA) [12].

A drawback common to both the laser and particle beam-
driven methods is represented by the extraction of the
accelerated witness bunch that can lead to a large degradation
ofits emittance [ 13]. When exiting the plasma, the bunch has
a large angular divergence [14], of several milliradians, that
is some orders of magnitude larger with respect to conven-
tional (rf) accelerator beams. For non-negligible energy
spreads, such a large divergence also leads to arapid increase
of the normalized emittance in the downstream drift [15]. Itis
thus mandatory to remove such a divergence as soon as the
witness leaves the plasma accelerator. In addition to this, for
PWFA another issue is represented by the removal of the
high-charge energy-depleted driver(s) [16]. In this case, it is
evident that simple collimating apertures cannot be
employed without affecting also the witness charge.

With the aim to solve these issues, here we discuss an
innovative and compact extraction system that implements
an array of active-plasma lenses [17-19] consisting of
multiple discharge-waveguide capillaries filled with gas.
Taking advantage of the energy-dependent focusing (o< 77!,
with y the relativistic Lorentz factor) provided by an active-
plasma lens [20,21], such a solution allows one to refocus
and transport the witness along the array while overfocusing
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the (lower-energy) driver that is removed by using a
collimator located between the lenses. Our study indicates
that the entire system can be made very compact (tens of
centimeters scale) and adapted to different beam
configurations.

The paper is organized as follows. Section II describes
the reference scenario, i.e., a typical driver-witness beam
configuration as the one foreseen for the proposed
EuPRAXIA [12] design study. In Sec. III, we describe
the conceptual design of the extraction system and discuss
the working regime of the employed plasma lenses. Beam
dynamics simulations are then reported in Sec. IV, where
the scalability of the system is tested for several beam
configurations. In Sec. V, we describe the interactions
of the particle beams with the collimator device. The
analysis highlights the effects of the wakefields generated
in the collimator aperture (Sec. V A) and the particle-matter
interactions by means of the GEANT4 framework (Sec. V B),
allowing one to evaluate the effective removal of the driver
particles and the effects of their interaction with the
surrounding materials.

II. THE EuPRAXIA DESIGN STUDY

In the context of accelerator research, a fundamental
milestone is represented by the realization of a plasma-
driven facility that will integrate high-gradient accelerating
plasma modules with a short-wavelength free electron laser
(FEL). In such a context, the Horizon 2020 design study
EuPRAXIA [22] aims to design the world’s first accelerator
facility based on plasma-wakefield acceleration to deliver
1-5 GeV electron beams that simultaneously have high
charge and low normalized emittance and energy spread, as
required by user applications [12]. The EuPRAXIA
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FIG. 1.

Collaboration concluded their work by suggesting a solid
strategy with the aim to demonstrate the possibility to use
plasma accelerators in such a context. The design study
proposes a first European research infrastructure that is
dedicated to demonstrating exploitation of plasma accel-
erators for final users. Developing a consistent set of beam
parameters produced by a plasma accelerator able to drive a
short-wavelength FEL is one of the major commitments of
the design study. To prove such a concept, EUPRAXIA
foresees the realization of two facilities that will be the
pillars of the design study. One will exploit the use of high-
power lasers to generate the plasma wakes and provide the
acceleration of an externally injected witness bunch [23].
The other one will use a beam-driven scheme [4,6], where
the plasma wakefields are generated by one or more
preaccelerated electron bunches.

For the beam-driven scenario, the LNF-INFN laborato-
ries located in Frascati have been recently proposed as
possible hosting site [24,25], and a conceptual design
report of the foreseen facility has been recently produced
[26]. To generate FEL radiation with wavelengths in the so-
called water-window range (Agg; =2.5-4 nm), such a
facility will employ an X-band linac to produce and
preaccelerate a driver-witness beam up to 500 MeV and
then inject it into a PWFA-based booster. The beam-driven
plasma acceleration module will operate in the so-called
quasinonlinear regime [27] with plasma densities of the
order of n, ~ 10'® cm™ and will reach 1 GeV final energy
for the witness bunch [28,29]. Figure 1(a) shows the
simulated longitudinal phase space (LPS) of a 200 pC
driver followed by a 30 pC witness downstream from the
PWFA module. The results are obtained using ARCHITECT
[30], a hybrid code that works as a particle in cell for
the electron bunches while treating the plasma as a fluid.
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(a) Longitudinal phase-space (top) and x-z view (bottom) of the accelerated witness (blue) and energy-depleted driver (red)

bunches downstream the PWFA module. Before the plasma acceleration stage, the energy of both bunches was 500 MeV.
(b) Longitudinal (top) and energy (bottom) profiles of the two bunches. The y axis reports the counts of the simulated macroparticles

for each bunch.
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TABLE I. Witness and driver bunches parameters at the exit of
the PWFA module.

