
 

Single sided dipole-quadrupole magnet for the Extremely Brilliant Source
storage ring at the European Synchrotron Radiation Facility
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Combined function magnets with dipole and quadrupole components were designed and built for the
Extremely Brilliant Source. These magnets are low power consumption single sided off-axis quadrupoles.
The field of the magnets was optimized for particles with a curved trajectory and within an elliptical good
field region. A specific moving stretched wire magnetic measurement method was developed for measuring
the magnetic length of the magnets, the radius of curvature of the poles and the field multipoles. The effect
of the curvature of the magnets on the field multipoles was investigated.
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I. INTRODUCTION

The European Synchrotron Radiation Facility (ESRF),
located in Grenoble, France, is a 6 GeV light source. It is
engaged in an ambitious upgrade program: the Extremely
Brilliant Source (EBS). The storage ring will be completely
rebuilt to reach an ultralow horizontal emittance of 135 pm
rad. The EBS storage ring is being assembled and its
commissioning will start at the end of 2019. The lattice of
the new ring, the so-called hybrid multibend [1,2], relies on
an increased number of bending magnets and on strong
focusing magnets [3,4]. Seven dipoles will be installed in
each cell of the new storage ring: four permanent magnet
dipoles with longitudinally varying field [5], and three
combined function dipole-quadrupole magnets which will
be described in this paper. The dipole quadrupoles of the
EBS have a relatively low field (0.39–0.57 T) and a
moderate field gradient (31–37 T=m). The specified field
and gradients implies that these magnets should be off-
axis quadrupole type rather than gradient dipole type, as
detailed below. The EBS dipole-quadrupole magnets have a
unique feature of being asymmetric (Fig. 1): they generate a
field gradient on the side of the quadrupole where the
electrons travel, and almost no field on the other side. These
magnets can be seen as a half quadrupole: their power
consumption is almost a factor of 2 lower as compared to a
standard quadrupole.
Combined function dipole quadrupoles were considered

from the beginning of strong focusing synchrotrons [6].
Gradient dipoles are bending magnets with a nonuniform

gap generating a quadrupole component. They produce a
strong field and aweak gradient. Suchmagnetswere built for
several accelerators including light sources [7–13].
A number of synchrotron light sources are considering
upgrade schemes based on multibend lattices [14–17]. The
lattices of most of these light sources include combined
function magnets with strong quadrupole components,
similar to the EBS ones.
Determining which type of magnet, among gradient

dipoles or quadrupoles, is the best for given specifications
is the starting point of the design. Let us first consider a
gradient dipole magnet. The field of a nonsaturated dipole
is approximately B0 ¼ μ0NI=g, where NI is the number of
turns times the current and g is the magnet gap. The field is
affected by a variation of the gap as ΔB=B ¼ −Δg=g and a
gap variation translate to a field gradient G as

G ¼ −B
g
Δg
Δx

: ð1Þ

If the pole width is equal to twice the gap, the upper pole
touches the lower pole if Δg=Δx ¼ 1. The corresponding
gradient is

G ¼ B
g
: ð2Þ

This gives an overestimated upper bound for the gra-
dient. Considering the field and gap of the DQ2 magnet of
the EBS, i.e., B ≈ 0.4 T and g ≈ 25 mm, the corresponding
gradient is 16 T=m, far from the 31 T=m DQ2 specifica-
tion. Equation (2) shows that gradient dipoles are not
suitable for high gradient, low field magnets. Quadrupoles
with transverse offsets are much better for that purpose.
Figure 2 shows fields and gradients for different types of
combined function magnets. It clearly appears that high
gradient low field magnets are quadrupoles and high field
low gradient magnets are gradient dipoles.
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The design of the EBS dipole quadrupoles will be
detailed in the next section. The concept of a single sided
quadrupole will be introduced and then the magnetic
models and the optimization process will be described.

The field and gradient trimming method will be presented,
as well as the sensitivity of the field to mechanical errors.
The EBS dipole quadrupoles were built and are being

assembled in the storage ring. Measurement results for
some of these magnets are shown in Sec. III. Hall probe
field measurements as well as stretched wire integrated
field measurements were performed. A specific stretched
wire method was developed for the dipole quadrupoles; this
method is detailed in the same section.
The curvature of the magnet complicates the analysis

of the magnetic field. In particular, the series expansions
commonly used to describe the field integrals of straight
magnets, or the 2D fields of long magnets, is inaccurate for
curved magnets. This topic is discussed in Sec. IV.

II. DIPOLE-QUADRUPOLE DESIGN

A. The “DQ” layout

The main specifications of the EBS dipole quadrupoles
(DQs) are given in Table I. Given the magnet apertures, the
gradients are strong enough to exclude a gradient dipole
design. As the deflection of the electron’s trajectory is
far from being negligible, we decided to build magnets
with curved pole surfaces. The iron length of the magnet
was fixed from the beginning, the distance between the
coils of adjacent magnets being set to approximately one
centimeter.
The cross section of the EBS dipole-quadrupole magnets

is sketched in Fig. 3. It has been designed as a gradient
dipole magnet with a small additional pole for improving
the homogeneity of the gradients. It could also be seen as a
quadrupole septum [18], with its magnetic mirror plate
deformed and opened in the horizontal symmetry plane.
It would have been possible to build the dipole quadru-

poles as curved, offset quadrupoles. This solution was
chosen by others, e.g., the APS-U team [14]. Offset
quadrupoles have some advantages, mainly their simpler

FIG. 2. Fields and gradients of combined dipole quadrupoles
installed in light sources. The disks indicate quadrupole type
magnets and the circles indicate gradient dipole types. The
Canadian Light Source (CLS), the Spanish light source ALBA
and the Pohang Light Source (PLS) are third generation light
sources, while MAX-4, the EBS and the Advanced Photon
Source are next generation light sources. The combined function
magnets for the EBS and the APS upgrade are quadrupole types
while the magnets of previous light sources are gradient dipoles.

