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One of the main challenges of the lattice design of synchrotrons, used as light sources or damping rings
(DRs), is the minimization of the emittance. The optimal lattice configurations for achieving the absolute
minimum emittance are the theoretical minimum emittance (TME) cells. This paper elaborates on the
optimization strategy in order to further reduce the betatron emittance of a TME cell by using dipoles
whose magnetic field varies longitudinally. Based on analytical results, the magnet design for the
fabrication of variable bends with the optimal characteristics is discussed. In order to have a global
understanding of all cell properties, an analytical approach for the theoretical minimum emittance cells with
variable bends is elaborated. This approach is employed for the design optimization of the Compact Linear
Collider (CLIC) DRs. The margin gained in the emittance including IBS based on this new design strategy
enables the removal of a number of TME cells from the existing arcs while still keeping the requirements of
the collider. The reduction of the circumference is further enhanced by the use of optimized high-field
wigglers. The optimization strategy followed for the CLIC DRs is explained in detail and the output
parameters of the new design are presented.
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I. INTRODUCTION

The principle objective of linear collider damping rings
(DRs) and storage ring x-ray sources is the generation of
ultra-low emittances in order to achieve high brightness
beams. The optics design is primarily focused on building a
compact ring, attaining a sufficiently low emittance and
an adequately large dynamic aperture (DA). Due to their
compactness and the very small horizontal emittance they
reach, the theoretical minimum emittance (TME) cells [1,2]
are preferred for some ring designs. The performance of
these cells was previously studied analytically for the case
of uniform dipoles [3]. The emittance reached by a TME
cell can be further reduced if instead of standard dipoles,
longitudinally variable bends [4,5] are used. This paper
summarizes analytical and numerical studies regarding the
variable bends that provide emittances lower than the ones

of a uniform dipole for a TME cell. The optimal magnetic
field evolution of these bends is found analytically and
applied to two simple dipole profiles (Sec. III). The
characteristics of the dipole with the optimal field variation
are further refined by the technological limitations for the
magnet fabrication (Sec. IV). These limitations are used as
constraints in order to study the impact of each dipole
profile on the optics functions of the cell and on the
properties of the ring. The analytical parametrization of the
quadrupole strengths and optics functions with respect to
the drift lengths and the emittance is extended to the TME
with a nonuniform dipole (Sec. V). The strong focusing
needed for accomplishing the TME conditions results in
cells with high chromaticities. In favor of having low
chromaticity, a sufficient large dynamic aperture and a
compact ring, the TME should be detuned from the
absolute minimum emittance solution.
Based on the analytical thin-lens solutions, appropriate

initial conditions are chosen for matching the lattice
numerically using MADX [6]. This approach is applied
to the CLIC DRs, filled with longitudinally variable bends
in the arcs and high field wigglers in the long straight
sections. The optimization strategy followed to reduce the
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circumference of the DRs design is explained in Sec. VI.
To this end, the parameters of the new alternative design
are compared with respect to the original ones.

II. ANALYTICAL SOLUTIONS FOR MINIMIZING
THE EMITTANCE OF A TME CELL

The equilibrium horizontal emittance in a storage ring is
given by:

ϵx ¼
Cqγ

2

Jx

h H
jρj3i
h 1
ρ2
i ¼ Cqγ

2

Jx

1
C

R
C
0

H
jρj3 ds

1
C

R
C
0

1
ρ2
ds

; ð1Þ

where C is the circumference of the ring, γ is the
Lorentz factor, Jx is the damping partition number and
Cq ¼ 3.84 × 10−13 m (for electrons). The lattice function
H known as the dispersion invariant, depends on the optics
parameters, the dispersion function, and its derivative:

HðsÞ ¼ γðsÞηðsÞ2 þ 2αðsÞηðsÞηðsÞ0 þ βðsÞηðsÞ02: ð2Þ

In the case of uniform dipoles, having a constant bending
radius ρ, the minimum emittance value is obtained through
the minimization of the hHi. However, in the case of
longitudinally variable bends, for a varying ρ along the length
of the magnet, the aim is to minimize hH=ρ3i=h1=ρ2i.
A schematic layout of the TME cell is displayed in