Parameter Units Witness Driver
Charge pC 30 200
Duration (rms) fs 11.5 160
Peak current kA 2.6 1.2
Energy MeV 1016 460
Energy spread (rms) % 0.73 16
Normalized emittance pm 0.6 5
Spot size pm 1.2 7

The energy of the two bunches was 500 MeV upstream
from the PWFA stage, and, as shown in Fig. 1(b), most of
the driver energy has been depleted into the plasma and
converted in wakefields used to accelerate the witness
bunch. The simulation has been performed to demonstrate
that it is possible to preserve the witness bunch quality
(normalized emittance and energy spread) during the
acceleration in a plasma channel [16]. The main parameters
of the two bunches at the exit of the PWFA module are
reported in Table I.

III. EXTRACTION SYSTEM

When exiting the plasma (with density n,), the witness
moves from an extremely intense focusing field (generated
by the excited plasma wakefield) to a free space, where the
focusing effect suddenly vanishes. Assuming that the
bunch was transversely matched into the plasma channel,
its particles oscillate with a typical betatron f function of

amplitude f,, = /y/2xr.n,, with r, the classical electron
radius [31,32]. At the plasma exit, the average divergence is
thus given by oy o« 1/f,,. As a reference case, when
considering n, ~10'® cm™ and y #2000 (e, 1 GeV
energy), one has f,, ~ 3 mm. Considering typical normal-
ized emittances of ¢, ~ 1 ym, the angular divergence is of
several milliradians, i.e., orders of magnitude larger than
the ones coming from conventional rf accelerators (of the
order of microradians). For non-negligible energy spreads
og, such a large divergence also leads to a rapid increase of
the normalized emittance in a drift of length s given by [15]

2o af%\ 4 2
€n_<y> s f O-x’+€9 ’

where E and e, are the bunch energy and geometrical
emittance, respectively. According to Eq. (1), it is thus
important to remove the divergence of the accelerated
witness bunch with a short focal length focusing system
installed downstream from the plasma stage and as close as
possible to it [33].

The technique we discuss here has two goals: (i) transport
the witness bunch by preserving its charge, normalized
emittance and peak current; (ii) remove the high-charge
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FIG. 2. Layout of the extraction system consisting of two
active-plasma lenses employed as plasma lenses and a lead
collimator between them. The focusing strengths of the lenses
are set up to rapidly catch the witness bunch (blue) downstream
from the PWFA stage and allow for its transport without any loss
of charge. The driver bunch (red) has a lower average energy and
is thus overfocused: Its spot size at the collimator entrance is
larger than the aperture, and its charge is thus cut proportionally.

Collimator

driver bunch during the transport in order to completely
discard it before the FEL undulator beam line. Figure 2
shows the layout of such a system. The focusing of the
witness is provided by two active-plasma lenses (APLs)
[34], such devices being able to produce large focusing
fields of the order of kT/m [17]. Between the APLs, a lead
collimator is used to remove the driver bunch. The removal
is based on the different focusing provided by the first APL
to the two beams: The witness is focused exactly at the
entrance of the collimator (without losing any charge),
while the driver (with approximately half of the energy) is
overfocused to a spot size much larger than the collimator
clear aperture.

To achieve the desired goals, i.e., focus the high-current
and low-emittance witness bunch and dump the high-
charge and energy-depleted driver, several simulation tools
have been used and linked to each other. As described in
Sec. 11, the plasma acceleration process was simulated with
the ARCHITECT code. To propagate and transport the two
bunches from the exit of the PWFA module, we have used
the general particle tracer (GPT) code [35], a tool widely
employed in the accelerator community. The GPT has thus
been used to simulate the drifts between all the elements
involved in the system depicted in Fig. 2 with space-charge
effects included. The dynamics of the beam in the plasma
lenses is then computed by a 2D code written to solve the
wakefield equations in the linear regime [36]. More detail
are given in Sec. IVA. Finally, the optimization of the
collimator system has been conducted to maximize the
driver beam dumping by looking at its fundamental
interactions with the collimator walls (predicted by
GEANT4; see Sec. V B) and by analyzing the effects, on
the witness beam, of the wakefields produced during the
propagation through the collimator aperture (with the csST
simulation framework, Sec. VA).

