
 

Complex bend. II. A new optics solution

G. Wang,1 T. Shaftan,1,* V. Smaluk,1 Y. Hidaka,1 O. Chubar,1 T. Tanabe,1

J. Choi,1 S. Sharma,1 C. Spataro,1 and N. A. Mesentsev2
1NSLS-II, Brookhaven National Laboratory, Upton, New York 11973, USA

2Budker Institute of Nuclear Physics, pr. Lavrentyeva 30, Novosibirsk 630090, Russia

(Received 30 March 2019; published 13 November 2019)

In our previous publications, we introduced a concept of complex bend, which is a bending element
consisting of dipole poles, interleaved with strong focusing and defocusing quadrupole poles. An electron
ring built from such elements features low emittance while preserving substantial room for insertion
devices and associated lattice elements. In this paper, we present two new optics solutions for the complex
bend which offer to substantially reduce the device length by removing the dipole poles. In the first of the
solutions, the bending is realized by shifting the quadrupole poles along the curved horizontal axis. For the
second solution, we use permanent magnet quadrupole poles installed into a wide gap of the conventional
electromagnet. In this case, the resulting bending field in the magnet gap is a superposition of the
quadrupole field from the poles and the dipole field from the conventional magnet. We present an analysis
of the particle motion and synchrotron radiation emitted in such fields, as well as an assessment of the ring
linear lattice that is composed of complex bend elements.
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I. INTRODUCTION

In Refs. [1,2], we reported the conceptual details of a
complex bend element, which is based on a sequence of
strong focusing poles of alternating polarity, interleaved
with pure dipole poles, providing bending. Splitting a long
dipole into a sequence of short focusing poles produces
a strong local focusing of the beam envelope, as well as
the lattice functions, and results in a substantially lower
emittance of the ring lattice. Indeed, as the horizontal
emittance depends on the number of discrete dipoles in the
lattice as N3, we write

εx ¼ F
E2

JxN3
d

⇒
CB

F
E2

Jx½NdNp�3
;

where F is a function of the ring lattice, E is the beam
energy, Jx is the horizontal partition number, Nd is the
number of dipoles, and Np is the number of poles per
dipole in the ring. Therefore, by using the complex bend
concept, we expect to gain a large factor in the brightness of
a synchrotron light source, which is a function of the ring
emittance.

Recently [3], we have considered a modification of the
complex bend element, aiming to reduce its overall length,
lower the quadrupole strength, and, therefore, free up more
space in the storage ring lattice available for installing
lattice magnets, diagnostics, and insertion devices. We
realized this modification by removing dipole poles from
the element and enabling the bending either by quadrupole
poles, shifted transversely, or by an external field intro-
duced by an electromagnet with the quadrupole poles fitted
inside its gap.
With these solutions, we designed the complex bend

element, which is about half as long as the previous version
with the dipole poles [1] at a comparable or lower gradient
(we constrained ourselves to stay at or below 250 T=m and
at the bore diameter of not less than 1 cm). We analyzed
fields of the shifted quadrupoles and particle dynamics
through them, which is presented in Sec. II of this paper.
In the following, we applied the developed solution to a
model ring lattice, taking NSLS-II ring geometry as the
reference. In the process of our analysis, we found that the
ring optics can be transversely and longitudinally stable only
if a specific condition on the relationship between the shifts
of focusing and defocusing poles is satisfied. This condition
is described in Sec. III of this paper. Section IV presents a
lattice option for theNSLS-II upgrade. SectionVdescribes a
realistic model of a single cell constructed with two quadru-
poles shifted off their reference trajectory and considerations
for the building of a prototype. We also discuss here the
solution of the quadrupole poles aligned with respect to the
curved complex bend element axis under the influence of
the external dipole field. Section VI is dedicated to
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calculations of synchrotron radiation from complex bend
poles. Throughout this paper, the QF-D-B-D-QD-D-B-D1

version will be called complex bend I (CBI) [1], and the QF-
D-QD-D version, either with shifted quadrupoles or with
these aligned under a superimposed dipole field, will be
called complex bend II (CBII). A conceptual design of
complex bend with the superimposed dipole component is
presented in Sec. VII.

