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Space-charge effects play an important role in high intensity accelerators. These effects can be studied
self-consistently by solving the Poisson equation with the dynamically evolved charge density distribution
subject to appropriate boundary conditions. In this paper, two computationally efficient methods are
proposed to solve the Poisson equation inside an elliptical perfectly conducting pipe. One method uses a
spectral method and the other uses a spectral finite difference method. The former method has a high
accuracy and the latter one has a computational complexity ofOðN logðNÞÞ, where N is the total number of
unknowns. These methods implemented in a beam dynamics tracking code enable the fast simulation of
space-charge effects in an accelerator with an elliptical conducting pipe.
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I. INTRODUCTION

The nonlinear space-charge effects play an important
role in high intensity accelerators by driving beam insta-
bility, causing beam emittance growth, halo formation,
and even particle loss. These effects can be studied self-
consistently using a particle-in-cell (PIC) method [1–11].
In the PIC method, at each time step, macroparticles that
represent the phase space distribution of charged particle
beam in the accelerator are transformed from the laboratory
frame into the moving beam frame following the relativistic
Lorentz transformation and are deposited onto a two-
dimensional (2D) or three-dimensional (3D) computational
grid to attain the charge density distribution in spatial
domain. Next, the Poisson equation is solved in the beam
frame, the space-charge electric fields are calculated and
transformed back to the laboratory frame following the
field Lorentz transformation. Then, the space-charge fields
are interpolated to the individual macroparticle location
from the computational grid. These space-charge fields
together with the external accelerating and focusing fields
are used to advance the macroparticle momenta through
the time step. The updated momenta are used to advance
macroparticle positions in the spatial domain. This process
is repeated for many time steps until the stopping condition
is reached.
To calculate the space-charge fields, one needs to solve

the Poisson equation for a given charge density distribution.

A key issue in the PIC simulation is to solve the Poisson
equation subject to appropriate boundary conditions effi-
ciently at each time step. In some accelerators such as the
Proton Synchrotron at CERN, the conducting pipe that
contains a train of charged particle bunches has an elliptical
transverse shape. To study the space-charge effects inside
those accelerators, an efficient three-dimensional (3D)
Poisson solver subject to the transverse elliptical perfectly
conducting wall and longitudinal periodic or open boun-
dary conditions is needed.
In previous studies, a number of efficient Poisson solvers

have been developed in the community [12–29]. Those
solvers will not handle transverse elliptical conducting pipe
and longitudinally open or periodic boundary conditions.
Finite difference methods were proposed to solve the
Poisson equation subject to irregular boundary geometry
[30–32]. These methods use finite-difference approxima-
tion to the differential operator in the Poisson equation.
Near the boundary, the curved geometry is approximated
by stepwise grid and the boundary conditions are applied
on the grid points. However, for an elliptical shape
boundary, those approximations can be avoided. By using
an elliptical coordinate system as shown in Fig. 1 [33], the
curved elliptical boundary can be transformed into a regular
rectangular geometry.
In this paper, two new methods are proposed to solve the

3D Poisson equation inside an elliptical conducting pipe
with longitudinal periodic or open boundary conditions.
One method is based on the transverse pseudospectral and
longitudinal spectral Galerkin method. The other method is
based on the transverse Galerkin spectral finite-difference
method and longitudinal spectral Galerkin method. The
former method has the advantage of exponential conver-
gence of a spectral method [34] and can be used in
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simulations where high precision is needed. The latter
method has a second-order accuracy and a computational
complexity scaling of OðN logðNÞÞ, and can be used in
simulations where quick results are needed.
In the beam frame, the three-dimensional normalized

Poisson equation in Cartesian coordinates can be written as:

∂2ϕ

∂x2 þ
∂2ϕ

∂y2 þ
∂2ϕ

∂z2 ¼ −ρðx; y; zÞ ð1Þ

where, ϕ denotes the normalized electric potential inside
the beam, ρ denotes the normalized charge density dis-
tribution of the beam, and x, y, and z denote the horizontal,
vertical, and longitudinal normalized dimensionless coor-
dinates, respectively. The boundary conditions for the
electric potential on the elliptical perfectly conducting
pipe are

