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CBETA, the Cornell BNLEnergy-Recovery-Linac (ERL) Test Accelerator, is the first multiturn ERLwith
superconducting radio frequency (SRF) cavities cavities and will therefore be the first ERL whose current
could be limited by the beam break-up (BBU) instability. To investigate the threshold current, we calculate
HOMs inCBETA’s cavities, including their construction errors, and simulate the BBU threshold current with
the established simulation code BMAD. For some construction errors, this current limit is not sufficiently
large and means of increasing it are investigated. We find that some means that have been shown effective in
single turn ERLs are not practical for multiturn ERLs. To make sure that simulations are trustworthy for
CBETA, we revisit the BBU theory for multiturn configurations, and compare to simulation results. We also
further explore the scaling law of the BBU threshold current for the case with symmetric ERLs, and a new
scaling factor has been found. BBU suppression with lattice chromaticity has been investigated assuming
bunches with a Gaussian energy spread. The ability to simulate BBU effect with multiple particles per bunch
has been added into BMAD, and agreement with the derived theoretical formula is found. CBETA is
currently under beam commissioning at Cornell University. Our simulations show that an optimized optics
will push the BBU threshold current beyond the design current, for all realistic cavity production errors.
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I. INTRODUCTION

Energy recovery linacs (ERLs) open up a new regime of
beam parameters with large current and simultaneously
small emittances, bunch lengths, and energy spread. The
Cornell BNL ERL Test Accelerator (CBETA) is the first
accelerator that is constructed to analyze the potential of
multipass ERLs with superconducting SRF accelerating
cavities [1]. New beam parameters of ERLs allow for new
experiments such as nuclear and high energy colliders,
electron coolers, internal scattering experiments, x-ray
sources or Compton backscattering sources for nuclear
or x-ray physics [2–4]. By recirculating charged beams
back into the accelerating cavities, energy can be recovered
from the beams to the electromagnetic fields of the cavities.
Energy recovery allows an ERL to operate at a much higher
current than conventional linacs, where the current is
limited by the power consumption by the cavities. While
electron beams recirculate for thousands of turns in storage
rings, they travel only a few turns in an ERL before being
dumped. The short circulation time allows beam emittances

to be as small as for a linac. The potentials for high beam
current with simultaneously low emittances allows an ERL
to deliver unprecedented beam parameters.
CBETA is currently under construction at Cornell

University’s Wilson Laboratory. This is a collaboration
with BNL, and will be the first multipass ERL with a fixed
field alternating (FFA) lattice. It serves as a prototype
accelerator for electron coolers of electron ion colliders
(EICs). Both EIC projects in the US, eRHIC at BNL and
JLEIC at TJNAF will benefit from this new accelerator [5].
Figure 1 shows the design layout of CBETA. At full
operation, CBETA will be 4-pass ERL with maximum
electron beam energy of 150 MeV. This is achieved by first
accelerating the electron beam to 6 MeV by the injector
(IN). The beam is then accelerated by the Main Linac
Cryomodule (MLC) cavities (LA) four times to reach
150 MeV, then the beam is decelerated four times down
to 6 MeV before stopped (BS). The beam passes through
the MLC cavities for a total of eight times, each time with
an energy gain of �36 MeV. The field energy in the
cavities is transferred to the beam during acceleration, and
recovered during deceleration. Transition from acceleration
to deceleration is achieved by adjusting the path-length of
the forth recirculation turn to be an odd multiple of half of
the rf wavelength. The path-length of all the other turns is
exactly an integer multiple of the rf wavelength. CBETA
can also operate as a 3-pass, 2-pass, or 1-pass ERL with
properly adjusted configuration.
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While the beam current in ERLs is no longer limited by
the power consumption in the cavities, there will be new,
higher limits to the current. These are higher order modes
(HOMs) heating and the recirculative beam breakup (BBU)
instability. BBU occurs in recirculating accelerators as the
recirculated beam bunches interact with the HOMs in the
accelerating cavities. The most relevant HOMs for BBU
are the dipole HOMs which give a transverse kick to the
bunches. The off-orbit bunches return to the same cavity and
excite the dipole HOMs which can kick the subsequent
bunches further in the same direction. The effect can build
up and can eventually result in beam loss. With a larger
beam current the effect becomes stronger, so BBU is a
limiting factor on the maximum achievable current, called
the threshold current Ith. With multiple recirculation passes,
bunches interact with cavities for multiple times, and the Ith
can significantly decrease [6]. The low and high target
currents of CBETA are 1 mA and 40 mA respectively, for
both the 1-pass mode and 4-pass mode. Simulations are
required to check whether the Ith is above these target values.

II. BBU SIMULATION OVERVIEW

Cornell University has developed a simulation software
called BMAD to model relativistic beam dynamics in
customized accelerator lattices [7]. Subroutines have been
established to simulate specifically BBU and to find the Ith
for a specific lattice design. The program requires the lattice
to have at least one recirculated cavity with at least one
HOM assigned to it. There are six MLC cavities in the
CBETA lattice, and multiple HOMs can be assigned to each
cavity. The following two subsections describe how the
HOM data are generated, and how BMAD finds the Ith.

A. HOM simulation and assignment

To run BBU simulation we must first obtain the
HOM characteristics. Each HOM is characterized by its

frequency f, shunt impedance (R=Q), quality factor Q,
order m, and polarization angle θ. Since the MLC cavities
have been built and commissioned, one would expect
direct measurement of HOM spectra from the cavities.
Unfortunately, the measured spectra contain hundreds of
HOMs, and it is difficult to isolate each individual HOM
and compute their characteristics, particularly R=Q.
Therefore, instead of direct measurement, we simulate
the HOM profiles using the known and modelled cavity
structures [8]. The simulation has been done using the
CLANS2 program [9], which can model the fields and
HOM spectrum within a cavity.
In reality each cavity is manufactured with small unknown

errors. The cavity shape are characterized by ellipse param-
eters. The fabrication tolerance for the CBETAMLC cavities
require the errors in these parameters to be within�125 μm.
For simplicity we use ϵ to denote the maximum deviation,
i.e., ϵ ¼ 125 μm for realistic CBETA cavities. In the
CLANS2 program, random errors are introduced to the
modeled cavity shape within a specified ϵ. The cavity is then
compressed to obtain the desired fundamental accelerating
frequency. This procedure results in different HOM spectra
for each cavity. Hundreds of spectra were generated, each
representing a possible cavity in reality. The six MLC
cavities in CBETA have different manufacturing errors,
therefore each BBU simulation in BMAD assigns each
cavity one of these precalculated HOM spectrum. With
multiple BBU simulations we therefore obtain a statistical
distribution of Ith of CBETA because the assigned HOM
spectra will be different for each BBU simulation.
To save simulation time we include only the 10 most

dominant transverse dipole-HOMs (m ¼ 1) from a pre-
calculated spectrum. A dipole-HOM is considered more
dominant if it has a greater figure-of-merit ξ ¼ ðR=QÞffiffiffiffi
Q

p
=f [8]. Figure 2 shows an example HOM assignment

file with 10 dipole-HOMs for ϵ ¼ 125 μm. The zero
polarization angles indicate that all these HOMs are
horizontally polarized which give no vertical kick to the
beam bunches. We include only horizontal HOMs and
exclude any vertical HOMs. This is a reasonable model

FIG. 1. Layout of CBETA. The sections labeled (IN) and (LA)
are the injector and MLC cavities respectively. Sections (FA),
(TA), (ZA), (ZB), (TB), and (FB) form the FFA beamline which
can accommodate four recirculating orbits with energy ranging
from 42 MeV to 150 MeV. Sections (SX) and (RX) are splitters
and recombiners which control the path-length of each recircu-
lation pass.