II. GENERAL ANALYSIS OF BEAM TRANSPORT
IN A SHIFTED QUADRUPOLE

In this section, we study particle dynamics in CBII that
consists of several pairs of quadrupoles, every pair repre-
senting a single cell from the sequence of repetitive cells,
with the “square wave” field distribution along the s axis.
The bending angle is realized by shifting both quadrupoles
off center relative to the beam orbit. A single cell of the
CBII contains a focusing quadrupole, a drift, a defocusing
quadrupole, and another drift. In our analysis, we will be

using the following parameters (Table I), which are relevant
to the existing layout of the NSLS-II storage ring.
The total angle per single cell is distributed between

the two quadrupoles according to the parameter 0 < α < 1.
We define the entrance angles as

ΔxpF ¼ αd
2
α; ΔxpD ¼ αd

2
ð1 − αÞ;

yielding the constraint 2 · ðΔxpF þ ΔxpDÞ ¼ αd. In Fig. 1,
we illustrate the principle of three consecutive poles or 1.5
cells of the CBII featuring the geometry of the beam orbit
that consists of a sequence of arcs with a variable radius of
curvature separated by short drifts. Initial conditions are
matched on the interfaces between the elements.
Below, we include expressions for principle coordinates,

trajectories, curvatures, and fields along the trajectories.
We are separately considering QF and QD quadrupole
poles. We use the following definitions for shortening the
expressions:

μ0.5QF;D ¼ 0.5 ·
ffiffiffiffiffiffiffiffiffiffiffiffi
K1F;D

p
· LQ; μQF;D ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

K1F;D

p
· LQ; μF;D ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

K1F;D

p
· s;

C0.5Q ¼ cosðμ0.5QFÞ; S0.5Q ¼ sinðμ0.5QFÞ; CQ ¼ cosðμQFÞ; SQ ¼ sinðμQFÞ;
C ¼ cosðμFÞ; S ¼ sinðμFÞ;

Ch0.5Q ¼ coshðμ0.5QDÞ; Sh0.5Q ¼ sinhðμ0.5QDÞ; ChQ ¼ coshðμQDÞ; ShQ ¼ sinhðμQDÞ;
Ch ¼ coshðμDÞ; Sh ¼ sinhðμDÞ:

Using this notation, we write the principal coordinates as

ΔxF ¼ ΔxpF
SQffiffiffiffiffiffiffiffi

K1F
p ð1 − CQÞ

; ΔxD ¼ ΔxpD
ShQffiffiffiffiffiffiffiffiffi

K1D
p ð1 − ChQÞ

;

ΔxmF ¼ ΔxF
C0.5Q

; ΔxmD ¼ ΔxD
Ch0.5Q

:

TABLE I. Parameters used in the analysis of complex bend II in this paper.

Ndip Number of CBII elements in the ring 60
Npdip Number of cells per CBII element 5
Np ¼ Npdip · Ndip Total number of cells in the ring 300
Nd ¼ 2 · Np Total number of poles in the ring 600
αd ¼ 2π=Np Angle per cell, mrad 20.94
αpdip ¼ αd · Npdip Angle per CBII element, mrad 105
LQ Quadrupole pole length, m 0.28
Dd Drift length, m 0.03
Lcell ¼ 2 ·Dd þ 2 · LQ Cell length, m 0.62
Ldip ¼ Lcell · Npdip Complex bend element length, m 3.1
E=γ Beam energy, GeV/unitless 3=5871
BR Magnetic rigidity, T · m 10.0
K1F=K1D Scaled gradient in CBII quadrupoles, m−2 25=−25
K1F;D · BR Corresponding field gradient, T/m 250, −250
α Fraction of QF angle in the cell’s angle 0.35

1QF stands for the focusing quadrupole pole, QD stands for the defocusing one, and D stands for a drift.
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We assume that the trajectory comes in with an angle of
ΔxpF;D with respect to the pole face and leaves the pole
with the same angle, so that the trajectory is symmetric
relative to the midplane of the pole (Fig. 1). Then, for the
coordinates of the beam trajectory, we get

xF ¼ ΔxFCþ ΔxpFffiffiffiffiffiffiffiffi
K1F

p S; xD ¼ ΔxDChþ ΔxpDffiffiffiffiffiffiffiffiffi
K1D

p Sh;

ð1Þ

where C and S are functions of s. We get the following
expressions for the curvatures of the trajectories:

ρF;D ¼ 1

xF;D · K1F;D
; ρFav;Dav ¼

1

LQ

Z
LQ

0

ρF;Dds;

where ρFav and ρDav are the average trajectory radii.