ϕðx; y; zÞj∂Ω ¼ 0 ð2Þ

where ðx; yÞ ∈ ∂Ω and satisfies the following elliptical
equation:

x2

½a coshðbÞ�2 þ
y2

½a sinhðbÞ�2 ¼ 1 ð3Þ

where 2a coshðbÞ denotes the length of the major axis and
2a sinhðbÞ the length of the minor axis. A direct solution
to the above Poisson equation subject to the transverse
elliptical boundary condition has to handle the irregular
curved geometric shape of the boundary. However, this
irregular shape of the boundary can be transformed into a
regular shape if one uses an elliptical coordinate system
as shown in Fig. 1. In the scaled dimensionless elliptical
coordinate system ðr; θÞ, the Cartesian coordinates are
given by:

x ¼ a coshðbrÞ cosðθÞ ð4Þ

y ¼ a sinhðbrÞ sinðθÞ: ð5Þ

The Poisson Eq. (1) in the scaled elliptical coordinate
system can be rewritten as:

1

a2ðsinh2ðbrÞ þ sin2ðθÞÞ
� ∂2ϕ

b2∂r2 þ
∂2ϕ

∂θ2
�
þ ∂2ϕ

∂z2 ¼ −ρ

ð6Þ
and the transverse boundary conditions become:

ϕðr ¼ 1; θ; zÞ ¼ 0 ð7Þ
ϕðr; θ þ 2π; zÞ ¼ ϕðr; θ; zÞ: ð8Þ

The longitudinal boundary condition can be either periodic
if one assumes a train of identical bunches or open if one
neglects the interactions among multiple bunches.
The organization of this paper is as follows: After the

Introduction, the pseudospectral method for a 2D coasting
beam inside an elliptical perfectly conducting pipe is
discussed in Sec. II; the 3D spectral solver for a bunched
beam subject to transverse elliptical boundary and longi-
tudinal periodic or open boundary conditions is presented
in Sec. III; the 3D spectral finite-difference solver for the
bunched beam is presented in Sec. IV, and conclusions are
drawn in Sec. V.

II. THE PSEUDOSPECTRAL SOLVER
FOR A 2D COASTING BEAM

A 2D coasting beam with no longitudinal dependency
inside a transverse elliptical conducting pipe is considered
first. In this case, the Poisson equation in elliptical
coordinates is reduced into:

∂2ϕ

b2∂r2 þ
∂2ϕ

∂θ2 ¼ −a2ðsinh2ðbrÞ þ sin2ðθÞÞρðbr; θÞ ð9Þ

and the transverse boundary conditions become:

ϕðr ¼ 1; θÞ ¼ 0 ð10Þ

ϕðr; θ þ 2πÞ ¼ ϕðr; θÞ: ð11Þ

Equation (9) can be solved efficiently using a pseudospec-
tral method.
Using the Chebyshev collocation points along the radial

r dimension and the uniform points along the θ dimension,
that is,

rl ¼ cosðlπ=LÞ; l ¼ 0; 1;…; L ð12Þ

θm ¼ m2π=M; m ¼ 0; 1;…;M-1 ð13Þ

FIG. 1. A schematic plot of an elliptical coordinate system. The
red line defines an elliptical boundary. The length of the major
axis is given by 2a coshðbÞ and the length of the minor axis is
given by 2a sinhðbÞ.
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where Lþ 1 and M are number of grid points in each
dimension respectively, the electric potential can be
approximated by:

ϕðr; θÞ ¼
XL
l¼0

XM−1

m¼0

ϕlmplðrÞfmðθÞ ð14Þ

where ϕlm is the solution of the electric potential at the grid
point ðl; mÞ, and plðrÞ and fmðθÞ are corresponding
cardinal functions in the r and the θ dimension respectively,
and given by [35,36]:

plðrÞ ¼
YL

k¼0;k≠l

r − rk
rl − rk

ð15Þ

fmðθÞ ¼
sin½M

2
ðθ − θmÞ�

M tan½ðθ − θmÞ=2�
: ð16Þ

Given the above cardinal functions, the differentiation
matrix Dr in radial dimension is given by:

Dr;ij ¼
ci
cj

ð−1Þiþj

ðri − rjÞ
; i ≠ j; i; j ¼ 0;…; L ð17Þ

Dr;ii ¼ −
XL

j¼0;j≠i
Dr;ij ð18Þ

where

ci ¼
�
2∶ i ¼ 0 or L

1∶ otherwise
ð19Þ

and the differentiation matrix Dθ in the θ dimension is
given by:

Dθ;ij ¼
(
0∶ i ¼ j
1
2
ð−1Þði−jÞ cot½ði − jÞπ=M�∶ otherwise:

