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In a previous paper we showed that dynamical density shocks occur in the nonrelativistic expansion
of dense single component plasmas relevant to ultrafast electron microscopy; and we showed that fluid
models capture these effects accurately. We show that the nonrelativistic decoupling of the relative and
center of mass motions ceases to apply and this coupling leads to novel behavior in the relativistic dynamics
under planar, cylindrical, and spherical symmetries. In cases where the relative motion of the bunch is
relativistic, we show that a dynamical shock emerges even in the case of a uniform bunch with cold
initial conditions; and that density shocks are in general enhanced when the relative motion becomes
relativistic. Furthermore, we examine the effect of an extraction field on the relativistic dynamics of a
planar symmetric bunch.
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I. INTRODUCTION

The expansion dynamics of highly charged plasmas is a
fundamental problem in areas ranging from astrophysics
to nanotechnology to beam physics. Previous analytic work
has focused on initial conditions where a highly charged
plasma is cold and has uniform density [1–13]; however,
the vast majority of this work, with the exception of
Bynchenkov and Kovalev [13], have assumed nonrelati-
vistic conditions. In ultrafast electron microscopy (UEM)
and some beam physics applications, electron sources are
used to produce dense bunches of charged particles within
an intense extraction field that is used to accelerate the
distribution to near-luminal speeds. In addition, for suffi-
cient densities, the bunch self-field can result in relativistic
velocities within the frame of the bunch. These concerns
indicate that a relativistic theory is required in many
practical cases, and here we present the relevant theory.
The typical analytic approach to relativistic expansion

dynamics of such systems is a treatment based on envelope
equations that are predicated on the conservation of emit-
tance and the use of uniform density distributions [2].
Uniform ellipsoidal distributions are particularly amenable
to analysis as the self-electrostatic field in these distributions
is linear and the expansion dynamics results in a simple

power law growth of the ellipsoid axes—at least in the
nonrelativistic regime. Furthermore, it is fairly straightfor-
ward to show that uniform ellipsoids conserve emittance as
long as the distribution remains uniform and all the particles
can be treated as having identical Lorentz factors. Moreover,
analysis of beam dynamics such as emittance oscillation
[14], emittance compensation [15], and the beam halo [16]
generally assume similar uniformlike conditions. However,
for electron injectors utilizing photoemission the initial
conditions of the bunch is often Gaussian, or at the very
least nonuniform, and it has long been known that charge
redistribution from the nonuniform to the uniform bunch is
one of the major sources of emittance growth [17] suggesting
that uniform distributions are at best an idealization that miss
much of the physics present in the typical situation.
Numerous works within the UEM literature have already

looked at various aspects of the evolution of nonuniform
distributions [18–32]. Reed presented a fluid model that
described the dynamics of nonuniform bunch expansion
under the assumptions that the bunch could be treated as
having planar symmetry in the nonrelativistic regime [25].
Nonuniform density evolution of nonrelativistic distribu-
tions was extended to the planar, cylindrical, and spherical
symmetries by Kovalev and Bynchenkov within the
Coulomb explosion literature [33], and our group recently
rederived this work within the UEM context [32]. These
works show that the expansion dynamics in the planar case
differs greatly from symmetries in higher dimensions and
verified analytic description of the dynamics utilizing both
N-particle and particle-in-cell (PIC) simulations. Within
our notation, the analytic descriptions depend on terms that
can be written as functions multiplied by the quantity
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D01 ¼
ρ̄01
ρ01

− 1 ð1Þ

for planar geometries or by the quantity

D0d ¼
ρ0d
ρ̄0d

− 1 ð2Þ

for cylindrical (d ¼ 2) and spherical (d ¼ 3) geometries,
where ρ0d is the initial density at location r0 and ρ̄0d is the
average density within that location. For the uniform
distribution, the local density and the average density are
the same so that D0d ¼ 0 everywhere and the density
evolution’s dependence on the aforementioned functions
vanishes reducing the dynamics to the uniform dynamics
utilized extensively in the literature. Otherwise, these
functions play a large role in the density evolution leading
to differences in the dynamics of distributions with differ-
ent initial density profiles. Specifically, both Kovalev and
Bychenkov and our group found a density shock, seen in
Coulomb explosion studies [5–8,18,25,34], was present in
the analytic density evolution of initially Gaussian distri-
butions under both cylindrical and spherical symmetries.
We also pointed out that such a shock is absent under planar
symmetry unless an appropriate initial chirp in phase space
is present.
Both works pointed out that the shock arises as the

distribution enters what Kovalev and Bychenkov term the
“multiflow” regime. Such a regime can be visualized by
considering the phase-space density of a continuous dis-
tribution. Initially, the phase density has a nonlinear line
of best fit that is one-to-one between position and velocity;
this one-to-one relation is preserved while the bunch
remains laminar. However, as nonuniform distributions
evolve, particles initially more toward the middle of the
distribution can overtake outer particles, i.e., crossover.
Treating the particles doing the crossover separately from
the particles being crossed over, the resulting phase space
can be thought of as having multiple expected velocities for
the same position, i.e., the distribution is in the multi-flow
regime. Kovalev and Bychenkov found that their model
correctly captures the density evolution if the portion of the
distribution within the multiflow regime is small and the
density monotonically decreases from the center [33].
We noted in our previous work that the density evolution

seen in PIC simulations using an electromagnetic (EM)
solver and relativistic particle pusher, which should capture
all relativistic effects if the initial field is accurate, do not
significantly differ from our analytic description for the
densities analyzed there [32]. Moreover, we have seen that
the PIC simulations using an EM solver do not significantly
differ from those using an electrostatic (ES) solver with
relativistic particle pusher for much higher densities than
those examined in our previous work, or in the work
described here. Assuming the accuracy of the initial fields,
we conclude that the relativistic effects are then adequately

captured within the relativistic particle pusher, which is
equivalent to simply including the relativistic momentum in
the analysis. Precisely such an analysis of the relativistic
free-expansion of a spherically-symmetric, cold uniform
charge distribution was completed by Bychenkov and
Kovalev [13], and part of what we do in this manuscript
is extend this analysis to nonuniform cases as well as
additional symmetries.
Here we treat charge distributions with general initial

spatial distributions starting from rest under planar,
cylindrical and spherical geometries introducing a novel
length scale that is associated with each symmetry. First in
Sec. II A, we present general results applicable to all cases.
In Sec. II B we derive expressions for planar symmetry for
any arbitrary initial spatial distribution and examine these
expressions in the nonrelativistic and highly relativistic
limits. We then introduce M-shell simulations, which are
simulations of M equally charged planes in 1D, and show
that these simulations reproduce the density evolution
derived analytically. In Secs. II C and II D, we derive
relativistic density evolution expressions under cylindrical
and spherical symmetries, respectively, for arbitrary initial
distributions, and we show that these expressions are
consistent with PIC calculations using an EM solver and
relativistic particle pusher utilizing the well-known package
Warp [35]. Further, we show that M-shell simulations,
which track M equally charged cylindrical- and spherical-
shells in 2- and 3- dimensions, respectively, also capture the
same density evolution. We validate these expressions
against their nonrelativistic and uniform relativistic coun-
terparts, and we examine the expressions in the highly
relativistic limit. In Sec. III we introduce an external
extraction field in the case of a planar electron bunch,
and we point out that the acceleration from self-fields and
external fields do not decouple in the relativistic case.
Though the analysis is captured by a straightforward
extension of the analysis used for the planar case with
no extraction field, the physical effects are quite interesting
and relevant to ultrafast electron microscopy. In Sec. IV, we
demonstrate how to apply the time dependent distributions
to calculate the statistical width of the distribution.
Section V contains discussions of the underlying physics
of these dynamics; noting in particular the emergence of
density shocks due to relativistic effects, even in planar
uniform systems where a shock does not emerge in the
nonrelativistic limit. Finally, we conclude with Sec. VI.

II. RELATIVISTIC DENSITY EVOLUTION

In this section we consider planar, cylindrical and
spherical geometries in the case of cold initial conditions
and where there is no external electromagnetic field. We
treat the dynamics using the relativistic treatment of
momentum and energy, however we treat the forces
between electrons using electrostatics. We then check
the latter approximation under cylindrical and spherical
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geometries using PIC calculations using a full EM solver
and find excellent agreement. We start with a general
analysis and then specialize in the later three subsections.

A. General considerations

1. General formulation

Consider Lagrangian particles under planar, cylindrical,
and spherical symmetries—these particles can be visua-
lized as planes, cylindrical shells, and spherical shells,
respectively. Let the position of the particles be para-
metrized by z in the planar case, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
in the

cylindrical case, and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
in the spherical

case, which in turn reduces all three situation to similar 1D
problems. Further let yd for d ¼ 1, 2, 3 represent the
appropriate 1D parameter, i.e., z or r, for the planar,
cylindrical, and spherical symmetric cases. Further, denote
Vd as the Jacobian of the transformation from the specific
symmetry to a 1D formulation, namely V1 ¼ 1, V2 ¼ 2πr,
and V3¼4πr2. Further, introduce the subscript 0 to indicate
the initial (at time 0) value of any parameter; for example,
y0;1 indicates the initial position of a Langragian particle
under the planar model. Likewise, denote V0d ¼ Vdðy0dÞ,
i.e., V01 ¼ 1, V02 ¼ 2πr0, and V03 ¼ 4πr20.
Consider the initial probabilitylike density of particles

ρ0;d such that the number density can be expressed as Nρ0;d
and the charge density as eNρ0;d. For simplicity in the
planar case, assume that ρ01 is symmetric about 0, i.e.,
ρ01ð−z0Þ ¼ ρ01ðz0Þ. Further, define the cumulative density
function by

P0d ¼ P0dðy0;dÞ ¼
Z

y0;d

0

ρ0;dðydÞVddyd ð3Þ

Notice that P0d can be physically interpreted as the
proportion of the distribution between 0 and y0;d, and
further that limz0→∞P01ðz0Þ¼ 1

2
whereas limr0→∞P0dðr0Þ¼

1 for the cylindrically and spherically symmetric cases. The
initial electric field for each symmetry can be written as

E0ðy0;dÞ ¼ E0d ¼
Qtot;dP0d

V0dϵ0
¼ ETdP0d ð4Þ

where Qtot;d is the charge density with units of charge per
area, charge per length, and charge in the planar, cylin-
drically, and spherically symmetric cases, respectively,
and ETd ¼ Qtot;d

V0dϵ0
.