FIG. 2. An example file of 10 dominant horizontal dipole-
HOMs assigned to a single CBETA MLC cavity. The HOMs are
simulated using CLANS2 program with ϵ ¼ 125 μm. Note that
all the HOM frequencies are above the fundamental frequency
1.3 GHz.
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since the cavities have cylindrical symmetry. For the rest of
this paper, HOM refers to dipole-HOM unless further
specified.

B. BMAD simulation detail

The goal of BBU simulations is to find the Ith for a given
multipass lattice with HOMs assigned to the cavities. The
BMAD program starts with a test current by injecting
beam bunches into the lattice at a constant repetition rate.
The initial bunches populating the lattice are given small
transverse orbit offsets to allow initial excitation of the
HOMs. As the bunches pass through the cavities, the
momentum exchange between the bunches and the wake
fields are calculated, and the HOM voltages are updated.
The program records all the HOM voltages over time and
periodically examine their stability. If all HOM voltages are
stable over time, the test current is considered stable, and a
greater current will be tested. Since the repetition rate is
held constant, this is equivalent to raising the charge per
bunch. In contrast, if at least one HOM voltage is unstable,
the test current is regarded unstable, and a smaller current
will be tested. The program typically converges to a Ith
within 0.1% accuracy in under 30 iterations.
Since the BBU instability occurs because bunches

interact with HOMs in the cavities, detailed tracking in
the recirculation arc is not required. To save simulation time
we usually hybridize the arc elements into an equivalent
transfer matrix. The time advantage of hybridization is one
to two orders of magnitude.

III. BMAD SIMULATION RESULT

As discussed, CBETA can operate in either the 1-pass or
4-pass mode, and each of the 6 MLC cavities can be
assigned with a set of HOM spectrum. Hundreds of
simulations with different HOM assignments were run to
obtain a statistical distribution of Ith for each specific
CBETA design. We will investigate the following five
design cases:
Case (1): CBETA 1-pass with ϵ ¼ 125 μm
Case (2): CBETA 4-pass with ϵ ¼ 125 μm
Case (3): CBETA 4-pass with ϵ ¼ 250 μm
Case (4): CBETA 4-pass with ϵ ¼ 500 μm
Case (5): CBETA 4-pass with ϵ ¼ 1000 μm
The first two cases aim to model the reality since CBETA

cavities have the fabrication tolerance of �125 μm. The
latter three cases with greater fabrication errors are simu-
lated for academic interest. Results of all the cases are
presented as histograms in the following subsections. Note
that some of the results have been presented in [10].

A. CBETA 1-pass with ϵ= 125 μm

The design current of CBETA 1-pass mode is 1 mA (the
low goal) and 40 mA (the high goal). It is important to note
that these goals refer to the injected current, so a 40 mA

injected current corresponds to 80 mA for the 1-pass mode
(Np ¼ 2) and 320 mA for the 4-pass mode (Np ¼ 8) at the
MLC cavities. Figure 3 shows that all 500 simulations
results exceed the lower goal of 1 mA, and only one of them
is below 40 mA. This is a promising result for the CBETA
1-pass operation. We have to be unfortunate for the cavities
to assume certain undesirable combinations of HOMs for
the current to not reach the high goal.

B. CBETA 4-pass with ϵ= 125 μm

The design current of CBETA 4-pass mode is also 1 mA
and 40 mA. Figure 4 shows that for the 4-pass mode, 494
out of 500 simulations exceed the 40 mA goal. This is again
quite promising for the 4-pass operation, and for the few
cases with undesirably low Ith, we will discuss the potential
ways to improve them in the following section. Comparing
to Fig. 3, the average Ith for the 4-pass mode is 80.8 mA,
much lower than the 179.4 mA of the 1-pass mode. This is
expected from the BBU theory, since more recirculation
passes allow more interaction between the HOMs and beam
bunches, thus resulting in a smaller Ith.

FIG. 3. 500 BBU simulation results of Ith for the CBETA
1-pass lattice. Each cavity is assigned with a random set of 10
dipole HOMs (ϵ ¼ 125 μm). The blue line indicates the higher
current goal of 40 mA.

FIG. 4. 500 BBU simulation results of Ith for the CBETA
4-pass lattice. Each cavity is assigned with a random set of 10
dipole HOMs (ϵ ¼ 125 μm).
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C. CBETA 4-pass with ϵ ≥ 250 μm

It is interesting to see how Ith distribution changes
with greater manufacture errors for the 4-pass lattice.
Figures 5, 6, and 7 show the results of 500 simulations
for ϵ ¼ 250 μm, ϵ ¼ 500 μm, and ϵ ¼ 1000 μm respec-
tively. For simple comparison, Table I summarizes the
statistics of all the results. For ϵ ¼ 250 μm, the minimum
and average Ith are both higher than the ϵ ¼ 125 μm case.

However, the low average Ith for ϵ ¼ 1000 μm implies that
a greater ϵ does not always improve the Ith.
Fundamentally greater deviation in the cavity shape

results in greater spread in the HOM frequencies. This
causes the HOMs across the cavities to act less coherently
when kicking the beam, thus potentially increases the Ith.
However, a greater deviation also tends to undesirably
increase the Q and R=Q of the HOMs, which usually
lowers the Ith. This could explain why Ith statistics improves
as ϵ increases from 125 μm to 250 μm, but deteriorates at
1000 μm. Compensation between the frequency spread and
HOM damping also implies that an optimal manufacture
tolerance could exist to raise the overall Ith.

IV. AIM FOR HIGHER Ith

From BBU theory we know that Ith depends generally on
the HOM properties (ωλ,Qλ, ðR=QÞλ), the lattice properties
(tr and T12), and the injected bunch time spacing tb. The
previous section shows how Ith can vary with different
HOM spectra in the cavities. Our goal now is to study how
much the Ith of CBETA can be improved. Based on the
knowledge from BBU theory, three methods have been
proposed and tested for existing 1-turn ERLs:
Method (1) Vary tb
Method (2) Vary phase advance
Method (3) Introduce x-y coupling
Both the second and third method involve modifying the

optics of the recirculation beamline between the pairs of
multipass cavities. The idea of modifying beam optics to
improve the Ith was first suggested in 1980 [11], and has
been tested out at the Jefferson Lab’s free electron laser
[12–14]. The effect of all three methods are simulated using
BMAD following only the design particle, with results
presented in the three following subsections.
When phase space filamentation is relevant, the BBU

instability can be suppressed, e.g., when the chromaticity
times the energy spread is of order 1 [15]. Since the
42 MeV orbit in the FFA lattice has a great natural
chromaticity, additional simulations are performed for
the CBETA 1-pass lattice. Note that in order to demonstrate
the chromaticity effect, it requires tracking of multiple
particles per bunch with an energy spread. This new feature

FIG. 5. 500 BBU simulation results of Ith for the 4-pass lattice
with cavity shape errors within ϵ ¼ 250 μm.

FIG. 6. 500 BBU simulation results of Ith for the 4-pass lattice
with cavity shape errors within ϵ ¼ 500 μm.

FIG. 7. 500 BBU simulation results of Ith for the 4-pass lattice
with cavity shape errors within ϵ ¼ 1000 μm.

