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Wakefields in a cluster plasma
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We report the first comprehensive study of large amplitude Langmuir waves in a plasma of nanometer-
scale clusters. Using an oblique angle single-shot frequency domain holography diagnostic, the shape
of these wakefields is captured for the first time. The wavefronts are observed to curve backwards,
in contrast to the forwards curvature of wakefields in uniform plasma. Due to the expansion of the clusters,
the first wakefield period is longer than those trailing it. The features of the data are well described by fully
relativistic two-dimensional particle-in-cell simulations and by a quasianalytic solution for a one-

dimensional, nonlinear wakefield in a cluster plasma.
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I. INTRODUCTION

The frequency of electrons oscillating in a uniform
plasma was first derived by Langmuir and Tonks in
1929 [1] and the behavior of Langmuir waves (also known
as electron plasma waves) has been extensively studied
[2-6]. Two widely studied applications of these waves are
the beam-driven [7-13] and laser-driven [14—16] plasma
accelerator, the latter using a high-power laser pulse
propagating through a plasma to create longitudinal electric
fields of up to 100 GV m™! that accelerate charged particles.

The duration of the laser pulse is typically shorter than
the period associated with the plasma wavelength,
Ap = 2mv,/w,, where v, ~ ¢ is the phase velocity of the
plasma wave, and @, = (ne?/meey)"/? is the plasma
frequency (here, n is the electron number density, e is
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the elementary charge, m, is the electron mass, and ¢,
is the permittivity of free space). Fulfilling this condition,
an efficient acceleration regime, the regime, was found
computationally [17]. This was followed by the gener-
ation of well-populated, high-quality beams of electrons
[18-20] and subsequently the generation of quasimonoe-
nergetic GeV electron bunches [21]. Since then, many
experiments have been conducted pushing the frontiers
of laser wakefield acceleration to higher energies and
better quality beams [22-27]. Applications of accelerated
particle beams are ubiquitous in the natural sciences and
medicine [28-30].

Wakefields can also be used to accelerate electrons in a
nonuniform, clustered plasma using gases such as argon
[31-33] or methane [34]. A plasma cluster is an accumu-
lation of ionized atoms which were formerly held together
by van der Waals forces. The electrons are attracted to the
positively charged ion clusters, changing the optical proper-
ties both locally and globally within the plasma. A laser
propagating through a medium containing clusters is able
to access the “cluster mode” which allows it to propagate in
a plasma of critically overdense clusters at group velocities
higher than in a uniform, nonclustered plasma [35] of same
average density. The evolution of clusters irradiated by
an intense laser pulse and the dependence of the laser pulse
propagation on the expansion of the clusters have been
investigated [31,3642].

Published by the American Physical Society
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In this article, experimental data obtained from a
single-shot, oblique-angle frequency-domain holography
diagnostic [43] is presented, showing for the first time
how the shape and wavelength of a wakefield are changed
in the presence of clusters. These findings are supported
by 2D particle-in-cell simulations which show that the
wakefield wavelength decreases with increasing distance
behind the drive pulse, in agreement with the experimental
data. Controlling the plasma wavelength could potentially
help to increase the dephasing length [15], which is one
of the major limiting factors of wakefield accelerators.
It is also observed for the first time that the wavefronts
are curved backwards, in contrast to those in a uniform
plasma. This article is structured as follows. Section II
presents experimental observations from our single-shot
frequency-domain holography diagnostic. Section III
presents results of a one-dimensional model of nonlinear
wakefields in a plasma with strong density perturbations.
Section IV presents the results of two-dimensional
moving-window particle-in-cell simulations supporting
the observations made in the previous sections. This is
followed by a discussion.

II. EXPERIMENTAL DATA

The experimental investigation of wakefields in a cluster
plasma was conducted at the ASTRA high-power laser
facility [44]; a schematic of the experiment is shown in
Fig. 1. In this experiment a plasma wakefield is generated
using a laser pulse with a laser wavelength of 800 nm,
energy of 480 mJ, FWHM duration of 45 fs, spot size
diameter of 29 ym (FWHM) and peak intensity of
1.1 x 10" Wem™ (+£15%) which gives a normalized
laser amplitude, a,, of 0.72 where a,=8.55 x 1071°
(I22[W cm™2 um?])!/2 (here, I is the intensity in W cm™2
and 4 is the laser wavelength in ym). The cluster plasma
was created in a 3 mm wide gas jet which ejected methane
with a backing pressure of 7-14 bar into vacuum. At these
backing pressures, the conditions for clusterization of
methane [45,46] are fulfilled. The electron density was
measured using a 550 fs interferometry probe beam
aligned perpendicular to the driving pulse. A 10 ps delay
was set between the driving and interferometer pulses to
allow the electrons to homogenize.

In order to measure the shape of the wakefield a
frequency-domain holography diagnostic was used [43],
for which two positively chirped 400 nm, 1 mJ, 550 fs
pulses (probe and reference) propagate at an oblique angle
of 8° with respect to the drive pulse (Fig. 1). The reference
pulse was 1.5 ps ahead of the probe and also ahead of the
ionization front, thus avoiding any phase shift. The probe
and reference pulses were magnified by a factor of
55 (£10%), imaged at the focal plane and measured using
a spectrometer [raw data is shown in Fig. 2(a)]. From this,
the phase shift imprinted onto the probe pulse by the
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FIG. 1. Schematic of the experimental set-up, including a
single-shot oblique-angle frequency domain holography diag-
nostic and a transverse optical probe. The drive laser pulse (red) is
incident from left to right and excites a large amplitude Langmuir
wave (grey). The density variations imprint a phase shift onto the
probe pulse (blue) which crosses at an angle of 8°. The lower
panels show results from the transverse interferometry measure-
ment. The left panel shows the ionization front of the propagating
laser and the fringes from which the phase shift is calculated. The
right panel shows the phase shift obtained from analysing the area
indicated by the red rectangle in the left panel. The plasma
density was obtained from this phase shift.

density perturbations within the wakefield was recovered.
Due to the linear frequency chirp of the probe pulse,
the measured laser wavelength directly maps to the
delay behind the drive pulse. This mapping has been
applied to the axes in Figs. 2(a) and 2(b). Interference of
the reference and probe pulses leads to fringes in the
combined spectrum. This setup is similar to a frequency-
domain streak camera [47] but measures the phase across
the x-y-plane (using the axes defined in Fig. 1) instead of
the x-z-plane of the probe pulse. Hence, it gives a snapshot
of the wakefield rather than the temporal evolution of
the structure.