To make analytic progress we make the laminar fluid
approximation, which states that there is no mixing of the
charged particle trajectories. As a result, the symmetries of
the charge distributions are conserved. If we consider a
particle of charge q and rest massm starting from rest (cold
initial conditions); at position y0;d, we want to find the
position and velocity of the particle at later times. In a

planar system we thus want to find zðz0; tÞ ¼ z and
vðz0; tÞ ¼ v; while in the cylindrical and spherical cases
we want to find the radial position and radial velocity
rðr0; tÞ ¼ r; vðr0; tÞ ¼ v. One approach is to use the
relativistic form of Newton’s second law,

dp
dt

¼ qE ð5Þ

where we are considering the z component of these vectors
in planar geometries and the radial component in cylindri-
cal and spherical geometries. We use the relativistic
expression for the momentum,

p ¼ γmv ð6Þ

where m is the rest mass and

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðvcÞ2

q : ð7Þ

Due to the laminar fluid property, the electric field
experienced by a particle at position ydðy0;d; tÞ can be
related to the electric field this particle experienced at its
initial position, so that

EdðydÞ ¼
yd−10;d

yd−1d

E0d: ð8Þ

These expressions may be used with Newton’s second
law to solve for the particle dynamics. Alternatively in an
energy formulation, conservation of energy requires that
the change in kinetic energy equals the change in potential
energy. We use the relativistic form of the kinetic energy,

K ¼ ðγ − 1Þmc2: ð9Þ

The change in potential energy is found by integrating the
force, F ¼ qE, in Eq. (8), and the resulting kinetic energy
in the planar case,

K1ðz0; tÞ ¼ qE01ðzðtÞ − z0Þ; ð10Þ

the cylindrical case,

K2ðr0; tÞ ¼ qE02r0 ln

�
rðtÞ
r0

�
; ð11Þ

and for the spherical case,

K3ðr0; tÞ ¼ qE03r20

�
1

r0
−

1

rðtÞ
�
: ð12Þ

From Eqs. (9)–(12) a general relation between the velocity
and position is found to be,
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v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − K

mc2Þ2 − 1
q

1 − U
mc2

c: ð13Þ

Moreover, since K only depends explicitly on the position,
this equation may be integrated to find an expression
relating time and position,

t − t0 ¼
Z

y

y0

1

v
dy: ð14Þ

To obtain an expression for the time evolution of the
density, we use the conservation of the charge density under
laminar conditions. This conservation can be stated as

ρ0dVdðy0Þdy0 ¼ ρdðy; tÞVdðyÞdy ð15Þ

where d is 1, 2, and 3 for the planar, cylindrical, and
spherical symmetry, respectively, and again using y ¼
fz; r; rg for planar, cylindrical, and spherical symmetric
cases, respectively. In general, this results in the relation-
ship between the density and the initial density of

ρdðy; tÞ ¼
ρ0d

ð yy0Þd−1y0
; ð16Þ

where 0 ≡ d
dy0

with the d’s in this last expression represent-
ing differentiation—not dimensionality of the problem.
The original spatial density, ρ0dðy0Þ, can also be used

to obtain an energy density, νdðKd; tÞ, by changing the
variable from y0 to Kd through the use of Eqs. (10)–(12).
Namely, the energy density function is given by

νdðKd; tÞ ¼
X
y0;d∈R

V0dρ0;dðy0;dÞ
j dKd
dy0;d

j ð17Þ

where R represents the set of values of y0;d that give the
kinetic energyKd at time t. Notice that in the planar case,R
always contains two values, z0 and −z0, regardless of the
distribution; however, in the cylindrical and spherical cases,
R does depend on the distribution. Conducting the differ-
ential in Eq. (17) we obtain

ν1ðK1; tÞ ¼
1

jqET1z0j
1��� K1

qET1P01z0
þ ρ̄01

ρ01
ðz0 − 1Þ

��� ð18Þ

and

νdðKd; tÞ ¼
X
r0∈R

1

jqETdr0j
1��� Kd

qETdP0dr0
þ 1

d
ρ̄0d
ρ0d

ððr0r Þd−1r0 − 1Þ
���

ð19Þ

where d represents only 2 or 3 in the second equation.
Notice the similarity between Eqs. (18) and (19); however,
also notice that we did the sum in Eq. (17) for the planar
case with the knowledge that every z0 appears either with a
positive or a negative sign only. This assumption changes
when the bunch is in the presence of an acceleration field,
which we explicitly show in a later section.

2. Fundamental parameters

Some fundamental parameters need to be considered in
the discussion of high density single component plasmas.
The first is the plasma frequency,

ωp ¼
ffiffiffiffiffiffiffiffi
q2n
ϵ0m

s
ð20Þ

which describes the frequency of coherent plasma oscil-
lations, where n is the number density (number of particles
per unit volume) and q the particle charge. We note that
relativistic effects affect the plasma frequency, but as our
distribution is starting from rest, it is sufficient to consider
the nonrelativistic plasma frequency; however, the plasma
frequency for different symmetries is not apparent from
Eq. (20). We define average initial densities ρ̄01 ¼ P01

z0
,

ρ̄02 ¼ P02

πr2
0

, ρ̄03 ¼ P03
4
3
πr3

0

which are the average densities inside

distance z0 (planar case), or inside radius r0 for the
cylindrical and spherical cases. These definitions are used
to define initial plasma frequencies as

ω0d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qQtot;dρ̄0d

ϵ0m

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dqE0d

my0;d

s
; ð21Þ

for d ∈ f1; 2; 3g for the planar, cylindrical, and spherical
symmetric cases, respectively.
As will be seen below, the time τ0d defined as,

τ0d ¼
2π

ω0d
ð22Þ

sets the timescale for the relativistic expansion of high
density charge clouds; as was found in the nonrelativistic
cases [32].
In addition to the plasma frequency, we find it advanta-

geous to define the related 1D-probability-like density as

ρr0d ¼
qE0d

mc2
¼ qETdP0d

mc2
ð23Þ

where ρr0d has units of inverse length. We call ρr0d the
relativistic crossover density for planar, cylindrical, and
spherical symmetries for d ¼ 1, 2, 3, respectively. The
relativistic crossover density is related to the plasma
frequency through
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ρr0d ¼
y0;d
d

ω2
0d

c2
: ð24Þ

The physical interpretation of the relativistic crossover
density is that it provides a scale for the kinetic
energy as K

mc2 ¼ ρr01ðz − z0Þ, K
mc2 ¼ ρr02r0 lnð rr0Þ, and K

mc2 ¼
ρr03r0ð1 − r0

r Þ for the planar, cylindrical, and spherical
symmetric cases, respectively. The relativistic length scale,
lr0d is related to the relativistic density through,

lr0d ¼
P0d

ρr0d

¼ mc2

qETd
ð25Þ

where lr0d is seen to be independent of the initial distri-
bution. lr0d can be thought of as the distance a particle
experiencing the force obtained by the full distribution
at the given coordinate needs to travel before having
kinetic energy of mc2. Notice, that lr01 is a constant and
is specifically independent of z0; however, lr02 ∝ r0
and lr01 ∝ r20.

B. Planar symmetry

In this case, Eq. (13) becomes

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ρr01ðz − z0ÞÞ2 − 1

p
1þ ρr01ðz − z0Þ

c ð26Þ

where ρr01 is from Eq. (23). The integral in Eq. (14) may be
carried out to find,

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ρr01ðz − z0ÞÞ2 − 1

p
ρr01c

; ð27Þ

which can be inverted to find zðz0; tÞ as

z ¼ z0 þ
1

ρr01
ðf1ðz0; tÞ − 1Þ; ð28Þ

where

f1ðz0; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðρr01ctÞ2

q
; ð29Þ

Taking the time derivative of Eq. (28), the velocity as a
function of time becomes,

v ¼ ρr01ct
f1ðz0; tÞ

c ð30Þ

From Eq. (16), we find the density dynamics,

ρ1ðz; tÞ ¼
ρ01

1þ dρr01
dz0

h
ðctÞ2

f1ðz0;tÞ −
ðf1ðz0;tÞ−1Þ

ρ2r01

i ð31Þ

where

dρr01
dz0

¼ qQtot;1ρ01
ϵ0mc2

¼ ρ01
lr01

¼ ρ01
ρ̄01

ω2
01

c2
: ð32Þ

The corresponding expression for the energy density
function from Eq. (18) is

ν1ðK1; tÞ ¼
lr01
2mc2

f1ðz0; tÞ
ρr01c2t2

: ð33Þ

The planar energy distribution can be shown to be
independent of the initial spatial distribution by writing
it in terms of v, which is a function of the force which in
turn is a function of particle order only. Specifically,

ν1ðK1; tÞ ¼
1

2mc2
lr01
vt

: ð34Þ

In turn, this can be expressed as a function of K1 using
Eq. (26) as

ν1ðK1; tÞ ¼
1

2mc2
lr01
ct

1þ K1

mc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ K1

mc2Þ2 − 1
q : ð35Þ

The nonrelativistic limit occurs when ρr01ct ≪ 1 or
equivalently when t ≪ tx where

tx ¼
1

ρr01c
; ð36Þ

and in this limit the expressions above reduce to the known
density results, i.e., z ¼ z0 þ qE01t2=2m and

ρ1NRðz; tÞ ¼
ρ01

1þ qQtot;1ρ01t2

2ϵ0m

¼ ρ0
1þ 1

2
ρ0
ρ̄01

ðω01tÞ2
ð37Þ

where ρ1NRðz; tÞ is the density in the nonrelativistic limit
andω01 is the plasma frequency defined in Eq. (21) [25,32].
The highly relativistic limit is when ρr01ct ≫ 1 or

equivalently t ≫ tx. Note that this second inequality
implies that any point in the distribution except the center
point at z0 ¼ 0 becomes highly relativistic for sufficient
time; this is part of the nature of the planar symmetry, and
we find similar nature for the cylindrical symmetry below.
In this limit, we find,

z → z0 � ct ð38Þ

where the sign of the luminal velocity is determined by on
which side of z0 ¼ 0 the particle originated and
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ρ1HRðz; tÞ →
ρ01ρr01