FIG. 1. Design view of the DQ1 magnet. This magnet is a single
sided quadrupole: the field on the outer part of the magnet is
almost zero. It can be seen as a half quadrupole magnet and it
consumes less power than a standard symmetric quadrupole. The
coils are shared between the main poles and the small auxiliary
coils in order to increase the power efficiency of the magnet.
Additional low current coils were added to trim the field and the
gradient independently.

TABLE I. Lattice specifications for the DQ1 and DQ2 magnets
of the EBS. The central field and gradient specified here are initial
values obtained from the integrated strengths and the iron length.

DQ1 DQ2

Iron length 1028 800 mm
Integrated field 584.4 314.1 T mm
Integrated gradient 38.43 25.25 T
Central field 0.5683 0.3926 T
Central gradient 37.38 31.56 T/m
Angle @ 6 GeV 29.2 15.7 mrad
Radius of curvature 35207 51955 mm
Sagitta of the poles 3.88 1.60 mm
Bore radius 12.5 12.5 mm
GFR radius 7 × 5 7 × 5 mm × mm
ΔG=G @ 7 mm 10−2 10−2
Number of magnets 64 32
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magnetic design and optimization and their better behavior
in terms of vibrations and mechanical deflection. The
advantages of the DQs presented here are their low power
and the side access which eases the measurements and the
integration.

B. Magnetic field computations

The magnetic fields of the DQ magnets were computed
with Radia, a 3D magnetostatic code developed at the
ESRF [19,20]. The optimization method employed for
the pole shaping has been presented in other papers [4,21]
and will not be presented in detail here. Any reader
interested in field computations and pole optimization
may refer to [22].
The main geometric parameters of the DQs are shown in

Fig. 3. At the beginning of the optimization process, the
poles had a hyperbolic shape following the equation xM ¼
ρM

2=2zM for the main pole, (xM, zM) being the position of a
vertex point of the main pole profile, and xA − xA0 ¼
ρA

2=2zA for the auxiliary pole described by the vertex
points (xA, zA). Two perpendicular reference planes were
defined on each pole. The width of these planes is
r1 ¼ 3 mm. The outer parts of the yoke are straight, but
the poles are curved.
First, the parameters θ1, θ2, r2, ρA, w1, w2, w3, x1, xA0,

xA1 and xA2 were determined manually in order to get the
field and the gradient close to the specifications, regardless
of the homogeneity.
An optimization criterion was defined using a combi-

nation of the exact values of the field and gradient, the
gradient homogeneity on an elliptical 14 × 10 mm2 good
field region (GFR), and minimal values for the vertical
apertures between the magnet poles.

The gradient homogeneity criterion was set with elliptic
multipoles (see Refs. [23,24] and the Appendix). A vector
multipole error was defined as

ε ¼ E −E0 ¼ ME
þðB −MCC0Þ; ð3Þ

where ME and MC are defined in the Appendix, ME
þ is a

pseudoinverse of ME and C0 ¼ ðB;Gρ0; 0;…; 0ÞT con-
tains the field and gradient specifications. The multipole
expansions used here are valid for 2D fields. They
are correct for the integral of the field along a straight
line, and far from the edges of a long, straight magnet. But
the poles of the DQs follow the reference trajectory of the
electrons: they are curved. At this stage of the design, the
curvature of the poles was taken into account using an
empirical method. Integrals of the vertical field components
were integrated according to the path shown in Fig. 4.
These field integrals were computed at sixteen points
ðxi; ziÞ located on a half ellipse, where xi and zi are the
horizontal and vertical offsets of the path i. The error vector
defined in Eq. (3) was computed at each iteration using
these field integrals.
There is no reason for the line-arc field integrals

described here to be expandable in Taylor series. The
multipole errors are expected to be in the order of ρ0=R0, ρ0
being the reference radius and R0 the bending radius [24],
and this number is well below the homogeneity tolerance.
The effect of the magnet’s curvature will be discussed in
more detail in Sec. IV.
The homogeneity of the gradient, for the optimized

DQ1 geometry, is shown in Fig. 5. The field was integrated
along paths parallel to the reference electron trajectories
[Fig. 4(b)], then differentiated to get the relative integrated
gradient error ΔG=G. The inhomogeneities appear to be 1
order of magnitude below the specifications within the
good field region. The elliptical shape of the good field
region is visible on the plot. The first six circular multipole
coefficients are given in Table II.
Figure 6 shows the vertical field of the magnet in its

central plane. This field is similar to the field of a
quadrupole magnet for x < 15 mm. At higher values of
x (i.e., on the outer part of the ring) the field is close to zero.
The field and gradient along the reference axis are

plotted in Fig. 7. It shows that the magnetic lengths for
the dipole and the quadrupole terms are not the same.
Using the integrated strength divided by the central strength
as an approximation of the magnetic length, one gets the
dipole length L1 ≈ 1054.7 mm and the quadrupole length
L2 ≈ 1044.0 mm, the iron length being 1028 mm. Indeed, a
quadrupole field decreases faster than a dipole field. The
ratio between the two magnetic lengths is driven by the
magnet bore radius and by the iron length.
Two additional air-cooled coils, named correction coils,

were added on the bottom and top auxiliary poles. The
purpose of the correction coils is to add a knob to tune the

FIG. 3. Sketch of the dipole-quadrupole cross section, show-
ing the main parameters of the magnet. The main coil and the
auxiliary coils are serially connected. An additional correction
coil is installed close to the auxiliary pole. The gray ellipse
below the main pole indicates the approximate position of the
electron beam.
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field and the gradient of the dipole quadrupole independ-
ently. Maps of the integrated field, gradient and sextupole
are shown in Fig. 8.
The integrated fields and gradients have an almost

linear dependence on the main and corrector current.
Their strengths can be approximated with a matrix whose
coefficients are obtained by fitting a plane to the field and
gradient maps. Simulations have shown that the relative
errors between this simple model and the nonlinear

magnetic simulations is below 10–3 for the current ranges
shown in Fig. 8. A better approximation would have been
obtained by fitting a higher order surface to the maps, e.g., a
paraboloid.
Changing the field and gradient introduces a sextupole

component, as shown in Fig. 8. The sextupole strength
varies almost linearly with the corrector current and is
relatively independent of the main coil current. At seven
millimeters from the center of the magnet and at the
maximum corrector current, the ratio of the integrated
sextupole to the dipole reaches β3=β1 ≈ 3 × 10−3 which is
not negligible. It should be noted that adding a correction
coil in an offset quadrupole magnet would have introduced
a similar sextupole component.