TABLE I. Summary of the BBU Ith statistics of different
CBETA design cases. For the 4-pass mode, ϵ ¼ 250 μm gen-
erates the most satisfying Ith statistics.

CBETA
mode
(Np=2)

ϵ
(μm)

μðIthÞ
(mA)

σðIthÞ
(mA)

minðIthÞ
(mA)

N in 500
cases with
Ith < 40 mA

1-pass 125 179.4 56.1 21.9 1
4-pass 125 80.8 22.4 34.4 6
4-pass 250 325.3 164.4 82.4 0
4-pass 500 107.1 59.1 20.4 50
4-pass 1000 106.6 69.3 8.8 95

W. LOU and G. H. HOFFSTAETTER PHYS. REV. ACCEL. BEAMS 22, 112801 (2019)

112801-4



has been implemented in BBU simulation of BMAD.
The results and related theoretical analysis are presented
in Sec. VII.

A. Effect on Ith by varying tb
Equation (8) and Eq. (10) show that the Ith depends on tb

in a complicated way even for the most elementary BBU
case. The dependence however vanishes in the approximate
formula for the trough region [Eq. (13)]. It is interesting to
investigate how Ith of CBETA varies with tb using
simulation. For all the bunches to see desired longitudinal
acceleration, tb ¼ ntrf is required with a positive integer n.
For the rest of the paper, let Np denote the number of

times a bunch traverses the multipass cavity(s), which is
always equal to the number of recirculations plus one.
For an ERL, Np must be an even number, since each pass
through a cavity for acceleration is accompanied by one for
deceleration. For instance, the CBETA 1-pass lattice has
Np ¼ 2 and one recirculation, while the 4-pass lattice has
Np ¼ 8 and seven recirculations. Traditionally such an
accelerator is referred to as an Np=2 turn ERL.
For all the CBETA results presented in the previous

section, we have set n ¼ Np=2. This corresponds to filling
all the rf buckets (i.e., CW operation), and practically we
would not use a smaller n to avoid overlapping bunches.
Figure 8 shows the simulated Ith statistics with increasing n
at integer steps for the 4-pass lattice (Np ¼ 8;min½n� ¼ 4).
To focus on the effect of varying tb only, the 500 sets of
HOM assignments are fixed. The result shows that the Ith
depends weakly on tb, and potential improvement on Ith is
limited. Specifically the average Ith does not change by 5%.
It will still be interesting to test the effect of varying tb
when CBETA begins operation.

B. Effect on Ith by varying phase advance

Ith can potentially be improved by changing the phase
advances (in both x and y) between the multipass cavities.

This method equivalently changes the T12 (and T34)
element of the transfer matrices. In the elementary case
of BBU theory, smaller T12 directly results in greater Ith
[Eq. (8)]. However, with multiple cavities and HOMs, it is
generally difficult to lower all the T12 elements between
different HOM pairs. To freely vary the phase advances in
BMAD simulations, a zero-length lattice element is intro-
duced right after the first pass of the MLC cavities. The
element has the following 4 × 4 transfer matrix in the
transverse phase space:

Tdecoupledðϕx;ϕyÞ ¼
�
Mx←xðϕxÞ 0

0 My←yðϕyÞ
�
: ð1Þ

Each of the 2 × 2 submatrix depends on the Twiss
parameters (βi, αi, and γi) in one transverse direction
(i ¼ x or y) at the location of introduction:

Mi←iðϕÞ ¼
�
cosϕþ αi sinϕ βi sinϕ

−γi sinϕ cosϕ − αi sinϕ

�
: ð2Þ

Note that ϕx and ϕy are the additional transverse phase
advances introduced by the element, and both can be
chosen freely between ½0; 2πÞ. The 4 × 4 matrix does
not introduce optical coupling between the two transverse
phase spaces, and is thus named Tdecoupled. In reality there is
no physical element providing such a flexible transfer
matrix, and the phase advances are changed by adjusting
the quad strengths around the accelerator structure. In
simulation the introduction of this matrix allows us to
arbitrarily yet effectively vary the two phase advances.
To investigate how Ith varies with both transverse lattice

optics, we need to include vertical HOMs which give
vertical kicks to the bunches. Therefore for each simula-
tion, each cavity is assigned with three dominant “ϵ ¼
125 μm” horizontal HOMs and three identical vertical
HOMs (polarization angle ¼ π=2). Figure 9 shows an
example assignment to one cavity. With a fixed set of
HOM assignments, the Ith statistics is obtained for different
choices of (ϕx;ϕy).
One hundred statistics were obtained for both the 1-pass

and 4-pass CBETA lattice, and typical statistics are shown
by Figs. 10 and 11 respectively. Depending on the HOM

FIG. 8. Ith vs. tb=trf for the CBETA 4-pass lattice. For each
tb=trf , 500 simulations are run with different HOM assignments
(ϵ ¼ 125 μm). The black dot marks the average Ith, and the blue
inner line marks the �1σ range. The red outer line marks the
range of the entire distribution.

FIG. 9. An example file of three dominant horizontal HOMs
(the top 3) and three identical vertical HOMs (the bottom 3)
assigned to a single CBETA MLC cavity. The HOMs are
simulated using HTC program with ϵ ¼ 125 μm.
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assignment, the peak Ith can reach at least 461 mA for the
1-pass mode (and 171 mA for the 4-pass mode) with an
optimal choice of (ϕx;ϕy). Table II summarizes the
statistics of the peak Ith with the 100 different HOM
assignments. Clearly varying phase advances can be used
to (significantly) improve the Ith.
It is also observed that ϕx and ϕy affect Ith rather

independently. That is, at certain ϕx which results in a

low Ith (the “valley”), different choice of ϕy does not help
increase Ith, and vice versa. It is also observed that Ith is
more sensitive to ϕx, and the effect of ϕy becomes obvious
mostly at the “peak” in ϕx. Physically this is expected since
many lattice elements have a unit transfer matrix in the
vertical phase space, and the effect of varying T12 is more
significant than T34. In other words, HOMs with horizontal
polarization are more often excited. As we will see this is
no longer true when x-y coupling is introduced.
It is also observed that the location of the valley remains

almost fixed when HOM assignments are similar.
Physically the valley occurs when the combination of
phase-advances results in a great equivalent T12 (or T34)
which excites the most dominant HOM. Therefore, the
valley location depends heavily on which cavity has the
most dominant HOM, and the simulation results agree with
this observation.
In reality the optimal set of (ϕx;ϕy) to achieve the peak

Ith may not be achievable for CBETA due to its limited
number of free quadrupole magnets and strict constraints
on beam optics. However it suffices to have enough
freedom to increase the Ith over the design goal of
40 mA for the 4-pass mode. It will be interesting to
investigate this experimentally at CBETA.

C. Effect on Ith with x-y coupling

Another method potentially improves Ith by introducing
x-y coupling in the transverse optics, so that horizontal
HOMs excite vertical motions and vise versa. This method
has been shown very effective for 1-pass ERLs [16]. To
simulate the coupling effect in BMAD simulation, a
different 4 × 4 matrix of zero-length is again introduced
right after the first pass of the LINAC:

Tcoupledðϕ1;ϕ2Þ ¼
�

0 Mx←yðϕ1Þ
My←xðϕ2Þ 0

�
: ð3Þ

The elements of the two 2 × 2 submatrices Mj←iðϕÞ are
specified using on the transverse Twiss parameters at the
location of introduction:

M11 ¼
ffiffiffiffiffi
βj
βi

s
ðcosϕþ αi sinϕÞ

M12 ¼
ffiffiffiffiffiffiffiffi
βjβi

q
sinϕ

M21 ¼
1ffiffiffiffiffiffiffiffi
βjβi

p ½ðαi − αjÞ cosϕ − ð1þ αiαjÞ sinϕ�

M22 ¼
ffiffiffiffiffi
βj
βi

s
ðcosϕ − αj sinϕÞ: ð4Þ

The symplectic 4 × 4 matrix Tcoupled couples the lattice
optics in the two transverse directions with two phases of

FIG. 10. A scan of BBU Ith over the two phase advances for the
CBETA 1-pass lattice. Each cavity is assigned with a random set
of 3 dipole HOMs in both x and y polarization. (ϵ ¼ 125 μm).
For this particular HOM assignment, Ith ranges from 140 mA to
610 mA.