ρr01 þ 1
lr01

ρ01
ρr01

; ð39Þ

where ρ1HRðz; tÞ is the density distribution in the highly
relativistic limit. As there is no crossover in this situation,
there is no multi-flow regime in the planar case and this
distribution is exact. The interpretation of this result is
interesting. First, the majority of the distribution essentially
becomes two pulses traveling at near luminal speeds
away from one another. Second, as the particles within
the distribution reach luminal speeds, the density no longer
significantly changes as the particles propagate to the left or
right; that is, the density evolves toward an “asymptotic
density” determined by Eq. (39). If ρr01 ≪ ρ01, then
ρ1HR → P01ρr01; however, if ρ01 ≫ ρr01, then on the edges
ρHR → ρ01 whereas as you go further in the distribution
transitions to P01ρr01. Additionally, the ion energy distri-
bution functions’ limits under these conditions are 1

mc2 P01

and 1
mc2

ρ01
ρr01

. This behavior for the uniform and Gaussian

distributions for various ratios of lr01L0
, where L0 indicates the

original width, may be seen in Fig. 1.
Analytically, for the case of an initial uniform distribu-

tion, ρ01 ¼ 1
L0
and P0 ¼ 2z0

L0
¼ 2z0ρ01 where L0 is the initial

width of the distribution. In this case,

ρ1HRðzÞ →
ð2z0Þ2

ð2z0Þ2L0 þ lr01L2
0

: ð40Þ

Thus, the shape of this asymptotic distribution is deter-
mined entirely by the length scale, lr01, and the initial

width, L0. For any point z0 ≪ lr01, including the entire
distribution if L0 ≪ lr01, this asymptotic density is essen-
tially parabolic with zero density at the center and 1

lr01
at the

edge. This case can be seen in Fig. 3(a). For extremely
dense distributions where L0 ≫ lr01, the asymptotic den-
sity at the edges approaches the original density, ρ01. There
is also a period of transition between the parabolic and
original density when the length scale is much smaller than
the original width. Both asymptotic behaviors can be seen
in Fig. 1 for both the uniform and Gaussian cases.
The mechanism for the relativistic peak emergence may

be further seen in Fig. 2 where the density associated with
different Lagrangian particles within the distribution are
tracked and shown to asymptote to various density values
predicted by Eq. (39). One way to describe this mechanism
is to notice that all particles, excepting the center particle, in
a planar model will asymptote to the speed of light. As the
density is physically smooth, the particles’ velocities in
the neighborhood of the Lagrangian particle asymptote
similarly to the speed of light. In other words, the rela-
tive velocity of the particles in the Lagrangian particle’s
neighborhood asymptotes to zero, and the particles cease to
spread in the z dimension. As the z dimension is the only
dimension in which the density is spreading in the planar
model, this is the same as freezing the density to a constant
value—an asymptote. Moreover, as particles toward the
edge of the distribution have larger accelerations, these
particles asymptote earlier than particles farther in. These
differences in “freezing” time result in the middle of the
distribution expanding, and becoming less dense, before
the onset of the relativistic regime. Coupled with the initial

FIG. 1. Shape of the planar symmetric asymptotic density for (a) uniform and (b) Gaussian initial distributions. L0 represents the initial

width of the distribution, lr01 ¼ ϵ0mc2

qQtot;1
is the length scale associated with the density of the particles, and Qtot;1 is the charge per unit area

of the distribution as described in the text. Notice that these graphs are independent of the exact choices of L0. Further notice the
quadratic like behavior in the middle as well as at large values of lr01L0

for the uniform distribution. Finally note the fact that the distribution

approaches the original distribution at its maximum value when lr01
L0

is small. What is not displayed is that the maximum peak is

proportional to 1
lr01

when lr01
L0

is large.
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distribution, this results in the formation of density peaks
toward the edge of the distribution, as is seen in both
the uniform and Gaussian distributions in Fig. 3. In the
nonrelativistic limit, there is no Coulomb shock in planar
bunches with cold initial conditions; while in the relativistic
limit a strong shock emerges and an initial bunch described
by either uniform or a Gaussian density distribution evolves
to a two peak structure with one bunch moving to the right
and the other to the left (see Fig. 3).
Also apparent in Figs. 3(a) and 3(b) is the fact that

stochastic effects are initially strong in simulated density
profiles. However, at long times the theoretical density
and simulated density agree well. This is a real effect.
Specifically, consider the inter-particle distance between
the ith and (iþ 1)th shells denoted as di. For a uniform
distribution, order statistics tells us that dið0Þ ¼ L

Mþ1
þ ϵ

where L is the total width of the distribution, M is the
total number of shells, and ϵ is a stochastic factor roughly
of the size L

Mþ1
. Thus, due to stochastic fluctuations, we

would expect some sheets to be bunched together giving
a higher local density than the average and likewise
other sheets to be further apart giving a lower local density
than the average. This is precisely what is seen with the
initial distribution in Fig. 3. However, as these sheets
evolve, the relative nonrelativistic acceleration is 2qET1

mM , so

diðtÞ ¼ dið0Þ þ qET1
mM t2. Given sufficient time, t ≫

ffiffiffiffiffiffiffi
mL
qET1

q
,

diðtÞ ≈ qET1
mM t2. That is, the interparticle distance (and hence

the distribution) is dominated by the space-charge effect
and converges to the space-charge predicted distribution
everywhere. Of course, if the bunch enters the relativistic
regime prior to this smoothing, the stochastic effects will be

preserved. We will see such behavior once we add an
extraction field, but such behavior requires extremely dense
bunches that may not be physically possible in free
expansion experiments.
The energy density evolutions in Figs. 3(c) and 3(d) are

identical—as expected by Eq. (34). More specifically,
while the particles remain nonrelativistic—below the ver-
tical line in Figs. 3(c) and 3(d), the energy density falls for
larger kinetic energies as the energy for a planar particle is
proportional to t2 and therefore neighboring particles move
apart in energy-space. However, as particles move into the
relativistic regime—above the vertical line in Figs. 3(c)
and 3(d), their energy begins to become proportional to t.
Thus neighboring particles simply scale, and the energy
density evolves analogous to nonrelativistic uniform spatial
distributions.

C. Cylindrical symmetry

Now we consider the expansion of an initially cold
charged particle cloud with cylindrical symmetry. In this
case, Eq. (13) becomes

v ¼
ffiffiffi
2

p
ζy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ2y2

p
1þ 2ζ2y2

c ð41Þ

where y2¼ lnð rr0Þ¼ K
mc2ρr02r0

, ζ2 ¼ r0ρr02
2

¼ r0P02

2lr02
¼ r2

0
ω2
02

4c2 , with

ρr02 coming from Eq. (23). As lr02 ∝ r0, it should be
apparent that ζ’s dependence on r0 is completed determined
by P02ðr0Þ.
From Eq. (41) and (14), we find the implicit relation

between time and radial position through the integral,

FIG. 2. Theoretical density evolution (solid lines) of specific distribution points in the free expansion of the bunch demonstrating the
origin of the relativistic shock. The dotted lines indicate the asymptotic value determined by Eq. (39). The points correspond to locations
that symmetrically contain approximately 1%, 10%, 50%, and either 100% (uniform) or 99% (Gaussian) of the distribution as indicated
by their P01 value. The timescales of all points inversely correlate with their location in the distribution [see Eq. (36)]. For the uniform
distribution (a), all points start at the same density but converge to different asymptotes according to the inverse relationship between
position and timescale. This leads to a parabolic distribution as seen in Eq. (40) as L0 ≪ lr01 here. For the Gaussian distribution (b), the
fact that the outer points have lower initial densities leads to density trajectories crossing indicating the formation of the density peak that
goes both up and down in contrast to the sharp peak seen in the uniform case.
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t ¼ 2

ω02

Z ffiffiffiffiffiffiffiffi
lnð r̃

r0
Þ

p
0

1þ 2ζ2y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ2y2

p ey
2

dy: ð42Þ

To make the connection with previous work, we introduce a
generalized Dawson function F through the definition,

F ðg; xÞ ¼ e−x
2

Z
x

0

gðζ; zÞez2dz ð43Þ

where ζ can be written as a function of x. Thus the time-
spatial relation may be expressed as

t ¼ 2

ω02

r
r0
F ðgðζ; yÞ; yÞ ð44Þ

where

gðζ; yÞ ¼ 1þ 2ζ2y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ2y2

p : ð45Þ

When gðζ; yÞ ¼ 1, we reproduce the Dawson function,
FðxÞ ¼ F ð1; xÞ. Specifically when we are in the non-
relativistic regime, we have 2ζy ≪ 1 and gðζ; yÞ ≈ 1, so
Eq. (44) reduces to

FIG. 3. Theoretical predictions (solid line) andM-shell simulations (hollow dots) of the (a,b) spatial and (c,d) energy densities at (a,b)
4 and (c,d) 5 different times with either (a,c) uniform or (b,d) Gaussian initial spatial distributions. Simulations were accomplished
by randomly sampling M macroparticles and advancing them according to the relativistic position equations derived in the text. Notice
the log-log scale in the energy plots, and the initial energy densities in (c,d) are not shown as they are delta functions at K ¼ 0. The
simulation had either (a,c) L ¼ 0.1 μm or (b,d) σL ¼ 0.1 μm, Qtot;1 ¼ 108 electrons per μ m2, and M ¼ 10 000. The extremely high
density was chosen as this density does not require significant expansion of the bunch before the onset of relativistic effects. The dotted
lines in (a) represents the nonrelativistic prediction of the uniform distribution, and the purple dotted line extends beyond the ends of the
x-axis but are not shown to keep the scale of expansion closer to what is seen relativistically; notice that the dotted line is tangent to the
relativistic distribution at the same time at z ¼ 0. The deviation of the theory above the dotted line and toward the center of the bunch
indicates density freezing due to electrons obtaining luminal speeds whereas the nonrelativistic particles become superluminal. The
vertical dashed lines in (c,d) correspond to the rest energy of an electron. Notice that far below this line, the energy density has one slope,
but near this line, the energy density transitions to slope of zero.
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t ≈
2