Fig. 1. It consists of one dipole D of length L and of two
quadrupole families Q1, Q2 with focal lengths f1½m� ¼
1=ðk1lq1Þ and f2½m� ¼ 1=ðk2lq2Þ, where k1, k2 are the
normalized quadrupole strengths and lq1 ; lq2 their lengths.
The drifts between the elements are denoted by s1, s2,
and s3. For simplicity, the center of consecutive dipoles is
considered as the entrance and exit of the TME cell, with
the index “cd” (center of dipole) representing functions
at this location. The optics parameters, the dispersion
function and its derivative from the center to the edge
can be written as:

βðsÞ ¼ βcd − 2αcdsþ γcds2; αðsÞ ¼ αcd − γcds;

γðsÞ ¼ γcd; ηðsÞ ¼ ηcd þ η0cdsþ θ̃ðsÞ;
η0ðsÞ ¼ η0cd þ θðsÞ: ð3Þ

The expressions in Eq. (3) are used to calculate the
dispersion invariantHðsÞ [Eq. (2)]. It should be mentioned
that the focusing of the dipole is negligible for dipoles
having a small bending angle θ.
The theoretical minimum emittance can be achieved

if the symmetry condition, for which both beta (βx) and
dispersion (ηx) functions have a minimum at the center of
the bending magnets (αcd ¼ η0cd ¼ 0), is satisfied (Fig. 2)
[1,2]. For isomagnetic TME cells the dispersion and beta
functions at the center of the dipole are respectively equal to
ηcd ¼ θL

24
and βcd ¼ L

2
ffiffiffiffi
15

p . These functions are different for a

nonuniform dipole, since their bending angle and radius
vary along the electron beam path in the magnet. In that
case, the bending angle and its integral are given by:

θ ¼
Zs
0

1

ρðsÞ ds; θ̃ ¼
Zs
0

�Zs
0

1

ρðsÞ ds
�
ds: ð4Þ

The beta and dispersion functions at the dipole center
(βcd and ηcd) impose two independent optics constraints,
therefore, at least two quadrupole families are needed for
achieving them. Using the thin-lens approximation and for
given βcd and ηcd at the center of the dipole, the analytical
expressions for the quadrupole focal lengths can be
derived:

f1 ¼
s2g1

g1 − ηss þ s2θ
; f2 ¼

s2ηss
g1 − ηss

; ð5Þ

where the dispersion ηss at the center of the cell, between
two mirror symmetric quadrupoles,

ηss ¼
−2g1s3

s2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4g1s3

s2
2

β2cdθ−ðL=2þs1Þg2
β2cdθ

2þg2
2

r ; ð6Þ

depends on the drift lengths, the optics functions at the
dipole center, the bending characteristics and the parameters

FIG. 1. Schematic layout of a TME cell. FIG. 2. Symmetry condition for the TME.
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g1 ¼ ηcd þ s1θ þ θ̃; g2 ¼ ηcd −
L
2
θ þ θ̃: ð7Þ

In the limit of s2 → 0, i.e., when Q1 and Q2 are merged
into one quadrupole, both f1 and f2 vanish, giving infinite
focusing strengths (see Appendix A). When s3 → 0, the
two quadrupoles that belong to the Q2 family of the TME
cell are merged into one and f2 vanishes. In this respect,
ultrashort drift space lengths between the quadrupoles must
be avoided. The fact that in the limit of s1 → 0 both f1 and
f2 have fixed nonzero values, implies that it is possible to
place the quadrupole Q1 exactly next to the dipole, with no
drift space between them.
Longitudinally variable dipoles, whose magnetic field

varies along their length, can provide lower horizontal
emittances than a uniform dipole of the same bending
angle [4,5]. In the case of a TME cell, the evolution
of HðsÞ along a uniform dipole is shown in Fig. 3.
This evolution guides the bending radius choice for
achieving an emittance reduction by using a variable
bend. In fact, the variable bend should be designed
such that the minimum bending radius is at the dipole’s
center and then it should decrease towards the edge of the
dipole [7–14].
For the present work, two different functions of the

bending radius are used, being either constant or linearly
dependent with respect to the distance s. Due to the optics
symmetry, all definitions can be given for the half-dipole
(from 0 to L=2). In this respect, the first part of the half
dipole at the dipole center (s ¼ 0) has a length L1 and the
second, with a length L2, follows until the exit of the dipole,
with functions ρ1ðsÞ and ρ2ðsÞ, describing the bending radii
in the respective parts.
The maximum magnetic field is at the center of the

dipole, where the bending radius is minimum. The mini-
mum magnetic field and maximum bending radius are at
the edges of the magnet. The field evolution along the
magnet can be well described by using only two param-
eters; the lengths and the bending radii ratio [10,11,13], that
are defined as:

λ ¼ L1

L2

and ρ̃ ¼ ρ1
ρ2

: ð8Þ

The lower λ is, the shorter is the high field region compared
to the low field one. The lower ρ̃ is, the higher is the field at
the dipole center compared to the one at the edges.
Generally, ρ̃ < 1 because ρ2 needs to be larger than ρ1
and λ > 0.
Splitting the half dipole in two parts with different

bending radii requires the study of the dispersion invariants
for each part separately. In this respect, the dispersion
invariant given in Eq. (2) should be calculated for both
parts; that is H1ðsÞ and H2ðsÞ with:

H1;2ðsÞ ¼ γ1;2η1;2
2 þ 2α1;2η1;2η

0
1;2 þ β1;2η

0
1;2

2: ð9Þ

After implementing the symmetry condition in Eq. (3), the
optics functions for the first and the second part of the
half dipole are given by Eqs. (10) and (11) respectively, for
βL1

; αL1
; γL1

; ηL1
, and η0L1

corresponding to the optics
functions at the point where s ¼ L1.

β1 ¼ βcd þ γcds2; α1 ¼ −γcds; γ1 ¼ γcd;

η1 ¼ ηcd þ θ̃1; η01 ¼ θ1 ðαcd ¼ 0; η0cd ¼ 0Þ ð10Þ

β2 ¼ βL1
− 2ðs − L1ÞαL1

þ ðs − L1Þ2γL1
;

α2 ¼ αL1
− ðs − L1ÞγL1

; γ2 ¼ γL1
;

η2 ¼ ηL1
þ θ̃2 þ ðs − L1Þη0L1

; η02 ¼ θ2 þ η0L1
; ð11Þ

where the bending angles and their integrals, using Eq. (4),
are expressed as:

θ1 ¼
Zs
0

1

ρ1ðsÞ
ds; θ2 ¼

Zs
L1

1

ρ2ðsÞ
ds;

θ̃1 ¼
Zs
0

θ1ds; θ̃2 ¼
Zs
L1

θ2ds; ð12Þ

The bending angle of the half dipole is then given by:

θ ¼ θ1ðs¼L1Þ þ θ2ðs¼L1þL2Þ ¼
ZL1

0

1

ρ1ðsÞ
dsþ

ZL1þL2

L1

1

ρ2ðsÞ
ds:

ð13Þ

Inserting the partial dispersion invariants into Eq. (1), the
emittance is found to be

FIG. 3. The evolution of the dispersion invariant along the
uniform dipole.
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ϵx ¼ G

0
B@ 1

L1
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0
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dsþ 1
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1
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2
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1
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dsþ 1
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L1

1

ρ2ðsÞ2
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1
CA

−1

: ð14Þ

The final form of Eq. (14) can be expressed as:

ϵx ¼ G
I7 þ I8λþ ðI1 þ I2λÞβ2cd þ ηcd½I5 þ I6λþ ðI3 þ I4λÞηcd�

L1βcd
; ð15Þ

with the integrals I1 − I8 given in Appendix B.
In order to find the absolute minimum emittance, the first partial derivatives of the emittance with respect to the beta and

dispersion functions should be zeroed. As a result, the βTME and ηTME values that achieve the TME at the center of the dipole
are found to be:

βTME ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðI5 þ I6λÞ2 þ 4ðI7 þ I8λÞðI3 þ I4λÞ

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðI1 þ I2λÞðI3 þ I4λÞ
p and ηTME ¼ −

I5 þ I6λ
2ðI3 þ I4λÞ

: ð16Þ

By inserting Eq. (16) into Eq. (15) the expression for the TME is given by:

ϵTME ¼ G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 þ I2λ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðI5 þ I6λÞ2 þ 4ðI7 þ I8λÞðI3 þ I4λÞ

p
L1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I3 þ I4λ

p : ð17Þ

The emittance detuning factor ϵr that describes the deviation of the emittance ϵx from its theoretical minimum ϵTME is
given by:

ϵr ¼
ϵx

ϵTME
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I3 þ I4λ

p ½I7 þ I8λþ ðI1 þ I2λÞβ2cd þ ðI3 þ I4λÞη2cd − ðI5 þ I6λÞηcd�
βcd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 þ I2λ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðI5 þ I6λÞ2 þ 4ðI7 þ I8λÞðI3 þ I4λÞ

p ð18Þ

Solving Eq. (18) with respect to βcd gives:

βcd1;2 ¼
ϵr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðI7 þ I8λÞ − ðI5þI6λÞ2

I3þI4λ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4½ðI7 þ I8λÞðϵ2r − 1Þ þ ðI3 þ I4λÞη2cd − ðI5 þ I6λÞηcd� − ðI5þI6λÞ2

I3þI4λ
ϵ2r

q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 þ I2λ

p : ð19Þ

Applying the requirement of βcd to be a real-positive number, the quadratic dependence of the argument in the square root
on the dispersion at the center of the dipole must have an upper and a lower limit, i.e., ηmin < ηcd < ηmax, given by:

ηcdmin;max
¼ −

ðI5 þ I6λÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðI5 þ I6λÞ2 − 4ðI3 þ I4λÞðI7 þ I8λÞ�ð1 − ϵ2rÞ

p
2ðI3 þ I4λÞ

: ð20Þ

The βcd has two solutions for a fixed ηcd. The solutions of βcd and ηcd, that depend on the detuning factor ϵr, determine the
limits of ϵx.
The horizontal and vertical phase advances of the cell can be found using the trace of the cell transfer matrix. The

horizontal phase advance, using Eq. (7), is given by:

cos μx ¼
g22 − β2cdθ

2

g22 þ β2cdθ
2
: ð21Þ

For a uniform dipole, the horizontal phase advance in order to reach the absolute minimum emittance is independent of any
cell or dipole characteristics and has the unique value μx ¼ 284.5° [15]. However, in the case of the nonuniform dipoles, the
horizontal phase advance for reaching the TME condition depends on θ and θ̃ and thereby, on ρ̃ and λ. The vertical phase
advance can be expressed as:
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cos μy ¼ 1þ ½Lþ 2ðs13 þ s12Þ�
�
1

f1
þ 1

f2

�

þ 2
ðLþ s1 þ s12Þs23 þ s12s3

f1f2
þ ðLþ 2s1Þs23

f21

þ ½Lþ 2ðs1 þ s12Þ�s3
f22

þ ðLþ 2s1Þðs22 þ 2s2s3Þ
f21f2

þ 2
ðLþ 2s1 þ s12Þs2s3

f1f22
þ ðLþ 2s1Þs22s3

f21f
2
2

; ð22Þ

where s12 ¼ s1 þ s2, s13 ¼ s1 þ s3, and s23 ¼ s2 þ s3. If
the cell is tuned to the absolute minimum emittance
conditions, for s1 → 0 or s2 → 0 or s3 → 0 and based
on the results presented in Appendix A, the cos μy goes to
infinity and so, the vertical motion is unstable. Unlike the
horizontal phase advance, the vertical one depends both on
the optics functions at the dipole center and on the cell
geometry.