The phase shift was obtained using a method ([48,49])
based on a reconstruction algorithm which incorporates
data from two spectrograms [Figs. 2(al) and 2(a2)]. The
Fourier transform was taken and the peak corresponding to
the fringes in the spectrogram isolated. The results of a shot
in which gas was used [Fig. 2(al)] are then divided by the
results of a reference shot in which no gas was used
[Fig. 2(a2)]. In the latter case the reference pulse obtained
no phase shift which makes it possible to reduce phase
shift signals that are caused by the diagnostic rather than
the laser-plasma interaction and to prevent errors arising
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FIG. 2. (a) Spectrum of the image of the wakefield formed by

the probe and reference pulses from which the phase shift across
the x-y-plane was recovered. The drive pulse propagates to the
right. The x-axis was mapped from laser wavelength to time
(upper x-axis) using calibration data. This was multiplied by the
approximated group velocity of the laser to convert to space
(lower x-axis). The y-axis has an estimated systematic error of
+10% due to the uncertainty of the magnification. (b) Processed
data showing the unwrapped phase indicating the structure of
the wakefield in a cluster plasma. Close-up of the area indicated
by the red dashed rectangle in (a). (c) Measurement of the first
(green), second (red), and third (blue) wakefield wavelengths as a
function of the average plasma electron density measured by the
transverse interferometry. The plot shows data from 30 separate
laser shots. The black line shows the theoretical plasma wave-
length for a uniform plasma. The data points were measured
on-axis as the distance between successive minimum phase shifts.
The error bars were obtained from the measurements for the
calibration of the conversion parameter between pixel on CCD
and time, b = (1.81 £ 0.12) pix/fs.

from manually shifting the peak in the analysis. The
obtained results in Fig. 2(b) show a wakefield structure
that differs from that typically seen in a uniform plasma
case as the wavefronts are curved backwards with respect to
the direction of laser propagation—in a uniform plasma,
the wakefield’s wavefront curves forwards. Figure 2(c)
shows the plasma wavelengths of the wakefield measured
by the frequency domain holography diagnostic as a
function of the average plasma density. The wavelength
of each wake was measured on-axis as the distance between
successive phase shift minima. The observation of an
increased first and second plasma wavelength (with respect
to the theoretically predicted uniform plasma value) was
reproducible over a range of averaged plasma density. The
third wakefield wavelength coincides with the theoretical
value 27c/w, where w, is calculated using the average
electron density. Whereas the third wakefield wavelength
seems to scale with density as expected, the first wakefield
wavelength does not seem to depend on this parameter in
the same way.

III. QUASIANALYTIC 1D MODEL

Nonlinear, quasianalytic models for wakefield creation
in one dimension [50,51] use the quasistatic approxima-
tion [52,53] 0/0r = 0 assuming that quantities change
slowly in the comoving frame of reference. In a cluster
plasma, the quasi static approximation is no longer valid
as the density may fluctuate strongly with respect to the
co-moving variables & = x — v/t (spatial coordinate mov-
ing at the laser group velocity v,) and 7 = ¢ (time). Instead
of obtaining an analytical expression from integrating the
continuity equation dn/dr =0 = 9/0&[n(v, — v,)], one
can proceed by numerically solving the coupled system
of Ampere’s law OE/0t = —j,/e,, Poisson equation
OE/0x = —p/ey and the equation of motion in the
copropagating frame of reference 0/dt(yv./c) =0/
OE[® — y(1 — (v,v,)/c?)]. Here, n is the electron density,
v, is the longitudinal electron velocity, j, is the corre-
sponding current, E is the electric field, ¢, is the vacuum
permittivity, p is the charge density, y is the Lorentz factor,
c is the speed of light in vacuum, and @ is the normalized
electrostatic potential. Combining Ampere’s law and the
Poisson equation yields

o (m-a. m

engc Ot \ny eny Ox

where n; is the ion density, and S, is the normalized
velocity v,/c. Changing frame of reference yields

le 0p (m_&0E), &9
Ee_nan_ <n0 eny 85) X+en08§(ﬁgE)' 2)

Normalizing the equations in the comoving frame, one
finds
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where E = eE/(mcw,) = w,e0E/(enyc), p, = p./mc,
0/0%t = 1/w,0/0r, and D/ 0E = c/w,0/0&. Using a
weighted essentially nonoscillatory (WENQO) scheme
[54], the system of coupled partial differential equations
[Egs. (3) and (4)] is solved numerically. A WENO scheme
is able to deal with sharp gradients and is, hence, more
suitable for the treatment of a cluster plasma than typical
PDE solver routines. As this is a fluid model, it is not
possible to treat a case in which the background density
ny =0 (i.e., clusters in vacuum) so a low background
density (ny = 0.001 x n;,) was used into which the high-
density clusters (n.; = 1.5 X n;) are injected. To model
the effect of cluster expansion in the longitundinal
direction, the electron distribution was analyzed from
2D PIC simulations (see Sec. IV) for different cluster
parameters. The simulations show that the cluster expan-
sion scales with the maximum cluster density. This is
expected since the Coulomb expansion force F, < n,/
n.; X r/2 scales with electron density which is applicable
if large amounts of charge are displaced at the same time
by the Lorentz force. This will be further discussed in
Sec. IV.

