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Transverse oscillation is an important issue in beam dynamics of cyclotrons and can be described by the

Mathieu equation. We review the standard form of the Mathieu equation, % + (6 +¢&-cos20)u =0, and

propose a modification of the method of multiple scales (i.e., a perturbation method) so that the asymptotic
analytical solutions of the Mathieu equation can be computed in the stable and unstable regions for both
0 > 0 and 6 < 0. This method was applied to the nonlinear transverse oscillation equations for a cyclotron.
Analytical solutions for transverse oscillation in the stable and unstable regions (i.e., vicinity of the
resonances) were obtained, and the accuracy of these analytical solutions was confirmed by their close
agreement with the direct numerical integration. Useful results such as the analytical solution of the
transverse oscillation frequency, increasing rate of the amplitude in unstable regions, and the resonance
width were also derived; the stable condition and driving terms of the resonances can be obtained from the

analytical solutions.
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I. INTRODUCTION

The well-known Mathieu equation has the form of
% + (6 + &-cos20)u = 0; it occurs in a wide variety of
physical problems and has been widely investigated since
its discovery. The solution to the Mathieu equation is
determined by its coefficients. The §—e plane is separated
into stable and unstable regions by transition curves. The
parameter pairs (6, ¢) that belong to the stable regions
correspond to bounded solutions; parameter pairs (6, €) that
belong to the unstable regions correspond to unbounded
solutions [1-5].

Perturbation methods such as the method of multiple
scales (MMS) and Lindstedt-Poincaré (LP) method are
effective at solving the transition curves and deriving
analytical solutions for the Mathieu equation but have
some limitations. The LP method can only obtain
bounded asymptotic solutions for stable regions, not
unbounded solutions for unstable regions [6—10]. The
MMS can obtain asymptotic solutions for both stable and

*chengen @ipp.ac.cn
"kzding@ipp.ac.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOL

2469-9888/19/22(10)/104001(16)

104001-1

unstable regions in the case of 6 > 0 but is invalid when
0 < 0 [7-11]. In this paper, we propose a modified MMS
that can obtain the bounded and unbounded solutions for
not only ¢ > 0 but also 6 < 0.

To date, numerical simulations [12—18] are widely
used to study transverse oscillations in cyclotrons.
Although they can accurately describe the particle
motion, they cannot intuitively show the relationship
between the parameters of a magnetic field and particle
motion behavior in the vicinity of resonance. There
are also some analytical formulas describing transverse
oscillation as well as resonances for cyclotrons in
earlier years in Refs. [19-23]. In this paper, we applied
the modified MMS to two-dimensional (2D) nonlinear
Mathieu-type equations that arise in the study of the
transverse oscillations for the SC200 superconducting
cyclotron. Analytical solutions for the transverse oscil-
lation in the stable and unstable regions were obtained.
For a systematic study, the stable conditions, the
driving terms and the amplitude growth in the vicinity
of 20, =2,0, = %, 0, —20, =1 were discussed using
the analytical solutions. These analytical results were
confirmed by a comparison with the direct numerical
integration. As an analytical study, the contribution of
this work is a quantitative and accurate analytical
interpretation of the transverse oscillation for the cyclo-
tron, and a comprehensive discussion on the resonan-
ces, which can help us have a better understanding of
the dynamics.

Published by the American Physical Society
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II. MODIFIED METHOD OF MULTIPLE SCALES
FOR SOLVING THE MATHIEU EQUATION

A. Standard form of the method of multiple scales

The standard form of the Mathieu equation is written as

d2u+ (6+¢€-cos20)u=0 (1)
- e u=2>0,
do?

where 6 and & are real numbers. The first step of the
MMS is to introduce several scales 8, = ¢" - 0, where
n=20,1,2,.... In other words,
9]:6"9, 92:82‘9. (2)
These scales are treated as independent. One conse-

quence is that the derivative with respect to € is now
transformed into

d

%:D0+8'D1+82'D2+"', (3)
a{Z 2 2 2
d92:D0+82D0D1+8 (2D0D2+D1)+, (4)

where Dy, D;, and D, are partial differential operators
defined as

0 0 0

Dy =—, D, =—,
0 96, ' 60,

According to the MMS, the solution of Eq. (1) has a
power series expansion:

u(eo, 0., 92) = uo(ﬁo, 0, 92) +eé- u1(90, 0, 92)
+€2'l/l2(60,91,62)+"'. (6)
Substituting Egs. (3), (4), and (6) into Eq. (1), and letting

the coefficients of each power of ¢ to be zero, we arrive at
the following approximate equations:

D%MO + 5 . MO = 0, (7)
Diu; +2DyD; - ug + - u; = —cos20-uy,  (8)

D%Mz + 2D0D1 s Uy + (2D0D2 + D%) s Uy + 5 s Uy
= —c0s20 - u,. 9)

In the above procedure, a differential equation with
variable coefficients [Eq. (1)] is transformed into several
approximate equations with constant coefficients
[Egs. (7)-(9)]. Each linear partial differential equation
in Egs. (7)—(9) can be solved in sequence. The solution
to Eq. (7) is easily found:

o = E(0,.,60,) - ¢V 4+ E*(6,,0,) - e~V (10)
This is the zeroth-order solution, where the coefficients

E(6,,0,) and E*(0,6,) are undetermined conjugated
functions. Substituting Eq. (10) into Eq. (8) results in

D2uy + 61y = —2 [i\/E-DIE(el,ez) - V00
— l\/g . D]E*(gl,ez) . e_i\/g90:|
1 . .
—5(62160 +€—2190)
. |:E(61,02) . ei\/l—sgo + E* (91, 92) . e_"\/ggo} .
(11)