ω02

r
r0
FðyÞ ð46Þ

which is the result we derived previously in the non-
relativistic case. We can write down the derivative of the
generalized Dawson function by applying the Leibniz rule

dF
dx

¼ −2xF ðg; xÞ þ gðζ; xÞ þ F
�∂g
∂ζ ; x

�
dζ
dx

ð47Þ

Note that in the nonrelativistic limit, gðζ; yÞ ¼ 1, and
Eq. (47) reduces to the normal Dawson function derivative
dF
dx ¼ −2xFðxÞ þ 1.
Following the same reasoning as our previous work [32],

we can obtain an analytic form for the time dependent
density, i.e., the density evolution expression [see Eq. (16)].
Evaluating r0 ¼ dr

dr0
by taking a derivative of Eq. (44) with

respect to r0, we find,

r0 ¼ r
r0

�
1−

2yζF ∂
gðζ;yÞ

��
1þ2D02y

F −ζF ∂
gðζ;yÞ−2yζF ∂

�
ð48Þ

where F is shorthand for F ðgðζ; yÞ; yÞF ∂ is shorthand for
F ð∂g∂ζ ; yÞ, and D02 is from Eq. (2). Note D02 measures the
deviation from a uniform cylindrically symmetric distri-
bution, and for the uniform cylindrically symmetric dis-
tribution case it is zero for all values of r0 where ρ0 is not 0.
Using Eq. (2), the density evolution is found to be,

ρ2ðr; tÞ ¼
r20
r2

ρ02�
1 − 2yζF ∂

gðζ;yÞ
��

1þ 2D02y
F−ζF ∂

gðζ;yÞ−2yζF ∂

� ð49Þ

and the energy density evolution is found by substituting
Eq. (48) into Eq. (19).
Further note that the crossover time for a specific

Lagrangian particle may be obtained by setting Eq. (2)
to 0; analysis of this equation provides insight into
relativistic effects on the onset of the multiflow regime.
First, as can be seen in Fig. 4(a), the term 2yζF ∂

gðζ;yÞ , which is

zero in the nonrelativistic regime where ζ ≈ 0, is always in
the range [0, 1). This means that the term ð1 − 2yζF ∂

gðζ;yÞ Þ adds
no roots to r0 ¼ 0, and all roots must come from
1þ 2D02y

F−ζF ∂
gðζ;yÞ−2yζF ∂ . Thus, our previous analysis of

D02 [32] can be extended to the relativistic case.
In Fig. 4(b), we plot the evolution of 2y F−ζF ∂

gðζ;yÞ−2yζF ∂; as

expected, this analysis reproduces the nonrelativistic
function we identified in our previous work when ζ ¼ 0.
Two observations are apparent from this figure: (1) for a
specific ζ, this function has a peak and then asymptotes
toward 1 (when ζ ¼ 0) or 0 and (2) increasing ζ results in a
smaller max for this function. The first observation results
in the conclusion that the sign of 2D02y

F−ζF ∂
gðζ;yÞ−2yζF ∂ is

entirely determined by D02. As r0 > 0 for all y when
D02 > −maxð 1

2y
F−ζF∂

gðζ;yÞ−2yζF∂
Þ, the second observation means

thatD02 must be more negative than the nonrelativistic case
to result in crossover. That is, the relativistic effects make
the cylindrical symmetric density evolution more robust
against entering into the multi-flow regime.
In Fig. 5, we compare the predictions of Eqs. (49) and (19)

to simulations for both uniform and Gaussian initial dis-
tributions. We choose the initial radius and radial standard
deviation, respectively, to be 1 cm for N ¼ 1 × 1013

electrons/cm. We again simulate with Warp using the EM
solver as well as the 2D version of M-shell simulations.

FIG. 4. Analysis of the functions in r0 ¼ r
r0
ð1 − 2yζF ∂

gðζ;yÞ Þð1þ 2D02y
F−ζF ∂

gðζ;yÞ−2yζF ∂Þ, where y ¼
ffiffiffi
r
r0

q
, for various values of ζ ¼ r0ω02

2c .

Notice that y is monotonic increasing in r for a given r0. The term
2yζF ∂
gðζ;yÞ is plotted in (a) and shows that ð1 − 2yζF ∂

gðζ;yÞ Þ is greater than 0

for y > 0. The term 2y F−ζF ∂
gðζ;yÞ−2yζF ∂ is plotted in (b). Notice that the max of this second function decreases as ζ is increased.
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For the M-shell simulations, the initial radius of the M
cylindrical shells are sampled and then evolved according to

Eqs. (41) and (46) but with ω02 replaced by
ffiffiffiffiffiffiffiffiffiffiffiffi
3qΛs

πr2s;0mϵ0

q
where

Λs is the charge per unit length contained in the cylindrical
shell and rs;0 is the initial radius of the shell. As can be seen
in Figs. 5(a) and 5(b), the theory and both simulations agree
on the evolution of both the uniform and nonuniform initial
distributions. Similar to the planar case, the initial variance
about the predicted value can be seen to decrease as the
simulations evolve. Again, this indicates that the intershell
distances are dominated by the space-charge effects resulting

in the later simulations having less statistical variation from
the expected distribution. Likewise, the agreement between
the theory and simulation energy density evolution is in
excellent agreement as can be seen in Fig. 5(c) for the
uniform case and Fig. 5(d) for the Gaussian case. Of course,
unlike the planar situation where the energy density is
independent of the initial spatial distribution, the energy
density in the cylindrical case is clearly dependent on the
initial spatial distribution.
To validate the density evolution expression, we compare

our results to previous results. In the nonrelativistic regime,
2ζy ≪ 1; F → F and ζF ∂ → 0. Thus Eq. (49) reduces to

FIG. 5. Theoretical predictions (solid line), cylindricalM-shell simulations (hollow triangles–right), and PIC simulations using an EM
solver (hollow circles–left) for (a,b) spatial and (c,d) energy density of (a,c) initially uniform and (b,d) initially Gaussian density at
5 different times for the cylindrically symmetric case. The initial energy distribution is not shown in (c,d) as it is a delta function. PIC
simulations were analyzed using the middle 0.2 m from a simulation of a 2 m-long, 3D distribution of electrons with periodic boundary
conditions on the z-axis. The theory spatial density prediction is reflected about the origin as r is strictly greater than 0 and the m-part
and PIC simulations are separated into the second and first quadrant, respectively, for purposes of visualization. Parameters were
N ¼ 1 × 1013 electrons=cm, R0 ¼ σr;0 ¼ 1 cm, andM ¼ 50 000. Like the planar symmetric case, the density at the center continues to
decrease nonrelativistically indicating that the density above the density at the center is due to relativistic effects; however, notice that
this peak continues to decrease instead of the evolution freezing at luminal speeds as seen in the planar symmetric case. Further notice
that the theoretical energy density is in excellent agreement for the uniform simulation in (c) but only provides an adequate estimate for
the initially Gaussian simulation in (d); this is due to crossover, and is discussed further in the text.

B. S. ZERBE and P. M. DUXBURY PHYS. REV. ACCEL. BEAMS 22, 114402 (2019)

114402-10



ρ2ðr; tÞ ¼
r20
r2

ρ02
1þ 2D02yFðyÞ

ð50Þ

which is the expression we found in our earlier, non-
relativistic work [32].
Similar to the planar symmetric case, we are also

interested in the density distribution in specific limits.
We were unable to analytically obtain a limit analogous to
the limit we found under planar symmetry in Eq. (39) as
doing so requires evaluating the value of the modified
Dawson function as lnð rr0Þ goes to infinity. We were able to
see the freezing of the dimension in the extremely dense
limit where ζ ≫ 1 as we have shown in Appendix C.
Specifically, the evolution at the edge of the distribution can
be approximated by ρ2ðr; tÞ ¼ r0

r ρ0, which is the evolution
of the uniform distribution under nonrelativistic conditions
in one dimension lower, i.e., 1D. This situation is analogous
to the high density 1D case that causes the edges to
essentially immediately become relativistic likewise result-
ing in evolution of the uniform distribution under non-
relativistic conditions in one-dimension lower, i.e., 0D or
constant. However, this condition, ζ ≫ 1, is analogous to
the 1D case when the entire distribution is essentially in the
highly relativistic limit. We will shortly show that even in
this case, the spherically symmetric evolution can be shown
to freeze out a dimension; however, we believe that this
freezing happens for cylindrically symmetric distributions
regardless of the size of ζ.

D. Spherical symmetry

Now we consider the expansion of an initially cold
charged particle cloud with spherical symmetry. In this
case, Eq. (13) becomes

v ¼ 2ζx

ffiffiffiffiffiffiffiffiffiffiffi
g1ðxÞ

p
g2ðxÞ

c ð51Þ

where x2 ¼ 1 − r0
r ¼ K

mc2ρr03r0
, g1ðxÞ ¼ 1þ ζ2x2, g2ðxÞ ¼

1þ 2ζ2x2, ζ2 ¼ r0ρr03
2

¼ r0P03

2lr03
¼ r2

0
ω2
03

6c2 , and ρr03 is from

Eq. (23). As lr03 ∝ r20, it should be apparent that
ζ ∝ r0P03ðr0Þ.
From Eq. (41) and (14), we find the implicit relation

between time and radial position through

t ¼
ffiffiffiffiffiffiffiffi
3=2

p
g1ð1Þω03

�
g2ð1Þ

r
r0
x

ffiffiffiffiffiffiffiffiffiffiffi
g1ðxÞ

p
þ TðxÞ

�
ð52Þ

where TðxÞ ¼ tanh−1ð
ffiffiffiffiffiffiffiffi
g1ð1Þ
g1ðxÞ

q
xÞ. Note that the 1 inside the g

functions corresponds to x at infinitely long times, i.e.,
lim r

r0
→∞x ¼ 1, so g1ð1Þ ¼ 1þ ζ2 and g2ð1Þ ¼ 1þ 2ζ2.