FIG. 11. A scan of BBU Ith over the two phase advances for the
CBETA 4-pass lattice. Each cavity is assigned with a random set
of 3 dipole HOMs in both x and y polarization. (ϵ ¼ 125 μm).
For this particular HOM assignment, Ith ranges from 61 mA to
193 mA.

TABLE II. Summary of the peak Ith statistics with varying
transverse optics over 100 different HOM-assignments for the
CBETA 1-pass and 4-pass mode. For both modes, introducing
additional phase advances (decoupled optics) gives greater
potential to increase Ith than x-y coupling.

Case (optics)
minðpeak IthÞ

(mA)
μðpeak IthÞ

(mA)
maxðpeak IthÞ

(mA)

1-pass (decoupled) 461 733 1275
1-pass (coupled) 299 557 928
4-pass (decoupled) 171 440 758
4-pass (coupled) 127 434 548
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free choice (ϕ1;ϕ2). Note the two phases are not the
conventional phase advances, and can both range from
0 to 2π.
Figures 12 and 13 show a typical way Ith varies with the

two free phases for the 1-pass and 4-pass lattice respec-
tively. Depending on the HOM assignment, the Ith can
reach at least 299 mA for the 1-pass mode (and 127 mA for
the 4-pass mode) with an optimal choice of (ϕ1;ϕ2).
Because the transverse optics are coupled, the two phases
no longer affect Ith in an independent manner. That is, there
is no specific ϕ1 which would always result in a relatively
high or low Ith. The two phases need to be varied together to
reach the peak Ith.
Similar to the case with decoupled optics, 100 statistics

are run for both the 1-pass and 4-pass mode with different
HOM assignments, and the statistics of the peak Ith are
summarized in Table II. As expected from theory, the Ith
can statistically reach a higher value for the 1-pass mode
than the 4-pass mode. While introducing additional phase
advances and x-y coupling both give great potential to raise
the peak Ith (way above the high design goal of 40 mA), the

former gives more. In realty, introducing x-y coupling also
requires installation of skew quadrupole magnets, and
CBETA might not achieve this due to limited space. In
short, varying phase advances is the most promising
method to improve the Ith of CBETA.

V. BBU THEORY VS. BMAD SIMULATION

In this section we will revisit the general BBU theory
developed in [6] and [16] to check the validity of BMAD
simulations by comparing the results to the theory predic-
tions. Benchmarking with numerical code has been per-
formed in [6] for the most elementary BBU configuration
(one dipole-HOM with one recirculation) using the recircu-
lation arc time tr as the variable. However, CBETA is a
multipass ERL with multiple cavities. To ensure Bmad
simulation results are representative, we also benchmark
the code with more complicated configurations with various
tr. This has not been done in the previously publications.
Furthermore, by using similar lattice and HOM parameters
across the configurations, one could compare the effect on
the Ith in a consistent fashion. We believe these benchmark-
ing results will be important to CBETA as well as future
multipass ERLs which concern BBU.
We will focus on four configurations (cases) of which

analytic formulas for Ith are available from [6,16]:
Case A: One dipole-HOM with Np ¼ 2,
Case B: One dipole-HOM with Np ¼ 4,
Case C: One dipole-HOM in two different cavities

with Np ¼ 2,
Case D: Two polarized dipole-HOMs in one cavity

with Np ¼ 2.
Since the theory assumes thin-lens cavities, it is inaccu-

rate to benchmark with the CBETA lattice whose cavities
are each 1 m long. Instead we make a simple lattice with
only thin-lens cavities and a recirculation arc with fixed
optics. The following subsections compare the simulation
results to theoretical formulas for the four cases.

A. One dipole-HOM with Np = 2

Case A is the most elementary case for BBU. Assuming
that the injected current I0 consists of a continuous stream
of bunches with a constant charge and separated by a
constant time interval tb, then the time-dependent HOM
voltage VðtÞ must satisfy, for any positive integer n, the
recursive equation [6]:

Vðntb þ trÞ ¼ I0
e
c
tbT12

X∞
m¼0

WðmtbÞVð½n −m�tbÞ; ð5Þ

in which WðτÞ is the long range wake function charac-
terized by the HOM parameters:

WðτÞ ¼
�
R
Q

�
λ

ω2
λ

2c
e−ðωλ=2QλÞτ sinðωλτÞ: ð6Þ

FIG. 12. A scan of BBU Ith over the two free phases for the
CBETA 1-pass lattice with x-y coupling. Each cavity is assigned
with a random set of 3 dipole HOMs in both x and y polarization.
(ϵ ¼ 125 μm). For this particular HOM assignment, Ith ranges
from 140 mA to 520 mA.

FIG. 13. A scan of BBU Ith over the two free phases for the
CBETA 4-pass lattice with x-y coupling. Each cavity is assigned
with a random set of 3 dipole HOMs in both x and y polarization.
(ϵ ¼ 125 μm). For this particular HOM assignment, Ith ranges
from 89 mA to 131 mA.
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All the related symbols are listed in Table III, which
closely follows the nomenclature used in [6].
The bunches arrive in the cavity at times ntb, where they

receive a transverse kick proportional to VðntbÞ, which then
describes the transverse offset of successive bunches in the
return loop. The Fourier transform

ṼΣðωÞ ¼ tb
X∞
n¼−∞

VðntbÞeiωntb ð7Þ

is zero for every ω except when the following dispersion
relation is satisfied:

1

I0
¼ DðωÞ; ð8Þ

DðωÞ ¼ e
c
tbT12eiωnrtbwðδ;ωÞ: ð9Þ

The function wðδ;ωÞ sums the contribution of all the
long range wakes in the frequency domain:

wðδ;ωÞ≡X∞
n¼0

Wð½nþ δ�tbÞeiωntb : ð10Þ

As a current, I0 is a real number, and for a fixed I0 there
is a set of complex values of ω which satisfy Eq. (8). For a
small I0 the voltage is stable, which means all the ω values
have a negative imaginary part. If we keep increasing I0,
eventually instability will occur due to great excitement.
This is reflected by the ω s that have positive imaginary
parts. At the onset of instability, one of the ω is crossing the
real axis (i.e., is real), and the corresponding current I0 is
then the threshold current Ith. While it’s difficult to find the

ω values for a given I0, it is easy to compute DðωÞ given a
real ω. Most values computed will be complex and there-
fore correspond to an unphysical I0. The largest real value
of DðωÞ determines the Ith. Due to the periodicity and
symmetry in Eq. (8), it is sufficient to check ω in just
½0; π=tbÞ or any equivalent interval. Mathematically this can
be written as:

1

Ith
¼ max

ω
½DðωÞ; DðωÞ ∈ ℜ;ω ∈ ½0; π=tbÞ�: ð11Þ

Equation (8), combined with Eq. (11), is called the
“general analytic formula” to determine the Ith for case A.
For a representative comparison between theory and
simulation, we check how Ith varies with tr while holding
tb constant. The matrix element T12 and the HOM proper-
ties are also held constant. Figure 14 shows the comparison
result. Clearly BMAD’s simulation agrees well with the
general analytic formula, in both the regions with a high Ith
(the crest) and low Ith (the trough).
If the HOM decay is insignificant on the timescale of tb

(ϵ ≪ 1), then Eq. (8) can be simplified by linearization in
small ϵ. We call the resulting formula the “linearized
analytic formula”:

DðωÞ ¼ −
κ

2

eiωtrT12

ðω − ωλÞtb þ iϵ
: ð12Þ

Similar to the general formula, the linearized formula does
not provide a closed form for Ith, so we still need to apply
Eq. (11) to find the Ith as the smallest real I0 over
ω ∈ ½0; π=tbÞ.
The usefulness of the linearized formula will be shown

when Np > 2. On the other hand, if the HOM decay is
insignificant also on the recirculation time scale (nrϵ ≪ 1),
then the formula can be further simplified into the
“approximate analytic formula”:

TABLE III. A list of important quantities in the elementary
BBU theory (one dipole-HOM, Np ¼ 2). ϵ is a measure of HOM
decay in the time scale of tb.

Symbol SI Unit Definition or Meaning

e C Elementary charge
c m/s Speed of light
trf s Fundamental rf period
tb s Injected bunch time spacing (>trf )
tr s Recirculation arc time (typically >tb)
nr � � � nr ¼ Top½tr=tb�, integer
δ � � � δ ¼ ðtr=tb − nrÞ ∈ ½0; 1Þ

For an ERL δ ≈ 0.5
ωλ rad=s HOM radial frequency
ðR=QÞλ Ω normalized HOM Shunt Impedance
Qλ � � � HOM quality factor
T12 s=kg The T12 element of the transfer

matrix of the recirculation arc
WðτÞ V=mC Long range wake function [see Eq. (6)]
wðδ;ωÞ V=mC Sum over all wakes [see Eq. (10)]
I0 A Measured current at the injector
ϵ � � � ϵ ¼ ðωλ=2QλÞtb
κ CsΩ=m2 κ ¼ tbðe=c2ÞðR=QÞλðω2

λ=2Þ

FIG. 14. Comparison of the Ith obtained from different analytic
formulas and BMAD simulation for Np ¼ 2. Parameters: ctrf ¼
0.5 m, tb ¼ 50trf , ωλ=2π ¼ 1 GHz, Qλ ¼ 100, ðR=QÞλ ¼ 104

Ω, T12 ¼ −10 m=ð1 GeV=cÞ.
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Ith ¼

8>><
>>:

− ϵ
κ

2
T12 sinðωλtrÞ if T12 sinðωλtrÞ < 0

2
κjT12j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ

�
tb
tr

�
2
×minmodðωλtr; πÞ

r
otherwise;

ð13Þ

in which

minmodðx; yÞ ¼ min½mod ðx; yÞ; y −mod ðx; yÞ�: ð14Þ

It is worth checking the applicability of the linearized
and the approximate formula. This has been done in [6] for
a case with ϵ ¼ 0.00048 and nr ¼ 6 to 7. Their result shows
great agreement with the two nongeneral formulas in the
trough region, but not in the crest region. Here we test a
new case with ϵ ¼ 0.024 and nr ¼ 2 to 3, and the results
are plotted together on Fig. 14.
We again observe that the linearized formula agrees well

with the general formula in the trough region, but the
approximate formula agrees well only in a smaller region
around the minimum of the trough. The inaccuracy of the
approximate formula in the trough region comes from the
increased value of nrϵ. With HOM dampers,Qλ is typically
on the order of 104, so for an ERL with continuous wave
operation (tb ¼ 2trf=Np, filling all the rf buckets), ϵ ≪ 1 is
usually guaranteed. However, nr (the harmonic number of
an ERL, 343 for CBETA) can be a large number depending
on the recirculation lattice, so nrϵ ≪ 1 is not guaranteed.
This means the approximate formula needs to be applied
with caution. Note that the top case in Eq. (13) corresponds
to the Ith in the trough region, and can be rewritten as:

Ith ¼
−2c2

eðR=QÞλQλωλ

1

T12 sinðωλtrÞ
: ð15Þ

This formula has been derived in several literature
regarding BBU [17–19]. Despite its limited applicability,
the formula gives us insight on how to avoid a low Ith.
Besides suppressing the HOM quality factor Qλ, one can
also adjust the recirculation time to avoid sinðωλtrÞ ≈þ1
(or −1) when T12 is negative (or positive). Theoretically Ith
can be infinite by making T12 ¼ 0. Unfortunately this can
not be achieved in general with multiple cavities and
Np > 2, since the T12 between each pair of multipass
cavities all needs to be zero. In reality the T12 also depends
on the length of the cavity, which will be discussed in
Sec. V E. The strategies to improve the Ith in general will be
covered in Sec. V.

B. One dipole-HOM with Np = 4

In case A (Np ¼ 2) we see that three analytic formulas
exist: the general, linearized, and approximate formula. For
a more general case with one dipole-HOM yet Np > 2, the
general formula involves finding the maximum eigenvalue

of a complex matrix [6]. Due to numerical difficulty we will
not apply the general formula. Similar to Eq. (12), the
linearized formula is [6]:

DðωÞ ¼ −
κ

2

1

ðω − ωλÞtb þ iϵ

XNp

J¼1

XNp

I¼Jþ1

eiωðtI−tJÞTIJ; ð16Þ

in which I and J are the cavity pass index, ðtI − tJÞ is
the recirculation time from pass J to I, and TIJ is the
corresponding T12 matrix element. To find the Ith we
again apply Eq. (11), and no complex matrix is involved.
The approximate formula also exists, but works only for

the “trough regions” in which
PNp

J¼1

PNp

I¼Jþ1 sin½ωðtI − tJÞ�
TIJ ≤ 0:

Ith ¼
−2c2

eðR=QÞλQλωλ

1PNp

J¼1

PNp

I¼Jþ1 sin½ωλðtI − tJÞ�TIJ
:

ð17Þ

Figure 15 shows the comparison between BMAD
simulation and the two analytic formulas. In contrast to
the case with Np ¼ 2 (Fig. 14), we now have three instead
of one trough regions in one period. The number, depth,
and location of the troughs depend on the signs and
magnitudes of TIJ, or the optics of multiple recirculation
passes. We again observe great agreement between simu-
lation and the linearized formula at the trough regions, and
the approximate formula agrees well only around the
minimums.