FIG. 5. Gradient inhomogeneities ΔG=G integrated along a
path parallel to the reference trajectory [Fig. 4(b)], for the DQ1
magnet. In the horizontal symmetry plane, the gradient is
homogeneous to within 0.1% in a �6.1 mm range. The dashed
curve indicates the 14 × 10 mm GFR.

FIG. 4. (a) Field integration path used for the shape optimization. The path was built with a line, an arc corresponding to the magnet
deflection angle ψ0 and another line. The bending radius is R0. The solid line is the reference trajectory and the dotted line is a path with
horizontal offset x and vertical offset z. These paths have the advantage of being independent of the magnet design: this facilitates the
optimization, as it is stable from one iteration to the next. (b) Coordinate system and integration path used for field and integrated field
computations, after the optimization process. The path is parallel to the reference trajectory computed by a tracking code. The s axis is
parallel to the trajectory, the x axis is horizontal and perpendicular to the reference trajectory, and the z axis is perpendicular to s and x.
A given integration path is displaced by ðx0; z0Þ with respect to the reference trajectory.

TABLE II. First normal circular multipole coefficients for the
DQ1 magnet, normalized to the dipole coefficient and expressed
at 7 mm (the βn denotes “pseudomultipole coefficients” inte-
grated along a curved path. These multipoles are introduced in
Sec. III. The standard deviations σn of the multipole errors βn
were computed for a� 0.05 mm tolerance equally shared be-
tween assembly and machining errors. One hundred sample
dipole-quadrupole magnets were simulated. The field was in-
tegrated along paths parallel to the reference trajectory.

n βn σn

1 10 000 (41)
2 4550.8 (19.7)
3 2.5 7.7
4 −3.7 3.9
5 −2.7 2.1
6 9.0 1.6
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Random pole displacements and random pole shape
errors were introduced in the magnetic model in order to
simulate assembly and machining errors. Table II shows the
sensitivity for the DQ1, assuming a �0.050 mm mechani-
cal tolerance. The relatively high values for these standard
deviations are driven by the small bore radius of a magnet,
as we discussed in Ref. [4]. The dipole term has the largest
standard deviation. It translates to a center position uncer-
tainty of 64 μm. The standard deviation of the quadrupole
term gives the gradient error ΔG0=G0 ¼ 4.3 × 10−3 for the
DQ1. In practice, these two errors depend on the charac-
terization of the magnet: the error on the position of the
magnet center is measured and enforced to zero by the
fiducialization, and the current is set in order to reach
the nominal gradient. The first significant multipole error is
the sextupole, with a σ3 ¼ 7.7 × 10−4 standard deviation

(normalized to the dipole). Beam dynamics simulations
have shown that, with these levels of higher order
multipole errors, the impact on the lifetime and dynamic

FIG. 6. Vertical field of the DQ1 dipole-quadrupole magnet in
the longitudinal symmetry plane. The nominal position of the
beam is x ¼ 0.

FIG. 7. Vertical field and gradient along the reference trajec-
tory. Notice the longer magnetic length for the dipole field.

FIG. 8. Field and gradient trimming using correction coils:
integrated field (top), integrated gradient (middle) and integrated
sextupole strength defined as β3=ρ02 (bottom). The strengths
were integrated along paths parallel to the reference trajectory. At
7 mm from the center of the magnet and at the maximum
corrector current (2 A), β3=β1 ≈ 0.003.
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aperture is small. In these conditions, assuming 0.05 mm
rms alignment errors and taking into account random and
systematic errors on all magnet families, the Touschek
lifetime is 22.6� 1.1 hours, the dynamic aperture is 8.5�
0.4 millimeters and the injection efficiency is 91.6� 3.2%.
These values are acceptable for the EBS.

C. Engineering design

The reduction of the electrical consumption of the
accelerator was one of the goals of the ESRF upgrade.
As the magnets are major contributors to the electrical
bill, a substantial effort was made to decrease their
consumption.
The power efficiency of the dipole quadrupoles is

improved by a factor of 2 compared to a quadrupole with
similar gradient and aperture because the DQs are single
sided magnets. The power consumption can be reduced
further by decreasing the current density (3 A=mm2 for the
DQ1). It results in bigger coils, which means more copper
and less compact magnets. The DQ1 main coil has 65 turns
and its auxiliary coil has 12 turns. The main coils and
auxiliary coils are connected in a series and are water
cooled. The magnet power is 1.4 kW at nominal current of
85 A. The correction coils are air cooled and their power
consumption is negligible.
Figure 1 shows a design view of the DQ1 magnet. The

yoke is made with seven AISI 1006 low carbon plates. The
repeatability of the yoke and pole assembly is ensured
by the design of the mating surfaces (Fig. 9). Most of the
magnet parts are straight, but the pole surfaces are curved,
following the reference particle trajectory.
The vertical magnetic force applied by the two lower

poles on the two upper poles is 22 kN. This force creates a
closure of the gap by 100 μm. This gap reduction is not a
big issue, since the dipole quadrupoles will be powered in
a limited range around the nominal current: the deformation
can be compensated by machining the backleg of the yoke
100 μm higher than its nominal dimension height.
Due to the absence of yoke on one side, the DQs are

less rigid than standard quadrupoles. It would have been
possible to improve the rigidity by installing nonmagnetic
strengthening parts on the open side of the magnet, at the
cost of a reduction of the side access to the magnet gap.
Another solution would be to increase the thickness of the
yoke. The first vibration mode of the DQ1 was found at
107 Hz, which was considered to be high enough.