The following expressions hold for the fields along these
trajectories:

BF;D ¼ BR
ρF;DðsÞ

; BFav;Dav ¼
1

LQ

Z
LQ

0

BF;Dds;

where BFav and BDav are average fields along the trajectory.
We plot the trajectories, curvatures, and fields in Fig. 2.
To find the length of the trajectory through the pole, we

write

LF;D ¼ 2

Z
0.5LQ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ΔxmF;D

2 · K1F;D · S2
q

ds

≈ LQ þ K1F;D
2 · LQ

3 · ΔxmF;D
2

24
;

where the last expression is obtained by expressing the
square root in the Taylor series and retaining only the
first term.
Next, we estimate the linear part of the edge focusing

in the horizontal plane, since it may perturb the lattice
functions affecting the horizontal emittance, which we
intend to minimize. For the angle gained by the particle
while passing the fringe field of the CBII pole, we write

Δx0 ≈
1

BR

Z
ΔxFΔxpF

0

BðsÞds ≈ K1FΔxF2ΔxpF;

where we assumed that the field along the wedge covered
by ΔxpF is constant. In the “square wave” field model, the
angle Δx0 is much smaller (∼Δx3) than that produced as a
result of focusing by the field in the pole’s body (∼Δx).
Then, we work out the matrices of the quadrupole poles

shifted by ΔxF and tilted by ΔxpF, assuming that the
trajectory follows Eqs. (1). In this case, all terms but the
dispersive ones will be the same as for the normal
quadrupole.

FIG. 2. Trajectories, their curvatures, and fields along a single pole with length LQ.

FIG. 1. Sketch of CBII geometry.
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First, we derive it by referencing the trajectory with

respect to Eqs. (1), substituting K1 →
ffiffiffiffiffiffi
K1

1þδ

q
, expanding the

resulting expression in δ, and keeping only the terms linear
in δ:

xðsÞ ≈ xoCþ x0oSffiffiffiffiffiffiffiffi
K1F

p þ δ

2

�
−ΔxpF

�
LQC − Sffiffiffiffiffiffiffiffi

K1F
p

�

þ ΔxF
ffiffiffiffiffiffiffiffi
K1F

p
LQS

�
; ð2Þ

where xo and x0o are deviations from the reference (1).
We cross-check this expression by directly solving

the equation of motion through, for example, a QF
pole:

x00 þ K1Fx ¼ δ

ρðsÞ ; ð3Þ

where

1

ρðsÞ ¼
BðsÞ
BR

¼ K1F

�
ΔxFCþ ΔxpFffiffiffiffiffiffiffiffi

K1F
p S

�
:

Integrating this equation analytically, we get the same
expression for the dispersive term as in Eq. (2):

xðsÞ ¼ −ΔxpF

2

�
LQC − Sffiffiffiffiffiffiffiffi

K1F
p

�
þ ΔxF

2

ffiffiffiffiffiffiffiffi
K1F

p
LQS:

As a result of a similar analysis, we get the following
matrices for the CBII poles in variables ðx; x0; δÞT :

MF ¼

��������
CQ SQ=

ffiffiffiffiffiffiffiffi
K1F

p − ΔxpF
2

�
LQCQ − SQffiffiffiffiffiffi

K1F
p

�
þ ΔxF

2

ffiffiffiffiffiffiffiffi
K1F

p
LQSQ

−SQ ffiffiffiffiffiffiffiffi
K1F

p
CQ

ΔxF
2
ð ffiffiffiffiffiffiffiffi

K1F
p

SQ þ K1FLQCQÞ þ ΔxpF
2

ffiffiffiffiffiffiffiffi
K1F

p
LQSQ

0 0 1

��������
;