A. Active-plasma lens

The core part of the system is represented by the active-
plasma lenses. An APL essentially consists of a current-
carrying cylindrical conductor whose axis is parallel to the
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beam. Here the plasma (produced after the ionization of the
gas confined within the capillary) acts only as a conductor,
while the net focusing effect is produced by the flowing
discharge current. A schematic picture of such a device is
shown in Fig. 3. By indicating with J(r) the current density
along the radial dimension, the resulting magnetic field is
given by the Ampere law

Beu(r) =10 A "1yrdr @)

r

where p is the vacuum permeability. If the current density
is uniform, the magnetic field increases linearly with the
radius 7, and a linear restoring force on the beam will result.
One can notice three interesting features of such a device.
(i) The focusing is symmetric, like in solenoids, but the
resulting force scales as F o« y~! (with y the relativistic
Lorentz factor), like in quadrupoles. (ii) The focusing can
reach several tens of kT/m, i.e., orders of magnitude larger
than the strongest available quadrupoles (=600 T/m
[37,38]). (iii) The tunability of the system is obtained by
adjusting the external discharge current I, = [¢J - dS.

These features pushed the research toward the use of
APLs in accelerator facilities. While in past decades several
results were obtained by focusing ion beams [39—41],
recently several proof-of-principle experiments have been
performed with laser-plasma [17,20] and rf [18,42-44]
accelerators. Although these results indicated the capability
to integrate APLs in accelerator facilities and their advan-
tages (in terms of focusing gradients) with respect to
conventional optics, some of them have demonstrated that
nonuniformities on the J(r) and the interaction of the
traveling beam with the background plasma can induce
severe effects on the beam itself, in particular, on its
emittance [18,42].

The focusing field produced by the APL strongly
depends on the discharge dynamics along the capillary
[45,46]. To describe the main effects of the discharge
process, a one-dimensional analytical model can be used
[47] by assuming the distribution of plasma inside the
capillary at the equilibrium stage as soon as the discharge is

S
e 6 .............................. s

FIG. 3. Representation of the active-plasma lens working
mechanism. A discharge current is applied to the capillary
through two symmetric electrodes. The current generates an
azimuthal magnetic field (B,) that produces a focusing force (F)
for the incoming electron beam.
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FIG. 4. Calculated profiles of the magnetic field (blue curve)
and plasma temperature (red curve) along the capillary radius.
The current discharge used for the calculation is I, = 1 kA. The
gas density is set to ng,, = 10'° cm™.

initiated. In this case, the equilibrium is determined only by
the balance between Ohmic heating and cooling due to the
electron heat conduction. Figure 4 shows the resulting
magnetic field and plasma temperature computed for a
capillary with R. =500 um and a current discharge of
Ip = 1 kA. The initial density of the neutral H, gas is
Ngas = 10'® cm™. The nonlinearity of the magnetic field
[dictated, according to Eq. (2), by a nonuniform current
density J(r)] is one of the sources leading to the normalized
emittance growth of the beam during focusing, although a
recent work demonstrated the possibility to mitigate these
effects [43].

IV. SYSTEM PERFORMANCES

The extraction system we are discussing exploits the
different focusing provided by an APL on beams with
different energies [48]. This allows one to tune the APL to
transport the witness through the collimator and, at the
same time, overfocus the driver and remove its charge.
A summary of the so-developed beam line is summarized
in Table II.

TABLE II. Optimized parameters (size, radius, and position)
for the APLs and collimator used in the proposed extraction
system. The position of each element (along z) is relative to the
exit of the PWFA module. For the APLs, the current discharge
(Ip) and plasma density (n,,) are also reported.

Size (cm) Radius (mm) z (cm) I (kA) n, (cm™3)

APL 1 2 0.5 15 1 10!6
Collimator 3 0.2 97
APL 2 1 0.5 135 0.6 106
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FIG. 5. Evolution of the witness envelope (blue line) and driver

charge (red line) along the beam line. The insets show the x-z
plane of the bunches at the entrance of the first APL, the
collimator, and the second APL.