The inhomogeneous terms [i.e., right side of Eq. (11)]
contain

) Li\/S -D\E(0,.0,) - V%

— V5D E*(0,.0,) - e_i\/ggoJ, (12)

which has the same frequency as the associated homo-
geneous equation. This causes secular terms, which must
be avoided. Therefore, the coefficients of ¢!V% and ¢~1Vo%
in Eq. (12) need to be zero. Eliminating these coefficients
yields the condition for determining the undetermined
function E(0,,0,):

OE(6,.6,)

D,E(6,.0,) = 20, =0,
OE*(6,.0
DIE*(GI,HZ):éa'lz):O. (13)

In other words, E(6,,8,) and E*(6, 8,) are independent
of 8, and are functions of 6,:

E(6,.0,) = E(6,).  E*(0,.0,) = E(6,).  (14)

Equation (13) represents the condition for avoiding the

secular terms in u;. After the secular terms are removed, the
solution of Eq. (11) can be written as

= L[ EO) i,
26— (Vo+2)?
E(6,) (/5
+4.€l( o 2)90
65— (V6 —2)?
L EO) s,
§—(V6+2)7°
E*(6,) iV
+ . VI | 15
5= (V52 (15)
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This is the first-order solution. By substituting Eq. (15)
into Eq. (9) and letting the secular terms be zero, we obtain
the condition for avoiding secular terms in u,:

OE(0 ) OE*(0 . y
o) —inme). B in B0y,
(16)
where
et e
5—(2+V6)* ' 6—-(2—V5)
A= . 17
|
u:uoﬁ—e'u, + -
=C, - ei(—sz~A]+\/5)€ + CT . e—i(—sz-A1+\/5)9
_E|__E ¢i(VB+2)0 E . pi(V5-2)0
26— (Vo+2) §— (V6 —2)

The perturbed frequency of the system can be written as

0, =—& A, + . (20)

The numerical solution of Eq. (1) for 6 > 0 is obtained
with the fourth-order Runge-Kutta method and can be
used to validate the accuracy of the analytical solutions.
Figure 1 compares the results of the above analytical
formulas and numerical integration. The differences in
the trajectories are almost indistinguishable, and the
difference in the phase motion is very small. This proves
that the above analytical formulas are accurate.

0.08

— Multiple scale method
0.06 - —— Numerical method

0.04 |

0.02

-0.02 |

-0.04 -
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e=04

0 5 10 15 20 25 30
0(rad)

-0.06

-0.08

FIG. 1.
and the direct numerical integration is in red.

RV

Equation (16) represents the condition to determine
E(0,). Then, E(8,) and E*(6,) can be expressed as

E(0,) = Cy-em™,

E'(6;) = Cj - ™, (18)
where C; and C7 are conjugated complex numbers that are
determined by the initial condition. With the above pro-
cedure, the undetermined conjugated complex functions
E(6,,0,) and E*(6,,0,) are completely determined, and
uy(0y,60,,0,) and u;(0y,6,,0,) are determined next.
Finally, by substituting u, and u; into Eq. (6), the solution
to the original Eq. (1) is given by

B. Modification of the method
of multiple scales

As shown in Eq. (7), the zeroth-order approximation
equation has no periodic solutions when 6 < 0; that is, the
MMS is invalid for this case. In fact, much literature on
nonlinear dynamics has applied the MMS to the transition
curves and asymptotic solutions of the Mathieu equation
with 6 > 0, but applying the MMS in the case of 6 < 0 has
not been commonly discussed. We present a simple but
effective modification of the MMS to obtain both the
bounded and unbounded solutions for the Mathieu equation
with 6 < 0.

0.08

—— Multiple scale method
—— Numerical method
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0.02 |

-0.02 |

-0.04 |
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006f ¢ =04

-0.08 : .
0.1 -0.05 0 0.05 0.1

u

Trajectories (left) and phase motions (right) for parameter pairs (8, €) = (1.36,0.4) in the stable region. The MMS is in blue,
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Equation (1) contains the linear term ¢ - « and the flutter
term € -cos26 - u. For 6 > 0, the flutter term is a higher
order small quantity than the linear term when ¢ is a small
parameter We can obtain the corresponding generating
system d92 24+ 0-u =0 by setting ¢ =0; this is a stable
simple harmonic system, the flutter term could be treated as
a perturbation to this system. However, for the case of
0 < 0, the problem has changed in nature. The previous
generating system becomes unstable due to the linear term,
and the stability of the original system is mainly dependent
on the flutter term. At this point, we take the linear term as a
higher order smaller quantity than the flutter term; then, the
new generating system becomes 4 dgq = 0. To this end, we
introduce a new small parameter that satisfies 0 < ¢ <1 to
distinguish the perturbations of different orders, and a
higher order small parameter is introduced to a smaller
perturbation term:

2
%4—53'5'”:—5'8'00829'14. (21)

The original small parameter & is now treated as a
constant. Equation (21) is equivalent to Eq. (1) when
£ =1. After Eq. (21) is solved, the solution of Eq. (1)
can be obtained simply by letting £ = 1. The details for
solving Eq. (21) are presented below.

By expanding the variable u and derivative operator 4 de2
with respect to the new small parameter £ and letting the
coefficients of each power of & be zero, we obtain the
following approximate equations:

D(Q)M() =0, (22)
Diu; +2DyDuy = —¢ - c0s 20 - uy, (23)

D%uz + 2D0D1M1 + <2D0D2 + D%)MO = —& - COS 29 Uy,

(24)

D8M3 + 2D0D] u + (2D0D2 + D%)M}

+ (2DyD3 + 2D Dy)uy + 6 - ug = —¢€ - c0s 260 - u,.

(25)

Here, the zeroth-order and first-order approximate equa-
tions do not contain secular terms; the zeroth-order and
first-order solutions can be solved from Egs. (22) and (23)
directly:

= F(61.6,), (26)
- (€20 4 ¢=2i) .