Figure 3 shows the one-dimensional results of the
WENO scheme of both uniform (upper panel) and cluster
(lower panel) plasma. This quasianalytic model shows that
wakefields formed in a plasma of (artificially) expanding
clusters have a longer wavelength at the front which then
shortens toward the uniform plasma limits when the
clusters have expanded more strongly. The plasma wave-
length of 25.3 ym corresponding to the background
density n, is normalized to 2zc/w, in the upper panel
and, hence, equals 1 as expected. The uniform result
which acts as a reference reproduces known results of
nonlinear wakefields well [50,51]. The lower panel is
normalized to the same plasma wavelength as the upper
panel. However, the average density is (n,) = 0.0081 x
N Which would lead to a plasma wavelength of 8.9 ym
in a uniform plasma. The measured wavelengths in the
simulation obtained from filtering the longitudinal
electric field using a Gaussian smoothing kernel with
standard deviation of 250 cells (corresponding to
2.21 ym—a distance on the order of the cluster separa-
tion) are 19.7 ym, 10.1 ym, 8.6 um and 8.5 um. The fact
that the last two wavelengths are slightly shorter than the
theoretical, uniform value of 8.9 ym may be due to the
filtering process. In the uniform plasma case the electron
density coincides with the charge density. In the case of
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FIG. 3. Results of the 1D model of a wakefield in a co-moving
frame showing the difference in wavelength of the smoothed
longitudinal electric field E, for two different cases. The top
panel shows a reference solution for a wakefield in a uniform
plasma of background density ny = 0.001 x n; and the &-axis
is normalized to w,(n)/c. The bottom panel shows a plasma of
background density ng = 0.001 X n;, in which clusters of
density 1.5 x ng; are injected from the right boundary. They
artificially expand according to the expansion function ry,. The
average density is n,, = 0.0081 x n.; leading to a predicted
plasma wavelength of 8.9 um. The electric field was smoothed
using a Gaussian smoothing kernel.

a strongly fluctuating electron density in the vicinity of
sharp ion density perturbations the electron density may
differ strongly from the charge density. Therefore, the
wakefield cannot immediately be seen in a plot of the
electron density. The coupled equations were solved
on a grid of 10000 cells. The shape of the cluster was
a super-Gaussian of form exp (—(x/r)®) rather than a
step function to avoid instabilities and the associated
FWHM cluster radius r was 70.8 nm. Both the average
density and the cluster radius were chosen to be higher
than the predicted experimental values since the nature
of the one dimensional geometry makes it necessary to
occupy the space with more clusters per wavelength in
order to have a relevant impact on the uniform back-
ground density.
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IV. 2D PARTICLE-IN-CELL SIMULATIONS

In order to verify the observations from the oblique-
angle frequency-domain holography diagnostic, we con-
ducted 2D particle-in-cell moving-window simulations
using the fully relativistic code OSIRIS [55]. Estimates
for the cluster radius and cluster peak density were taken
from the literature [56]. The empirically derived Hagena
parameter describing the abundance of clusters at given gas
and nozzle parameters was evaluated for typical conditions
in [57].

Converting from dimensionless OSIRIS units to physical
units using a fundamental laser wavelength of 800 nm, the
clusters initialized at the boundary had a circular shape,
radius of ~12.7 nm, electron and ion temperatures of 10 eV
and densities of 1.5n.; = 2.61 x 10?! cm™ where n.;, =
wim,eq/e* is the critical density of plasma for the drive
pulse frequency @,. The averaged electron density in the
simulation box was 0.004 n.;, corresponding to 6.97 x
10'® cm™ which lies within the range of plasma density
measured in the experiment. The normalized laser ampli-
tude a, was set to be 0.72 and the laser had linear
p-polarization with a Gaussian (longitudinal and trans-
verse) shape. The FWHM duration of the pulse was varied
and the transverse FWHM was kept constant at 32 um.
For this simulation, 160 cells per laser wavelength (corre-
sponding to 14000 x 12000 cells) were used, and there
were 16 X 16 electron macro-particles per cell and 4 x 4
ion macroparticles per cell. The particle boundaries were
absorbing and the longitudinal (transverse) field boundaries
were of type “open” (“Lindman” [58]). The simulation time
step was 16.6 as and all figures shown were taken at the
last simulation time step corresponding to 0.42 ps of
propagation through the plasma.

Figure 4 shows the results obtained from the 2D,
moving-window simulations. Two equivalent simulations
using a laser duration of 45 fs are compared, one using a
cluster plasma [panels (a), (b), (c), and (e)] and one using a
uniform plasma distribution [panels (d) and (f)] of the same
average density. In the top panel, the initially over-dense
clusters (injected from the right-hand boundary of the
simulation box) start expanding as soon as the laser
encounters them. Detailed analysis of these density patterns
reveals that the electrons oscillate around the positively
charged ion clusters to form dipolelike structures synchron-
ized with the laser field (see Fig. 5). The electron motion is
directly linked to the laser pulse electric field. Within one
half-oscillation of field strength the majority of electrons
are located on one side of the ion cluster. Due to the
significant amount of time the electrons spend outside of an
ion cluster and within an electron plume, the repulsive
Coulomb force creates a momentum distribution which
prevents some electrons from returning directly to the ion
cluster. Hence, the repulsive Coulomb force between
electrons outside of the cluster starts to increase the density
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FIG. 4. Results of the 2D moving-window particle-in-cell
simulations where the laser pulse propagates toward the right-
hand side of the window. Panel (a) shows the electron density
and the laser intensity in a cluster plasma. Panel (b) shows
perturbations in the charge density. Panel (c) shows the longitudinal
electric field in propagation direction of the wakefield in a cluster
plasma. Panel (d) shows an equivalent simulation for a uniform
plasma. Panel (e) shows the transverse electric field in a
cluster plasma. Panel (f) shows an equivalent simulation for a
uniform plasma. The laser duration for both simulations was 45 fs.
The average electron density was 6.97 x 10'8 cm™.
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FIG. 5.