III. DIPOLE PROFILES

Based on studies of preceding works for the longitudi-
nally variable bends [4,5,7–13], two dipole profiles are
presented where the bending radius forms a step and a
trapezoidal shape. The step profile shown in Fig. 4 (left)
consists of two different constant field segments, having the
minimum bending radius at the dipole center. The evolution
of ρ for the step profile is given by:

ρðsÞ ¼
�
ρ1; 0 < s < L1

ρ2; L1 < s < L1 þ L2 ¼ L=2

The trapezium profile is shown in Fig. 4 (right), where
again the strongest constant field segment is localized at the
center of the dipole. The evolution of the bending radius
from the dipole center until its edge is expressed as:

ρðsÞ¼
�
ρ1; 0<s<L1

ρ1þðL1−sÞðρ1−ρ2Þ=L2; L1<s<L1þL2¼L=2
:

The theoretical minimum emittance, as calculated using
Eq. (17) for each dipole profile, depends on ρ̃, λ, and θ. The
reduction factor that describes the reduction of the mini-
mum emittance for a nonuniform dipole with respect to a
uniform one with the same bending angle, is defined as:

FTME ¼ ϵTMEuni

ϵTMEvar

; ð23Þ

where ϵTMEuni
and ϵTMEvar

are the TMEs for a uniform dipole
and a variable bend respectively. The FTME depends only
on ρ̃ and λ. For both dipole cases, the full expression of the
FTME is given in Appendix C. In practice, the TME cells are
detuned to reach larger emittances so that the cell character-
istics are more relaxed. Moving away from the TME,
the resulted emittances are ϵvar and ϵuni for the nonuniform
and for the isomagnetic dipoles, respectively. In order to
compare the emittances of a uniform and of a nonuniform
bending magnet, their ratio [using Eqs. (18) and (23)] is
defined as:

ϵvar
ϵuni

¼ ϵrvarϵTMEvar

ϵruniϵTMEuni

¼ ϵrvar
ϵruni

1

FTME
; ð24Þ

where ϵrvar and ϵruni are the detuning factors for the
nonuniform and for the uniform dipole respectively. In
order to get an emittance reduction, it should always be
ϵvar
ϵuni

< 1. Thus, using Eq. (24), the restriction of:

ϵrvar
ϵruni

< FTME ð25Þ

is established. The smaller is the ratio of the detuning
factors compared to the FTME (that is fixed in accordance to
the chosen dipole characteristics), the lower is the final
emittance the variable bend gives. Practically this means
that even if the detuning of a TME cell with a variable bend
is larger than in the case of using a uniform dipole,
emittance reductions are possible if Eq. (25) is satisfied.

FIG. 4. The evolution of the bending radius along the step (left) and the trapezium (right) dipole profile.
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The characteristics of a realistic dipole profile are driven
by the constraint of how sharply and quickly the transition
from the high to the low field can be established. Regarding
the fact that the fringe field of the first dipole part should
not significantly affect the field of the second one and that a
sharp field drop off is technologically questionable, the
minimum difference between the highest and the lowest
field and the corresponding difference in the lengths is
assumed to be λ; ρ̃ > 0.04. Based on the optimal variable
bend characteristics, a design study is ongoing in order to
provide the final specifications of the dipole to be fab-
ricated [16,17].
In Fig. 5, the reduction factor FTME is parametrized

with ρ̃ and λ, for the step (left) and the trapezoidal (right)
profile. The areas where FTME is high are blue-colored,
while red-colored are the areas where the reduction is
smaller. The black contour lines show different values of
the horizontal phase advance. As mentioned above, for a
uniform dipole, in order to reach the absolute minimum
emittance, there is a unique horizontal phase advance
of μx ¼ 284.5° [15], independent of any cell or dipole
characteristics. However, in the case of the non-uniform
dipoles, the horizontal phase advance for reaching the
TME condition depends on ρ̃ and λ. The highest reduc-
tions correspond to high phase advances μx > 310°.
Remarkable emittance reductions are reached even for
lower phase advances which correspond to smaller
chromaticities.
For both profiles, in the limits where ρ̃, λ → 1 (i.e., ρ2 ¼

ρ1 and λ2 ¼ λ1) there is no emittance reduction. In the
limits where λ → 0 and ρ̃ → 0 (i.e., L2 ≫ L1 and ρ2 ≫ ρ1)
the reductions obtained are practically infinite. The highest
possible reductions are found to be around 13 and 34 for the
step and the trapezium profile, respectively, for λ; ρ̃ > 0.04.
These reductions are localized where both λ and ρ̃ are low,
demanding a sharp transition from the high to the low field
region. The issue of concern for the design of a variable
bend is how small can ρ̃ be in order to get a realistic
difference between the maximum and the minimum mag-
netic field along a specific dipole length that has a fixed
bending angle.