F(6,.0,). (27)

uy =

ool ™

where F(6,6,) is an undetermined function. Then the
second- and third-order solutions can be solved from

Egs. (24) and (25), but higher-order solutions are usually
very small and thus can be neglected. However, we cannot
determine the solution completely with only the first two
order equations because the zeroth- and first-order solu-
tions contain the undetermined coefficients F(6,,0,),
which have to be determined by eliminating the secular
terms in Eqgs. (24) and (25).

Substituting the first-order solution [Eq. (27)] into
the second-order approximate equation [Eq. (24)] and
eliminating the secular terms yields the condition for
determining F(6,,0,):

2
&
DiF(6,.6,) = -3 F(0,.0,). (28)

For simplification, we let

A= (29)
Then, F(6,,0,) can be expressed as

F(6,,0,) = y(6,) - e™ +y*(0,) - ™%, (30)
where (0, ) is an undetermined function. After the secular
terms in Eq. (25) are eliminated, the second-order solution
u, follows. In general, however, the form of the second- or
higher-order approximation is very complicated, and the
corrections they provide are negligible. Thus, these high-
order approximate equations are not considered in further
derivations. That is,
u :O, us =0. (31)
By substituting #, = 0 into Eq. (25) and eliminating the
secular term, we obtain the condition for determining

w(6,):

WO i+ (VO
{(Az) 22 MO 4 (—i,) 8922 AH}

+6-[w(0y) - €™ +y(6,) - e = 0. (32)

The solution of Eq. (32) is

o
0 C —0
w(0) = Cy- exp( 20, )
. . . 0
w*(6,) = C3-exp —12—/\292 , (33)

where C, and C; are complex conjugated numbers deter-
mined by the initial condition. If Eq. (33) is substituted into
Eq. (30), F(0;,6,) can be expressed as

i(A201+33502) —i(Ax0; +%92). (34)

F(€1,92)2C2‘€ +C§€
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With the above procedure, the undetermined function
F(0,,6,) is completely determined, following which u
and u; are determined. Finally, the solution of Eq. (1) can
be obtained by letting & = 1:

u:u0—|—§~u1—|—~“:u0—|—u1+“'
_ {Cz'ei(A2+%)9+C§'e—i(A2+ﬁ)9}

| { L £ (e 4 ew>}. (35)

The perturbed frequency of the system can be written as

1)
0, —Az'f‘m- (36)

Based on Eq. (29), A, can be expressed as A, = \/%;

here, ¢ is the amplitude of the flutter term. It is noted that
Egs. (35) and (36) are valid for A, # 0 because the
derivation is based on the assumption that the flutter term
is the dominant term and the linear term is a perturbation.
Thus, A, should not be zero; otherwise, the flutter term will
vanish, and the assumption will be invalid. Letting O, > 0,

we obtain A, > \/%. fo<A < \/%, then the flutter

term is too small to overcome the instability caused by the
linear component; thus, the system is nonoscillating and

the frequency does not exist. Only when A, > \/%,

namely the flutter term is sufficiently large, the system
can be stable and the corresponding frequency can be
described by Eq. (36).

The numerical solution of Eq. (1) for § < 0 obtained
with the direct numerical integration (the fourth-order
Runge-Kutta method) can be used to validate the accuracy
of the analytical solutions. Figure 2 compares the results

%107

—— Multiple scale method
—— Numerical method

a5t

0 = —0.008

2f =05

3 . . . . .
0 5 10 15 20 25 30
0(rad)

of the above analytical formulas and those from direct
numerical integration. The errors between these two meth-
ods were very small, which verifies the accuracy of the
above analytical formulas.

In this section, we consider the asymptotic solution of
the Mathieu equation for 6 > 0 and 6 < O in the stable
regions. However, obtaining a uniform general solution
for the Mathieu equation in the unstable regions is
difficult because the forms of the unbounded solutions
in the unstable regions strongly depend on the parameter
pairs (8, ). In order to study the solutions in unstable
regions, we give several specific examples that come
from the beam dynamics of an isochronous cyclotron in
the next section.

III. APPLICATION TO THE BEAM DYNAMICS
OF A CYCLOTRON

The transverse oscillation is also known as the betatron
oscillation and is one of the most important issues in beam
dynamics [24,25]. It is well known that the transverse
oscillation can be unstable when its frequency approaches
the resonance condition n-Q, +m - Q, = [. In this sec-
tion, we take the SC200 cyclotron as an example and solve
the transverse oscillation equations in its stable and
unstable regions (i.e., in the vicinity of resonances) with
the MMS. We discuss the resonances in the vicinity of
20,=2, 0, =% and Q, —20Q, =1, and useful results
such as the resonance width, the driving terms, the stable
conditions, and increasing rate of amplitude in the unstable
regions are derived.

SC200 is a compact superconducting proton cyclotron
used for proton therapy. It can accelerate protons to
200 MeV and was designed in collaboration by ASIPP
(China) and JINR (Russia) [26]. SC200 has four spiral
sectors. The mean magnetic field is about 2.95 T in the
central region and 3.6 T in the extraction region.

x1074

—— Multiple scale method
—— Numerical method

0 = —0.008

e=0.5

u
o

3 2 A 0 1 2 3
u %107

FIG. 2. Trajectories (left) and phase motions (right) for parameter pairs (5, ¢) = (—0.008,0.5) in the stable region. The MMS is in

blue, and the direct numerical integration is in red.
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A. Transverse oscillation in stable regions

The small amplitude transverse oscillation in a cyclotron
can be described by the following 2D Mathieu-type
equations (see the Appendix):

'+ Q- u=—g(0) - u, (37)
V' + Q% v=—h(0) v+ J(0) - uv, (38)

where u corresponds to the radial oscillation and v
corresponds to the vertical oscillation. Q, and Q, are
unperturbed frequencies that satisfy Q2 > 0 and Q2 < 0.
9(0), h(0), and J(0) are periodic functions with a period
of T = 2x. The properties of these coefficients are shown
in Figs. 10 and 11.