Close-up of the charge density of expanding clusters from a 2D moving-window particle-in-cell simulation. Ion clusters are

plotted in red, electrons in blue. The circular clusters were initialised with density of 1.5 x n,, and radius of 12.7 nm. The laser pulse is

centered outside of the depicted area at 17 um.

of electrons that are not oscillating about the ion cluster.
As an electron is expelled further away from its associated
cluster, it begins to be affected by electrostatic forces
attracting it to other, neighboring ion clusters. Thus, the
effect of the electrostatic potential confining an electron to
the vicinity of any given cluster is reduced. As this density
of dissociated electrons continues to increase behind the
laser pulse to the left (see Fig. 5), the plasma frequency
increases accordingly. This causes the plasma wavelength
to decrease until all clusters have homogenized, at which
time it matches that of a uniform plasma of the same
average density.

Panel (b) of Fig. 4 shows the perturbations in the
charge density driven by a laser pulse in a cluster plasma
and panels (c) and (d) show the longitudinal electric field
for cluster and uniform plasma respectively. The results
have been smoothed using a two-dimensional Gaussian
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50 40
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50 40
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smoothing kernel with standard deviation of 350 cells
(corresponding to 1.75 pym) to average the quickly vary-
ing fields around the clusters. The wakefield shape shows
behavior similar to that observed in the experimental data
[Fig. 4(b)]. The wavefronts curve backwards and the first
plasma wavelength is larger than those trailing it. In
contrast to these results, the bottom panel in Fig. 4 (again,
smoothed over 1.75 um) shows that the wavefronts curve
slightly in the opposite direction in a uniform plasma,
as expected due to the relativistic mass increase on axis.
The vertical lines marking the boundaries between
complete oscillations of the plasma wave make it possible
to compare the wakefield wavelengths for the different
cases. The theoretical (uniform plasma) value for the
Langmuir wavelength [15] in a simulation using a density
of 6.97 x 10'® cm™ is calculated to be 12.6 um. While
the plasma wavelength in the uniform plasma case is very

x10'°

1

long. electric field strength (V/m)

20 10 0

FIG. 6. Results of 2D PIC simulations for different laser amplitudes. The longitudinal electric field is plotted for (a) ay = 0.9,
(b) agp = 0.72, and (c) ay = 0.5. The field is smoothed over 350 cells. The laser pulse is centered at 17 ym.
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FIG. 7. Results of a 2D moving-window particle-in-cell simulation showing the electron charge density for varying initial cluster
parameters. Each subplot shows the cluster expansion toward the left after the clusters encounter the plane wave laser pulse
[indicated in (a)] as well as a horizontal lineout averaged over 50 cells in the center. The initial cluster parameters are
(@) ny/ne = 1.5, r=6.4 nm, (b) n,/n.. = 0.7, r =12.7 nm, (c) n./n.. = 1.5, r = 12.7 nm, and (d) n./n., = 0.7, r = 6.4 nm.
The FWHM of the laser pulse duration used in the simulation (45 fs) is indicated by the white double-arrow. The laser pulse is
centered at 17 ym. The boundary conditions in the y-direction are chosen to be periodic. The normalized laser amplitude for all

simulations was ay = 0.72.

close to the theoretical value (namely 14.9 ym, 12.5 um,
12.5 um), the presence of clusters leads to an increase in
plasma wavelength for the first and second wakefield
structure (20.1 ym, 13.3 ym). It is worth noting that
the cluster plasma wakefield wavelengths in Fig. 4 are
measured to be shorter than the experimentally observed
ones (approximately 23 ym and 17 ym) at corresponding
density. The reason for this difference between simulation
and experiment may be linked to the unknown cluster
conditions in the experiment.

Panels (e) and (f) show the transverse electric field, using
the same smoothing kernel as before. In the simulation, the
laser is polarized in the plane depicted in panels (e) and (f).
Since its field strength’s magnitude is greater than that of
the electric fields caused by the wakefield, it had to be
separated. The laser field was subtracted by taking the
Fourier transform and deleting the high-frequency laser
oscillations. Depicted is the inverse Fourier transform. This
process is equivalent to the use of a low-pass filter with a
cut-off frequency of w., < .

In order to understand the curvature of the wakefield
structure additional two-dimensional PIC simulations were
performed with a reduced number of grid-points in the
y-direction. In these simulations the normalized laser
amplitude was varied from 0.5 to 0.9. Figure 6 shows that
a laser of higher intensity leads to shorter wavelengths. For
ay = 0.9 the laser periods were 16.5 ym and 11.6 ym, for

ag = 0.72 the laser periods were 17.6 yum and 14.3 um,
and for ay = 0.5 the laser periods were 18.2 ym and
16.2 ym. This effect can be related to the quicker cluster
expansion and hence an increased free (not associated with
the cluster bulk motion and subject of the cluster polari-
zation effect) electron density behind the laser pulse. The
plasma wavelength scales as n~'/2. The simulation used
12000 x 1000 cells, a timestep of 11.9 as, 32 x 32 (2 x 2)
electron (ion) macro-particles per cell, a transversally plane
wave with a longitudinal Gaussian profile with a FWHM
duration of 45 fs. The longitudinal (transversal) boundary
conditions for the electric field were of type “Lindman”
(periodic). It is likely that the plasma wavelengths are
shorter compared to the full width simulations due to the
use of periodic boundary conditions for the electromagnetic
fields.

The relation between varying laser amplitude and wake-
field wavelength (or cluster expansion) can be linked to the
curvature as follows. In a Gaussian laser pulse the intensity
transversely drops off from the peak value on the symmetry
axis. If the decrease in laser amplitude in y-direction is
continuous rather than stepwise (as in Fig. 6) the increase in
wavelength is also continuous resulting in a wakefield
shape that is bent backwards.