Figure 5 shows the evolution of the witness envelope
(blue line) and driver charge (red line) along the system,
consisting of two APLs and a lead collimator between them.
The system has been optimized on the LPS at the exit of the
PWFA module, as the one reported in Fig. 1(a). The first lens
consists of a 2-cm-long discharge capillary with 500 ym
hole radius. The focusing is obtained by applying a
discharge current I, = 1 kA. The position of the lens with
respect to the PWFA module has been carefully chosen to
preserve as much as possible the witness normalized
emittance. On one side, according to Eq. (1), short drifts
would be preferable to avoid emittance degradation due to
the large divergence of the beam. On the other side, small
drifts would produce a small witness spot at the APL
entrance, i.e., a larger bunch density. As demonstrated in
our previous work [43], large bunch densities produce non-
negligible plasma wakefields in the APL that, being non-
linear, would increase the beam emittance during the lens
focusing. A trade-off is thus necessary to balance these two
contributions. In Fig. 5, the best compromise has been found
by moving the entrance on the first APL 15 cm downstream
from the PWFA module. In this case, the normalized
emittance increased in the drift from 0.6 to 0.7 ym (rms).

The driver and witness are then transported to the entrance
of the collimator whose radius is R.,; = 200 um. Here the
witness spot size is 6, & 10 ym (rms), while the driver is
almost a hundred times larger (6; & 1 mm). In such a way,
the majority of the driver charge (x98%) is removed by the
collimator, with only 4 pC that have remained after it;
more details about the choice of the collimator aperture and
particle interactions with its body are reported in Sec. V B.
The system ends with the second APL (1 cm long with
Ip = 0.6 kA) that refocuses the witness downstream from
the collimator and allows for its transport through the rest of
the beam line. Figure 6 shows the evolution of the witness
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FIG. 6. Evolution of the witness normalized emittance along
the beam line. The points where there is an increase of such a
quantity are labeled accordingly.

normalized emittance along the beam line. As expected, the
increase of such a quantity is foreseen in the initial drift
downstream from the PWFA module [according to Eq. (1)]
and in the two active-plasma lenses (more details are
reported in Sec. IVA).

Considering all the elements and drift spaces involved,
the total length of the system is 1.4 m. In view of a compact
facility like the one envisioned by the EUPRAXIA design
study, such a small size is a key feature. Although the
witness emittance doubles with respect to the one at the
PWPFA exit, the performances of the FEL are not affected.
The lasing condition to fulfill is indeed €, =¢,/y <
ArpL/47 [49,501; i.e., the geometric emittance €, must be
smaller than the diffraction-limited photon beam
(A, ® 3 nm for the case of interest). Regarding the
amount of drive beam depletion, at the exit of the second
APL we have 4 pC charge, more than 100 MeV energy
spread, ~20 ym emittance, and an equivalent current of
14 A. We expect thus that such a residual beam would be
barely transported through the subsequent beam lines,
matched on the parameters of the witness beam.
Following these results, the amount of driver charge
eventually transported up to the FEL undulators is expected
to be reasonably negligible.

A. Beam dynamics in the active-plasma lenses

As previously discussed, the focusing and guiding of an
electron beam in an APL is actually due to the magnetic
field generated by the discharge current, while the plasma
acts only as a conducting medium. However, the dynamics
of a beam is also affected by the interaction with the plasma
that induces plasma wakefields acting on the beam itself
[51-53]. In the limit of an electron beam with a density
comparable to or smaller than the plasma one (n, < n,,), the
wakefields can be described by using the 2D plasma
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wakefield theory in the linear regime [36]. If we rewrite the
bunch density by separating the longitudinal and transverse
profiles as ny,(z, r) = ny(z) - ny,(r), the wakefields can be
expressed as

W.(z,r) = Z—:R(r)-

x/_Z ny(Z') cos(k,(z —2'))dz',  (3)

[Se]

_ 4. dR(r)
W*(s’r)_eokp dr

Z
x/ ny(2')sin(k,(z = 2'))dz'.  (4)
where ¢, is the vacuum permittivity and ¢, the electron
charge. We have also introduced the plasma wave number
k, and the function R(r) defined as

R(r) = Ky (k,r) A " (M) (k) P

+ Ty (k,r) / "y, () Ko (k) dr. (5)
where /) and K are the modified Bessel functions of zeroth
and first order, respectively. From Egs. (3) and (4), we can
thus compute the forces F',, = g, W, acting on the beam.
As a consequence, we can see that, on the transverse plane,
the plasma produced a net focusing. Indeed, when a
relativistic electron bunch travels in a plasma, the space-
charge field of the electron beam is canceled by the plasma;
thus, the beam is pinched by its own magnetic field. Such a
mechanism happens in so-called passive plasma lenses,
widely investigated in past years [54-56] and more
recently [57].