The physical meanings of Q, and Q,, are the unperturbed
tunes for zero flutter. They are related to the field index
of the mean magnetic field component. In an isochronous
cyclotron, the mean magnetic field component By(r)
increases with the radius to satisfy the requirement of

isochronism. The field index n = — 5/ 426"
In this case, the vertical focusing is provided by the flutter
field component, and the mean field component provides
vertical defocusing; so, we have 0?2 <0 in the vertical
plane, which corresponds to 6 < 0 in the Mathieu equation.
Thus, the modified MMS is applied to the vertical plane.

Similar to the standard form of the Mathieu equation, the
stability of Eqs. (37) and (38) is related to their coefficients
le.g., Q2, Q2, g(6)]. However, the relationship is more
complex, unlike in the standard form where it is easily
distinguished by the transition curves. However, when Q2

2, and g(0) satisfy a certain relationship and make the
actual tunes approach the resonance conditions, the system
can be unstable.

g(0) and h(0) are functions of the equilibrium orbit
parameters and can be expanded into Fourier series:

is negative.

9(0) =Y P, + Pre (39)
h(0) = M,e™ + Mye=. (40)

The values of the Fourier coefficients are proportional to
the magnetic field harmonics. First, the small parameter ¢
that satisfies 0 < ¢ <1 is introduced; then, the transverse
oscillation equations, Eqs. (37) and (38), are transformed
into the following perturbation equations:

W'+ Q5 u=—e-g0)-u (41)
V' +e -0 v=—e-h(0)-v+e-J(0) uv. (42)

As described in Eq. (21), the principle of introducing
small parameters is based on the magnitude of the

perturbation; a higher-order small parameter is introduced
for a smaller perturbation term. Here, we introduced the
small parameters in Eqgs. (37) and (38) with reference to
Eq. (21). It is noted that Eq. (38) differs from Eq. (21) in
that it contains a coupling term J(@) - uv, which is a
second-order small quantity, whereas the flutter term /(6) -
v is a first order small quantity. Thus, & is introduced into
the coupling term, and ¢ is introduced into the flutter term
to distinguish the orders of small quantity.

The key point of the MMS is introducing scaled time
coordinates and observing the motion at different time-
scales. In Eq. (42), the vertical motion is observed at a
different timescale, because the radial focusing is much
stronger than the vertical focusing owing to the negative
field index. Consequently, the vertical motion is much
slower and should be observed at a slower timescale.
Introducing the cubic power & to the vertical motion
corresponds to a much slower timescale.

First, we introduce three scales 8, = 6, 8, = ¢- 6, and
0, = €% - 0. Then, we expand u and v in power series in &
as follows:

U=uy+e-u + uy+---, (43)

v=vgte- v+ vyt e vy, (44)

Then, the radial oscillation equation is approximated as
follows:

Djuy + Q3 - ug = 0, (45)
Djuy +2DoDy - ug + Q- uy = —g(0) - ug.  (46)

D(z)lxlz + 2DOD1 . I/tl + <2DOD2 + D%) . MO + QLZ‘ . l/l2
=—9(0) - uy. (47)

The vertical oscillation equation is approximated as
follows:

D2vy =0, (48)
D%U] + 2D0D]U() = —]’l(g) . 1)0, (49)

D%Uz + 2D0D] U + 2(D0D2 + D%)UO

= —h(@) - Uy + 1(6) * UV, (50)
D(3)123 + 2D0D1U2 + (2D0D2 + D%)”l

+ (2D0D3 + 2D1D2)U0 + Q%UO

=—h(0) - vy + J(O) - [ugvy + uyvy). (51)

For the radial oscillation, the zeroth-order solution [i.e.,
solution of Eq. (45)] is easily found:

104001-6
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Uy = E(Ql ,92) . €iQ"90 + E*(Gl,ez) . eiiQ”eO. (52)

The first-order solution [i.e., solution of Eq. (46)] is

- PnE(el,QQ) i(n+Q,)0, PnE*(al,ez)
e zn: 124_(n+Qu)2 ‘ Q%_(n_Qu)z
. ei(n=0.)0, + M . e~ i(n=Q.,)0
Qu - (n - Qu)
PLE"(0,.0,) e—i(n+Q.)60 (53)

0 —(n+0,)?

where E(6,,0,) and E*(6,,0,) are undetermined conju-
gated functions. Then, by eliminating the secular terms
|

in Egs. (46) and (47), E(0,,6,) and E*(6,,6,) can be
completely determined as follows:

E(QI’QZ) = E(H2) = Cl : e_iAlez’
E*(01,0,) = E*(0;) = C} - e"™%, (54)

where

* 1 1
_ 2aPuPn ooyt aoay]
20, .

C; and C7 are conjugated complex numbers that are
determined by the initial condition. Finally, by substituting
uqy and u; into Eq. (43) and letting ¢ = 1, the solution of the
original Eq. (37) can be written as

Ay

(55)

U=uy+u +---
=C,- PLZ CT . o100
—_ Z an—(j]Z . el(n+Qr>9 ZPn—C‘TQ’ . ei<n_Qr>0 + # . e_i<”_Qr>0
n QM_(n+QLt) Qu_(n_Qu) Qu_(n_Qu)
P;Cy .
+ 7}1 . e_l(n""Qr)e‘ 56
L2t - (I’l + Qu)2 ( )
|
Here, Here, A, can be expressed as
_ M, M,
Q,=—A+Q, (57) =2y e (61)

is the perturbed radial tune, and A; is the tune shift
provided by the flutter field.