III. MAGNETIC MEASUREMENTS

A. Stretched wire measurements
of the integrated field

Flux meters are often used to map the integrated field of
accelerator magnets. Rotating coils have been used for
decades and are considered as the reference tools for
multipole magnets [25]. Stretched-wire systems, initially

designed for alignment [26,27] and insertion devices
measurements [28], can now compete with rotating coils
for multipole field mapping [29].
Unfortunately, none of these solutions are satisfactory

for measuring curved magnets. In a dipole magnet, the
field integral along a straight line has no significance
in terms of beam dynamics—even if it may be used for
field quality control, by comparison with simulations.
Curved coils have been built by other groups [30]. Such
coils are well adapted to measure the strength of a
dipole field. In the case a coil is linearly displaced
within a field gradient, the accuracy of the measurement
is limited [29]. Another possibility is to measure field
multipoles at different locations with a rotating coil
shorter than the magnet and moved along the reference
axis of the magnet [31].
We developed another method which combines a sim-

plified model of the magnetic field and stretched-wire
measurements. In the first instance, let us assume that the
magnetic field is a pure dipole-quadrupole field within a
straight magnetic length LS1 for the dipole and LS2 for the
quadrupole and is zero elsewhere (Fig. 10), and that the
bending radius of the poles is R0 (Fig. 4). With this
simplified model, the field along the reference trajectory
has a rectangular shape. Using the notations introduced
in the figures, the vertical component of the field can be
written as

FIG. 9. Yoke of the DQ1 magnet. The yoke is an assembly of
seven parts machined in low carbon plates. The bold solid lines
indicate the mating surfaces used for positioning the top of the
magnet. The bold dotted lines indicate the mating surface used
for positioning the auxiliary poles which must be removed for
inserting the coils.
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BZðx; yÞ ≈ Bþ G

�
x − X0 þ θyþ ðy − ΔyÞ2

2R0

�
; ð4Þ

where the quadratic term approximates the curvature of the
magnet with a parabola and θ is the angle between the
magnet axis and the wire axis. The integral along the wire
can be computed analytically. Assuming θ small and

neglecting the terms in θ2 when integrating along the
magnet axis instead of the wire axis [i.e., dy0 ¼
cos θ dy ≈ ð1 − θ2=2Þdy ≈ dy], the integral of the field is

IZðx; θÞ

¼
ZL=2
−L=2

BZdy0 ≈
ZL=2
−L=2

BZdy

≈ BLS1 þG
Z

LS2=2þΔy

−LS2=2þΔy

�
x − X0 þ θyþ ðy − ΔyÞ2

2R0

�
dy

≈ BLS1 þGLS2

�
LS2

2

24R0

þ x − X0 þ θΔy
�
: ð5Þ

A second integration gives

JZðx; θÞ ≈
ZL=2
−L=2

Zv
−L=2

BZdydv

≈ BLS1ðL=2 − ΔyÞ þ GLS2

�
L
2

�
x − X0 þ

LS2
2

24R0

�

− Δy
2

�
LS2

2

12R0

− θLþ 2x − 2X0

�

− θ

�
LS2

2

12
þ Δy2

��
: ð6Þ

Moving the two extremities of the wire in the same
direction gives the IX;Z integrals, while moving only one
extremity of the wire gives the second integrals JX;Z [28].
The field integral and second field integral measurement
methods are sketched in Fig. 10.
Let us first measure the field integral at two wire

positions IZ01 ¼ IZðΔX; θ0Þ and IZ02 ¼ IZð−ΔX; θ0Þ; the
axis of the magnet being determined by the unknown
position X0 and angle θ0. The difference of these two
integrals simplifies to IZ01 − IZ02 ¼ 2GLS 2Δx, so the
integrated gradient is

GLS2 ¼
IZ01 − IZ02

2Δx
: ð7Þ

The transverse position and angle and the above field
integrals satisfy

X0 ¼
1

GLS2

�
BLS1 − IZ01 þ IZ02

2

�
þ LS2

2

24R0

þ θ0Δy: ð8Þ

The sagitta of the trajectory is S ≈ LS
2=8R0 and in the

case ðθ0;ΔyÞ ¼ 0 this equation simplifies to

FIG. 10. Top: Simplified field model used for the measurement
of the dipole-quadrupole magnets. The field is assumed to be
nonzero over a length LS and the radius of curvature of the
magnet poles is R0. The magnet is measured using a stretched
wire of length L. The longitudinal distance between the magnet
and the wire center is Δy. The dashed line represents the wire.
The magnet frame is ðx; yÞ and the wire frame is ðx0; y0Þ. Middle:
If the two extremities of the wire are moved in the same direction,
the induced voltage e is proportional to the integral of the field
IðX0; θ0Þ. If only one extremity of the wire is moved, the induced
voltage varies with the second integral of the field JðX0; θ0Þ.
Bottom: In the “pseudocurvilinear multipole” approximation
developed in this paper, the field of the dipole-quadrupole magnet
is modeled as a succession of parallel slices. In each slice, the
field is approximated by an analytic function, i.e., a Taylor series.
The multipole coefficients are assumed to be the same for all
slices.
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X0 ¼
1

GLS2

�
BLS1 − IZ01 þ IZ02

2

�
þ S

3
: ð9Þ

This result was first demonstrated by Jain [32]. Then,
let us measure the field integrals at X0 and θ0 � Δθ∶
IZ11 ¼ IZðX0; θ0 þ ΔθÞ, JZ11 ¼ JZðX0; θ0 þ ΔθÞ, IZ12 ¼
IZðX0; θ0 − ΔθÞ and JZ12 ¼ JZðX0; θ0 − ΔθÞ. Combining
the first field integrals gives the longitudinal position of
the magnet,

Δy ¼ IZ11 − IZ12
2GLS 2Δθ

; ð10Þ

while the straight magnetic length is deduced from the
differences of the second field integral:

LS 2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6

GLS 2Δθ
ðJZ12 − JZ11Þ þ 6ΔyðL − 2ΔyÞ

s
: ð11Þ

The length of the curved reference path can be deduced
using the following series expansion:

LC2 ≈ LS2

�
1þ LS2

2

24R0
2

�
: ð12Þ

The wire yaw angle is computed from a combination of
the first and second field integrals:

θ0 ¼
6L

GLS2
3

�
ðIZ11 þ IZ12ÞðL=2 − ΔyÞ − ðJZ11 þ JZ12Þ

�
:

ð13Þ

The position X0 is then obtained by inserting in Eq. (8)
the values θ0 obtained from Eq. (13) and Δy obtained
from Eq. (10).
All of the above parameters were obtained with an a priori

value for R0. Let us now compare the second integrals JZ11
and JZ12, obtained on a magnet whose curvature radius is
R0 þ ΔR0, to the a priori values JZ110 and JZ120 computed
assuming a radius R0. From a series expansion of Eq. (6),
we get

ΔR0 ≈
24R0

2

GLS2
3ðL − 2ΔyÞ ðJZ110 þ JZ120 − JZ11 − JZ12Þ:

ð14Þ

The radius of curvature can thus be obtained from the
difference between the measured second field integrals and
their value assuming R0.
One should note that the above method can be used for

quadrupole alignment, by setting B ¼ 0 and R0 → ∞. The
vertical position and the pitch angle of the magnetic axis
are obtained in this particular case.