Starting from this set of equations, we have developed a
plasma simulation code that allows one to track the
evolution of a test electron beam. Figure 7 shows a
snapshot of the radial (W,) and longitudinal (W) wake-
fields induced by the 30 pC witness bunch moving in a
plasma background with density n, = 10'® cm™. We can
see that transverse (longitudinal) fields as large as
5(30) MV/m are produced. While the longitudinal
dynamics is not affected, the transverse evolution is
influenced by both the transverse plasma wakefield W,
and the azimuthal magnetic field B, induced by the
discharge current. Figure 8 shows the evolution of the
witness normalized emittance and envelope along the two
APLs used in the setup reported in Table II. For the sake of
simplicity, we have not considered any plasma ramp at the
entrance and exit of the lens, resulting in a a sharp transition
between the vacuum and the plasma channel. As shown,
most of the emittance growth happens in the first (and
longer) lens, where the witness transverse spot size is larger
(43 ym rms) with respect to the one entering into the
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FIG.7. Simulated radial (top) and longitudinal (bottom) plasma
wakefield produced into the APL by the witness bunch. The red
dashed ellipse shows the rms size of the witness bunch.

second lens (23 ym rms). Such growth is due to both the
nonlinearities of the B, field (cf. Fig. 4) and W,.

To better understand the dynamics during the lensing
effect, we can split the two effects involved, i.e., the passive
lensing due to the induced plasma wakefields and the active
lensing due to the magnetic field produced by the discharge
current. Figure 9 shows a comparison for the same two
parameters, normalized emittance and spot, with (solid
lines) and without (dashed lines) the external magnetic
field in the first APL. We can see that without the discharge-
induced magnetic field there is almost no focusing (unper-
turbed growth of the beam spot size), but, in spite of that, the
emittance increases due to the nonlinear force exerted by the
transverse plasma wakefields. The increase of emittance due
to the passive lensing (i.e., W,) and the external field is
approximately the same, i.e., A¢, ~ 0.2 um. This scenario,
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FIG. 8. Evolution of the witness normalized emittance (blue

lines) and spot size (red lines) along the two APLs.

121302-6



PLASMA LENS-BASED BEAM EXTRACTION AND ...

PHYS. REV. ACCEL. BEAMS 22, 121302 (2019)

1.2 : . . 49
——With B 7
ext ’
- - -Without B .’
11t , ext e 48
——WithB_, -
. - - -Without B__,
€ 47 _
= S
=
s 46 8
L
45
44
0 0.5 1 1.5 2
z (cm)

FIG.9. Witness normalized emittance (blue lines) and spot size
(red lines) along a 2-cm-long APL by including (solid lines) or
not (dashed lines) the magnetic field produced by the discharge
current.

however, represents the best compromise, since smaller
(larger) witness spot sizes would enhance the contribution
due to the W, (B,) term and produce an overall larger
emittance degradation [58].

B. Parametric study

The tunability of the system for different beam param-
eters is ensured by simply changing the discharge current
applied to the APLs in order to adjust the witness focusing
and transport along the beam line. Once the transport optics
is optimized on the witness side, the disposal of the driver
charge mainly depends on its own 6D phase space and can
be maximized by properly tailoring the collimator geom-
etry (aperture and length). In this section, we discuss the
dynamics of the driver bunch for different configurations,
while the witness bunch is assumed to be as in the reference
case described so far. This allows us to not change the beam
line optics and check how it reacts in the presence of the
incoming driver.

Figure 10(a) shows how the removal of the charge is
affected according to the incoming beam energy. The system
is matched on the witness, so we expect that for energies close
to the witness one (x1 GeV) the removal of the particles is
less effective. We see that such a charge selection is basically
obtained: The lower the beam energy, the larger the amount
of charge cut by the system. On the contrary, at larger
energies, the system handles the driver beam as in the case of
the witness, so less charge is removed. Another parameter
that could change downstream from the PWFA module is the
bunch normalized emittance that, actually, determines its
divergence. Considering the driver bunch, its divergence at
the PWFA exit strongly affects the effective charge collima-
tion. Figure 10(b) shows how the driver charge is dependent
on such a parameter. As expected, larger beam divergences
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FIG. 10. Driver charge at the end of the system for different
driver energies (a) and normalized emittances (b). The red
asterisks show the reference case described in Table I.

(due to larger emittances) are favorable, since the beam
would reach the collimator with a larger transverse spot with
more particles interacting with it and, thus, removed. On the
contrary, low emittances produce a more collimated beam
and, in turn, a decrease of the charge cut operated by the
collimator, since fewer particles hit its walls. In conclusion,
the parametric study demonstrates that the system can be
tuned on a particular configuration. For the sake of com-
pleteness, we have also repeated this analysis by changing
the driver spot size and energy spread, but these parameters
only slightly affect the removal of charge operated by the
system (less than 10% with respect to the reference case
described so far) and have been omitted in this treatment.