For the vertical oscillation, the solution of the zeroth-
order approximate equation [Eq. (48)] is

vo = F(6,.0,). (58)

The solution of the first-order approximate equation
[Eq. (49)] is

M, . M, .
v = (Z,ﬂ'e’"”‘)mz'e H°>'F(9"92)’ )

n

where F(6,,6,) is the undetermined function. The high-
order solutions v, and »; are very small and thus can be
neglected (i.e., v, = v3 = 0). The undetermined function
F(0,,6,) can be solved by eliminating the secular terms in
Egs. (50) and (51), which yields

. 0?2 . 02
F(8,.0,) = Cy -/ ™% g . o0 ®) - (60)

C, and C; are complex conjugated numbers determined
by the initial condition. After F(0,,6,) is completely
determined, the expressions of v, and v; are determined.
Finally, the solution of the vertical oscillation [Eq. (39)]
follows by letting € = 1:

v=0vy+ v+
— (C2 . eing —|— C; . eiiQZ‘))

M ) M .
(1 n. ,inf n. ,—ind , 62
( + gn i + € > (62)
where

Q2
27,

Qz =N+ (63)

is the perturbed vertical tune and A, is the tune shift
provided by the flutter field. Similar to Egs. (36), (63) is
valid only if the flutter field is sufficiently large to satisfy

. —o? T
0. >0 (Ge, Ay > %) because the derivation is based
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on the assumption that the linear term is a higher-order
small quantity than the flutter term.

In order to verify the above formulas, we solved the
transverse oscillation equations for the SC200 cyclotron
with the fourth-order Runge-Kutta method and above
analytical formulas separately. Figures 3 and 4 compare
the results of these two methods; the good agreement
confirms the accuracy of the analytical formulas. We
note that the transverse oscillation is described by x(6)
and z(0). After u(6) and v(0) are solved, x(@) and z(0)
b(0) - u(0)
a(f) - v(0), which are derived in the

can be obtained by the relations x(0) =
and z(0) =
Appendix.

B. Transverse oscillation in unstable regions
1. 20, =2 resonance

We consider the radial oscillation given by Eq. (37). The
unperturbed radial tune Q, is not equal to the perturbed
radial tune Q,; in order to consider the effect of the
perturbed radial tune, Eq. (37) is transformed to

6Ff —Multiple scale method f|
—Numerical method

xg = 3.284mm
Py zy = 2.332mm/rad

0 1 2 3 4 5
turns

FIG. 3.
radial oscillation and (right) vertical oscillation.

1.25
—Multiple scale method
1.2} |—Numerical method
115
=
&
11°©
105

0 30 60 9 120 150 180
Ek(MCV)

WO} u=—g(0) ut O} u—Qu (64)

Next, the small parameter ¢ is introduced as follows:
W+ Q> u=—¢e-9g0) -u+e-(Q*—0Q2)-u. (65)

Then, the corresponding approximate equations are
obtained:

D(Z)I/ll —+ 2DOD1 s Uy —+ Q% U=

—9(0) - ug.  (67)

The zeroth-order solution is easily obtained with
Eq. (66):
(00, 01) = E1(6y) - ' % + Ej(6;) - e %, (68)

By substituting Eq. (68) into Eq. (67), the first-order
approximate equation can be written as

—Multiple scale method
2t —Numerical method

2 29 = 1.263mm
zy = —0.937Tmm/rad
3 : : : :
0 1 2 3 4 5

turns

Transverse oscillations obtained from the numerical method (red) and analytical solutions (blue) for a 100 MeV particle: (left)

0.45

—Multiple scale method
—Numerical method

035

& 0.25}

015

00503 60 90 120 150 180

Ek(MeV)

FIG. 4. Betatron tunes from the numerical method (red) and analytical solutions (blue): (left) radial oscillation and (right) vertical

oscillation.
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D%btl + Q; ‘u; = =2[iQ, - D\E, . i@ _ iQ, - D\E; - efiQ,eo] _ <anein90 + P;e""%) - E, . 1000 4 E;- efiQ,()o]‘
n

When the perturbed radial frequency is close to 1,
Q, — 1; the following term on the right-hand side of
Eq. (69) causes additional secular terms:

_Z[ZQr “D\Ey - e'% — iQ,- DIET . e_iQreo}
— PyE} - €/272)% — PIE, - 712700, (70)

We introduce the detuning parameter ¢, to quantify the
proximity from the perturbed radial oscillation frequency
to 1:

2-0,=0,+t¢-0;. (71)

By substituting Eq. (71) into Eq. (70) and letting Eq. (70)
be zero to eliminate the secular terms, we get

iP .
D\E,(6,) = 2Q2 - Ef(6)),
iP% .
B B @). ()

D\E;(0,) =

In order to solve Eq. (72), we introduce the following
transformation:

Ei(0)) = W(,) - e /2,
Ei(6,) = W*(0,) - e7i9/2, (73)

By separating the real and imaginary parts, Eq. (72) can
be transformed into

P,; o P,,
i[Wr(el):| I - T |:Wr(91):|
do, [ W;(0,) G +3E R LACHE
(74)

where W(G) = Wr(9> + I- WZ(G) and P2 = P2r —+ I- le'.
The characteristic equation of the above linear differential
equations can be written as

P,J? 2
oyt (3) =0 (75)

2
where 7 is the eigenvalue. When 7* < 0 (i.e., 67 > % ,

Eq. (74) has trigonometric form solutions. In this case,

(69)

W.(6,) and W;(0,) are bounded, and the system is stable.
When 7* > 0 (i.e., 67 < %), Eq. (74) has exponent form
solutions:

Wr(el) =Cs- e Cy- e

P, P,
N+ N+ 25 _

Wil0) =g G g o™ (70)
> T, > T,

where C3 and C, are constants determined by the initial
condition. In this case, W,.(8,) and W;(6,) are unbounded,
and the system is unstable. Thus, the stability condition
for the radial oscillation near 2Q, = 2 is |o}| > |g_2, |; that
is, the radial oscillation near 2Q, = 2 is stable only when
the distance to 2Q, =2 satisfies [2—2Q,| > £|%|'
Otherwise, the amplitude continuously increases, and the
system is unstable. After W(0) is solved, the coefficients
E\(6,) and E;(0;) can be completely determined from
Eq. (73). Then, the first-order solution can be expressed as

P,E, .
_ _on=l . Li(n+0,)0,
uy = e
: ;QE—(HQ%
P.E: 4 P:E,

+ }’l— . gl(n_Qr)BO + n—

Q07— (n—0,)? 0; —(n—0,)?
. e_i(n_Qr)HO P;ET . e_i('H‘Qr)BO. (77)

Q}—(n+0,)?