In order to quantify the effect cluster parameter
uncertainties have on the cluster expansion and, hence,
on the wakefield creation, four further simulations were

113501-7



M. W. MAYR et al.

PHYS. REV. ACCEL. BEAMS 22, 113501 (2019)

performed (Fig. 7) in which the cluster parameters were
varied as follows:

Simulation parameters

Simulation Cluster radius (nm) Cluster density (/n.,)
(a) 6.4 1.5
(b) 12.7 0.7
(c) 12.7 1.5
(d) 6.4 0.7

Very different expansion patterns are observed from
the simulations, indicating that the wakefield properties
depend on those cluster parameters that can be tuned using
different gas jet backing pressures or laser pre-pulses
which would increase the cluster expansion before inter-
action with the drive pulse. It can be seen that for large,
underdense clusters [Fig. 7(b)] the disintegration of the
clusters is slower. This can be linked to the lower electron
density outside of the ion cluster which leads to a smaller
intracluster Coulomb force separating the electrons.
Therefore, the amount of electrons involved in the wake-
field creation process through the ponderomotive push is
smaller. Hence, by tuning the cluster parameters one
should be able to control wakefield properties such as
curvature giving control over dephasing length and
emittance. However, a quantitave investigation of the
exact relation of this process is beyond the scope of this

paper.

V. DISCUSSION

It has been shown theoretically using a two-dimensional
calculation of the dispersion relation of electrostatic waves
[59] that the abundance of clusters in a background gas
leads to an expansion of the plasma wavelength and that
this effect scales with the cluster radius and the clusteriza-
tion fraction. The model predicts that the plasma wave-
length will increase as cluster radii increase, and as a larger
fraction of the plasma particles are localized in clusters.
This theory supports the findings, even though it has to be
pointed out that the two-dimensional particle-in-cell sim-
ulations were initialised without background gas. However,
due to the quick disintegration of the overcritical clusters
into low-density electron clouds it can be assumed that
the described effect of cluster polarization still plays a role
in increasing the plasma wavelength. Once clusters have
disintegrated completely the polarization effect will cease
to exist. The primary contribution to variations in plasma
wavelength is attributed to the increasing “free” electron
density—electrons still bound to clusters will restrict
electrostatic effects to the vicinity of the cluster, so as
more electrons dissociate from their clusters more truly
collective behavior is able to manifest. The one-dimensional
model of Sec. III shows that the contribution of an extreme
density perturbation has a lower impact on the wakefield

wavelength than the same charge density spread over a
larger area.

The dephasing length over which electrons can be
accelerated can be written as L, = (4, xv,)/
[2 x (¢ = v,)], where v, is the group velocity of the laser.
If the length of the accelerating structure (i.e., the wakefield
wavelength) can be expanded using clusters, this could, in
addition to the increase of the group velocity in the cluster
mode mentioned above, extend the dephasing length.

Even though no electrons were injected into the wake-
field in the data presented in this paper, a qualitative
estimate of the preservation of the electron beam emittance
can be estimated. Keeping the emittance minimal requires
that the electron beam waist needs to be smaller than the
radial extent of the focusing fields. Looking at the extent
of the transverse (focusing) fields depicted in Figs. 4(e)
and 4(f) one can see that this holds for typical electron
beam diameters in both cases. Furthermore, the transverse
electric fields in the cluster plasma case and the uniform
plasma case need to be of the same magnitude in order to
lead to comparable emittance. This holds in the regime we
are investigating. In addition, there has to be a region in
which accelerating (longitudinal fields) overlap with focus-
ing (transverse) fields. As can be seen from Fig. 4 this
region exists for both cases, in uniform and cluster plasma.
However, this focusing and accelerating bucket is getting
smaller in subsequent wakes in the cluster case. Hence, we
predict a change in emittance for injected electrons between
different buckets. While the emittance should be preserved
in both cases for the first wakes, the emittance of trapped
electrons in later wakes will worsen in the cluster case.

VI. CONCLUSION AND OUTLOOK

In summary, the first study of the structure of Langmuir
waves driven by a high-power laser pulse in a cluster
plasma including experimental observation as well as
simulations has been presented. The measurements from
our oblique-angle frequency-domain holography diagnos-
tic and simulations show that the wavefronts curve back-
wards, in contrast to the behavior observed in uniform
plasma. Furthermore, these show that the wakefield wave-
length behind the laser pulse is larger than in a uniform
plasma but converges toward the uniform plasma value.
This tunability of wavelengths using clusters has potential
applications in overcoming the dephasing length in future
laser-generated wakefield accelerators.

ACKNOWLEDGMENTS

The authors would like to acknowledge Christopher
Arran for useful discussions. This work has been funded by
EPSRC Grants No. EP/L000237/1 and No. EP/R029148/1,
and by STFC Grants No. ST/M007375/1 and No. ST/
P002048/1. This research was also supported by the
European Research Council (InPairs ERC-2015-AdG

113501-8



WAKEFIELDS IN A CLUSTER PLASMA

PHYS. REV. ACCEL. BEAMS 22, 113501 (2019)

Grant No. 695088). The authors would like to thank the
UCLAV/IST Osiris consortium. We gratefully acknowledge
all of the staff of the Central Laser Facility and the
Scientific Computing Department at STFC Rutherford
Appleton Laboratory. This work used the ARCHER UK
National Supercomputing Service (http://www.archer.ac
.uk) and STFCs SCAREF cluster. One of the authors (K. G.)
would like to thank the Rutherford International Fellowship
Programme.

(91

[10]

(1]

[12]

[13]

[14]

[15]

L. Tonks and I. Langmuir, Oscillations in ionized gases,
Phys. Rev. 33, 195 (1929).

L. D. Landau, On the vibrations of the electronic plasma, Zh.
Eksp. Teor. Fiz. 16, 574 (1946) [J. Phys.(USSR) 10,
25 (1946)].