This expression is essentially the same expression as
derived by Bychenkov and Kovalev, who first derived it

for the case of uniform initial density distributions [13].
Our expression differs only in the interpretation of ω03 as
ours can be dependent on r0 whereas their ω03 is a constant,
which is the correct interpretation for the uniform distri-
bution. This difference in interpretation allows us to treat
general initial distributions but requires additional consid-
eration when determining the derivative of Eq. (52) with
respect to r0 as ω0

03 ¼ 3ω03

2r0
D03, where 0 ≡ d

dr0
, with the d’s

in this last expression representing differentiation—not
dimensionality of the problem, and D03 is from Eq. (2).
We follow the same reasoning as our previous work [32]

in order to obtain the density evolution expression. After
taking the derivative of Eq. (52) with respect to r0, we can
solve for r0 giving

r0 ¼ r
r0

p1ðxÞ
g1ð1Þg2ðxÞ

�
1þ 3

2
D03

p2ðxÞ
p1ðxÞ

�
ð53Þ

where

p1ðxÞ ¼ g1ð1Þ − ζ2x2
g1ðxÞ
g1ð1Þ

þ 2
ζ4x2

g1ð1Þ
r0
r

�
1þ 1

g1ð1Þ
�

þ r0
r
3ζ2x

ffiffiffiffiffiffiffiffiffiffiffi
g1ðxÞ
g31ð1Þ

s
TðxÞ ð54Þ

and

p2ðxÞ ¼
g1ðxÞ þ 2ζ4 r0

r

g1ð1Þ
x2

þ r0
r
ð1þ 4ζ2Þx

ffiffiffiffiffiffiffiffiffiffiffi
g1ðxÞ
g31ð1Þ

s
TðxÞ: ð55Þ

Plugging Eq. (53) into Eq. (16) we obtain the evolution of
the density distribution

ρ3ðr; tÞ ¼
r30
r3

g1ð1Þg2ðxÞρ0
p1ðxÞ þ 3

2
D03p2ðxÞ

ð56Þ

and the evolution of the energy density distribution can be
obtained by plugging Eq. (56) into Eq. (19).
As in the cylindrical symmetric case, we analyze

Eq. (53) for crossover events, i.e., r0 ¼ 0. As g1ðxÞ > 1
and g2ðxÞ > 1 for all x, we plot p1ðxÞ in Fig. 6(a)
demonstrating that p1ðxÞ does not provide roots for r0.
Like our previous work and the cylindrical case, this

reduces to an analysis of the function, in this case p2ðxÞ
p1ðxÞ,

times the deviation from uniformity measure, D03. As can
be seen in Fig. 6(b), this function again has the same two
properties as the cylindrical function: namely (1) it is
strictly positive approaching 1 at long times and (2) increas-
ing ζ reduces the value of the function for a given x.
Interestingly, around ζ ¼ 0.7, this function becomes
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monotonically increasing and the maximum becomes 1 at
long times. So again, relativistic effects make the density
evolution more robust to multiflow onset.
In Fig. 7, we compare the predictions of Eqs. (56) and

(19) to simulations for both uniform and Gaussian initial
distributions of N ¼ 1 × 1013 electrons. The simulations
have R ¼ 1 cm (uniform) or σr ¼ 1 cm (Gaussian). We
again simulate with Warp using the EM solver and as well
as the 3D version of M-shell simulations. For the M-shell
simulations, the initial radius of the M spherical shells are
sampled and then evolved according to Eqs. (51) and (52)

but with ω03 replaced by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3qQs

4πr3s;0mϵ0

q
where Qs is the charge

contained in the shell and rs;0 is the initial sampled radius of
the shell. As can be seen in Figs. 7(a) and 7(b), the theory
captures the evolution of both the uniform and nonuniform
initial distributions. Similar to both the planar and cylin-
drical cases, the initial variance around the theoretical value
primarily seen in the uniform distribution decreases as the
distribution expands. Also like the other two cases exam-
ined, the energy distributions from theory seen in Figs. 7(c)
and 7(d) are in excellent agreement with simulation;
furthermore, the initial spatial distribution is again seen
to influence the energy density evolution as it did under
cylindrical symmetry.
For further validation, we compare Eq. (56) to the

expression derived by Bychenkov and Kovalev. Their
expression detailed the relativistic density evolution for
the uniform distribution [13], ρunifðr; tÞ, which should be
equivalent to our expression when D03 ¼ 0. In this case,
Eq. (56) reduces to

ρ3unifðr; tÞ ¼
r30
r3
g1ð1Þg2ðxÞρ0

p1ðxÞ
: ð57Þ

This expression for the density evolution for uniform initial
conditions is identical to the expression published in the
English translation of Bychenkov and Kovalev except for
an obvious typo in that work [13].
Next, we compare this expression to our previous,

nonrelativistic expression. In the nonrelativistic regime
2ζ2 ≪ 1. Unlike the planar and cylindrical cases, the
spherical model need never enter the relativistic regime
and therefore this model may be relevant for all time. In this
nonrelativistic regime, Eq. (56) reduces to

ρ3NRðr; tÞ ¼
r30
r3

ρ0
1þ 3

2
D03ðx2 þ r0

r x tanh
−1xÞ ð58Þ

which is identical to the nonrelativistic expression we
previously derived but with D03 ¼ 2

3
D3 in our previous

notation [32].
Again we would like to analyze specific limits of the

density evolution; fortunately, under spherical symmetry
we can analyze the long time limit. In Appendix B we show
that

lim
r
r0
→∞

ρ3 ¼
r30
r3
ρx3ðr0Þ ð59Þ

where ρx3ðr0Þ ¼ 1þ3ζ2þ2ζ4

1þ3
2
D03

ρ03 is entirely determined by

the initial conditions. Notice, the prefactor in 1þ3ζ2þ2ζ4

1þ3
2
D03

is

essentially 1 in the center where ζ ≈ 0 andD03 ≈ 0, but that
this value increases as r0 increases. The time evolution of
ρx3 and the predicted asymptote for this quantity can be
seen in Fig. 8. For the uniform distribution, the increase in
ρx3 as a function of r0 is quartic as D03 ¼ 0 for all values

FIG. 6. Analysis of the functions in r0 ¼ r
r0

p1ðxÞ
g1ð1Þg2ðxÞ ð1þ 3

2
D03

p2ðxÞ
p1ðxÞÞ, where p1, p2, g1, and g2 are defined in the text. Notice that

x2 ¼ 1 − r0
r has a range [0, 1] with is x ¼ 0 occurring at t ¼ 0 and x ¼ 1 occurring at t ¼ ∞. The term p1ðxÞ is plotted in (a) and shows

that p1ðxÞ is greater than 0 for x > 0. The term p2

p1
is plotted in (b). Notice that the value of this second function for a specific x in (0,1)

decreases as ζ is increased.
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of r0. In real distributions, though, there should be a value
for r0 whereD03 ¼ − 2

3
, and we see that ρx3 has a zero in the

denominator. This violates the assumptions made in the
derivation of ρx3, and inspection of Appendix B shows that
r0 becomes 0 in the locality of D03 ¼ − 2

3
suggesting a

violation of the laminar fluid assumption. For the Gaussian
distribution, roughly 80% of the distribution is contained
within the radius where D03ðr0Þ ¼ − 2

3
suggesting that at

least the majority of the distribution is captured by this
theory. Furthermore, the precise shape for ρx3ðr0Þ for a
uniform and Gaussian distribution may be seen in Fig. 9;
however, in the 1D case, ρ01 truly asymptotes whereas here

ρ03 continues to decrease eventually with the uniformlike

behavior of
r3
0

r3. This difference is largely due to the fact that
all particles asymptote to the same velocity, c, in the planar
case but different velocities in the spherical case.
This analysis leads to the second limit of limζ→∞, an

unphysical limit, analogous to the 1D and cylindrically
symmetric cases where we saw the density at the edge lose
dimensionality. Likewise, in the spherical-symmetric case
we show in Appendix C that

lim
ζ→∞

ρ3ðr; tÞ ¼
r20
r2
ρ03 ð60Þ

FIG. 7. Theoretical predictions (solid line), spherical M-shell simulations (hollow triangles–right), and PIC simulations using an EM
solver (hollow circles–left) of (a,c) initially uniform and (b,d) initially Gaussian (a,b) spatial and (c,d) energy density at 5 different times
for the spherically symmetric case. The spatial theory is reflected about the origin as r is strictly greater than 0 and theM-shell and PIC
simulations are separated into the first and second quadrant, respectively, for purposes of visualization. Parameters were N ¼ 1 × 1013

or N ¼ 3 × 1013 electrons for the uniform and Gaussian case, respectively, R0 ¼ σr;0 ¼ 1 cm, and M ¼ 50 000. Like the planar and
cylindrical symmetric uniform cases, the density at the center in (a) continues to decrease nonrelativistically indicating that the density
above the density at the center is due to relativistic effects; similar to the cylindrical symmetric case, the relativistic density continues to
evolve. However, the evolution of the peak decreases much faster than the cylindrical case—which is discussed in detail in the text.
The peak in the Gaussian density in (b) is a combination of both relativistic and previously described bunching effects. Likewise, the
evolution of the energy density is captured by theory as seen in (c) and (d)—arguably better than the energy density evolution seen in the
cylindrical case.

DENSITY SHOCKS IN THE RELATIVISTIC … PHYS. REV. ACCEL. BEAMS 22, 114402 (2019)

114402-13



which is again the uniform density evolution of a sym-
metric distribution in one dimension less than the one being
considered. While appearing unphysical, this does have
some physical significance. This suggests that such dis-
tributions evolve toward ρxðr0Þ in such a way that the factor
in the denominator exactly cancels out the factor of r0

r , i.e.,
r0 ≈ 1 early on. However, as time progresses, the evolution
shifts toward the decay of the uniform distribution in the
appropriate dimension.