Finally, by letting € =1 in Eq. (43), a solution of
Eq. (37) near 2Q, =2 follows. The details are not
repeated here.

According to Eq. (68), the amplitude of the transverse
oscillation can be written as follows:

An(0) =24/ E(0) - E7(6). (78)

The increasing rate of the amplitude is proportional to
e"%; for every turn a particle rotates, its amplitude increases
approximately e>™ times. The driving term of the 2Q, = 2
resonance is the second harmonic; a larger second har-
monic value will cause a faster increasing rate in the
amplitude growth. The left side of Fig. 5 shows the
relations between the perturbed radial tune Q, and increas-
ing rate e>™ for different second harmonic values; we can
also use this to find the resonance width near 2Q, = 2. The
right side of Fig. 5 shows the transverse oscillation obtained
from the numerical integration and analytical formulas in
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—|P,|=0.0353

Unstable Region
=
&
N
© /\
12+ <
Unstable Region
11+
Unstable Regiol

14¢ —|Py| = 0.0707|
/\_wﬂ =0.1060
13} >

188 1.92 1.962Q2 2.04 2.08 212

r

FIG. 5.

— Multiple scale method
— Numerical method

- A (0) = 2y/E1(0) - EF (0)

3 |Py| = 0.1060
. 0, = 1.00
6 ;
0 1 2 3 4 5
turns

(Left) Relationship between the perturbed radial tune Q, and increasing rate of the amplitude e>* for different second

harmonic values. (Right) Radial oscillations obtained by the numerical simulation and analytical solution.

the vicinity of 2Q, = 2. The difference is very small, and
the amplitude variation coincides very well with the
description of Eq. (78).

2. 0,=1/2 resonance

We consider the vertical oscillation equation given by
Eq. (38). The small parameter ¢ can be introduced as
follows:

V' + Q2 v=—e-h(0)-v+e-JO) - uv
+e (02 -07) v (79)

Two scales are considered: 0, = 0 and 0, = ¢- 0. The
corresponding approximate equations are
|

D3vy + 02 - vy = 0, (80)
D3v, + Q% - vy +2DyD; - vy = —h(0) - vy + J(0) - uyvy.
(81)

The zeroth-order approximation can be written as
vo(00.61) = F1(6)) - %% + Fi(0)) - &%, (82)

where F(6;) and F;(6,) are undetermined conjugated
complex functions. By substituting Eq. (82) into Eq. (81),
—h(0) - vy and J(0) - ugv, are written as

—h(0) - vy = _ZMnFl 00 4 MEF - eI (1m0)0 M FE . 1 1=0:)0 L (02000 (83)
n

J(0)uyve = Ry |:E1 Fy - Q4000 B Fr . o000 | FiF| . ¢=i(Q~0)0 4 prp. e*i(Q#Qz)Ho}

+ ZR -E(Fy - /@40:4m0 L R . E Fr . olQ 0t L R . EIF, . ¢~ H(Qm )

+R,-E/F;- e @ HQ:mmf L R* . E|F,

. ei<Qf+Qz_n)90 _|._ R;Z . EIFT . ei(Qr_Qz_n>HO

+ R - ESF, - e (@ Qutn)lo 4 R EiF . o0+ 04m)00 (84)

As shown above, two cases need to be considered.

Case 1.—When Q, — 1, then 1 — Q, — Q,. The term
M3F, - e70=00% 4 M Fr - ¢1-0:)% in Eq. (83) causes
additional secular terms.

Case 2—When Q,—20,—1,then O, — 0, —1 - Q,.
The term R, -E*F;-e {(2—Q:~1)0 +R%-EF- £i(2,—0:~1)0
in Eq. (84) causes additional secular terms.

For case 1, the detuning parameter o, is introduced to
quantitatively describe the nearness of the perturbed
vertical tune to %:

I
1 (o)
E_QZZS‘E' (85)
Substituting Eq. (85) into Eq. (83) and eliminating the
secular terms that occur in Eq. (81) yields the condition
for determining F(0;) and F;(6,) as well as the stable
condition

M,
20

. (86)

|os| >’
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If |oy] < |é%‘|, then the system is unstable. In this

case, the unbounded solutions of F(#,) and Fj(0,) are
obtained as

Fi(0) = V,(0)-¢F .  Fi(0)) = Vi(0)) e 5"
(87)
where
Vi,(68,) = Cs - e + Cg - e
M, "
n + AL 1i
1(00) = - Cs @ + g Cor e (88)
2 Tag. 3 T2

Here, V,(0,) = V,(0,) + i - V1;(6,), Cs and Cg are real
numbers determined by the initial condition, M,; and M,,
are the real and imaginary parts, respectively, of M. With
the above procedure, the undetermined functions F,(6,)
and F7(0;) are completely determined. Then, v, (6, 6,)
and v,(6y,0;) can be determined. Finally, the solutions
of Eq. (38) follow by letting € = 1. The driving terms of
0, = % resonance is the first harmonic. In Fig. 6, the left
figure shows the unstable regions and resonance width near
Q. = 5 for different first harmonic values. The right figure
is the comparison of the vertical motion obtained from the
numerical simulation and the analytical formulas under the
same initial condition; the difference is very small, which
proves the analytical formulas to be accurate.