V. BEAM INTERACTIONS WITH THE
COLLIMATOR

A. Wake potentials

The interaction between the bunch electric field and the
conductive walls of the lead collimator described so far is
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able to generate wakefields that can affect both the longi-
tudinal and transverse dynamics of the traveling bunch,
hindering the emittance preservation [59]. The electromag-
netic interaction of charged particles with any surrounding
environment can be quantified by solving the Maxwell
equation to find the resulting electric and magnetic fields and
then estimating the effects of these fields on the particle
motion [60,61]. Assuming that the z axis is the symmetry
axis of the system under analysis and considering two
particles that move along it, the electromagnetic field
generated by a leading charge ¢; (located at z = ct with a
transverse offset r; with respect to the z axis) produces a
change of the momentum Ap on a trailing particle with
charge ¢, (located behind the first one at s = ¢t — z with a
transverse offset r,). The beam dynamics being different in
the longitudinal and transverse directions, it is useful to
separate the longitudinal momentum Ap_ from the trans-
verse component Ap | and introduce the longitudinal and
transverse wake functions [61] as, respectively,

- cAp,

w.(ry,r,s) = , 6
(r1.72,9) " (6)
cAp |
W, (ry,r,s) = . 7
1(r1,72,8) o (7)

Regarding the longitudinal wake, if the r; , offsets are small
in comparison to the aperture of the pipe, we can remove the
radial dependence and approximate w,(s) = w.(0,0,s).
For a bunch with longitudinal charge distribution p(s),
the wake potential W_ () (the voltage lost for a test particle at
position s) is thus given by

Wo(s) = [T wlpls = o)ds (®)

In a similar way, by assuming r; = r, = r, the transverse
wake potential W | () (that represents the transverse kick for
a test particle at position s) can be approximated to its
lowest-order linear term [w,(r,r,s)~w, (s)/r] and
expressed as

Wi =) [Tl = sas. o

The average of the longitudinal wake potential from Eq. (8)
gives the loss factor k;, while the average of the transverse
wake from Eq. (9) represents the kick factor k,.

From the previous equations, we thus have that the
longitudinal wakes cause an energy decrease of the bunch
while the transverse ones can affect the design orbit of the
beam. To quantify the effects of these wakes on the witness
bunch, we performed a numerical 3D simulation with the cST
code [62]. The wake amplitude being proportional to the
bunch charge, here we neglect the wakes induced by the
driver, since the amount of its charge propagating through
the collimator aperture is very small and, thus, not able to
generate a significant wakefield that could affect the witness

FIG. 11. Simulated collimator structure in CST. The beam
simulated to generate and probe the wake potentials has the
same properties of the witness bunch so far described.

dynamics. Figure 11 shows the simulated collimator struc-
ture. The collimator aperture is 400 xm in diameter and 3 cm
in length. The simulated beam, used to generate and probe at
the same time as the induced wake potentials, has the same
properties of the witness bunch so far described. Both
longitudinal W, and transverse W, wake potentials are
calculated along the axis and with a Ay = 50 um transverse
offset, respectively. They are shown in Fig. 12 together with
the witness bunch distribution. From the simulations, we
obtained a longitudinal loss factor k; = 1.65 kV/pC
and a kick factor k, = 1.92 V/pC/mm. From these loss

80

Beam
—_—W 1
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e 4
w, (x10%)]| |
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40+

201
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20+
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FIG. 12. Longitudinal (red curve) and transverse (green curve)
wake potentials induced into the collimator by the witness bunch
(blue curve). To represent the lines with the same axis scale, the
transverse wake W, (calculated at distance r = 50 pm from the

collimator axis) has been enhanced by a factor of 10*.
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parameters, it is then possible to derive the energy decrease
and the transverse kick received by the bunch. The energy
loss can be easily computed as AE = k;- Q =~ 50 keV.
Similarly, the angular deflection produced by the transverse
wake on a beam with energy E can be estimated as [63] A9 =
Ay -k, - Q/E ~2.88 x 10~ rad. From the resulting num-
bers, we can thus conclude that the influence of the wake-
fields produced into the collimator by the witness bunch does
not affect its dynamics and can be neglected.