C. One dipole-HOM in two different cavities withNp = 2

The complexity of this case comes from the interaction
between the two HOMs via different recirculation passes.
Figure 16 shows all the possible ways the HOMs excite
themselves and each other. For example, the HOM of

FIG. 15. Comparison of the Ith obtained from the linearized
formula and BMAD simulation for Np ¼ 4. Parameters used are
the same as in Fig. 14, with T12 ¼ TIJ and tr ¼ tI − tJ for any
I ¼ J þ 1. The trough regions are where the approximate formula
(red triangles) is evaluated.
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cavity 1 (V1) can excite itself via recirculation (via the
green arrow labeled T21

11). It can also excite the HOM of
cavity 2 (V2) in the same pass (via the blue arrows labeled
T11
21 for pass 1 and T22

21 for pass 2).
Similar to Case B, the general formula involves calcu-

lating the eigenvalues of a complex matrix. However, the
formula greatly simplifies if the two HOMs have identical
characteristics, and the lattice has symmetric optics (T22

21 ¼
T11
21 and T21

22 ¼ T21
11) [6]:

DðωÞ ¼ −
κ

2

eiωtr
h
T21
11 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T21
12ðT21

21 þ 2e−iωtrT11
21Þ

p i
ðω − ωλÞtb þ iϵ

: ð18Þ

Comparing to Eq. (12) we see the equivalentT12 becomes
ðT21

11 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T21
12ðT21

21 þ 2e−iωtrT11
21Þ

p
Þ, which has two possible

values for a fixed ω. Since Eq. (18) is a linearized formula,
to find the Ith we need to apply Eq. (11) while considering
both values. In general one value gives a greater jI−10 j, which
leads to the Ith. Equation (18) has several peculiarities which
will be explained by the following three cases with special
optics (See Table IV), and Fig. 17 shows the theory and
simulation results for these cases.
In the case C1, T21

12 ¼ 0, which means that the second
HOM (j ¼ 2) can not excite the first HOM (j ¼ 1). This is
shown clearly by the red arrow in Fig. 16. Even though the
first HOM can excite the second HOM in this case, there is
no feedback from the second HOM. The two HOMs only
feedback to themselves. The Ith is therefore as large as that
of with one single cavity only. Equation (18) supports this
argument since the equivalent T12 is now simply T21

11, which

agrees with Eq. (12) in the case A. The simulation results
again agree well at the trough regions, as observed for all
the linearized formulas before.
For the case C2, each HOM can still excite itself directly

through T21
ii (the green arrows in Fig. 16). However, the two

HOMs can now excite each other via recirculation through
T21
12 (the red arrow) and T

21
21 (the orange arrow). This mutual

excitation results in extra feedback, and changes the
equivalent T12 to be ðT21

11 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T21
12T

21
21

p
Þ, which is indepen-

dent of ω. This means the Ith occurs at the same ω as in the
case C1, but the value is scaled down by a constant factor
depending on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T21
12T

21
21

p
. The scaling effect is shown by the

top two curves in Fig. 17. Note that if we swap the HOM
index i and j, the equivalent T12 stays the same.
For the case C3 we have T21

21 ¼ 0. The two HOMs still
excite other (via orange and blue arrows in Fig. 16), but
not symmetrically as in the case C2. The bottom curve of
Fig. 17 shows the corresponding Ith profile, and the
location of the trough regions clearly shifts from the
two previous cases. This shift is expected due to the extra
e−iωtr term in Eq. (18). The crest regions might have
vanished as we choose between the two quadratic values
for greater jI−10 j. The choice at different tr varies with on
the e−iωtr term, which allows us to stay at the trough region
given by one of the two values. The overall agreement
with the simulation results also supports that the crest
regions, at which linearized formula typically disagrees,
have vanished.

D. Two polarized dipole-HOMs
in one cavity with Np = 2

All the cases discussed so far assume that the HOMs are
polarized in the horizontal direction only. With cylindrical
symmetry there exists a vertical HOM for each horizontal
HOM, and the HOM pair has identical HOM characteristics
except for the polarization angle. If the recirculation lattice
has coupled beam optics between the two transverse phase

FIG. 16. Illustration of the case C configuration. Vj denotes the
HOM of cavity j, and TIJ

ij is the T12 from HOM j of pass J to
HOM i of pass I. Arrows with the same color indicate that
the corresponding TIJ

ij are assumed the same in order to derive
Eq. (18).

FIG. 17. Comparison of the Ith obtained from the linearized
formula and BMAD simulation for the case C1 (top curve), C2
(middle), and C3 (bottom). The HOM properties are the same as
in case A, and the optics are chosen carefully so T21

11 ¼
−10 m=ð1 GeV=cÞ for all the three subcases.

TABLE IV. The three subcases for case C with special optics.

Case Optics

C1 T21
12 ¼ 0

C2 T22
21 ¼ T11

21 ¼ 0

C3 T21
21 ¼ 0
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spaces (i.e., nonzero T14 and T32), then the two HOMs
could excite each other via recirculation. Similar to case A,
we consider the simplest configuration with one cavity
and Np ¼ 2. For the case with ϵ ≪ 1 and nrϵ ≪ 1, the
approximate formulas for the Ith are [16]

Ith ¼ minðI�Þ; ð19Þ

I� ¼

8>><
>>:

− ϵ
κ

2
T� sinðωλtrþν�Þ if it is < 0

2
κT�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ

�
tb
tr

�
2
× minmodðωλtr þ ν�; πÞ

r
o=w;

ð20Þ

T�eiν� ¼ T12 þ T34

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
T12 − T34

2

�
2

þ T14T32

s

with T�; ν� ∈ ℜ and T� > 0: ð21Þ

Note that Eq. (19) is essentially Eq. (13) with T12

replaced by T�, and ν� added to ωλtr. From Eq. (19)
we see there are two candidates (Iþ and I−) for the Ith, and
the nature of coupling (i.e., the matrix elements in Eq. (21)
determines which one is the Ith at different tr). We define
Δν ¼ jνþ − ν−j, which measures the phase shift between
IþðtrÞ and I−ðtrÞ. To compare the formula with simulation
results, we again focus on three cases with specified optics,
listed in Table V below.
Figure 18 compares the Ith obtained from Eq. (19) and

BMAD simulation for the case D1. To study the behavior of
coupling, the two candidates I�ðtrÞ are also plotted. Note
that both I�ðtrÞ curves have distinct crest and trough
regions as in case A. The two curves are Δν ¼ π out of
phase, causing the Ith to always stay at the trough regions.
This is expected for two reasons. First, the lattice has no
coupling (T14 ¼ T32 ¼ 0), so the two HOMs do not
excite each other. Mathematically we see Tþ ¼ jT12j and
T− ¼ jT34j. The second reason is about the physical
difference between the trough and crest region. The trough
region has lower Ith because a particle with positive x offset
receives positive kick in x after recirculation. In the crest
region the particle instead receives a negative kick in x,
resulting in a more tolerable Ith. Since we have T12 ¼ −T34

for subcase 1, when x motion benefits from the crest region,

y motion suffers from the positive feedback at the trough
region, and vice versa. The Ith occurs when either x or y
motion becomes unstable, not both. If we instead had
T12 ¼ T34, the two candidate curves will overlap each other
(in phase with equal magnitude), indicating that x and y
motion are identical. In other words, without optical
coupling the Ith either follows Fig. 14 (with distinct crest
and trough regions) or Fig. 18 (with trough regions only).
The BMAD simulation agrees with the approximate for-
mula well, especially in the trough regions of IþðtrÞ.
Reasons for the slight overestimate of I−ðtrÞ at the crest
region are to be investigated.
Figure 19 shows the comparison for the second subcase.

The Ith for this particular set of optics has been checked
in [16] for a specific tr value, and here we check against
various tr values with BMAD simulation. Similar to the
case D1, case D2 has Tþ ¼ T−, but the different value of
Δν drastically changes the Ith behavior at different tr.
Since Δν ≠ π, the crest regions of the two candidates
partially overlap, giving a peak region to the Ith curve.

TABLE V. The three subcases for case D with specified optics.
We set x ¼ −10m=ð ffiffiffi

2
p

GeV=cÞ, and the rest of the matrix
elements are set to meet symplecticity, consistent with [16]. The
optics for case D3 was specifically chosen to obtain Δν ¼ 2π.