MD ¼

��������
ChQ ShQ=

ffiffiffiffiffiffiffiffiffi
K1D

p ΔxpD
2

�
−LQChQ þ ShQffiffiffiffiffiffi

K1D
p

�
− ΔxD

2

ffiffiffiffiffiffiffiffiffi
K1D

p
LQShQ

ShQ
ffiffiffiffiffiffiffiffiffi
K1D

p
ChQ − ΔxD

2
ð ffiffiffiffiffiffiffiffiffi

K1D
p

ShQ þ K1DLQChQÞ − ΔxpD
2

ffiffiffiffiffiffiffiffiffi
K1D

p
LQShQ

0 0 1

��������
; ð4Þ

whereM13 andM23 are different from those in the transport
matrix for the combined function magnet with the equiv-
alent ρ ¼ ρFav;Dav and K1F;D strengths.
For such a magnet, we get M13 and M23 as

MF13 ¼
1

ρFavK1F
ð1 − CÞ; MF23 ¼

1

ρFavK1F
S

for the focusing combined function magnet and similar
expressions for the defocusing combined function magnet:

MD13 ¼
−1

ρDavK1D
ð1 − ChÞ; MD23 ¼

1

ρDavK1D
Sh:

Next, we describe a single cell of CBII in two ways:
MF0.5Md MDMdMF0.5 and MD0.5Md MFMdMD0.5;
where the resulting matrices correspond to the maxima
and minima of the beam envelopes through the element.
Using these matrices, we find stable solutions in terms of
μx;y; β̄x;y; η̄ and Δβx;y;Δη.
Then we approximate the beta function and dispersion

through the cell using expressions like

�
βxðsÞ
ηðsÞ

�
≈
�
β̄x

η̄

�
þ
�Δβx
Δη

�
· cosðkCBsÞ;

with kCB ¼ 2π
Lcell

, and Δβ;Δη corresponds to the difference
between β; η in each pole. These solutions are plotted
in Fig. 3.
With these approximate solutions, we find expressions

for the storage ring emittance and energy spread.
The average dispersion and beta function in each quad

are, respectively,

FIG. 3. Approximate solutions (solid lines) for horizontal and
vertical beta function and dispersion as compared with their exact
solutions (squares and thin lines) within a single CBII cell.
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�
ηFav

βFav

�
¼ 2

LQ

Z
LQ=2

0

�
ηðsÞ
βðsÞ

�
ds;

�
ηDav

βDav

�
¼ 2

LQ

Z
LQþDd

ðLQ=2ÞþDd

�
ηðsÞ
βðsÞ

�
ds:

The contribution from the CBII elements to the tune and
chromaticity of the whole ring are

νx;y ¼ Np · μx;y;

ξx;y ≈ −Np

4π

�
2ðK1F − K1DÞ

Δβx;y
kCB

sin

�
kCBLQ

2

�

� ðK1F þ K1DÞLQβ̄x;y

�

with μx;y being the phase advance per cell. I2, I4, and I5 are
the radiation integrals around the ring. The radiation
integrals for the whole set of the CBII elements can be
expressed as

I2 ¼ 2π

�
α

ρFav
þ ð1 − αÞ

ρDav

�
;

I3 ¼ 2π

�
α

ρ2Fav
þ ð1 − αÞ

ρ2Dav

�
;

I4 ≈
Np · 2ηFav · K1F · LQ

ρFav
− Np · 2ηDav · K1D · LQ

ρDav
; ð5Þ

where we neglected the integral contributions from η
ρ3
, since

they are much smaller2 than those terms containing K1, and

I5 ≈ 2π

�
α

ρ2Fav

ηFav
2

βFav
þ ð1 − αÞ

ρ2Dav

ηDav
2

βDav

�
:

The storage ring emittance and energy spread are [5],
respectively,

εx ¼ Cqγ
2

I5
I2 − I4

¼ Cq · γ2 ·
I5

Jx · I2
;

σE
E

¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cq ·

I3
2I2 þ I4

s
;