In order to facilitate the comparison between the step
and the trapezium profile, the number of dipoles Nd, their
length L and the minimum bending radius ρ1 values are
kept the same. As a numerical example, the minimum ρ1
value is set to 4.1 m, i.e., B ¼ 2.3 T at an energy of
2.86 GeV for the CLIC DRs. In addition, examples for
dipole lengths and angles different than the ones of the
CLIC DR design are presented. Using Eq. (13), the bending
angles for the step and the trapezium profile respectively,
are found to be

θstep¼
Lðλþ ρ̃Þ
ρ1ð1þλÞ and θtrapezium¼Lðλð−1þ ρ̃Þþ ρ̃ ln ρ̃Þ

ρ1ð−1þ ρ̃Þð1þλÞ :

ð26Þ

Solving Eq. (26) with respect to the ratio ρ̃, for a fixed
bending radius ρ1, provides an expression of ρ̃ depending
on the bending angle θ, the dipole length L and the lengths
ratio λ. Thereby, the reduction factor of Eq. (23) becomes a
function of the bending angle θ (or the number of bends
Nd), the dipole length L and the lengths ratio λ. Even if the
reduction factors achieved get higher by increasing the
number of dipoles and their length, a compromise between
these two parameters is required. Additionally, as shown in
the next section, the fabrication of a variable bend sets a
lower limit on the length ratio λ [17] and thus, an upper
limit on the reduction factor values that can be achieved.
After imposing the bending angle θ, the dipole length L

and minimum bending radius ρ1 in Eq. (26), a relationship
between the ratios ρ̃ and λ is obtained and can be inserted in
Eq. (23) for obtaining the respective emittance reduction
factors. In this way, the maximum emittance reductions for
fixed dipole characteristics can be found. Figure 6 shows
the parametrization of the reduction factor FTME with the
ratios ρ̃ and λ, for both dipole profiles and again with the
restriction of λ; ρ̃ > 0.04, for three different cases of dipole
numbers and lengths (Nd, L) equal to (100, 0.7 m), (100,
0.58 m), and (90, 0.58 m). The case corresponding to 100
dipoles with a length of 0.58 m matches the exact dipole
characteristics of the CLIC DRs. For the dipole constraints

FIG. 5. The parametrization of the reduction factor FTME with the ratio of the bending radii ρ̃ and lengths λ for the step (left) and the
trapezoidal (right) profile, for the TME case. The black contour lines correspond to different values of horizontal phase advances.
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applied in each case, the trapezium gives always higher
reductions than the step profile. Obviously, the more and
the longer the dipoles are, the higher emittance reductions
are achieved. The maximum reductions in all cases are
localized where both λ and ρ̃ are low. Large length ratios are
not of interest since the reduction factor becomes very
small. The bending radius ratios resulting in the highest
emittance reductions are lower for the trapezoidal profile.
The variation of the bending radius along the dipole length
that results in the highest emittance reduction for each case,
is plotted in Fig. 7 for the trapezium profile. As was
expected from Fig. 6, the maximum emittance reductions
(where λ ¼ 0.04) correspond to different ratios ρ̃ depending
on the number of dipoles and length and thus, for a fixed
minimum bending radius (ρ1 ¼ 4.1 m), their maximum
bending radius differs.

IV. LONGITUDINALLY VARIABLE FIELD
DIPOLE DESIGN FOR THE CLIC

DAMPING RINGS

The analytical results showed that the trapezium
dipole profile can reach very low emittances, compared

to a uniform dipole of the same bending angle. Therefore,
the fabrication of a variable bend having a bending radius
that forms a trapezium shape is of interest. According to
the optimal characteristics of a trapezium dipole profile to
be used for the CLIC Damping Rings, the magnetic
design of a longitudinally variable bending dipole based
on permanent magnets was studied and the prototype will
be fabricated by CIEMAT [16,17]. The main challenges
of this design are the bending radius variation which
should change linearly along the magnet and the high
field region length that is very short. The longitudinal
gradient with a trapezoid decay is solved by splitting the
magnet in three differentiated field regions combined
with an innovative variable gap solution, as presented in
Fig. 8. The low field block is made of SmCo magnets.
The medium field has the same configuration as the high
field section, using NdFeB blocks. The requested peak
field was initially limited to 1.77 T as a reasonable value
for a non-superconducting magnet, requiring to deal with
iron saturation that is partially overcome using a Fe-Co
material and suppressing the hyperbolic profile in the
high field region pole tip which is the most saturated
section.