Case T12 T14 T32 T34 T−=Tþ Δν

D1 x 0 0 −x 1 π
D2 x 3x −2x 4x 1 4.97
D3 x ð2þ ffiffiffi

6
p Þx ð−2þ ffiffiffi

6
p Þx 3x 13.9 2π

FIG. 18. Comparison of the Ith obtained from the approximate
analytic formula [Eq. (19)] and BMAD simulation for case D1.
The two candidates for Ith [I� from Eq. (20)] are also plotted.
Parameters: tb ¼ trf ¼ 1=1.3 GHz, ω1 ¼ ω2 ¼ 2π × 2.2 GHz,
Q1 ¼ Q2 ¼ 100, ðR=QÞ1 ¼ ðR=QÞ2 ¼ 104 Ω.

FIG. 19. Comparison of the Ith obtained from the approximate
analytic formula [Eq. (19)], the two candidates [Eq. (20)], and the
BMAD simulation for the case D2. The parameters used are
identical as in the case D1, except for the optics.
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Since coupling exists now, the two transverse motions
affect each other, and should not be treated independently.
Around the peak, the motions together benefit from the
crest regions, resulting in a greater Ith. Again, BMAD
simulation agrees well with the approximate formula.
Lastly, Fig. 20 shows the comparison for the case D3.

The optics are carefully chosen such that Δν is 2π, or
equivalently zero. This causes the two candidate curves to
be in phase, and the ratio IþðtrÞ=I−ðtrÞ ¼ T−=Tþ remains
constant. The Ith curve will always follow the “smaller”
candidate curve (I−ðtrÞ with our choice of optics). Recall
that in the case D1 the two candidate curves would overlap
(and be in phase) if T12 and T34 have the same sign. One
might thus wonder what is the effect of coupling in the case
D3. In contrast to the case D2 in which coupling changes
both the magnitude and phase of the two curves, coupling
here only changes their magnitude. The Ith magnitude
therefore entirely increases or decreases at all tr depending
on the beam optics.
The three cases above have shown that optical coupling

can strongly affect the Ith. However, in reality it can be
difficult to achieve specific optics in order to reach a high
Ith. For a more general case in BBU with more HOMs and
Np > 2, neither the linearized formula nor the approximate
formula exists. The general formula becomes more difficult
to apply numerically, so we rely on simulation to find the
Ith. The agreement with the analytic formulas in all the
example cases makes us confident to use BMAD to
calculate the Ith of CBETA.

E. Comment on recirculation T12

Let us refocus on the most elementary BBU case with
one HOM and Np ¼ 2 (Case A). Since the BBU theory
derived in [6] assumes a thin-lens cavity, the T12 in the
formulas corresponds to the T12 of the recirculation beam-
line. This is however an approximation to the reality since
particles undergo transverse motion through a cavity with

nonzero length. Consequently the equivalent T12 would
depend on other matrix elements (T11, T21, T22, etc.) of the
recirculation beamline, as well as the transfer matrix of the
cavity itself. This effect is included in BMAD simulation,
with the cavity transfer matrix derived in [20], and the
transverse HOM kick given instantly at the center of the
cavity. Figure 21 shows the Ith for case A with varying
cavity length. The optics of the recirculation beam line is
held constant. In our case, increasing cavity length lowers
the equivalent jT12j, resulting in a greater Ith for all tr.
Physically this reflects the transverse focusing effect of
the cavity.
In reality the HOM kick is not instant at a specific point

of the cavity, but gradual depending the time varying HOM
field. A more realistic simulation would therefore integrate
the field contribution from both the fundamental mode
and the HOM to calculate the exact particle trajectory
through the cavity. Since the HOM field depends on the
interaction history of the traversed beam, the simulation can
be computationally intensive.

VI. SCALING OF MULTIPASS Ith WITH Nr

The scaling of Ith over the number of linac pass Np was
estimated to be

IthðNrÞ ≈
1

Nrð2Nr − 1Þ Ithð1Þ ð22Þ

in [6] for multiturn accelerators with Np ¼ 2Nr. Here we
revisit the scaling law and focus on the case with symmetric
ERLs. Symmetry means that the optics and time of flights
of the accelerating passes are mirror symmetric to those of
the decelerating passes. Assuming there is only one dipole
HOM, the formula for the multi-pass Ith can be written as,
from the BBU theory:

Ith ¼
2ϵ

κ

1

maxωΣS
; ΣS > 0: ð23Þ

FIG. 20. Comparison of the Ith obtained from the approximate
analytic formula [Eq. (19)], the two candidates [Eq. (20)], and the
BMAD simulation for the case D3. The parameters used are
identical as in the case D1, except for the optics.

FIG. 21. Comparison of the Ith obtained from the BMAD
simulation for case A with different cavity length. Parameters
used are identical as in Fig. 14.
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ΣS ¼ −
XNp

J¼1

XNp

I¼Jþ1

sin½ωðtI − tJÞ�
ffiffiffiffiffiffiffiffiffiffi
βIβJ
pIpJ

s
sinðϕIJÞ; ð24Þ

in which βI and pI are the beta function and momentum at
pass I, and ϕIJ is the phase advance from pass J to pass I.
For an ERL we have the following constraints:

Np is even: ð25Þ

ðtIþ1 − tIÞ ¼
(
ðmI þ 1

2
Þ × trf if I ¼ Np=2

mItrf otherwise ðmI ∈ NÞ:
ð26Þ

For a symmetric ERL we have additional constraints:

tI þ tNp−Iþ1 ¼ const ∀ I: ð27Þ

βI ¼ βNp−Iþ1 ∀ I: ð28Þ

pI ¼ pNp−Iþ1 ∀ I: ð29Þ

ϕIJ ¼ ϕðNp−Jþ1ÞðNp−Iþ1Þ ∀ I > J: ð30Þ

The goal here is to obtain the scaling law of theminimum
Ith for a symmetric ERL with adjustable phase advances
ϕIJ and fixed tI, βI, and pI . We define:

min½Ith� ¼
2ϵ

κ
ðmax
ω;ϕIJ

ΣSÞ−1; ΣS > 0: ð31Þ

For simplicity we choose
ffiffiffiffiffiffiffiffiffiffiffiffi
βI=pI

p ¼ constant. With
σx ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βxϵn=ðβγÞ

p
, this means the beams size is the same

for all I. The symmetry constraint on ϕIJ reduces the
number of free phases from NpðNp − 1Þ=2 to Np=2. In
general, each term in Eq. (31) can be positive or negative
depending on the values of ðω;ϕIJÞ, and the minimum Ith
occurs when the sum of these terms, neglecting the minus
sign at the front, is the most negative. Figure 22 below
shows the resultant min½Ith� with different Np and ωλ after
optimization using Mathematica.
With no prediction it turns out that the minimum Ith

closely follow a new scaling law:

min½IthðNrÞ� ≈
�

1

Nr

�
2

min½Ithð1Þ�: ð32Þ

Instead of the estimated value of 1=Nrð2Nr − 1Þ in [6],
the scaling factor for the min½Ith� for a symmetric ERL
is found to be just ð1=NrÞ2. While the exact scaling
factor requires rigorous mathematical proof, the new
scaling factor provides more insight into the Ith scaling
for symmetric ERLs.