σE
E

¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cq ·

I3
2I2 þ I4

s
;

where Cq ≈ 3.84 × 10−13 m.
For the momentum compaction, we write (the approxi-

mation is valid when LQ ≫ Dd)

αMC ¼ 1

C

I
η

ρ
ds ≈

1

2LQ

�
2

Z
LQ=2

0

K1F · xF · η · ds

þ
Z ð3LQ=2ÞþDd

ðLQ=2ÞþDd

K1D · xD · η · ds

�
;

where C is the circumference, K1F;D · xF;D ¼ 1
ρF;D

, and

ηðsÞ ¼ η̄þ Δη · cosðkCBsÞ, as we have shown in this
section.
With these expressions in mind, we are in the position to

describe the storage ring lattice along the arcs. All the ring
arcs consist of CBII elements, which define the ring optics
in terms of emittance, energy spread, and momentum
compaction, and largely affect tunes, chromaticity, driving
terms, and dynamic and momentum apertures.
Before computing these ring parameters, we need to

derive an important dependence for the relationship
between focusing and defocusing poles in a CBII element.
This dependence defines the stability of the ring built with
CBII elements.

III. STABILITY CONSTRAINT FOR THE RING
OPTICS BASED ON COMPLEX BEND II

As per expressions from Sec. II, Jx is determined by I2
and I4, and, in turn, I2 depends only on the dipole bending
radius. To maintain the longitudinal or horizontal stability
of the beam dynamics in the ring, we need to ensure that J
elements of the damping distribution are always positive.
The complex bend optics allow us to simplify the synchro-
tron integrals presented above [1]. Following Eq. (5), for a
sequence of NF focusing and ND defocusing shifted
quadrupole magnets, the fourth synchrotron integral I4
can be approximated as

I4 ≈
Z

2ηFK1F

ρF
dsþ

Z
2ηDK1D

ρD
ds:

The change in I4 due to CBII poles or combined function
magnets can be estimated as

I4 ≈ 2NFLFηFavK2
1FΔxF þ 2NDLDηDavK2

1DΔxD:

For a periodic structure, NF¼ND¼NQ, LF¼LD¼LQ.
In the particular case when there is no net change in I4 due
to CBII poles or combined function magnets, we determine
that the relationship between the translations and gradients
of the focusing and defocusing poles is

ηFavK2
1FΔxF þ ηDavK2

1DΔxD ¼ 0:

This constraint maintains the ring optics with complex
bends II stable in all three planes by preserving damping
partitions positive. We note that this constraint works for
any ring optics, combined function magnets, or shifted
quadrupoles, i.e., CBII elements. In the actual lattice
design, one may adjust this constraint to reach minimum

2This term in I4 is equal to zero for a rectangular dipole
magnet [4].
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emittance by increasing Jx, which should maintain damp-
ing partitions always positive.

IV. PARAMETERS OF COMPLEX BEND II FOR AN
OPTION OF THE NSLS-II UPGRADE

Using the formalism described in Secs. II and III, we
designed a storage ring lattice with complex bend II
elements in the place of the conventional dipoles of double
bend achromat lattice. Using the CBII transport matrices,
we calculated matched solutions for Twiss functions and
dispersion. Then we estimated the ring parameters and
optimized them, yielding the stability constraint described
in Sec. III.
In our design, we used the parameters of CBII element

from Table I. The shifts of QF and QD poles are 1.13 and
−1.79 mm, correspondingly. The latter shift is large as
compared with the total diameter of the aperture inside the
poles of 10 mm, and we assessed a solution for the magnet
design, which enables us to reduce this shift.
In Table II, we presented the ring parameters using the

expressions from Sec. II and confirmed by a lattice code.
The lattice functions are presented in Fig. 4.
The arrangement of the quadrupoles looks similar

between the two lattices; however, the CBII lattice features
an emittance that is a factor of 70 smaller than that for the
NSLS-II DBA lattice. We showed only chromatic sextupole

magnets on the right plot, while the harmonic sextupoles’
location (K2L < 120 m−1) and strength are being opti-
mized. Other optimization constraints include the chroma-
ticity and dispersion wave between the CBII elements.