We have shown that a few first and second field integral
measurements fully determine the magnet alignment,
including its longitudinal position and the pitch and yaw
angles. The same measurements give most of the param-
eters of the model: the field gradient, the quadrupole
magnetic length and the radius of curvature of the poles.
The dipole magnetic length, not determined here, can be
taken as being equal to the quadrupole length as a first
approximation.
Let us now assume that the wire is aligned on the magnet

axis. In the case where the magnetic field is not a pure
dipole quadrupole but contains higher order multipoles, the
field integral can be approximated by

IZ þ iIX ¼
Z

ðBZ þ iBxÞdl ¼
X
n>0

ðbn þ ianÞ
�
u
r0

�
n−1

≈
X
n>0

βn þ iαn
LSr0n−1

ZLS=2

−LS=2

�
uþ y2

2R0

�
n−1

dy; ð15Þ

where u ¼ xþ iz is the complex variable, an and bn are
the multipole coefficients of the integrated field (see the
Appendix) and βn and αn are “pseudocurvilinear multi-
pole” coefficients integrated along the curved trajectory.
The arc is approximated by the parabola x ¼ y2=ð2R0Þ.
We neglect here the fringe field terms. The effect of these

terms will be discussed in Sec. IV.
Applying the binomial formula to Eq. (15) and integrat-

ing leads to

IZ þ iIX ≈ −X
n>0

Xn−1
k¼0

ðβn þ iαnÞ
�
n − 1

k

�

×

�
LS

2

8R0r0

�
n−1−k 1

1þ 2ðk − nÞ
�
u
r0

�
k

≈
X
n>0

ðbn þ ianÞ
�
u
r0

�
n−1

: ð16Þ

TheN first terms of this equation can be written in matrix
form

0
BB@

b1 þ ia1

..

.

bN þ iaN

1
CCA ¼

0
BB@

A11 � � � A1N

..

. . .
. ..

.

0 � � � ANN

1
CCA
0
BB@

β1 þ iα1

..

.

βN þ iαN

1
CCA;

ð17Þ

with
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Amn ¼
ðn − 1Þ!

ðm − 1Þ!ðn −mÞ!½1 − 2ðm − nÞ�
�

LS
2

8R0r0

�
n−m

;

n ≥ m: ð18Þ

The an and bn can be measured with a stretched wire
[29], as well as the magnetic length LS and on the radius
of curvature R0 which appear in the matrix A. The
pseudocurvilinear multipole coefficients βn and αn can
thus be obtained from the (pseudo)inverse Aþ of A:0

BB@
β1 þ iα1

..

.

βN þ iαN

1
CCA ¼ Aþ

0
BB@

b1 þ ia1

..

.

bN þ iaN

1
CCA: ð19Þ

These results are valid in the case where the magnet is
longitudinally centered on the wire, i.e., Δy ¼ 0. This is
usually not true in practice: the term y2 in Eq. (15) should
be replaced by ðy − ΔyÞ2. Inserting the longitudinal posi-
tion in the equations lead to a more complex expression for
the matrix coefficients:

Amn ¼
ðn − 1Þ!½ðLS

2
− ΔyÞ2ðn−mÞþ1 þ ðLS

2
þ ΔyÞ2ðn−mÞþ1�

ðm − 1Þ!ðn −mÞ!½1 − 2ðm − nÞ�LSð2R0r0Þn−m
;

n ≥ m; ð20Þ

which simplifies to Eq. (18) if Δy ¼ 0.
One should note that the presence of binomial coef-

ficients in the Amn makes the inversion ofA unstable if N is
too large. For all n > 20, we set an and bn to zero to avoid
inversion issues.
The coefficients obtained with Eq. (19) can easily be

converted to pseudoelliptic multipole coefficients Ek using
the matrix notations introduced in the Appendix:

0
BBB@

..

.

Ek

..

.

1
CCCA ¼ ME

−1MCAþ

0
BBB@

..

.

bk þ iak

..

.

1
CCCA: ð21Þ

The methods described above were first tested with a 3D
model of the DQ1 dipole quadrupole. Pseudomultipoles of
the integrated field were given in Table II. Assuming
R0 ¼ 35.20 m, enforcing BLS 1 ¼ 0.5844 Tm and using
Eq. (5) to (14) lead to the values given in Table III. In
Sec. II B, the quadrupole magnetic length, defined as the
integrated gradient divided by the central gradient, was
found equal to 1044 mm, which is almost the same value as
in Table III.
A 35.255 m bending radius was estimated from the

integrals along straight lines. It is close to the nominal
radius: the relative difference between the two radiuses is
about 0.15%. However, this requires further verification:

any method giving a small ΔR0 would lead to a small
difference between the nominal radius and the estimated
one. To check this, the assumed value of R0 in Eq. (5) to
Eq. (14) was modified and the bending radius was
estimated. The results plotted in Fig. 11 shows that the
method remains accurate even if the assumed value of R0

is wrong.
Table IV shows the pseudomultipole coefficients com-

puted with Eq. (19) and allow a comparison to the
pseudomultipoles integrated along curves parallel to the
reference trajectory and to the pseudomultipoles integrated

TABLE III. Determination of the magnet properties from
integrals of the field along straight lines. The field integrals
IZ01, IZ02, IZ11, IZ12 and the second field integrals JZ11 and JZ12
were computed with a 3D model of the DQ1 magnet, using the
Radia software. The JZ110 and JZ120 integrals were computed
using Eq. (6), the integrated gradient was obtained from Eq. (7),
the quadrupole magnetic length was computed from Eq. (11) and
the bending radius was determined using Eq. (14).