Note that the previous factor in [6] was estimated to be
1=Nrð2Nr − 1Þ because there are Nrð2Nr − 1Þ terms in
Eq. (23). However, due to the symmetry constraints, the
number of distinct terms is reduced toN2

r , which happens to
correspond to the new scaling factor of ð1=NrÞ2. While the
previous factor was obtained assuming that the multipass
TIJs have very similar values for all I > J, the new scaling
factor assumes mirror symmetrical optics. In a realistic
ERL like CBETA, the former assumption is more difficult
to achieve than the latter one, making the new scaling law
more relevant. Since ERLs are usually designed to achieve
a high Ith instead of the minimum Ith, the applicability of
the new scaling law might first seem limited. However,
with many cavities and HOMs, the Ith tends to locate at
the trough region, with a value close to the minimum Ith.
The new scaling law for the minimum Ith can therefore serve
as a decent approximation for the scaling of the actual Ith.

VII. EFFECT OF CHROMATICITY ON BBU Ith

When phase space filamentation is relevant, e.g., when
the chromaticity (ξ ¼ dν=dδ) times the energy spread (σδ)
is of order 1, the BBU instability can be suppressed [15].
Here we estimate this effect on the effective T12 in the
BBU theory. The T12 seen by the design particle can be
written as:

T12ðδ ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffi
β0β1
p0p1

s
sinð2πν0Þ; ð33Þ

in which β0 (β1) and p0 (p1) are the beta function and
momentum at the beginning (end) of the recirculation arc
around the cavity, and 2πν0 is the phase advance of the
design particle.
For a particle with relative energy deviation δ, the phase

advance is 2πðν0 þ ξδÞ. Let ρðδÞ denote the δ distribution
of the beam, then the effective T12 can be written as:

FIG. 22. Scaling of the min½Ith� over Np for symmetric ERLs
with different ωλ. Parameters: ctrf ¼ 0.5 m, tb ¼ trf , Qλ ¼ 100,
ðR=QÞλ ¼ 104 Ω, tIþ1 − tI ¼ 100trf (with an additional 1

2
trf for

I ¼ Np=2), βI ¼ 10 m, and pI ≈ 1 GeV=c for all I.
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T̂12 ¼
ffiffiffiffiffiffiffiffiffiffi
β0β1
p0p1

s Z
∞

−∞
ρðδÞ sin½2πðνþ ξδÞ�dδ ð34Þ

Assume ρðδÞ is a Gaussian distribution with ðμ; σÞ ¼
ð0; σδÞ, and apply the identity sinðAþ BÞ ¼ sinðAÞ
cosðBÞ þ cosðAÞ sinðBÞ. The second term in the integral
then vanishes (odd in δ), yielding:

T̂12 ¼
ffiffiffiffiffiffiffiffiffiffi
β0β1
p0p1

s
sin ð2πν0Þffiffiffiffiffiffiffiffiffiffi

2πσ2δ
p Z

∞

−∞
e−δ

2=2σ2δ cosð2πξδÞdδ

¼ T12ðδ ¼ 0Þ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2δ

p � ffiffiffiffiffiffiffiffiffiffi
2πσ2δ

q
e−ð2πξÞ2σ2δ=2

�

¼ T12ðδ ¼ 0Þe−ð2πξσδÞ2=2 ð35Þ

Figure 23 below shows the Ith results of tracking a
Gaussian beam (with different σδ) through a “one-HOM,
Np ¼ 2” lattice (with different chromaticity ξ). From the
most elementary BBU case, we know Ith ∝ T−1

12 , so from
the chromaticity analysis above we expect:

Ithðσδ; ξÞ=Ithð0; 0Þ ¼ e−ð2πξσδÞ2=2: ð36Þ
Bmad simulation results agree with this prediction for

various ðσδ; ξÞ.
Since the factor e−ð2πξσδÞ2=2 is smaller than unity, the

effective T12 becomes smaller in magnitude, resulting in a
greater Ith all the time. For a multipass lattice with multiple
cavities, the effective T12 elements scale up differently
depending on the chromaticity of the return loops.
Assuming that δ distribution remains Gaussian-like, the
Ith is expected to be greater than that with only the design
particle.
CBETA has no sextupoles, and the natural horizontal

chromaticity ξ of its four loops is approximately, from the

lowest to the highest design energy, −85.6, −25.3, −16.5,
and −14.9. With an energy spread σδ of 10−3, the effective
T12 elements of the lowest energy loop decreases by 13.4%.
This means that the Ith of CBETA 1-pass mode could
increase up to 15.5% assuming only one dipole HOM
exists. To check this we tracked a beam with 3000 particles
per bunch through the CBETA 1-pass lattice with varying
σδ and different HOM assignments. Note that these BBU
simulations with multiple particles per bunch are computa-
tionally intensive comparing to the cases with single
particle tracking.
Figure 24 shows that for 50 different HOM assignments,

the Ith increases as σδ increases, and the result curves follow
relatively close to the theory prediction. The discrepancy in
some of the curves is likely due to the non-Gaussian
distribution of the accelerated bunches. Regardless, the
results indicate that CBETA 1-pass can reach a higher Ith
than predicted with single particle tracking. Moreover, the
theory can be used to approximate the case non-Gaussian
bunches. Although increasing the energy spread seems to
help raising the Ith, it will eventually cause particle loss
due to lattice dispersion. A large energy spread can also
cause undesired ERL operation at the cavities. The limit and
reliability of this method to increase the Ith therefore requires
experimental testing. For the 4-pass mode, the chromaticity
magnitudes of the higher energy loops are much smaller,
giving a small chance to increase the Ith.

VIII. CONCLUSION

To establish the trustworthiness of BBU simulations for
CBETA, agreement has been found between the BBU
theory and BMAD simulations for multiturn ERL setups.
This gives us confidence in BMAD simulation for deter-
mining the Ith for ERL lattices with multipass cavities and
multiple HOMs, like CBETA. Simulation results show that

FIG. 23. The Ith results from tracking a Gaussian beam (2000
particles per bunch) through a “one-HOM, Np ¼ 2” lattice with
different (σδ, ξ). The three curves correspond to the factor
e−ð2πξσδÞ2=2 with different ξ, and the black dots are the simulation
results. Parameters: same as in case A (See Fig. 14).

FIG. 24. Fifty Ith results from tracking a beam (3000 particles
per bunch) through the CBETA 1-pass lattice with different σδ
and HOM assignments. Each of the 50 dashed curves corre-
sponds to one specific HOM assignment, and the thick curve is
the theory prediction with a Gaussian beam.
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for CBETA (both the 1-pass and 4-pass mode), the Ith can
always surpass the low design current of 1 mA, and can
reach the high goal of 40 mA in over 98% of the cases with
realistic cavity construction errors.
In the remaining 2% of the cases, the Ith can be improved

by adjusting the lattice optics, which has been an effective
method for 1-turn ERLs like the Jefferson FEL-ERL.
Varying phase advances is shown to be more effective than
introducing x-y coupling. Also, both methods are shown less
effective in multiturn ERLs than in the 1-turn arrangement.
It is intended to verify these observations experimentally,
and it will be interesting to test the applicability and
effectiveness of all these methods in CBETA.
The scaling law of the Ith with Nr is revisited for the case

with symmetric ERLs, and the scaling factor is found to be
approximately 1=N2

r. This new scaling law has better
applicability for ERLs than the previously approximated
factor of 1=Nrð2Nr − 1Þ in [6]. Also, the effect of lattice
chromaticity on the Ith is studied assuming bunches with
an Gaussian energy spread, and a relationship between the
Ith, chromaticity, and energy spread was found. Results
with the CBETA 1-pass lattice show that the Ith in reality
can be higher than predicted using single particle tracking.
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