V. MODEL OF THE COMPLEX BEND II WITH
SHIFTED QUADRUPOLES

In this section, we analyzed a model of the quadrupole
with straight edges and constant gradient, shifted by 1 mm
in the horizontal direction. We compared transport through
this magnetic element using several different models in
Elegant [6], including KQUAD (particle tracked using
symplectic drift-kick integration through a canonical quad-
rupole element), BMAPXY (particle tracked using the
Runge-Kutta integration method through a model of a
transverse magnetic field), and BMXYZ (particle tracked
using the Runge-Kutta integration method through a model
of a 3D magnetic field specified as a field map) with the
analytical solution (3).
The comparison is presented in Fig. 5 below. We used

the 3 GeV parameters from Table II, and a nominal drift
space of 0.03 m is assumed.
The trajectories calculated with Elegant agree with the

theoretical estimates to stay within 10 nm (Fig. 5).
As follows from the study above, the first-order estimate

(4) describes the particle motion through the shifted
quadrupole with sufficient accuracy to calculate of the
horizontal beta function and linear dispersion and, in turn,
to calculate the emittance. We are aware that shifting QF
and QD for generating the bending field will generate
higher harmonics of the field distribution within the gap.
These harmonics can be compensated either by chamfering
of the poles or by correction coils.
In Table III, we also presented the parameters of the

complex bend prototype for future experiments at Brook-
haven Lab’s Accelerator Test Facility (ATF), evaluated at a
beam energy of 50MeV. The CBII prototype will be 46 mm
long and consists of five cells, with the field gradient set at
150 T=m. We scaled the complex bend parameters from

FIG. 4. Comparison of the two lattices: NSLS-II DBA and NSLS-II upgrade based on the CBII design.

TABLE II. Preliminary parameters of a storage ring based on
complex bend II. Horizontal emittance is 35 pm-rad at 3 GeV.

Circumference, m 792
Emittance, pm-rad 34.5
Energy spread, % 0.07
Momentum compaction 3.93 × 10−5
Natural chromaticity −229= − 255
Tunes 96.12=119.86
Beta functions in straights, m 3.3=1.8
Ratio of straights to circumference 28.6%
Synchrotron radiation power, keV/turn 309
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3GeV down to 50MeV, which corresponds to a reduction in
magnetic rigidity (BR) by a factor of CE ¼ 0.017. We also
reduced the quadrupole pole length by a factor of CL ¼ 6

while keeping the values of the bend angle and
ffiffiffiffiffiffi
K1

p
LQ the

same as for the 3 GeVCBII cell. The drift between the poles
is reduced by a factor of 2, taking into account the space
limitations. Thus, overall, the cell length is scaled down by a
factor ofCL and becomes 12.3 cm. The scaling of the dipole
field follows BL=BR; therefore, the dipole component
induced by the quadrupole poles along the beam orbit is
reduced by a factor of CE � CL ∼ 0.1 as compared with the
value at 3 GeV. The quadrupole K1 and LQ change to
maintain

ffiffiffiffiffiffi
K1

p
LQ constant, thereby increasingK1 by a factor

of C2
L ¼ 36.

VI. CALCULATIONS OF SYNCHROTRON
RADIATION FROM A COMPLEX BEND

Here we briefly describe properties of synchrotron
radiation (SR) from the CB element as it was installed
in a 3 GeV ring. The emission simulations were performed
with the “Synchrotron Radiation Workshop” (SRW) com-
puter code [7], using its new Python interface [8].

The central orbit and magnetic field “seen” by an
electron moving along this orbit, for the complex bend
parameters from Table I, are shown in Fig. 6. This
calculation was performed using the 3D Runge-Kutta
solver available in SRW, with a modeling magnetic field
of quadrupoles with “soft” edges, at their nominal positions
and orientations in the laboratory frame.
Figure 7 presents a calculation power density distribution

of the synchrotron radiation (integrated over all photon
energies) from the central portion of the complex bend
model shown in Fig. 6. The calculations were performed
for a transverse plane at 10 m observation distance from the
center of the modeling magnetic field definition (point
ct ¼ 0; see Fig. 6).
The calculated radiation pattern consists of “lobes”