A. Bergmann and P. Mulser, Breaking of resonantly
excited electron plasma waves, Phys. Rev. E 47, 3585
(1993).

V. E. Zakharov, Collapse of langmuir waves, Sov. J. Exp.
Theor. Phys 35, 908 (1972).

J. M. Dawson, Nonlinear electron oscillations in a cold
plasma, Phys. Rev. 113, 383 (1959).

L. Spitzer, Physics of Fully Ionized Gases (Interscience
Publishers, New York, 1956).

C. Joshi, The development of laser- and beam-driven
plasma accelerators as an experimental field, Phys. Plas-
mas 14, 055501 (2007).

C. Joshi, E. Adli, W. An, C.E. Clayton, S. Corde, S.
Gessner, M. J. Hogan, M. Litos, W. Lu, K. A. Marsh, W. B.
Mori, N. Vafaei-Najafabadi, B. Oshea, X. Xu, G. White,
and V. Yakimenko, Plasma wakefield acceleration experi-
ments at FACET II, Plasma Phys. Controlled Fusion 60,
034001 (2018).

C. Joshi and V. Malka, Focus on laser- and beam-driven
plasma accelerators, New J. Phys. 12, 045003 (2010).

R. Assmann er al. (AWAKE Collaboration), Proton-driven
plasma wakefield acceleration: a path to the future of high-
energy particle physics, Plasma Phys. Controlled Fusion
56, 084013 (2014).

E. Gschwendtner et al., AWAKE, the advanced proton
driven plasma wakefield acceleration experiment at
CERN, Nucl. Instrum. Methods Phys. Res., Sect. A
829, 76 (2016).

A. Caldwell et al., Path to AWAKE: Evolution of the
concept, Nucl. Instrum. Methods Phys. Res., Sect. A 829, 3
(2016).

I. Blumenfeld, C. E. Clayton, F.-J. Decker, M. J. Hogan, C.
Huang, R. Ischebeck, R. Iverson, C. Joshi, T. Katsouleas,
N. Kirby, W. Lu, K. A. Marsh, W. B. Mori, P. Muggli, E.
Oz, R.H. Siemann, D. Walz, and M. Zhou, Energy
doubling of 42 GeV electrons in a metre-scale plasma
wakefield accelerator, Nature (London) 445, 741 (2007).
T. Tajima and J. M. Dawson, Laser Electron Accelerator,
Phys. Rev. Lett. 43, 267 (1979).

E. Esarey, C. B. Schroeder, and W. P. Leemans, Physics of
laser-driven plasma-based electron accelerators, Rev. Mod.
Phys. 81, 1229 (2009).

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

113501-9

D. Umstadter, Review of physics and applications of
relativistic plasmas driven by ultra-intense lasers, Phys.
Plasmas 8, 1774 (2001).

A. Pukhov and J. Meyer-ter Vehn, Laser wake field
acceleration: The highly non-linear broken-wave regime,
Appl. Phys. B 74, 355 (2002).

S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R.
Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S.
Foster, J. G. Gallacher, C.J. Hooker, D. A. Jaroszynski,
A.J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R.
Viskup, B. R. Walton, and K. Krushelnick, Monoenergetic
beams of relativistic electrons from intense laser-plasma
interactions, Nature (London) 431, 535 (2004).

C.G.R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B.
Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W.P.
Leemans, High-quality electron beams from a laser wake-
field accelerator using plasma-channel guiding, Nature
(London) 431, 538 EP (2004).

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E.
Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, A laser-
plasma accelerator producing monoenergetic electron
beams, Nature (London) 431, 541 (2004).

W.P. Leemans, B. Nagler, A.J. Gonsalves, C. Téth, K.
Nakamura, C. G.R. Geddes, E. Esarey, C.B. Schroeder,
and S. M. Hooker, GeV electron beams from a centimetre-
scale accelerator, Nat. Phys. 2, 696 (2006).

O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-
Ismail, X. Davoine, G. Gallot, J.-P. Goddet, E. Lefebvre, V.
Malka, and J. Faure, Few femtosecond, few kiloampere
electron bunch produced by a laser-plasma accelerator,
Nat. Phys. 7, 219 (2011).

M. Z. Mo, A. Ali, S. Fourmaux, P. Lassonde, J. C. Kieffer,
and R. Fedosejevs, Quasimonoenergetic electron beams
from laser wakefield acceleration in pure nitrogen, Appl.
Phys. Lett. 100, 074101 (2012).

X. Wang et al., Quasi-monoenergetic laser-plasma accel-
eration of electrons to 2 GeV, Nat. Commun. 4, 1988
(2013).

H.T. Kim, K. H. Pae, H.J. Cha, I.J. Kim, T.J. Yu, J. H.
Sung, S. K. Lee, T. M. Jeong, and J. Lee, Enhancement of
Electron Energy to the Multi-GeV Regime by a Dual-Stage
Laser-Wakefield Accelerator Pumped by Petawatt Laser
Pulses, Phys. Rev. Lett. 111, 165002 (2013).

W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura,
C. Benedetti, C.B. Schroeder, C. Té6th, J. Daniels, D. E.
Mittelberger, S.S. Bulanov, J.-L. Vay, C.G.R. Geddes,
and E. Esarey, Multi-GeV Electron Beams from Capillary-
Discharge-Guided Subpetawatt Laser Pulses in the Self-
Trapping Regime, Phys. Rev. Lett. 113, 245002 (2014).
A.J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C.
Pieronek, T.C.H. de Raadt, S. Steinke, J. H. Bin, S.S.
Bulanov, J. van Tilborg, C. G. R. Geddes, C. B. Schroeder,
C. Téth, E. Esarey, K. Swanson, L. Fan-Chiang, G.
Bagdasarov, N. Bobrova, V. Gasilov, G. Korn, P. Sasorov,
and W. P. Leemans, Petawatt Laser Guiding and Electron
Beam Acceleration to 8 GeV in a Laser-Heated Capillary
Discharge Waveguide, Phys. Rev. Lett. 122, 084801 (2019).
V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse,
and K. T. Phuoc, Principles and applications of compact
laser—plasma accelerators, Nat. Phys 4, 447 (2008).