ð20Þ

Using these differentiation matrices, the derivative of the
electric potential with respect to the radial dimension at grid
point rl can be written as:

∂ϕðrl; θÞ
∂r ¼

XL
i¼0

Dr;liϕðri; θÞ ð21Þ

Similarly the derivative with respect to the θ dimension at
grid point θm can be written as:

∂ϕ
∂θ ðr; θmÞ ¼

XM−1

j¼0

Dθ;mjϕðr; θjÞ: ð22Þ

Assuming that Eq. (14) is correct at each grid point and
substituting the above representation for the second-order

derivative into the original Poisson Eq. (9), the electric
potential ϕlm at each grid point ðl; mÞ can be obtained from
the solution of the following algebraic equations:

XL−1
i¼1

1

b2
D2

r;liϕim þ
XM−1

j¼0

D2
θ;jmϕlj

¼ −a2½sinh2ðbrlÞ þ sin2ðθmÞ�ρðbrl; θmÞ ð23Þ

where D2
r;li ¼ ðDrÞ2li and D2

θ;jm ¼ ðDθÞ2jm. In the above
equation, the Dirichlet boundary condition at the pipe wall,
i.e., ϕ0m ¼ ϕLm ¼ 0, is used. The solutions of this group
of algebraic equations yield electric potentials inside
the domain ð−1; 1Þ ⊗ ½0; 2πÞ due to the fact that the
Chebyshev collocation points map the original radial
domain from [0, 1] to ½−1; 1�. These solutions are not all
independent of each other. The point ð−r; 2π − θÞ and the
point ðr; θÞ in the elliptical coordinate system represent
the same point in the Cartesian coordinate. Moreover,
there is no need to find the solutions inside the domain
½−1; 0Þ ⊗ ½0; 2πÞ. Using the same location condition,
i.e., ϕjm ¼ ϕðL−jÞðM−mÞ for j > L=2, Eq. (23) can be
rewritten as:

XL=2
i¼1

1

b2
D2

r;liϕim þ
XL=2−1
i¼1

1

b2
D2

r;lðL−iÞϕiðM−mÞ

þ
XM−1

j¼0

ϕljD2
θ;jm ¼ −a2½sinh2ðbrlÞ þ sin2ðθmÞ�ρðbrl; θmÞ

ð24Þ

The number of unknowns in the above equation is L=2 ×M
instead of the original ðL − 1Þ ×M in the Eq. (23). This
group of linear algebraic equations can be solved using a
lower-upper (LU) decomposition method [30].
The above solver was tested using a nearly round pipe

with a ¼ 0.036619 and b ¼ 4, which results in a pipe
radius close to 1. The normalized charge density distribu-
tion is assumed as:

ρðx; yÞ ¼ 16ðx2 þ y2Þ ð25Þ

The analytical solution of the normalized electric potential
in this case is:

ϕðx; yÞ ¼ 1 − ðx2 þ y2Þ2: ð26Þ

Figure 2 shows the electric potential distribution inside the
elliptical pipe using the above pseudospectral method and
the second-order finite difference method of Ref. [37]
with 32 × 32 grid points. Both methods give qualitatively
similar azimuthal symmetric electric potential distribution.
Figure 3 shows the relative errors of the electric potential
solution from the above pseudospectral method and from
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the second-order finite difference method. It is seen that
the pseudospectral method yields an order of magnitude
smaller error than the second-order finite difference
method.
As an application, using the above pseudospectral solver,

the electric potential distribution inside a perfectly con-
ducting elliptical pipe was computed for a normalized
Gaussian density distribution:

ρðx; yÞ ¼ exp

�
−
x2 þ y2

2

�
: ð27Þ

Figure 4 shows the electric potential distribution inside
the pipe with the horizontal to vertical aspect ratio 1, 2, 4,

and 10. Here, 64 × 64 grid points were used and the minor
axis length was fixed as 12. As the aspect ratio increases,
the electric field distribution becomes more asymmetric and
extends further in the vertical direction.

III. THE 3D PSEUDOSPECTRAL SOLVER
FOR A BUNCHED BEAM

In most accelerators, the charged particles are longitu-
dinally bunched using rf focusing. In this case, one needs to
solve the 3D Poisson equation to study the space-charge
effects. First, a case with periodic boundary condition in
the longitudinal direction is considered for a train of
identical bunches. With this boundary condition, the
electric potential satisfies:

FIG. 2. Normalized electric potential distribution solution from the pseudospectral method (left) and from the second-order finite
difference method (right) inside a nearly round conducting pipe.