IZ01 0.630 45 T m
IZ02 0.440 49 T m
IZ11 0.535 44 T m
IZ12 0.535 44 T m
JZ11 0.413 10 Tm2

JZ12 0.390 09 Tm2

JZ11 0 0.413 10 Tm2

JZ12 0 0.390 10 Tm2

GLS2 −37.991 T
LS2 1.0439 m
R0 þ ΔR0 35.255 m

FIG. 11. Bending radius estimated from the field integral
method versus assumed bending radius. If the assumed bending
radius is wrong by 5 m, the error in the bending radius estimation
is about 0.7 m. A 1 m error in the assumed bending radius gives a
3 cm error in the estimation (from 3D simulations with Radia).
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along parabolas. The agreement between the different
methods is 2 × 10−4 or better for all coefficients.
The reference trajectory is well approximated by a

parabola in the interior of the magnet but this is not the
case in the fringe field region. However, Table IV dem-
onstrates that integrals of the field along parabolas are good
approximations of the field integrals along the reference
trajectories.

B. Magnetic measurement benches

A Hall probe bench designed at the ESRF for undulator
measurements [33] was used for measuring locally the
magnetic field. The Hall sensors were calibrated versus a
nuclear magnetic resonance probe in a dipole magnet.
Then, the dipole-quadrupole magnets were measured

with stretched wire benches. These benches are made
with Newport ILS-100CC and IMS-100V linear stages,
driven by a Newport XPS motion controller. The stages
were calibrated with an interferometer and their accuracy
is in the range of 1 μm. The voltage induced on the wire
was measured with a Keitley 2182 voltmeter. A 0.1 mm
diameter Ti-6Al-4V wire was used. Please refer to Ref. [34]
for a more detailed presentation of the ESRF stretched wire
benches.
The following measurement sequence was implemented

on the measurement bench: (i) measurement of the field
integrals and the second field integrals IZ01, IZ02, IZ11, IZ12,
IX11, IX12, JZ11, JZ12, JX11 and JX12 and determination of
the gradient, longitudinal position, yaw and pitch angle,
magnetic length and curvature, (ii) measurement of the
integrated field at 128 points on a circle with 9 mm

diameter, i.e., at the maximum radius compatible with
the geometry of the curved poles. All the measurement
sequences and the analysis routines are part of the open
source software SW Lab currently developed at the
ESRF [35].

C. Results

Two kinds of measurements were performed on the DQ
magnets: local measurements with a Hall probe bench, and
integral measurements with a stretched wire bench.
The field and gradient are shown in Fig. 12. These

measurements were used to determine the dipole length
L1MEAS ¼ 1056 mm (simulated value 1054.7 mm) and the
quadrupole length L2MEAS ¼ 1045 mm (simulated value
1044.0 mm). The magnetic lengths were defined as the
integral of the field divided by its central value.
The bending radius of the poles was also determined

from the local measurements, assuming that the vertical
field BZ is homogeneous on the trajectory and excluding
the extremities of the magnet. The best fitted value of the
curvature radius is 35.06 m, which is close to the 35.20 m
specified mechanical radius. Considering the deflection
angle of the DQ1, the error on the sagitta of the magnet is
(35.20–35.06) ð1 − cos 0.0292=2Þ ≈ 15 μm, which is well

FIG. 12. Top: Magnetic field of the DQ1 preseries magnet
DQ1-002, measured with a Hall probe bench. Step size:
1 mm. Bottom: Field gradient obtained by differentiating the
magnetic field.

TABLE IV. Simulated pseudomultipoles of the integrated field
computed with different methods. (Trajectory): The field was
integrated along curves parallel to the reference trajectory.
(Parabola): The field was integrated along parabolas with
35.255 m curvature radius. (Straight to parabola): The field
was integrated along straight lines, then Eq. (19) was used in
order to compute pseudomultipoles integrated along a parabola.
The horizontal and the vertical field components were sampled on
circles centered on the parabola and with symmetry axis parallel
to the magnet axis.

Trajectory Parabola Straight to parabola

Normalization
field (T mm)

584.38 585.72 585.72

n βn βn βn
1 10 000 10 000 10 000
2 −4550.8 −4548.0 −4548.5
3 2.5 2.1 4.1
4 3.7 3.8 3.7
5 −2.7 −2.6 −2.9
6 −9.0 −9.3 −9.6
7 2.9 2.8 1.9
8 9.5 10.1 11.0
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within the tolerances. It should be noted that vertical field
along the reference arc is not perfectly flat, as shown in
Fig. 7. Thus, the “magnetic” bending radius determined
from the field maps is not equal to the mechanical bending
radius of the poles.
Due to the limited accuracy of our Hall probe bench and

to the noise introduced by the differentiation of the field, we
were not able to determine the gradient homogeneity with
this method.
The dipole-quadrupole magnets were then measured with

a stretched wire bench using the method described in
Sec. III. 1. The results presented below are for one particular
magnet, the DQ1-063, which was measured in details.
The magnet current was adjusted first, in order to reach

the integrated gradient specification. At least two iterations
are needed to set the gradient to its nominal value. The
determination of the current must be done before the
alignment and fiducialization because the field at a given
position strongly depends on this current. In all magnets,
the current corresponding to the nominal gradient was
found lower than its simulated value by about 3%.
The measurement sequence was repeated 16 times with

the same initial conditions in order to determine the accuracy
of the alignment. The standard deviation for the magnet
center was 1 μm for the horizontal offset, 4 μm for the
vertical offset, and 0.16 mm for the longitudinal offset. The
standard deviation is larger for the vertical offset due to
the thermal drift of the magnet. The nominal diameter of the
wire is 100� 5 μm, which brings additional uncertainties.
Its sagitta was estimated to 13 μm and was corrected at the
end of the measurement. But the main contributors to the
alignment uncertainties are the laser trackers used for
transferring the positions of the wire holders to the alignment
references of the magnets. The rms error of the coordinate
measurements was found to be 18 μm, using two laser
trackers installed at two different positions [36].
The standard deviation for the pitch and yaw angles

was about 0.06 mrad. It should be mentioned that the
repeatability of the pitch and yaw angle measurements

strongly depends on the measurement setup. In particular,
measuring a short magnet with a long wire would lead to
poor accuracy. A 1.64 m long wire was used for the
experiment described here.
The quadrupole length of this magnet was estimated to