FIG. 7. The variation of the bending radius along the dipole
length for different (Nd, L) pairs, resulting in the highest
emittance reduction (where λ ¼ 0.04) for each case, for the case
of the trapezium profile.

FIG. 8. Magnet design based on the characteristics of the
variable bends for the CLIC DRs [16,17].

FIG. 6. The parametrization of the FTME with ρ̃ and λ, when fixing Nd and L, for the step (left) and the trapezium (right) profile.
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The higher is the magnetic field at the center of a variable
bend, the higher emittance reduction factors can be
reached. The use of permanent magnets could allow having
a higher field than in the case of a normal conducting
magnet. The 3D simulations performed have shown that the
peak field could be increased above 2 T, resulting in higher
emittance reduction factors. In Fig. 9, a 2.3 T designed
trapezium profile is shown in red. The field decay success-
fully matches the desired from the hyperbolic field profile
provided by the analytical estimates (black colored). For
the designed trapezium profile, the λ and ρ̃ values reached
are respectively 0.036 and 0.295, corresponding to an
emittance reduction factor of FTME ¼ 7.1.1 For the beam
optics simulations performed with MADX [6], the field of
the designed trapezium profile is being approximated by a
sequence of dipoles with a step-like field (blue colored).
Finally, since a transverse gradient of −11 T=m was
requested, the designed magnet provides at the same time
dipolar and quadrupolar fields, having pole tips with a
hyperbolic profile to produce the gradient.

V. NUMERICAL APPLICATION FOR
A VARIABLE BEND TME CELL

In this section, a numerical application of the afore-
mentioned analytical results are presented for the CLIC DR
TME cell. The DRs provide the final stage of damping of
the eþe− beams of the linear collider after the pre-damping
rings and their lattice has a racetrack shape with two arc
sections and two long straight sections (LSS), with the
TME cells being placed in the arcs [18]. The required
output horizontal normalized emittance for the CLIC DR,

at the energy of 2.86 GeV, is 500 nm-rad, i.e., around
90 pm geometrical emittance. According to the design
of a variable bend, the maximum dipole field is set to be
2.3 T (corresponding to the minimum bending radius
ρ1 ¼ 4.1 m), for dipoles having a length of L ¼ 0.58 m.
The maximum pole tip field of the quadrupoles and the
sextupoles is Bmax

q ¼ 1.1 T and Bmax
s ¼ 0.8 T, respectively.

By fixing these quantities, the free parameters left are the
drift space lengths s1, s2, s3 and the emittance, based on
optics stability and feasibility constraints described below.
It should be stressed that, it is always preferable to carefully
detune the cell from the TME to larger emittances [see
Eq. (25)], so that the optics characteristics of the cell and in
particular chromaticity is under control.

A. Stability and feasibility constraints

The optics stability criterion, for both horizontal and
vertical planes is given by:

j cos μx;yj < 1: ð27Þ
The pole tip field value of both quadrupoles and sextupoles
has a limit and the radius of the magnet aperture has a
minimum value. The feasibility of the quadrupoles is
ensured if the quadrupole strength k is kept below a
maximum value given by:

k ¼ 1

flq
¼≤

1

ðBρÞ
Bmax
q

Rmin
; ð28Þ

where Bρ is the magnetic rigidity and Bmax
q is the quadru-

pole pole tip field. The Rmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βϵmax þ ððδpp0

ÞmaxDÞ2
q

is

the minimum required aperture radius for a Gaussian beam
distribution, where ϵmax is the maximum value of the
Courant-Snyder invariant for the injected beam and
ðδp=p0Þmax the corresponding total momentum deviation.
As the sextupoles are set to cancel the chromaticity induced
by the quadrupoles, their strength can be calculated by
ξx;y ¼ − 1