B. Particle-matter interactions

The interaction of the driver beam with the lead collimator
has been numerically simulated by means of the GEANT4
framework, a single-particle tracker which takes into
account all the fundamental radiation-matter interactions
[64]. GEANT4 is a toolkit for simulating the passage of
particles through matter. It includes many functionalities
like tracking, geometry, physics models, and hits. Many
physics processes are included and cover a wide range of
interactions like electromagnetic, hadronic, and optical
processes, a large set of long-lived particles, materials,
and elements, over a wide energy range (from hundreds
of eV up to TeV). In defining and implementing all the
involved components, all aspects of the simulation process
have been included: (i) the geometry of the collimator
system, (ii) the material involved (lead), (iii) the fundamen-
tal particles of interest (electrons), (iv) the generation of
primary particles of events (electrons, hadrons, and pho-
tons), (v) the tracking of particles through materials, and
(vi) the physics processes governing particle interactions
(bremsstrahlung, pair production, multiple scattering, etc.).

For the current simulation, we proceeded as in the
following. First, we transported with GPT the beam exiting
from the first APL up to the collimator entrance. Here we
imported and converted the GPT bunch in order to be
treated with GEANT4. Finally, the GEANT4 simulation output
is imported again in GPT and used as input for the second
APL. In the GEANT4 simulation the FTFP_BERT physics
list has been adopted; it contains the standard electromag-
netic and hadronic interactions, the latter ones implemented
using the FTF parton string and Bertini cascade models
[65]. The performances of the collimator have been
optimized by varying four parameters in the simulation:
the thickness, the inner and outer radii, and the distance of
the collimator from the first APL. The final configuration
reported in Table II represents the best compromise
regarding the driver dumping and the preservation of the
witness beam charge. It consists of a L., = 3-cm-long
lead cylinder with outer radius R.,; =1 cm and R, =
200 pm radius aperture. According to the GEANT4 simu-
lation, such a solution allows one to remove x~98% of the
driver charge while the witness remains untouched.
Figure 13 shows the resulting tracks of the primary and
secondary particles produced during the interaction of the
driver bunch with the collimator.

FIG. 13. Driver beam interaction with the collimator. The
colors of the tracks stand for electrons (red), positrons (blue),
and photons (green) in the y- and x-ray range.

The simulation recorded all the scattered and emitted
particles after the interaction. Most of the deposited energy is
converted into electrons and photons. Figure 14 shows the
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FIG. 14. Polar angular distribution as a function of the energy
for the electrons (a) and photons (b) produced after the inter-
action. On the x axis, angles close to 0° (180°) mean that the
particles are moving forward (backward) with respect to the
incoming electron beam.
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after the interaction with the incoming electron beam. The particles have been collected over a 4z solid angle around the collimator.

polar angular distribution (@ angle with respect to the z axis,
representing the incoming beam direction) as a function of
the energy for these two kinds of particle. The plots highlight
that the ones carrying the largest energies are emitted
forward (0~ 0), while only low-energy particles move
radially (0 =~ 90°), that is, perpendicular to the incoming
beam. Finally, in Fig. 15, we show the overall counts for not
only electrons and photons but also positrons and protons.
As we can see, a large number of y or x rays are produced, up
to 107 by assuming 3 x 10° incoming electrons. This is a
potential source of background for any detector or diag-
nostics installed around the collimator that, thus, would
require a proper shielding system to be adopted for any
practical purpose.

C. Temperature analysis

A final remark regards the total energy deposition and
temperature rise in the lead collimator. This is important
information that allows one to estimate the maximum
repetition rate f., the system can sustain. With the beam

configuration discussed so far, the maximum energy
deposited for each shot is Ey.,, ~ 0.1 J, corresponding
to a beam power Pyeym = frep * Epeam FOr the sake of
simplicity, we have assumed that all the driver particles are
absorbed and neglected the escaping ones after the inter-
action; i.e., we are investigating the worst situation where
the largest temperature increase is reached.