LS ¼ 1047.7� 1.4 mm and the radius of curvature of its
poles was estimated to R0 ≈ 35.12� 0.08 m. This radius is
pretty close to the 35.21 nominal radius and the difference
between the measured and the nominal sagitta is only
0.01 mm. This value is also in good agreement with the
radius measured on the preseries with local field
measurements.
The multipoles coefficients of the integral of the field

along a parabola are given in Table V. The large difference
between b2 (integral along a straight line) and β2 (integral
along a parabola) is the result of the transverse offset
Δx ≈ S=3 expected from Eq. (9). The measured value of β2
is slightly different from the simulated value given in
Table II. It comes from a change of the EBS lattice: the
gradient of the dipole quadrupole in the final lattice is 0.9%
higher than the gradient used to design the magnet while
the field was kept constant. The new working point was
obtained by changing the current and by changing the
transverse offset of the magnet by 0.13 mm. The first
multipole coefficients are in agreement with the nominal
values and tolerances, but the β5 and β6 differ significantly
from the simulations. Further magnetic simulations have
shown that the measured value of β6 cannot be explained by
a deformation of the magnet resulting in a closure of its gap.
A possible explanation is sketched in Fig. 13. Due to the
curvature of the magnet, a small part of the GFR is out of
the measured volume at the extremities of the magnets.
Measuring the magnet with a different transverse offset,
e.g., ΔX ¼ S=3, would imply to reduce the measurement
radius and would not necessarily solve this issue. Another
possibility, to be further developed, would be to combine
measurements at two different offsets and radii. Combining
several measurements is feasible using the matrix formal-
ism developed in [29].

TABLE V. Measured multipole coefficients of the field integrated along a straight line (an, bn) expressed at 7 mm,
and curvilinear multipoles (βn, αn) at the same radius. All multipoles were normalized to the normal dipole. All
measurements were done on the DQ1-063 magnet. The errors are standard deviations estimated from repeated
measurements.

n bn βn an αn

Normalization field (T mm) 534.68 584.20 534.67 584.20
1 10 000 10 000 7.0� 0.7 6.4� 0.7
2 5020.8� 1.0 4590.9� 0.9 0.4� 0.3 −0.1� 0.3
3 −3.0� 0.2 −5.0� 0.2 1.3� 0.2 1.8� 0.2
4 −4.1� 0.3 −5.6� 0.4 −1.1� 0.1 −1.3� 0.2
5 −0.7� 0.3 5.0� 0.2 0.4� 0.2 0.4� 0.2
6 4.7� 0.1 19.1� 0.4 −0.1� 0.1 0.4� 0.1
7 13.95� 0.3 8.3� 0.5 −0.5� 0.1 −0.6� 0.1
8 −3.1� 0.1 −9.1� 0.2 0.2� 0.1 0.3� 0.2
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The integrated gradient and its homogeneity can be
computed from the multipoles. Homogeneity contours are
shown in Fig. 14. The normalized gradient error ΔG=G is
well below the 1% specification. It is under 0.1% within a
�5.3 mm range in the horizontal direction. (Magnetic
simulation gave a 0.1% homogeneity within a �6.1 mm
range, see Fig. 5.)

IV. EFFECT OF THE MAGNET’S CURVATURE

In the above discussion, the field of the magnet was
approximated by a set of slices. The field in each slice was
assumed to be an analytic function. For straight magnets this
approximation gives the correct integrals of the field, even if
it hides the fringe field effect. (We discussed some effects of
the fringe field of quadrupole magnets in Ref. [4].)
In this discussion, we will focus on the integral of the

fields along the reference trajectory of the electrons
[Fig. 4(b)]. The field integral along a curved path differs
from an analytic function. Stated differently, reconstructing
the field from Fourier coefficients estimated on the
boundary of a given region would lead to errors inside
this region. For a given magnet model, these errors can
be simulated easily. Complex field integrals Ik ¼

R ðBz þ
iBxÞds were computed at uk ¼ xk þ izk ¼ ρ0ExpðiθkÞ,
where ρ0 is the radius of the good field region, θk ¼
2πk=K and 0 ≤ k < K. The path length depends on uk and
the reference trajectory corresponds to u ¼ 0. In the case
these field integrals would be an analytic function of u, the
series coefficients would be obtained from the Fourier
transform of the signal I ¼ ðI1;…; IKÞ, as is usually done
for multipole analysis. Let us denote ân and b̂n the series
coefficients obtained from the Fourier transform of I. Then,
a field integral error can be estimated at each point ðx; zÞ
inside the good field region:

εðx; zÞ ¼
jIðx; zÞ −P

n≥1ðb̂n þ iânÞðxþiz
ρ0

Þn−1j
max jIðx; zÞj : ð22Þ

This error is shown in Fig. 15. It demonstrates that within
the good field region the integral of the field along paths

FIG. 14. Homogeneity contours of the magnetic field gradient
integrated along a straight line and along a parabola whose
minimal radius of curvature is equal to the measured bending
radius of the magnet. The dotted line in black indicates the 14 mm
x 10 mm good field region. In the horizontal plane, the gradient
integrated along the parabola has a homogeneity better than 0.1%
in a �5.3 mm range.

FIG. 15. Contour plot of the error 104εðx; zÞ defined in
Eq. (22). This error is the normalized difference between the
integral of the field along a path parallel to the reference
trajectory, and an analytic function whose series coefficients
were evaluated from the values of the integrated field on a 7 mm
radius circle. The higher values of the error, on the boundary, are
due to the truncation of the series to its ten first terms.