III. EXTRACTION FIELD IN THE
PLANAR MODEL

It is straightforward to introduce an extraction field in
the planar model, and this is relevant to dynamics of
electron density distributions in the pancake bunches used
in ultrafast electron microscopy. The equations for this case
are nearly identical to the equations derived for the planar
model in the absence of an extraction field with the single
replacement

FIG. 8. The time evolution (solid lines) of ρx3, defined in the text, for a distribution with 1.602mC in (a) an initially uniform sphere of
width 1 mm and (b) an initially Gaussian sphere with standard deviation of 1 mm. The dashed lines indicate the corresponding highly-
relativistic limit of ρx3 obtained analytically. Again, the formation of the density peak from these relativistic considerations is apparent in
the graphs. Similar to how the planar symmetric density freezes, ρx3 can be seen to asymptote; however, this is due to the Lagrangian
particle reaching their terminal velocity, the difference of which is relativistically contracted, as described in the text.

FIG. 9. The shape of ρx3
ρx3;max

for various values of Qtot;3 in (a) an initially uniform distribution with radius of 1 mm and (b) an initially

Gaussian distribution with standard deviation of 1 mm as a function of the initial radial coordinate. This, as well as the inset figure
describing the growth of the maximum value of ρx3, show the onset of the relativistic regime corresponding to roughly 24 C

m. The main
graph also shows that the peaks sharpen as the density increases. For the Gaussian case, this distribution diverges near r0 ¼ 2. This
divergence is an indication that the laminar fluid assumption is being violated, and therefore the nonuniform asymptote for ρx3 should be
taken as a gross approximation; nonetheless, the expression derived in the text do capture the shape of freely-expanding relativistic
Gaussian distribution in the simulation presented in Fig. 7.
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P01 → P01 þ
Ea

ET1
ð61Þ

which may also be written as

ρ̄01 → ρ̄01 þ
Ea

z0ET1
ð62Þ

—a form that is especially helpful in the energy density
expression, Eq. (19). Equivalently, this may be written as

ρr01 → ρr01 þ ρa ð63Þ

where ρr01 is from Eq. (23) and ρa ¼ eEa
mc2, which also can be

interpreted as a new length scale, la ¼ mc2
eEa

, associated with
the extraction field. The one caveat that is necessary to note
is that symmetry is broken by the applied field; thus the
analysis of the energy distribution requires the full treat-
ment of RðK1; tÞ so that Eq. (18) becomes

ν1ðK; tÞ ¼
X
z0∈R

1

4mc2
lr01
ct

1þ K1

mc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ K1

mc2Þ2 − 1
q : ð64Þ

In some regimes, R will have 2 values, while in others,
there will only be one. In the broken symmetry cases, this
results in the density discretely jumping to half of its value
where the energy of the particles accelerating in the
opposite direction from the applied field is maximal.
We choose the applied field to be in the positive z

direction. For applied fields, Ea, with Ea > ET1 (la < lr01)
the applied field is sufficiently strong to overcome the space
charge field throughout the bunch, hence accelerating all of
the particles in the same direction. For smaller applied
fields, Ea < ET1 (la > lr01), particles in the negative z
regions of the initial charge distribution may experience a
stronger intrinsic space charge field than can be overcome

by the applied field. In this case the initial distribution
breaks up into two bunches moving in opposite directions.
This is the virtual cathode limit defined by Valfells et al.
[36]. We also point out that lr01 corresponds to the length
scale of this limit. The fraction of charge in the bunch that
moves in the positive and negative z direction is simply
1
2
ð1� Ea

ET1
Þ, respectively. The form of the two bunches is

given by Eq. (31), with the substitution given in Eq. (61).
Taking the relativistic limit of this expression, we obtain the
asymptotic form of the two bunches

ρ1HRðz; tÞ →
ρ01

1
lr01

ðP01 þ Ea
ET1

Þ2 þ ρ01

�
P01 þ

Ea

ET1

�
2

ð65Þ

and the asymptotic form for the uniform and Gaussian
distributions for various applied fields are demonstrated in
Fig. 10. Equation (65) can be written in terms of the plasma
period, ω01, and other terms, but we find that both the
applied field scale, ET1, and the associated length scale,
lr01, are more apparent in this formulation.
For the case of a uniform initial distribution ρ01 ¼ 1

2L on
the domain ½−L;L�, the field of a particle at position z0 is
given by

E01ðz0Þ þ Ea ¼ ET1
z0
L
þ Ea: ð66Þ

Setting the total field to zero gives the point at which the
pulse breaks up into two pulses,

zx ¼ −
Ea

ET1
L: ð67Þ

Notice that as Ea goes above ET1, zx goes below −L
indicating that there is no split in the pulse consistent with
prior analysis. As long as Ea < ET1, the peak density of

FIG. 10. Theoretical planar symmetric asymptotic distributions (solid lines) plotted against the initial position for various applied
fields, measured in multiples of ET1 ¼ Qtot;1

2ϵ . The black dotted line indicates the initial distribution. Notice that in both cases, the actual
distribution is located at zðtÞ at time t, but as this has a one-to-one relation with z0, we use the initial location for the sake of comparison.
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each pulse after it has gone relativistic can be calculated
from Eq. (65) and is

ρ1right=left ¼
1

2Lþ lr01ð Ea
ET1

� 1Þ−2

again with the positive, rightward pulse corresponding to
the þ and the negative, leftward pulse corresponding to
the −.

The effect of the extraction field on the time-dependent
density evolution can be seen in Figs. 11, 12, and 13 which
show the evolution of initially uniform and Gaussian spatial
distributions and both of their energy density evolutions,
respectively, in the presence of various extraction fields.
First, notice that the inclusion of a nonzero Ea breaks the
symmetry of the left and right pulses and that we can see
that the double pulses are replaced by a single pulse as the
applied field crosses the virtual cathode limit, Ea ¼ ET1.
As Ea is increased beyond ET1, all Lagrangian particles

FIG. 11. Theoretical predictions (solid line) and M-shell simulations (hollow dots) of the planar symmetric density at 4 different
times with different applied extraction fields: (a) Ea ¼ 0.5ET1, (b) Ea ¼ ET1, (c) Ea ¼ 2ET1, and Ea ¼ 10ET1 where ET1 ¼ Qtot;1

2ϵ0
and

Qtot;1 is the total surface-charge density. The simulation had L ¼ 0.1 μm and Qtot;1 ¼ 1 × 1020 electrons per m2 and M ¼ 10 000.
The extremely high density was chosen as this density not require significant expansion of the bunch before the onset of relativistic
effect. Simulations were similar to those described in Fig. 3, and again the inset graphs show the theoretic density at 2 much
later times (0.5 and 1 ps). While the distributions at later times appear deltalike, they do have at least the same width as seen at earlier
time—however, this width is much smaller than the scale resulting in the deltalike behavior at later times. Notice that in the main
plot the scales are consistent among graphs. Also notice that the extraction fields have little effect on where the front of the bunches
are after 1 ps but have dramatic effect on the bunch distribution—this is partially an artifact of the high density of the initial
distribution that results in the front of the distribution relatively quickly becoming relativistic with or without an extraction field. In
addition to the shape of the asymptotic density, the extraction field determines to what extent the initial variance about the mean-
field theory prediction is lost (an effect explained in the text.)
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eventually become relativistic, and the density “lifts” away
from the axis. Eventually (not shown), the extraction field
should be strong enough that no appreciable expansion
occurs and the initial distribution is simply displaced at the
speed of light; this can be shown to occur when Ea ≫ ET1.
Also as can be seen in Figs. (11) and (12), the initial

stochastic variation in the density is lost for simulations
of sufficiently low extraction field but is retained for
Ea ≥ 10ET1. This is due to the same effect discussed in
the planar model without an electric field; however, the
relativistic timescale needs to be adjusted, namely

τrel ¼
lr01
c

����P01 þ
Ea

ET1

����−1: ð68Þ

When τrel ≫ τexp, we again have the case where the
expansion dynamics dominate and the inter-particle

spacings essentially are equivalent to the interparticle
spacings determined by theory. However, once τrel ≪
τexp, the inter-particle spaces do not expand sufficiently
to overcome the initial stochastics and the variance is
preserved. The new wrinkle is that τrel can be reduced by
simply increasing the extraction field. Therefore, we do
in fact see a distribution evolve that retains the initial
variance, i.e., Ea ¼ 10ET1 in Fig. 11, as for that simu-
lation τrel ≪ τexp.
Moreover, the influence of the extraction field is impor-

tant in the highly relativistic regime not only for influencing
the timescale but also influencing the asymptotic distribu-
tion. Specifically, the effect of the extraction field in the
1D model is apparently not to accelerate the front of the
distribution, i.e., all simulations had the front of the bunch
traveling near the speed of light, but instead to shape the
eventual distribution as can be seen in Figs. 11 and (12).

FIG. 12. Theoretical predictions (solid line) and M-shell simulations (hollow dots) of the planar symmetric density at 4 different
times with different applied extraction fields: (a) Ea ¼ 0.5ET1, (b) Ea ¼ ET1, (c) Ea ¼ 2ET1, and Ea ¼ 10ET1 where ET1 ¼ Qtot;1

2ϵ0
and

Qtot;1 is the total surface-charge density. Parameters and simulations are analogous to those described in Fig. 11 excepting the initial
Gaussian distribution with σr ¼ 0.1 μm.
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The asymptotic densities for the initially uniform and
Gaussian distributions and for various extraction fields
can be seen in Fig. 10 where we have used Eq. (39).
Specifically, every point besides the point corresponding to
P01 þ Ea

ET1
¼ 0 will eventually have jP01 þ Ea

ET1
j ct
lr01

≫ 1 and
thus the density corresponding to such points will even-
tually become a constant. However, while jP01 þ Ea

ET1
j ct
lr01

is
not much larger than 1, the density of the point will
decrease toward the eventual constant value.
On the other hand, the main effect of the extraction field

on the energy distribution is that it essentially halves the
distribution once the field is beyond ET1. This is because a
freely expanding bunch has as many particles with v as it

does −v thus doubling the number of particles with a
specific kinetic energy. If Ea ∈ ð0; ET1Þ, this results in the
discrete jump predicted by the theory in Eq. (64).