3. 0, -20,=1 resonance

For case 2, a small parameter o5 is introduced to
quantitatively describe the proximity of Q, —2Q, to I:
0,-20.—1=¢-03. (89)

Then, all terms that cause secular terms in Eq. (81) are
written as

— |My] = 0.0632

§ — |M;| = 0.0986
225 /\—z\m —0.1339/]

2 Unstable Region
CI; 175 /—\
<
Unstable Region
15}
125F | )
Unstable Region \!

1 . .
041 044 047 05 053 056 0.59
Q:

FIG. 6.

__[oF(6,) ., OFi6) _
—2iQ. | ——L . piQ:0) _ ZZ 1L =06,
i0:1 =59, ¢ 00, ¢
+ [R}-EF; -9 . o100 L R - EXF, - e7i0301 . o=i0:00],

(90)

We let Eq. (90) be zero to eliminate the secular terms,
which results in

OF . . .
2—L1.(iQ,) - ¢'%% = R} - EF* - ¢/%:00 . giosOh
06,
OF7
00,

2 - (—iQ,) - e 00 = R, . E*F, - 7100 . g=ios01

o1

where E = E(0,) and E* = E*(0,). The specific expres-
sions of £ and E* are given in Eq. (54). Because 6, varies
very slowly compared to 6, and 0,, E(6,) and E*(0,) can
be treated as constants:

E(0,) ~
E*(0,) ~

C=C,+i-Cy,

Ci=C,—i-Cy. (92)

Here, C;, and C;; are real numbers that are directly
related to the initial radial amplitude. Similar to the
procedure described for Egs. (73)—(75), Eq. (91) can be
transformed into linear differential equations by introduc-
ing a variable transformation, then the stable condition of
the system is obtained by solving the characteristic equa-
tion, which gives

(93)

When |o3] < |R2'—QC‘|, the system is unstable; then,

Eq. (91) has an exponential form solution:

10

— Multiple scale method
— Numerical method

.
-
-

§ o[
[ T R — Wl
5| M| =01330 e
Q. =050 :
10 ‘ . . ‘ .
0 05 1 15 2 2.5 3
turns

(Left) Relationship between the perturbed vertical tune Q, and increasing rate ¢>™ for different first harmonic values near

0, = % (Right) Vertical oscillations obtained by the numerical simulation and analytical solution.
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4

—Multiple scale method
—Numerical method

|Ry| = 2.126
0 = 2mm S
4 :
0 5 10 15
turns

FIG. 7.

—Multiple scale method/
—Numerical method

T
)
N
|Ry| = 2.126 .
10" zy = 3mm
0 5 10 15
turns

Vertical oscillations obtained by the numerical method (red) and analytical formulas (blue) near Q, — 20, = 1 with the same

vertical amplitude at initial radial amplitudes of (left) 2 mm and (right) 3 mm.

ic3-0]

Fi(60,) =Vy(0,)-e 7, (94)
where

Vy, = Cq- e 4 Cg - 701,
],I — chli_RIClr
Vy=— 2% et
Loy _ RC4RCy;
2 20,
—n — chli_RiClr
LI 0 e (95)
o3 _ R,C\,+R,Cy; 8¢ ’
2 20,

Here, V5, and V,; are real and imaginary parts of V,. C;
and Cy are constants determined by the initial condition.
Finally, the solutions of Eq. (38) near Q, —2Q, = 1 can be
obtained.

As presented above, the dynamic behavior of the vertical
oscillation near Q, —2Q, =1 is related to not only the
values of Q, and Q. and its driving term |R, | but also to the
initial radial amplitude |C|. Figure 7 compares the vertical
oscillation of particles with initial radial amplitudes of 2
and 3 mm (the initial vertical amplitudes are the same).
Particles with a larger initial radial amplitude have a faster
increase in the vertical amplitude.

IV. CONCLUSION

We modified the MMS to obtain approximate analytical
solutions of the Mathieu equation in stable and unstable
regions for both 6 > 0 and 6 < 0. Numerical simulations
were carried out to investigate the dynamic performance
of the Mathieu equation. Very good agreement was
obtained between the results of the numerical integration
and analytical solutions, which means that the modified
MMS is useful for obtaining the analytical solution of the
Mathieu equation.

The modified MMS was applied to the nonlinear trans-
verse oscillation equations of a cyclotron. The equations

of the transverse oscillation were derived and transformed
into the Mathieu equation. Analytical solutions were
obtained for the transverse oscillation in the stable and
unstable regions (i.e., vicinity of the resonances 20, = 2,
0.=1/2, and Q, —20Q, = 1). The validity of the ana-
lytical solutions was confirmed by a comparison with the
direct numerical integration results. Useful results such as
the analytical solution of the transverse oscillation fre-
quency, increasing rate of the amplitude in the unstable
regions, and resonance width were also derived, and the
driving terms and stability conditions were obtained from
the analytical results, which can help improve the under-
standing of the dynamics and provide a reference for the
design of a magnetic field for a cyclotron.

In this paper, we considered an ideal case without
magnetic imperfections. In other words, we assumed that
only the Bz component is nonzero in the middle plane.
Future studies could continue to explore this issue by
considering field imperfections. For example, the asym-
metry of magnetic sectors may lead to a Br component in
the middle plane. More coupling resonances can be studied
by taking into account the Br component. A more general
and practical situation could also be evaluated by consid-
ering the electric field.
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APPENDIX: DERIVATION OF THE
TRANSVERSE OSCILLATION EQUATIONS

The motion of particles in electromagnetic fields is
described by the well-known Lorentz force formula:
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F =gt x B+ gE. (A1)

In this study, the electric field was not considered. If the
azimuth 6 is chosen as the independent variable and
Eq. (A1) is decomposed in a cylindrical coordinate system,
the equations of motion for charged particles in a static
magnetic field are obtained as follows:

272 q P2 Z2\3 5 )
r— . —r:—;<1+?+?> [(r* +7?)B,
— r/Z/Br _ rZ/Bg], (A2)
27’/2/ q r/2 le % 5 ,
"= :F<1+7+F [(r 4 2?)B,
— FIB.~ 1B, (A3)

where P is the total momentum of a particle; r = r(6) and
z = z(0) are the radial and vertical coordinates, respec-
tively, describing the particle’s motion; the superscript
represents the derivation with respect to the independent
variable; and B, = B,(r,6,z), By = By(r,0,z), and B, =
B.(r, 0, z) are the radial, azimuth, and vertical components,
respectively, of B.