To determine the temperature evolution, we must solve
the heat flow equation [66]

dr 1d [ dT
el (el —h 1
PCp dt K¢ rdr <r dr) + Gbeam rad» ( 0)

with boundary conditions 7'(ty, r) = T(t, R.on) = Ty and
Ty = 300 K the room temperature. In Eq. (10), we have
that p~11.34 gem™ is the lead density, c,~
128 JKg=!' K! its specific heat, and k.~ 34.7 Wm™' K
its thermal conductivity. The three terms on the right side of

the equation represent (i) the heat rate through conduction;
(ii) the net rate of heat generation given by the incoming
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particle beam; and (iii) the heat rate lost by radiation.
All the terms have physical units of power per volume
(W m™3). At the thermal equilibrium, the temperature
reached by the collimator during beam irradiation can be
calculated by equating to zero the term on the left side of
Eq. (10). Assuming an electron beam with a Gaussian
transverse profile and radius o, (%1 mm for the driver
bunch at the entrance of the collimator; see Sec. IV), the
Gream term can be expressed as

P beam r
= eXpl —== ).
Gbeam 271’6% L, P 26%

The heat rate loss due to radiation is given by the well-
known Stefan-Boltzmann law

(11)

€
hyag = L—GSB(T4 - Tg)’

Cc

(12)

where € =~ 0.07 is the lead emissivity [67] and ogp is the
Stefan-Boltzmann constant. Since the energy deposition on
the lead collimator produces an expansion of its size, we
evaluate the maximum beam repetition rate by fixing the
maximum tolerable variation along the radial dimension to
AR, /R;, = 10% (AR, = 20 um in our case). By knowing
that the lead linear thermal expansion coefficient is a,. =
29 x 107 K~! [68], the change of its radial size can be
calculated as [69]

AR:ac/r-dT(r):ac/r-VT(r)-dr, (13)

where VT(r) =dT(r)/dr is the radial gradient of the
temperature.

We found the AR, elongation is reached for a maximum
repetition rate [y, &5 kHz, corresponding to an input
power Py, ~ 500 W. Figure 16(a) shows the temporal
evolution of the collimator temperature calculated at
r = Ry,. The plot highlights that the thermal equilibrium
is reached after of # ~ 3 s irradiation time. The temperature
increased by AT = 170 K; i.e., it reached the absolute
temperature of 470 K. The lead melting point (=600 K
[70]) is reached only with f ,ep§9 kHz. The radial trend of
the temperature is shown in Fig. 16(b). As expected, larger
temperatures are produced at small radii, close to the beam
propagation axis. The temperature then decreases toward
the collimator walls. These results point out that larger
(smaller) input powers would produce a larger (smaller)
temperature increase and, in turn, a larger (smaller)
deformation of the collimator aperture. The calculation
we presented suggests that the proposed system is fully
compatible with normal-conducting accelerator facilities
operating at frequencies of 10-100 Hz, like the one
envisioned by the EuPRAXIA design study. On the
contrary, for superconducting accelerators working with
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FIG. 16. (a) Temporal evolution of the collimator temperature
(computed at radial position r = R;,) during the interaction with
the driver beam. (b) Radial evolution of the collimator temper-
ature computed at time t = 5 s.

megahertz repetition rates, the collimator should be assisted
by a proper refrigerator system.

VI. CONCLUSIONS

The beam-driven plasma wakefield acceleration tech-
nique represents one of the best candidates to develop next-
generation compact accelerators. Being a new technology,
it must solve several issues in order to be adopted for any
practical use such as user-oriented applications. As high-
lighted in this work, a drawback is represented by the
removal of the high-charge and energy-depleted driver
bunch and, at the same time, the need to provide an efficient
capture of the witness bunch avoiding its normalized
emittance degradation. Here we have presented a possible
solution, based on the use of active-plasma lenses, that has
three main key features: (i) the tunability offered by the
lenses themselves that allow one to adapt the system to
different configurations; (ii) a good dumping efficiency of
the driver bunch, with only few percent of the incoming
driver beam that remained at the end of the transport chain;
and (iii) the compactness of the entire solution, less than
1.4 m, for the manipulation of GeV-class beams. For the
scenario we have chosen as reference, ie., the one
represented by a proposed facility based on the
EuPRAXIA design study, we have demonstrated that,
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downstream from the PWFA booster module, the accel-
erated 1 GeV witness can be efficiently captured and
handled (in view of its transport up to the FEL undulators
and user stations) with its normalized emittance that grew
from 0.6 to 1.2 um at the end of the extraction system. This
number can be further optimized (and emittance better
preserved) by implementing, for instance, plasma lenses
with properly shaped density profiles [14,71]. At the same
time, we showed that a lead collimator located between the
two plasma lenses is a cost-effective solution that allows
one to dump the 200 pC driver bunch to the level of few pC
without affecting the witness. The study of the collimator,
in particular, has been conducted by analyzing both the
resistive wakefields excited along its aperture and the
particle-matter interactions with the collimator walls.
The results confirmed that such a solution can be imple-
mented in a future facility based on plasma acceleration
where the compactness represents one of the main goals.
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