IV. APPLICATION OF THE 1D DISTRIBUTION

In this section, we demonstrate one use of the spatial
distributions; specifically, we calculate the width evolution
of UEM-relevant planar-symmetric distributions as a func-
tion of time. Specifically, we define the rms width of the
distribution as

σz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hz2i − hzi2

q
ð69Þ

FIG. 13. Theoretical predictions (solid line) and M-shell simulations (hollow dots) of the planar symmetric energy density at
4 different times with different applied extraction fields: (a) Ea ¼ 0.5ET1, (b) Ea ¼ ET1, (c) Ea ¼ 2ET1, and Ea ¼ 10ET1 where
ET1 ¼ Qtot;1

2ϵ0
and Qtot;1 is the total surface-charge density. The results are independent of the initial profile and were obtained both from

analyzing the simulations described in Figs. 11 and 12. Notice the log-log plot and the discreet jump in density seen when Ea ¼ 0.5ET1
in (a), which coincidentally overlaps some of the t ¼ 0.5 fs and t ¼ 1 fs distributions. The energy where this jump occurs corresponds
to the maximum energy of the particles moving in the −z-direction. At and above Ea ¼ 1ET1 the jump is missing as the since there are
no particles moving in the −z-direction. Also note that the energy distribution width appears to be constant once it is in the relativistic
regime—this is an optical illusion of the logarithmic scale.
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Theoretically hai ¼ R
∞
−∞ aρ1dz ¼

R
∞
−∞ aðz0Þρ01dz0, and in

simulation hai ¼ 1
N

P
N
i¼1 ai where N is the number of

particles in the simulation and ai is the value of a for the
ith particle.
We consider a Gaussian bunch with transverse radius

of 100 μm and longitudinal width of σr ¼ 0.1 μm, and
we consider both N ¼ 106, relevant for diffraction studies,
and N ¼ 108, relevant for imaging studies. We treat the
longitudinal expansion with the planar model both using
the nonrelativistic distribution, Eq. (37), as well as the
relativistic version, Eqs. (31) and (63). We calculate the
theoretical expectation numerically for initially Gaussian
distributed planar-symmetric distributions for various val-
ues of Ea as well as the nonrelativistic width prediction
and compare the results to the standard deviation of
M ¼ 104-shell simulations with the same parameters.
Results of this treatment may be seen in Fig. 14.
As can be seen in Fig. 14, the theory and simulations

result in the same width evolution. It is worth noting that
ET1 ≈ 0.3 MV=m for N ¼ 106 and ET1 ≈ 30 MV=m for
N ¼ 108. As can be seen in the figures, the width growth
does not vary much from the unaccelerated case until an
extraction field is increased beyond ≈10ET1, that is the
expansion dynamics will dominate the width determina-
tion until we are far beyond the “total” field within this
400 ps time frame. Also apparent is that, within this time
frame, the dynamics of the unaccelerated bunch does not
differ from the nonrelativistic model; on the other hand,
the higher density dynamics do differ suggesting that
relativistic expansion occurs in the N ¼ 108 planar model.

Of course, as this bunch expands its longitudinal length will
quickly become larger than the transverse width sugges-
ting higher-dimensional dynamics will become important.
Specifically after the transition to higher-dimensional
dynamics, the planar model overestimates the longitudinal
width and underestimates the transverse width. However, if
a sufficient extraction field is obtained, i.e., around 100ET1,
the asymptotic longitudinal width is of sufficiently small
size to result in planar dynamics for the bunch meaning that
the bunch width can be modeled with the planar model in
that regime.

V. DISCUSSION

While these results compare surprisingly well with
simulations, we do need to emphasize that these conclu-
sions are based on analyzing the symmetric models at long
times and that some of the physical assumptions inherent
in the models should be violated at some point. The three
assumptions for these model are (1) the temperature is
small compared to the kinetic energy delivered to the
particle due to Coulomb interaction, (2) the distributions
remain laminar, and (3) the symmetry under consideration
represents the physical situation. While these assumptions
all break down to some extent at some point, we emphasize
that in the simulations we have conducted that the model
almost exactly matches with the PIC simulations.
Note that even as the distribution becomes more and

more diffuse, if a region of the distribution had much less
heat than the kinetic energy delivered to it by space-charge
effects, we would expect the particles’ trajectories to not be

FIG. 14. Theoretical predictions (solid line) and M-shell simulations (hollow dots) of the width of an evolving planar-symmetric
initially Gaussian distribution for two experiment relevant regimes. Both cases assumed a geometry of transverse width of 100 μm and
longitudinal width of 0.1 μm, and they differed in the number of electrons in the bunch: (a) 106e corresponding to an ET1 ≈ 0.3 MV and
(b) 108e corresponding to an ET1 ≈ 3 MV. Notice that the y-axis is logarithmic, and the scales are different between the two plots. Also
notice that relativistic effects of spreading of the bunch in the absence of an accelerating field within this timescale are not significant for
the 106 case but noticeable for the 108 case. Furthermore, the accelerating field effect is noticeable within this timescale when
Ea ¼ 10 MV for 106 and Ea ¼ 30 MV for 108; however, notice that in the 108 case, the longitudinal beam width is larger than the
transverse width and that the 1D model is probably no longer a valid approximation.
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drastically altered from the trajectory determined by the
space-charge effects alone—as long as the potential energy
is quickly converted to kinetic energy. Nonetheless, there is
always a portion of the center of the distribution that does
not meet this assumption. In the planar and cylindrically
symmetric cases where the kinetic energy is unbounded,
this portion of the distribution is always shrinking; on the
other hand, in the spherically symmetric case, there is a
portion of the distribution that will never become space-
charge dominated as the kinetic energy transferred to the
particles in this region will never overcome the energy
associated with the initial temperature. In other words, in
real world situations, the center of the distribution is
emittance dominated regardless of the fact that farther
out in the distribution the particles may be space-charge
dominated.
The second assumption of laminar behavior is surpris-

ingly robust for the spatial density evolution. Obviously,
having a higher temperature should lead to issues with this
assumption, but for the cases we have examined within the
temperature range where space-charge dominated fluid is
present, this does not seem to be much of an issue—at least
early on. However, the energy density evolution is more
sensitive to violations of the laminar assumption, and
eventually these differences should be reflected in the
spatial distributions. Nonetheless, the biggest success of
the laminar fluid assumption is the planar symmetry case
as the acceleration of successive sheets is monotonically
increasing making laminar fluid assumption violating
events impossible unless the initial velocity distribution
is correctly tuned. The real issue with this assumption,
though, is with the nonuniform bunches under cylindrical
and spherical symmetries. As we have discussed here,
crossover events that violate the laminar fluid assumption
occur when r0 ¼ 0. The density shock that ends up forming
in the evolution of a nonuniform bunch can be thought of
as occurring in region(s) of substantial initial density that
have r0 → 0 relatively quickly. In other words, successive
cylindrical or spherical shells begin to bunch up as they
expand resulting in a relatively higher density in those
regions. In the nonrelativistic case, these shells eventually
crossover into the multiflow regime resulting in a violation
of the laminar fluid assumption (although the model still
predicts the density evolution fairly well even past such
events as pointed out by other authors [33]).
On the other hand, we have considered relativistic effects

here, and relativistic effects result in the density evolution
being less likely to go into the multiflow regime.
Specifically, the speed limit of light results in portions
of the distribution going slower than if they only had
nonrelativistic consideration influencing them. In the
cylindrical case, the expansion may be able to “freeze”
before the crossover point. On the other hand, relativity
does not help the spherically symmetric case as much as
complete freezing never occurs. So while D02ðr0Þ may

adopt any negative value that can be corrected by having
sufficient density, D03 is limited by − 2

3
at long times.

However, even in the spherical symmetric case, theD03 can
be suppressed for arbitrary amounts of time by increasing
the density. Of course for truly uniform distributions,
D03 ¼ 0 everywhere and this crossover does not happen,
but for any realistic distribution, all values of D03 < 0
are present and crossover should occur eventually.
Specifically, roughly 20% of the Gaussian distribution
has D03ðr0Þ < − 2

3
and the crossover in this region appa-

rently does not drastically change the evolution of the
distribution as seen in the figures we presented here. As
other authors have claimed that the density evolution theory
captures the coulomb explosion dynamics if the multi-flow
regime is small [33], we would add that relativistic effects
make this agreement even better.
In the UEM community, the planar symmetric model is

applied to a bunch that is thin along one axis with much
larger widths along the other dimensions; we denote this as
L0 ≪ R0 where L0 represents the initial width of the thin
dimension and R0 the initial widths of the other two
(equivalent) dimensions. If planar symmetric dynamics
are present, at some time L ≈ R, and the planar symmetric
model should no longer apply instead requiring a higher
dimensional description. The timescale for the expansion of
the bunch is τexp ≈ 1

ω01
; on the other hand, the timescale

described by Eq. (68) indicates the time at which we would
expect the edges of the distribution to have energy
equivalent to the rest energy of the particle. As we assume
L0 ≪ R0, we would expect that if these two timescales
are of the same order or the relativistic timescale is shorter
then we would expect relativistic effects described by
the models presented here to occur. This occurs when
lr01 ≤ L0. Likewise, for the cylindrical case in fields like
accelerator physics, it is generally assumed R0 ≪ L0;
which again breaks down when L ≈ R. Nonetheless,
we again expect the cylindrically symmetric dynamics
described here to be apparent if lr02 ≤ R0.
Notice that in previous treatments of the evolving density

[25,32], the extraction field was left out of the analysis.
This is accurate as the density evolution in the non-
relativistic limit, Eq. (37) is independent of the effective
field. However, this is not true in the general case as
relativistic effects make the electric field couple to the
dynamics. This leads to an interesting opportunity to
control the density through this coupling effect.
Specifically, in 1D, the density freezing leads to the concept
of asymptotic density, which is a density that no longer
evolves in time. We showed that this asymptotic density
can be manipulated through the inclusion of an extraction
field, Ea. Specifically, the initial density is essentially the
asymptotic density when Ea ≫

Qtot;1

ϵ0
; however, when the

extraction field is not sufficiently large, the asymptotic
density can be significant different from the initial density.