Cyclotron magnets have median plane symmetry.
Hence, only B, is nonzero at z = 0. Once the 2D numerical
field map of the vertical component in the middle plane
B, (r.0.z)|.— is given, the equilibrium orbit (i.e., closed
orbit in the middle plane) r,(0) can be determined with
Gordon’s analytical formula [27] or the numerical pro-
cedure [28]. The magnetic field and equilibrium orbits for
the SC200 cyclotron are shown in Figs. 8 and 9.

The transverse oscillation is described by x(0) and z(6).
These are defined as

x(0) =r(0) —re(0),  2(0) =2(0) -0, (A4)
where x(6) and z(0) are the radial and vertical displace-
ments, respectively, in relation to the equilibrium orbit.
Because the displacements x(6) and z(0) are usually small,
all of the terms in Eqgs. (A2) and (A3) can be expanded in a
Taylor series around the equilibrium orbit. Then, transverse
oscillation equations that are accurate to the second order
are obtained as follows:

X"+ A(0)x" + B(0)x
= C(0) - x> 4+ C5(0) - x? + C5(0) - xx’

+C4(0) - 27 + C5(0) - 22, (AS)
7"+ a(0)7 + p(0)z
= Dy(0) - xz+ Dy(0) - x' + D5(0) - x'z
+ D, (0) - X7 (A6)

Coefficients such as A(6) and B(6) are functions of the
equilibrium orbit parameters, which have the same period
T = 2x as the equilibrium orbit.

For a compact isochronous cyclotron such as the
SC200, all second-order terms in the radial equation such
as C,(0) - x*> and C,(0) - x> have little effect on a particle’s
motion. All second-order terms in the vertical equation
except for D (@) - xz also have little effect on the particle’s
motion. This is because x” and 7’ are smaller than x and z by
an order of magnitude or more for the SC200 cyclotron; x’
and 7’ are approximately 0 ~ 1073 m/rad, while x and z are
approximately 0—10~2 m. Consequently, the second-order
terms with the exceptions of D;(6) - xz and C, () - x* can
be treated as high-order terms. Moreover, the mean value of
B(6) is larger than that of $(0) by an order of magnitude
or more, which indicates that the linear part of the radial
oscillation B(0) - x is strong and its response to the non-
linear terms is weak. Meanwhile, the linear part of the
vertical oscillation 3(0) - z is weaker and more susceptible
to the influence of the nonlinear term. By ignoring all terms
on the right side of Egs. (A5) and (A6) except for
D;(0) - xz, the transverse oscillation equations can be
simplified as follows:

X" +A(0)x' + B(0)x = 0, (A7)

7"+ a(0)7 + p(0)z = D{(0) - xz. (A8)

Equations (A7) and (AS8) are Hill-type differential
equations and can be further simplified by introducing
two parameters:

(r2 + r2):

al@) =\re+r2.  b(0) =" (A9)
re
Then, Eqgs. (AS5) and (A6) can be written as
b'(0)
"— "4+ B(6)x =0, Al10
X 0 x' + B(0)x (A10)
a'(0)

"h——27 )z =D,(0) - xz. All
=0 ° +p(0)z =D, (0) - xz (Al1)

The following transformation can be applied:
x=1+/b9) - u, z=1+/a(0) - v. (A12)

Then, Egs. (A10) and (A11) can be further simplified as
u"+G(O)-u=0, (A13)

V' +HO)-v=1J(6)-uv, (Al4)
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FIG. 8.
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(Left) 2D magnetic field map in the middle plane for the SC200 cyclotron. (Right) Magnetic field with respect to the azimuth
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FIG. 9. Equilibrium orbits for the SC200 cyclotron.

where G(0) :%"_%(%’)24_3(0), H(0) Z%—%(%>2+ﬂ(9)’
and J(0) = \/b(0) - D,(0). These three coefficients are
periodic and have the same period 7' = 2z as the equilib-
rium orbit. Expanding the coefficients into Fourier series

gives

H(0) = 03+ M,e™ + Mye™.  (Al6)
J(0) = Ro+ > R,e™ +Rye=™. (A1)

For simplification, we let g(0) = >, P,e™ + Pie~"?

GO)= Q2+ P, + P (Al5) and h(0) =3, M,e™ + Mye~™. Then, Egs. (A13)
n and (A14) become
— Ek = 20MeV
10 ’ 10 600 —— Ek = 100MeV
400 - — Ek = 180MeV
: d 200 | u
S o0 S 0 s g u u u
a = R
-200 |
5 5
400 |
-10 -10 00|
0 60 120 180 240 300 360 0 60 120 180 240 300 360 0 60 120 180 240 300 360
0(deg) 6(deg) 0(deg)

FIG. 10. Coefficients g(0), h(6), and J(0) for different energy particles.
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different energy particles.

'+ Q- u=—g(0) u. (A18)

V' 4+ QF v=—h(0)-v+J(O) uv. (A19)

With the above procedure, the original transverse oscil-
lation equations are transformed into Mathieu-type equa-
tions [Egs. (A18) and (A19)]. The details of the coefficients
of Egs. (A18) and (A19) are given in Figs. 10 and 11.
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