FIG. 13. Cut view of a DQ1 from its center, showing the
trajectory of the wire and the GFR in the middle and at the
extremities. The wire rotation axis was tangent to the reference
trajectory in the middle of the magnet. At the magnet extremities,
a part of the GFR is out of the measurement radius. This may be a
cause of the discrepancies between simulations and measure-
ments for the higher order harmonics.
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parallel to the trajectory can be approximated with a relative
error below 10−4 with a Fourier expansion.
Solutions of the Laplace equation in curvilinear coor-

dinates, i.e., curvilinear multipoles, have been studied by
others. Cylindrical multipoles were first proposed by
McMillan [37], rediscovered independently by Mane
[38] and studied in more details by Zolkin [39]. Toroidal
field multipoles were studied by other authors. Schnizer
et al. introduced a local toroidal coordinate system and
shown the curvature results in distortions of the standard
field multipoles [24,40]. Wolski and Herrod have recently
published an expression of the potential in toroidal coor-
dinates [41]. We implemented a similar toroidal multipole
expansion and we computed the error between the field
integral and a sum of toroidal multipoles. For the magnet
we investigated, the relative error was again in the 10−4
range. As the toroidal multipoles are a solution of the
Laplace equations in this geometry, the field at a given
point should be equal to the toroidal multipole series at the
same point. This indicates that the accuracy of the compu-
tations is about 10−4.

V. CONCLUSION

Off-axis quadrupoles are suitable to achieve the speci-
fications of the combined dipole quadrupoles to be inte-
grated in the new generation of storage ring based light
sources. These magnets can be asymmetric in order to
reduce their electrical power consumption. Such magnets
were designed and constructed for the EBS. The shapes of
the magnets were optimized in order to obtain a good
gradient homogeneity within an elliptic good field region.
The magnets are single sided and produce almost no field
on their outer side. Correction coils were installed in order
to tune the field and the gradient independently.
Stretched wire magnetic measurement methods were

developed for the magnet alignment and for measuring its
main parameters, i.e., magnetic length, gradient, pole
bending radius and pseudomultipole coefficients. The
accuracy of these methods was demonstrated with 3D
simulations. The parameters measured on one of the dipole-
quadrupole magnet series were presented. The alignment
accuracy was very good, the fiducialization errors being
dominated by laser tracker uncertainties. The multipole
coefficients were in good agreement with the simulation
results and tolerances up to the octupole, but the decapole
and dodecapole are significantly higher than their simulated
value. These discrepancies may be explained by the
imperfect matching of the volume measured by the wire
and the GFR volume. Combining two or more measure-
ments performed at different offsets and radii would allow
overcoming this issue but would need further develop-
ments. It should be noted that the stretched wire methods
developed in the paper may be adapted to rotating coil
measurements.

If the field integral is evaluated on a curved path rather
than on a straight line, it is not an analytic function.
However, we have shown that given the large radius of
curvature and the small radius of the good field region for
the magnets described here, the relative error between the
integral of the field and its analytic approximation is not
larger than 10–4.
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APPENDIX

1. Standard multipoles and elliptic multipoles
for straight magnets

The field of multipole accelerator magnets is often
expressed as a multipole series: the magnetic field is
described with a small number of coefficients, making
its representation easier. The most common multipoles are
the 2D “straight” multipoles obtained by integration of the
field along a line.
Within the aperture of a multipole magnet, the Maxwell

equations reduce to∇ · B ¼ 0 and∇ ×B ¼ 0. The integral
of a magnetic field along a straight line is a 2D field, for
which the Maxwell equations are equivalent to the Cauchy-
Riemann equations. The complex field B ¼ BZ þ iBX,
where BZ and BX are the vertical and horizontal compo-
nents of the integral of the field along a straight line, can be
expressed as the Taylor series

B ¼
X∞
n¼1

ðbn þ ianÞ
�
u
ρ0

�
n−1

;

where u ¼ xþ iz is the complex function, bn and an are
the normal and skew 2n-pole coefficients and ρ0 is the
reference radius.
The apertures of dipole magnets are often noncircular.

Elliptic multipoles have been introduced by Schnizer et al.
[23,24] for describing the dipole fields on noncircular
aperture. The elliptic coordinates are defined as x ¼
e cosh η cosψ and z ¼ e sinh η sinψ , where e is the eccen-
tricity, 0 ≤ η < ∞ and −π ≤ ψ < π. Cartesian coordinates
are transformed to elliptic coordinates by the conformal
map

w ¼ ηþ iψ ¼ Arccoshðu=eÞ:

Inserting this in standard multipole series and using
Moivre’s formula and the binomial theorem, then rearrang-
ing the terms and introducing new notations leads to
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B ¼ E0

2
þ
X∞
n¼1

En
coshðnwÞ
coshðnη0Þ

: ðA1Þ

The En’s are the elliptic multipole coefficients while η0 is
a normalization factor.
If the summation in Eq. (A1) is truncated to its first

terms, the field at a given set of points can be expressed in
matrix form:

B ¼ MEE; ðA2Þ

where Bi ¼ BðwiÞ, the Ej’s are the complex elliptic multi-
pole coefficients, 1 ≤ i ≤ M, 1 ≤ j ≤ N and

MEij ¼
� 1

2
for j ¼ 1

ℬ cosh½ðj−1Þwi�
cosh½ðj−1Þη0� for j > 1.

This multipole expansion has been used for optimizing
the field on an elliptical good field region.
Similarly, the field in polar coordinates writes B ¼

MCC, where theCj’s are the complexmultipole coefficients
and MCij ¼ ðui=ρ0Þj−1. One can choose the points i such
that the matrix MC is invertible. In such a case, the elliptic
multipoles transform to the circular ones according to

C ¼ MC
−1MEE: ðA3Þ

This yields kCkF ≤ kMC
−1MEkFkEkF where kAkF is

the Frobenius norm of A. The norm K ¼ kMC
−1MEkF

depends only on the positions at which the field is
computed, i.e., on the good field region, so the minimiza-
tion of the elliptic multipole errors kεEk ¼ kE −ETARGETk
for a given good field region yields to small circular
multipole errors: kεCk ≤ KkεEk.
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