corresponding to intensity peaks from individual poles in
the complex bend structure, separated by “dips” (power
density minima) along directions defined by the axes of
straight intervals between the neighboring poles. Because
of the relatively small observation distance (compared to
the field definition range), the calculated distributions are
impacted by the geometrical “near field” effect, resulting in
a gradient of the power density vs the horizontal position
in the observation plane. The positive horizontal position in
these calculations corresponds to the direction towards
outside of the storage ring. Note that since the magnetic
field seen by electrons in the quads is not constant along
their trajectories, the power density generated in each quad
is also modulated along the horizontal position and angle
(decreasing towards angles corresponding to edges of the
defocusing quad and increasing towards the angle corre-
sponding to edges of the focusing quads). However, these
effects are not expected to represent significant difficulties
for using this radiation in x-ray beam lines (that typically
have acceptance angles not exceeding several milliradians).
We also calculated the spectra of SR intensity (spectral

flux per unit surface area) at different horizontal positions at
a zero vertical position in the same observation plane
(located at 10 m from the center of the magnetic field
definition interval) as shown in Fig. 8.
The spectrum at x ¼ 0 corresponds to the emission point

in the middle of a defocusing quad. The other spectral

TABLE III. Parameters of NSLS-II dipole, complex bend used in the calculation, and a prototype for a future CBII
optics test at BNL’s ATF.

NSLS-II dipole Complex bend 50 MeV prototype

Length, m 2.6 3.1 0.62
Bending field, T 0.4 0.26=0.49 0.026=0.049
Cell length, cm � � � 62 12.3
Bending angle per cell, ° 6 1.2 1.2
Gradient, T/m 0 250=−250 150=−150
βXmax=βXmin, m 3.7=0.7 0.94=0.22 0.26=0.018
ηmax=ηmin, mm 137=0 4.41=8.52 1.=0.4

FIG. 5. The difference between the results, obtained with the
exact solution of (3) (blue squares), and the linearized solution
(2) (red stars) relative to tracking through magnetic fields
specified by the BMXYZ element in the Elegant model.
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curves at x ¼ −0.05 m and x ¼ −0.1 m correspond,
respectively, to the emission points near the edge and in
the middle of a focusing quad.

VII. CONCEPTUAL DESIGN OF COMPLEX
BEND II COMPONENTS

The quadrupole gradient is reduced to ∼250 T=m in
complex bend II as compared to ∼450 T=m in complex
bend I. Even the reduced gradient is still quite high but is

FIG. 6. Central trajectory in millimeters through five poles of the CB element and magnetic field in Tesla seen by an electron moving
along this trajectory (plotted in meters). The first pole of CBII in this calculation is taken as a vertically focusing element.

FIG. 7. SR power density distributions from the complex bend calculated in the transverse plane located at 10 m away from the center
of the magnetic field regions.

FIG. 8. SR intensity spectra corresponding to different emission
points in defocusing and focusing quads of the complex bend II.

FIG. 9. Conceptual design of a high-gradient Halbach PMQ
assembled inside a vacuum chamber. The PM wedge 13 is
removed for the x-ray exit slot, and wedges 1, 5, and 9 are
replaced with aluminum wedges to maintain fourfold symmetry.
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achievable with a small beam aperture of ∼10 mm. Three
conceptual designs of high-gradient quadrupoles with a
10 mm aperture are briefly presented in Ref. [9]. Here we
describe in some detail one of these designs, namely, a 16-
wedge Halbach permanent magnet quadrupole (PMQ), a
prototype of which we are presently building.
Figure 1 show the cross section of the Halbach PMQ

assembled inside a round aluminum vacuum chamber of
90 mm diameter. The inside and outside diameters of the
PM wedges are 10 and 80 mm, respectively. The vacuum
chamber has a bend radius of ∼25 m and length of a cell of
complex bend (∼280 mm). On the outboard side, a typical
antechamber of 150 mmwidth is provided for the extraction
of x rays and for pumping via non evaporable getters (NEG)
strips. This configuration requires removingwedge 13 of the
standard Halbach PMQ and minor machining of wedges 12
and 14 for aminimumexit aperture of 4mm.This is repeated
at the left, top, and bottom to maintain a fourfold symmetry
for minimizing field harmonics. Removed PM wedges 1, 5,
and 9 are replaced by aluminumwedges to provide structural
restraint to the other PM wedges.
A 3D Opera model of the PMQ (Fig. 9) with NdFeB PM