B. S. ZERBE and P. M. DUXBURY PHYS. REV. ACCEL. BEAMS 22, 114402 (2019)

114402-20



This suggests that if we are accelerating a bunch well into
the relativistic regime, we may need to consider this
asymptotic density when determining optimal criteria.
Namely, in the relativistic regime, an initially uniform
distribution should no longer be the distribution with the
smallest emittance as relativistic considerations introduce
nonlinearities in the phase space that may be absent from
correctly chosen initial distributions. We will develop this
idea further in future work.
Recently, Kochikov et al. published an investigation of

an expansion dynamics of a relativistic bunch in drift space
[37]; this work uses a more sophisticated potential than
what has been considered here and therefore captures
additional relativistic effects. Furthermore, it extends
Siwick et al.’s [23] model of bunch dynamics, that treats
the width of the bunch by tracking the position of a
Lagrangian particle on the symmetric axis at the fore
and aft of a cylindrically symmetric bunch, into the
relativistic regime. This model approximates full three-
dimensional effects and therefore should better model the
change in the bunch width than the planar case; however,
we point out that neither model accounts for the expansion
of the bunch due to effective pressure introduced by
emittance. We further discuss this effect in future work.
Regardless, as the drift model does not treat acceleration,
our planar model with acceleration is a natural comple-
ment to this theory. Furthermore, both models reach
similar conclusions about expansion in the highly rela-
tivistic regime; namely that the effective reduction of
the Coulomb force for a relativistic bunch suppresses the
expansion of the bunch. However, we emphasize that this
suppression is density dependent as the forces themselves
are density dependent. Specifically, a denser bunch requires
a larger velocity before the width evolution becomes slow.

VI. CONCLUSIONS

In this work, we extended our previous density evolution
analysis into the relativistic regime. Specifically, we
showed that the uniform distribution in any dimension
develops density shocks as the outer portion of the
distribution becomes relativistic; we also found expressions
for such peaks in other distributions which occur in
competition with the nonuniform Coulomb mechanism
that leads to peaks in such distributions [32]. We showed
that the analytic results accurately predicted 1D-like
M-shell simulation results under all symmetries and PIC
results under cylindrical and spherical symmetries. The PIC
simulations conducted here were completed using an EM
solver with an initial ES solve used to initialize the fields.
As these simulations agree with the theory that is essen-
tially based on electrostatics, it is apparent that EM effects
beyond electrostatics are not significantly affecting the
spatial density evolution and the energy density evolution
for the problems examined.

We emphasize that the mechanism for the relativistic
shock development is distinct from nonrelativistic shock
development seen in the Gaussian distribution [32].
Previously, we demonstrated that shocks arise in nonplanar
nonuniform spatial distribution evolutions due to the
initial distribution leading to nonlinear Lagrangian particle
velocities that lead to inner Lagrangian particles catching
up to outer Lagrangian particles. On the other hand, shock
in a relativistic bunch is caused by the “shrinking” of one-
dimension of the density as the Lagrangian particles
approach the luminal speed limit. This can be seen by
considering the energy of continuum particles within the
distribution. Specifically, as the particles expand, their
kinetic energies increase according to Eq. (9). In the planar
and cylindrically symmetric models, this increase is linear
and logarithmic in their position (and eventually time),
respectively, as can be seen by Eqs. (10) and (11). This
leads to all particles in a neighborhood approaching the
speed of light resulting in the “freezing” of the expansion
along the expanding dimension; that is, all planar sym-
metric distributions eventually asymptote to a time inde-
pendent density while all cylindrically symmetric
distributions eventually expand “uniformlike” but with
one dimension less than that being considered, i.e., ρ2 →
r0
r Aρ02 where A is some parameter determined from the
initial conditions. On the other hand, in the spherically
symmetric case, the kinetic energy is bounded by qQtot;3P03

4πϵ0r0
,

which is finite. As this kinetic energy is dependent on r0
through P03ðr0Þ

r0
, the asymptotic velocity of neighboring

continuum particles differs. This is why the density at
long times for highly relativistic portions of the distribution

drops in a uniformlike manner, i.e., ρ3 →
r3
0

r3 Aρ03 with

A ¼ 1þ3ζ2þ2ζ4

1þ3
2
D03

[see Eq. (59)]. While both the planar and

cylindrically symmetric cases lost a power to the uniform-
like evolution, i.e., planar cases evolve like 1

r0 and cylin-
drically symmetric cases evolve like 1

r1, the spherically
symmetric case’s uniformlike evolution retains 1

r3. This
difference arises as the particles in the spherically sym-
metric case have finite potential energy and thus asymptote
toward a velocity that is a little less than the speed of light.
Now neighboring Lagrangian particles can have very small
differences in their asymptotic velocity leading to the
expansion in the radial direction being slower than what
is seen nonrelativistically; specifically, this is what leads to
A > 1. However, there does remain a nonvanishing small
velocity difference meaning that the distribution continues
to expand in all dimensions. Nonetheless, these effects lead
to density peaks forming toward the edges of the distri-
bution in all cases; regardless, we find it interesting that the
behavior in each dimension is qualitatively unique.
We also added an extraction field to the laminar, planar

theory, and we rederived a threshold field, ET1 ¼ Qtot;1

2ϵ0
, that
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is responsible for qualitatively different behavior in the
evolution of the density. This threshold is the virtual
cathode limit identified previously by Valfells [36] and
generally discussed in the accelerator literature. For 108

electrons in a uniform bunch of radius 100 μm, ET1≈
30 MV=m; thus an acceleration field of 100 MV, which is
the upper limit of the UEM community used at the Stanford
Linear Accelerator [38–40], is only about 3.5× this
quantity. As we saw in Figs. (11) and (12), in this range
we would still expect space-charge effects that enact
substantial expansion and distortion of the initial distribu-
tion. On the other hand, table top UEM devices typically
have extraction fields up to 5 MV=m [41–44], which is
only slightly more than the total internal field of 107

electrons in a pancake with a radius of 100 μm, ET1 ≈
3 MV=m and is far below ET1 for 108 electrons. Thus 108

electron bunches are beyond the capability of such table
top devices, and 107 electron bunches should expand
immensely within the extraction field making them very
difficult to work with.
A common effect in all dimensions, was that if the

distribution is given enough time to expand, the stochastic
effects in the initial distribution are overwhelmed by the
space charge effects. This means that under such condi-
tions, repeated instances of similar bunches should look
more or less the same. However, if the bunch is quickly
accelerated into the relativistic regime, the initial stochastic
fluctuations are preserved in the density profile. As we
move to larger accelerating fields, this effect needs to be
further studied as it may be that stochastics will play a
larger role in the limit of very large extraction fields.
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APPENDIX A: CYLINDRICAL SYMMETRIC
DENSITY EVOLUTION IN THE HIGHLY

RELATIVISTIC REGIME

Assuming 2β̃2 ≫ 1 and analyzing all but F and F ∂ ,
Eq. (48) becomes

r0 ≈
r
r0

�
1þ

�
ρ0
ρ̄0

− 1

�
1

β̃
F −

ρ0
ρ̄0

F ∂
	

ðA1Þ

However,

F ≈
r0
r

Z ffiffiffiffiffiffiffiffi
lnð r

r0
Þ

p
0

2β̃yey
2

dy ¼ β̃

�
1 −

r0
r

�
ðA2Þ

and

F ∂ ≈
r0
r

Z ffiffiffiffiffiffiffiffi
lnð r

r0
Þ

p
0

2yey
2

dy ¼ 1 −
r0
r

ðA3Þ

Placing these approximations back into Eq. (C1) results
in r0 ≈ 1.

APPENDIX B: LONG-TIME LIMIT

Consider spherical symmetry. Notice that r0
r r

0 is a
function of r0

r , so in the limit lim r
r0
→∞, these terms go to

zero. As a result, x → 1 in the expression for r0, so

lim r
r0
→∞r0 ¼

r
r0

�
1þ p1ð1Þ

b21½g2ð1Þ�2

þ r0
r

p2ð1Þ
b21½g2ð1Þ�2

T

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
r

r �	

¼ r
r0

� ð1þ 3
2
DÞð1þ β̃2Þ

ð1þ β̃2Þ2ð1þ 2β̃2Þ

	

þ ð3β̃2 þ 6β̃2Dþ 3
2
DÞtanh−1 ffiffiffiffiffiffiffiffiffiffiffi

1 − r0
r

p
ð1þ β̃2Þ2ð1þ 2β̃2Þ

→
r
r0

�
1þ 3

2
D

1þ 3β̃2 þ 2β̃4

�
ðB1Þ

where β̃ ¼ r0ω̄03ffiffi
6

p
c
and where the second term is lost since

inverse hyperbolic tangent goes to infinity logarithmically
which is slower than r

r0
.

APPENDIX C: HIGH DENSITY LIMIT

At high densities, the edges of the planar symmetric
distribution do not significantly evolve, and therefore the
distribution is essentially preserved in this region. This
occurs when 2ω01L0

c ≫ 1. We now extend this to the other
symmetries.

1. Cylindrical symmetry

Assuming β̃ ≫ 1, where β̃ ¼ r0ω̄02

2c , and analyzing all but
F and F ∂ , Eq. (r’) becomes

r0 ≈
r
r0

�
1þ

�
ρ0
ρ̄0

− 1

�
1

β̃
F −

ρ0
ρ̄0

F ∂
�

ðC1Þ

However,

F ≈
r0
r

Z ffiffiffiffiffiffiffiffi
lnð r

r0
Þ

p
0

2β̃yey
2

dy ¼ β̃

�
1 −

r0
r

�
ðC2Þ

and

F ∂ ≈
r0
r

Z ffiffiffiffiffiffiffiffi
lnð r

r0
Þ

p
0

2yey
2

dy ¼ 1 −
r0
r

ðC3Þ
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Placing these approximations back into Eq. (C1) results in
r0 ≈ 1. That is, r0 cancels out the factor r

r0
term.

2. Spherical symmetry

Assuming β̃ ≫ 1, where β̃ ¼ r0ω̄03ffiffi
6

p
c
, we see that Eq. (B1)

is approximately 0; therefore we need to return to the full
expression and expand in terms of r

r0
. We find only keeping

the highest order of β̃

r0 ≈
r
r0

�
1þ −2β̃2ð1 − r0

r Þ2
2β̃6ð1 − r0

r Þ

	

¼ r
r0

�
1 −

�
1 −

r0
r

�	
¼ 1 ðC4Þ

So like the planar and cylindrical symmetric cases, super-
highly relativistic densities result in essentially the loss of
one dimension during expansion.
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