http://www.archer.ac.uk
http://www.archer.ac.uk
http://www.archer.ac.uk
http://www.archer.ac.uk
https://doi.org/10.1103/PhysRev.33.195
https://doi.org/10.1103/PhysRevE.47.3585
https://doi.org/10.1103/PhysRevE.47.3585
https://doi.org/10.1103/PhysRev.113.383
https://doi.org/10.1063/1.2721965
https://doi.org/10.1063/1.2721965
https://doi.org/10.1088/1361-6587/aaa2e3
https://doi.org/10.1088/1361-6587/aaa2e3
https://doi.org/10.1088/1367-2630/12/4/045003
https://doi.org/10.1088/0741-3335/56/8/084013
https://doi.org/10.1088/0741-3335/56/8/084013
https://doi.org/10.1016/j.nima.2016.02.026
https://doi.org/10.1016/j.nima.2016.02.026
https://doi.org/10.1016/j.nima.2015.12.050
https://doi.org/10.1016/j.nima.2015.12.050
https://doi.org/10.1038/nature05538
https://doi.org/10.1103/PhysRevLett.43.267
https://doi.org/10.1103/RevModPhys.81.1229
https://doi.org/10.1103/RevModPhys.81.1229
https://doi.org/10.1063/1.1364515
https://doi.org/10.1063/1.1364515
https://doi.org/10.1007/s003400200795
https://doi.org/10.1038/nature02939
https://doi.org/10.1038/nature02900
https://doi.org/10.1038/nature02900
https://doi.org/10.1038/nature02963
https://doi.org/10.1038/nphys418
https://doi.org/10.1038/nphys1872
https://doi.org/10.1063/1.3685464
https://doi.org/10.1063/1.3685464
https://doi.org/10.1038/ncomms2988
https://doi.org/10.1038/ncomms2988
https://doi.org/10.1103/PhysRevLett.111.165002
https://doi.org/10.1103/PhysRevLett.113.245002
https://doi.org/10.1103/PhysRevLett.122.084801
https://doi.org/10.1038/nphys966

M. W. MAYR et al.

PHYS. REV. ACCEL. BEAMS 22, 113501 (2019)

[29]
(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

P. A. Norreys, Laser-driven particle acceleration, Nat.
Photonics 3, 423 (2009).

S. M. Hooker, Developments in laser-driven plasma accel-
erators, Nat. Photonics 7, 775 (2013).

Y. Fukuda, Y. Akahane, M. Aoyama, Y. Hayashi, T.
Homma, N. Inoue, M. Kando, S. Kanazawa, H. Kiriyama,
S. Kondo, H. Kotaki, S. Masuda, M. Mori, A. Yamazaki,
K. Yamakawa, E. Echkina, I. Inovenkov, J. Koga, and S.
Bulanov, Ultrarelativistic electron generation during the
intense, ultrashort laser pulse interaction with clusters,
Phys. Lett. A 363, 130 (2007).

L. Zhang, L.-M. Chen, W.-M. Wang, W.-C. Yan, D.-W.
Yuan, J.-Y. Mao, Z.-H. Wang, C. Liu, Z.-W. Shen, A.
Faenov, T. Pikuz, D.-Z. Li, Y.-T. Li, Q.-L. Dong, X. Lu,
J.-L. Ma, Z.-Y. Wei, Z.-M. Sheng, and J. Zhang, Electron
acceleration via high contrast laser interacting with sub-
micron clusters, Appl. Phys. Lett. 100, 014104 (2012).
M. Mirzaie, N. A. M. Hafz, S. Li, K. Gao, G. Li, Q. Ul-Ain,
and J. Zhang, Laser acceleration in argon clusters and gas
media, Plasma Phys. Controlled Fusion 58, 034014 (2016).
J. Wood, Betatron radiation from laser wakefield accel-
erators and its applications, Ph.D. thesis, Imperial College
London, 2017.

T. Tajima, Y. Kishimoto, and M. C. Downer, Optical
properties of cluster plasma, Phys. Plasmas 6, 3759 (1999).
T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone,
and M. D. Perry, Interaction of intense laser pulses with
atomic clusters, Phys. Rev. A 53, 3379 (1996).

H. M. Milchberg, S.J. McNaught, and E. Parra, Plasma
hydrodynamics of the intense laser-cluster interaction,
Phys. Rev. E 64, 056402 (2001).

A. Gupta, T.M. Antonsen, and H. M. Milchberg, Propa-
gation of intense short laser pulses in a gas of atomic
clusters, Phys. Rev. E 70, 046410 (2004).

B.N. Breizman, A.V. Arefiev, and M. V. Fomytskyi,
Nonlinear physics of laser-irradiated microclusters, Phys.
Plasmas 12, 056706 (2005).

T.M. Antonsen, T. Taguchi, A. Gupta, J. Palastro, and
H. M. Milchberg, Resonant heating of a cluster plasma by
intense laser light, Phys. Plasmas 12, 056703 (2005).
D.R. Symes, M. Hohenberger, A. Henig, and T. Ditmire,
Anisotropic Explosions of Hydrogen Clusters under In-
tense Femtosecond Laser Irradiation, Phys. Rev. Lett. 98,
123401 (2007).

T. Fennel, K.-H. Meiwes-Broer, J. Tiggesbdumker, P.-G.
Reinhard, P. M. Dinh, and E. Suraud, Laser-driven non-
linear cluster dynamics, Rev. Mod. Phys. 82, 1793 (2010).
M. F. Kasim, J. Holloway, L. Ceurvorst, M. C. Levy, N.
Ratan, J. Sadler, R. Bingham, P. N. Burrows, R. Trines, M.
Wing, and P. Norreys, Quantitative single shot and spatially
resolved plasma wakefield diagnostics, Phys. Rev. Accel.
Beams 18, 081302 (2015).