wedges (remnant field of 1.12 T) yields a quadrupole
gradient of 237 T=m. Field harmonics calculated at r ¼
2 mm per 104 units of B2 are shown in Table IV. All
harmonics are acceptable except B6 (−75.1 units), which
can be reduced by shimming or by adjusting the magneti-
zation angles of the PM wedges.
The required dipole field for CBII can be provided

conveniently by offsetting the Halbach PMQs in the

transverse x direction. However, the offset required for a
dipole field 0.49 T is ∼2 mm, which results, if not
corrected, in large B3 to B6 (in the hundred unit range).
Alternatively, the required field can be generated by an
H-shaped electromagnet with a 90 mm pole gap, in which
the vacuum chamber–PMQ assemblies (Fig. 10) will be
placed. The external dipole field can be superimposed [10]
on Halbach PMQs because of full saturation (μ ≈ 1.0) of
the permanent magnets. With a pole width of 250 mm
and coil current of 18000 A (current density of 4 A=mm2),
the dipole can generate a field of 0.49 T in arclengths
occupied by defocusing PMQs. To reduce this field to
0.26 T in arclengths occupied by focusing PMQs, the pole
gap is increased to 220 mm.
A truncated complex bend II consisting of three small

apertures of 90 mm and two large apertures of 220 mm
[Fig. 10(a)] was modeled by Opera 3D. The chamfered
sawtooth poles, 110 mm at the tip and 200 mm at the base,
are placed 165 mm apart. The H-shaped soft-iron (AISI
1006) magnet is 700 mm in width and contains two coils of
48 mm ×96 mm in cross section. This dipole generates the
0.5 T dipole field with maximum and minimum field values
in the required range [Fig. 10(b)].

VIII. CONCLUSION

In this paper, we presented an analysis of the complex
bend II geometry based on the quadrupole poles with
alternating polarity, shifted in the horizontal direction to
acquire the required bending. First, we analyzed beam
dynamics in the CBII element and then worked out NSLS-
II upgrade lattice solutions, where the original NSLS-II
dipoles were replaced with the elements of the complex
bend II. We presented a constraint that keeps the ring optics
stable if the latter is based on combined function magnets or
shifted quadrupoles corresponding to the CBII poles.
Next, we calculated all basic parameters of the ring based

on the CBII concept and confirmed them with Elegant
calculations. We reported in this paper results of our

TABLE IV. Field harmonics of a modified Halbach PMQwith a
minimum exit aperture of 4 mm.

n 1 2 3 4 5 6 7 8

An 1.0 1.2 0.4 0.2 0.1 0.0 0.0 0.0
Bn −1.5 104 0.1 −0.1 −0.1 −75.1 0.0 0.0

FIG. 10. External dipole for complex bend II, (a) variable aperture along the beam direction, and (b) dipole field along the beam
direction.
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simulations of synchrotron radiation from the complex
bend structure.
One of the clear advantages of complex bend II, as

compared to complex bend I, is a reduction of the overall
length of the element structure due to the absence of the
dipole poles. Overall, this approach reduces the design
complexity of a single cell, as well as helps to avoid very
high gradients at 500 T=m. The required quadrupole
gradients of 250 T=m can be achieved by using permanent
magnet technology. Furthermore, our hybrid design of the
CBII magnet takes advantage of the combination of smaller
radial shifts of quadrupole poles installed in the wide gap of
a long dipole magnet that produces an additional magnetic
field. We developed a conceptual mechanical design of the
complex bend II and calculated and analyzed the corre-
sponding magnetic fields.
A prototype of the complex bend is being developed for

magnetic measurements and will test with a beam at BNL’s
ATF at 50 MeV. In this paper, we developed and presented
the scaling laws for the prototype.
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