FIG. 3. Relative electric potential error from the pseudospectral method (left) and from the second-order finite difference method
(right) inside a nearly round conducting pipe.
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ϕðr; θ; zþ PÞ ¼ ϕðr; θ; zÞ ð28Þ

where P is the longitudinal period length. Given the
longitudinal periodic condition, the normalized electric
potential and the charge density function can be approxi-
mated using Fourier mode expansion:

ρðr; θ; zÞ ¼
Xn¼N=2

n¼−N=2þ1

ρnðr; θÞ expð−iλnzÞ ð29Þ

ϕðr; θ; zÞ ¼
Xn¼N=2

n¼−N=2þ1

ϕnðr; θÞ expð−iλnzÞ ð30Þ

where

ρnðr; θÞ ¼
2

P

Z
P

0

ρðr; θ; zÞ expðiλnzÞdz ð31Þ

ϕnðr; θÞ ¼
2

P

Z
P

0

ϕðr; θ; zÞ expðiλnzÞdz ð32Þ

and λn ¼ 2πn=P. Substituting the above expansions into
the Poisson Eq. (6) and making use of the orthonormal
condition of the Fourier mode function yields:

1

a2½sinh2ðbrÞ þ sin2ðθÞ�
� ∂2ϕn

b2∂r2 þ
∂2ϕn

∂θ2
�
− λ2nϕn ¼ −ρn

ð33Þ
For each Fourier mode n, one can use the pseudospectral
method along r and θ dimensions as discussed in the
preceding section, the solution of the above equation can be
written as:

FIG. 4. The normalized electric potential solution from a normalized Gaussian density distribution with horizontal to vertical aperture
aspect ratio 1 (top left), 2 (top right), 4 (bottom left), and 10 (bottom right). Both x and y coordinates are dimensionless and the
normalized electric potential is also dimensionless.
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XL=2
i¼1

1

b2
D2

r;liϕimn þ
XL=2−1
i¼1

1

b2
D2

r;lðL−iÞϕiðM−mÞn

þ
XM−1

j¼0

ϕljnD2
θ;jm − a2½sinh2ðbrlÞ þ sin2ðθmÞ�λ2nϕlmn

¼ −a2½sinh2ðbrlÞ þ sin2ðθmÞ�ρnðbrl; θmÞ ð34Þ

The above equation can be solved using a LU decom-
position method for each mode n.
As an application, the electric potential function was

calculated for a 3D normalized Gaussian density function:

ρðx; y; zÞ ¼ exp

�
−
1

2

�
x2 þ y2 þ z2

52

��
: ð35Þ

Figure 5 shows the normalized electric potential distribu-
tion in the middle x − y, y − z, and x − z planes inside an

elliptic pipe with horizontal major axis length of 24, vertical
minor axis length of 6, and longitudinal periodic length
P ¼ 30 using 64 × 64 transverse grid points and 64
longitudinal modes. The electric potential has a longitudi-
nally periodic distribution that decays quickly toward the
pipe transverse boundary.
If the separation of the bunches inside a bunch train is

large and the interactions among bunches are negligible, the
longitudinal boundary condition of the electric potential for
a single bunch in this dimension can be regarded as an open
boundary condition, that is,

ϕðr; θ; z ¼ �∞Þ ¼ 0: ð36Þ
This open boundary condition can be approximated using a
closed Dirichlet boundary condition as long as the longi-
tudinal domain is large enough. The longitudinal boundary
condition for the electric potential can be written as:

FIG. 5. The normalized electric potentials in the middle X − Y plane (upper left), the middle Z − Y plane (upper right) and the middle
Z − X plane (bottom) from the pseudospectral method using a 3D bunched Gaussian density distribution with longitudinal periodic
boundary condition and transverse elliptical conducting wall.
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ϕðr; θ; z ¼ �TÞ ¼ 0 ð37Þ

where 2T is the longitudinal domain size. Using the above
boundary condition, the electric potential and density
distribution can be approximated using Sine function
expansion:

ρðr; θ; zÞ ¼
Xn¼N

n¼1

ρnðr; θÞ sinðαnzÞ ð38Þ

ϕðr; θ; zÞ ¼
Xn¼N

n¼1

ϕnðr; θÞ sinðαnzÞ ð39Þ

where

ρnðr; θÞ ¼
1

T

Z
2T

0

ρðr; θ; zÞ sinðαnzÞdz ð40Þ

ϕnðr; θÞ ¼
1

T

Z
2T

0

ϕðr; θ; zÞ sinðαnzÞdz ð41Þ

and αn ¼ nπ=ð2TÞ. Substituting the above expansions into
the Poisson Eq. (6) and making use of the orthonormal
condition of the sine function yield:

1

a2½sinh2ðbrÞ þ sin2ðθÞ�
� ∂2ϕn

b2∂r2 þ
∂2ϕn

∂θ2
�
− α2nϕn ¼ −ρn:

ð42Þ

For each mode ϕn, using the pseudospectral method along
r and θ dimensions in the preceding section, the solution
of the above equation can be written as:

FIG. 6. The normalized electric potentials in the middle X − Y plane (upper left), the middle Z − Y plane (upper right), and the middle
Z − X plane (bottom) from the pseudospectral method using a 3D bunched Gaussian density distribution with longitudinal open
boundary condition and transverse elliptical conducting wall.
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XL=2
i¼1

1

b2
D2

r;liϕimn þ
XL=2−1
i¼1

1

b2
D2

r;lðL−iÞϕiðM−mÞn

þ
XM−1

j¼0

ϕljnD2
θ;jm − a2½sinh2ðbrlÞ þ sin2ðθmÞ�α2nϕlmn

¼ −a2½sinh2ðbrlÞ þ sin2ðθmÞ�ρnðbrl; θmÞ: ð43Þ
The above equation can be solved using the same LU
decompositionmethod for eachmoden as the preceding case.
As an application, the electric potential was calculated

for the above 3D Gaussian density distribution inside the
elliptical pipe with a longitudinal domain size of 100, i.e.,
T ¼ 50. Figure 6 shows the electric potential distribution in
the middle x − y, y − z, and x − z planes inside the elliptic
pipe using 64 × 64 transverse grid points and 64 longi-
tudinal modes. The electric potential decays quickly in both
longitudinal and transverse dimensions.

IV. THE 3D SPECTRAL FINITE-DIFFERENCE
SOLVER FOR A BUNCHED BEAM

The pseudospectral method in the transverse plane
derived in the previous section results in a group of
algebraic equations that need to be solved using the LU
decomposition method. In this section, another method is
presented to approximate the transverse Laplacian operator
and results in a sparse matrix that can be solved efficiently
using an iterative method.
The Poisson Eq. (6) in the elliptical coordinate can be

rewritten as

� ∂2ϕ

b2∂r2 þ
∂2ϕ

∂θ2
�
þ 1

2
a2½coshð2brÞ − cosð2θÞ� ∂

2ϕ

∂z2
¼ −

1

2
a2½coshð2brÞ − cosð2θÞ�ρðbr; θ; zÞ ð44Þ

FIG. 7. The normalized electric potentials in the middle X − Y plane (upper left), the middle Z − Y plane (upper right), and the middle
Z − X plane (bottom) from the spectral-finite difference method using a 3D bunched Gaussian density distribution with longitudinal
periodic boundary condition and transverse elliptical conducting wall.
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Given the periodic condition in the θ dimension, the
normalized electric potential and the charge density can
be approximated using the Fourier mode expansion in that
dimension as:

ρðr; θ; zÞ ¼
Xm¼M=2

m¼−M=2þ1

ρmðr; zÞ expð−imθÞ ð45Þ

ϕðr; θ; zÞ ¼
Xm¼M=2

m¼−M=2þ1

ϕmðr; zÞ expð−imθÞ ð46Þ

where

ρmðr; zÞ ¼
1

π

Z
2π

0

ρðr; θ; zÞ expðimθÞdθ ð47Þ

ϕmðr; zÞ ¼
1

π

Z
2π

0

ϕðr; θ; zÞ expðimθÞdθ ð48Þ

Substituting the above expansions into the Poisson Eq. (6)
and making use of the orthonormal condition of the Fourier
mode function yields:�∂2ϕm

b2∂r2 −m2ϕm

�
þ 1

2
a2 coshð2brÞ ∂

2ϕm

∂z2 −
1

4
a2

∂2ϕmþ2

∂z2

−
1

4
a2

∂2ϕm−2

∂z2 ¼ ρ̃mðr; zÞ ð49Þ

where

ρ̃mðr; zÞ ¼ −
a2

2π

Z
2π

0

ðcoshð2brÞ

− cosð2θÞÞρðbr; θ; zÞ expðimθÞdθ: ð50Þ

FIG. 8. The normalized electric potentials in the middle X − Y plane (upper left), the middle Z − Y plane (upper right) and the middle
Z − X plane (bottom) from the spectral-finite difference method using a 3D bunched Gaussian density distribution with longitudinal
open boundary condition and transverse elliptical conducting wall.
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For the longitudinal periodic boundary condition with a
periodic length P, using the above Fourier mode expansion
in the longitudinal dimension for each mode m, the above
equation is reduced into:

� ∂2

b2∂r2 −m2 −
a2

2
λ2n coshð2brÞ

�
ϕmnðrÞ þ

a2

4
λ2nϕðmþ2ÞnðrÞ

þ a2

4
λ2nϕðm−2ÞnðrÞ ¼ ρ̃mnðrÞ: ð51Þ

The above ordinary differential equations can be solved
using a finite difference method for each mode m and n.
Here, a second-order finite difference approximation to
the above differential operator at radial grid point rl is
adopted as

∂2ϕmnðrlÞ
∂r2 ¼ ϕðlþ1Þmn − 2ϕlmn þ ϕðl−1Þmn

δr2
: ð52Þ

This results in the following linear algebraic equations:

ϕðlþ1Þmn −
�
2þ b2δr2m2 þ b2δr2

a2

2
λ2n coshð2brlÞ

�
ϕlmn

þϕðl−1Þmn þ b2δr2
a2

4
λ2nϕlðmþ2Þn þ b2δr2

a2

4
λ2nϕlðm−2Þn

¼ b2δr2ρ̃lmn: ð53Þ

This group of linear algebraic equations can be solved
using a block Gaussian-Siedel iteration method. For the
given ϕlðmþ2Þn, ϕlðm−2Þn and source term ρ̃lmn, the tridiag-
onal matrix can be quickly solved for ϕlmn with a computa-
tional cost scaling as OðLÞ. The obtained ϕlmn is used to
approximate the ϕlðmþ2Þn, ϕlðm−2Þn for the next iteration.
The spectral finite difference method was also applied to

the same bunched beam with the Gaussian distribution in
Eq. 35. The electric potential solutions in three middle
planes are given in Fig. 7. It is seen that these solutions
agree with the solutions from the pseudospectral method
very well.
For the longitudinal open boundary condition, the same

sine function expansion in the longitudinal dimension as in
the preceding section and the second-order finite difference
approximation in the radial dimension are used. The
resultant linear algebraic equation is given as:

ϕðlþ1Þmn −
�
2þ b2δr2m2 þ b2δr2

a2

2
α2n coshð2brlÞ

�
ϕlmn

þϕðl−1Þmn þ b2δr2
a2

4
α2nϕlðmþ2Þn þ b2δr2

a2

4
α2nϕlðm−2Þn

¼ b2δr2ρ̃lmn: ð54Þ

This group of equations is solved using the same iteration
method. The same bunched beam density distribution

inside the elliptical pipe as the one in the preceding section
was also used to test this method. The electric potentials in
three middle plane are given in Fig. 8. These solutions also
agree with those from the pseudospectral method very well.

V. CONCLUSIONS

In this paper, two efficient computational methods were
presented to solve the Poisson equation inside an elliptical
perfectly conducting pipe subject to longitudinal periodic
or open boundary. One method uses a transverse pseudo-
spectral and longitudinal spectral Galerkin method. The
other uses a transverse Galerkin spectral finite-difference
method and the same longitudinal spectral method. The
former method has the advantage of exponential conver-
gence of the spectral method with smooth density distri-
bution and can be used in the simulation where high
precision of the solution is needed. The latter method has a
second-order accuracy and a computational cost scaling as
O(Nlog(N)). This method can be used in simulations where
the fast return results are needed. The above methods
assume a smooth charge density function in the Poisson
equation. The numerical errors (noise) in the charge density
function obtained from the macroparticles in a PIC sim-
ulation will spoil the exponential convergence of the
pseudospectral method and has less impact on the finite
difference method. However, the numerical noise in the
charge density function can be substantially mitigated by
using a global spectral basis function approximation (e.g.,
sine function) to the density distribution function as
proposed in some recent studies [38–40]. In a future study,
we plan to implement those efficient methods into the
parallel beam dynamics code suite [4,8], IMPACT, to study
the space-charge effects in high intensity accelerators.
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