C.J. Hooker, J.L. Collier, O. Chekhlov, R. Clarke, E.
Divall, K. Ertel, B. Fell, P. Foster, S. Hancock, A. Langley,
D. Neely, J. Smith, and B. Wyborn, The Astra Gemini

[45]

[46]

[47]

(48]

[49]

[50]

[51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

113501-10

project - A dual-beam petawatt Ti:Sapphire laser system, J.
Phys. IV France 133, 673 (2006).

O.F. Hagena, Cluster ion sources (invited), Rev. Sci.
Instrum. 63, 2374 (1992).

R. A. Smith, T. Ditmire, and J. W. G. Tisch, Characteriza-
tion of a cryogenically cooled high-pressure gas jet for
laser/cluster interaction experiments, Rev. Sci. Instrum. 69,
3798 (1998).

Z. Li, H.-E. Tsai, X. Zhang, C.-H. Pai, Y.-Y. Chang, R.
Zgadzaj, X. Wang, V. Khudik, G. Shvets, and M.C.
Downer, Single-Shot Visualization of Evolving Laser
Wakefields Using an All-Optical Streak Camera, Phys.
Rev. Lett. 113, 085001 (2014).

K.Y. Kim, I. Alexeev, and H. M. Milchberg, Single-shot
supercontinuum spectral interferometry, Appl. Phys. Lett.
81, 4124 (2002).

N.H. Matlis, S. Reed, S.S. Bulanov, V. Chvykov, G.
Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A.
Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer,
Snapshots of laser wakefields, Nat. Phys. 2, 749 EP (2006).
E. Esarey, A. Ting, P. Sprangle, D. Umstadter, and X. Liu,
Nonlinear analysis of relativistic harmonic generation by
intense lasers in plasmas, IEEE Trans. Plasma Sci. 21, 95
(1993).

D. Teychenné, G. Bonnaud, and J.-L. Bobin, Wave-breaking
limit to the wake-field effect in an underdense plasma, Phys.
Rev. E 48, R3248 (1993).

P. Sprangle, E. Esarey, and A. Ting, Nonlinear interaction
of intense laser pulses in plasmas, Phys. Rev. A 41, 4463
(1990).

P. Sprangle, E. Esarey, and A. Ting, Nonlinear Theory of
Intense Laser-Plasma Interactions, Phys. Rev. Lett. 64,
2011 (1990).

C. Shu, High order weighted essentially nonoscillatory
schemes for convection dominated problems, SIAM Rev.
51, 82 (2009).

R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W.
Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas,
and J. C. Adam, in Computational Science—ICCS 2002,
edited by P. M. A. Sloot, A. G. Hoekstra, C.J. K. Tan, and
J.J. Dongarra (Springer, Berlin, Heidelberg, 2002),
pp. 342-351.

H. Lu, G. Chen, G. Ni, R. Li, and Z. Xu, Impact of gas
backing pressure and geometry of conical nozzle on the
formation of methane clusters in supersonic jets, J. Phys.
Chem. A 114, 2 (2010).

A. Murakami, J. Miyazawa, H. Tsuchiya, T. Murase, N.
Ashikawa, T. Morisaki, R. Sakamoto, and H. Yamada,
Characteristics of hydrogen supersonic cluster beam gen-
erated by a Laval nozzle, J. Plasma Fusion Res. SERIES 9,
79 (2010).

E. Lindman, “Free-space” boundary conditions for the time
dependent wave equation, J. Comput. Phys. 18, 66 (1975).
P. K. Tiwari and V. K. Tripathi, Stimulated Raman scatter-
ing of a laser in a plasma with clusters, Phys. Plasmas 11,
1674 (2004).


https://doi.org/10.1038/nphoton.2009.119
https://doi.org/10.1038/nphoton.2009.119
https://doi.org/10.1038/nphoton.2013.234
https://doi.org/10.1016/j.physleta.2006.12.061
https://doi.org/10.1063/1.3673911
https://doi.org/10.1088/0741-3335/58/3/034014
https://doi.org/10.1063/1.873638
https://doi.org/10.1103/PhysRevA.53.3379
https://doi.org/10.1103/PhysRevE.64.056402
https://doi.org/10.1103/PhysRevE.70.046410
https://doi.org/10.1063/1.1871939
https://doi.org/10.1063/1.1871939
https://doi.org/10.1063/1.1869500
https://doi.org/10.1103/PhysRevLett.98.123401
https://doi.org/10.1103/PhysRevLett.98.123401
https://doi.org/10.1103/RevModPhys.82.1793
https://doi.org/10.1103/PhysRevSTAB.18.081302
https://doi.org/10.1103/PhysRevSTAB.18.081302
https://doi.org/10.1051/jp4:2006133135
https://doi.org/10.1051/jp4:2006133135
https://doi.org/10.1063/1.1142933
https://doi.org/10.1063/1.1142933
https://doi.org/10.1063/1.1149181
https://doi.org/10.1063/1.1149181
https://doi.org/10.1103/PhysRevLett.113.085001
https://doi.org/10.1103/PhysRevLett.113.085001
https://doi.org/10.1063/1.1524701
https://doi.org/10.1063/1.1524701
https://doi.org/10.1038/nphys442
https://doi.org/10.1109/27.221107
https://doi.org/10.1109/27.221107
https://doi.org/10.1103/PhysRevE.48.R3248
https://doi.org/10.1103/PhysRevE.48.R3248
https://doi.org/10.1103/PhysRevA.41.4463
https://doi.org/10.1103/PhysRevA.41.4463
https://doi.org/10.1103/PhysRevLett.64.2011
https://doi.org/10.1103/PhysRevLett.64.2011
https://doi.org/10.1137/070679065
https://doi.org/10.1137/070679065
https://doi.org/10.1021/jp902094g
https://doi.org/10.1021/jp902094g
https://doi.org/10.1016/0021-9991(75)90102-3
https://doi.org/10.1063/1.1652059
https://doi.org/10.1063/1.1652059