4π

H
βx;y½Kx;yðsÞ − SðsÞDðsÞ�ds ¼ 0, where Kx;y

correspond to the focusing and defocusing quadrupole
strengths. Denoting the pole tip field of the sextupoles
as Bmax

s , their feasibility is ensured if the strength S is lower
than a maximum value:

S ≤
2Bmax

s

R2
min

1

ðBρÞ : ð29Þ

B. Parametrization with the drift lengths

The dependence of different cell characteristics on the
drift space lengths require their parametrization with s1, s2,
s3. A scanning of drift space lengths was performed, aiming
to solutions with low chromaticities and small quadrupole
strengths, while keeping the cell compact. The chromatic-
ities were calculated for all combinations of drift lengths
when s1½m� ∈ ½0.1; 2�, s2½m� ∈ ½0.1; 2�, and s3½m� ∈ ½0.1; 1�

FIG. 9. The field variation along a dipole having a peak field of
2.3 T; the designed trapezium profile (red colored), the resulted
from analytical calculations profile (black colored) and the
simulated in MADX field profile (blue colored).

1The technological restrictions do not allow ρ̃ to reach the
optimal value of 0.263 for a λ ¼ 0.036, providing a reduction
factor FTME ¼ 8.3.
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and the results are presented in Fig. 10. In these plots, the
drift lengths are color-coded with the horizontal (left) and
vertical (right) chromaticity. The lowest absolute chroma-
ticities in both planes are found for s1 < 0.5 m. The
absolute minimum emittances exist only for large negative
chromaticities per cell, i.e., for ξx < −2 and ξy < −1.
Detuning factors that give emittances larger than the
TME can provide solutions with lower negative chroma-
ticities. Although a careful choice of the first and second
drift lengths (s1 and s2) is essential, the cell parameters are
less dependent on the third drift length s3. In this respect, in
order to clearly distinguish the two regions of optically
stable solutions, the parametrization of the chromaticities
as projected in the s1, s2 plane is presented in Fig. 10
(bottom). The horizontal chromaticity depends strongly
on drift length between the two quadrupoles s2. In fact,
an area of low horizontal chromaticities can be found,
whereas low vertical chromaticities can be obtained follow-
ing a thin curve. On the other hand, only a small fraction
of the (s1, s2) combinations satisfy the requirements of
having focal lengths leading to feasible magnets. In this
respect, the optimal values indicated with a magenta
colored point are found to be s1 ¼ 0.33 m, s2 ¼ 0.28 m,
and s3 ¼ 0.18 m, slightly on the right side of the lowest
chromaticity areas.

C. Parametrization with the emittance

After fixing the drift lengths, cell properties such as the
quadrupole strength can be parametrized with the emittance

detuning factor. The emittance value that was so far
determined by the reduction factor FTME, is increased with
this detuning. The emittance reduction due to the nonuni-
form dipole profile as compared to a standard dipole depends
on the relation between the detuning and the reduction factor
[see Eq. (24)]. Using this relation, the additional benefit for
using longitudinally variable bends instead of the standard
ones can be clearly demonstrated. The plots in Fig. 11
provide the parametrization of the horizontal optics functions
at the center of the dipole and the quadrupole strengths color-
coded with the detuning factor. Black points correspond to
solutions that satisfy the optics stability in both planes. The
magenta points are the ones satisfying low chromaticities
and quadrupole strengths.
The ellipsoidal curves in Fig. 11 (left) represent the pairs

of beta and dispersion functions at the dipole center which
result in the same emittance [see Eq. (18)]. Similarly, the
parametrization of the focal lengths with the emittance
detuning factor is given in Fig. 11 (middle) for f1 > 0 and
f2 < 0, where the pairs of (f1, f2) lie again on constant
emittance curves. Solutions with f1 < 0 and f2 > 0 which
correspond to the modified TME cell [19], also exist and
they are presented in Fig. 11 (right). The TME (ϵr ¼ 1) is
achieved for a unique pair of beta and dispersion functions
that is ðηcd; βcdÞ ¼ ð1.1 × 10−4; 0.07Þ m and only for one
pair of focal lengths which is ðf1; f2Þ ¼ ð0.27;−0.18Þ m
(out of scale in the bottom right corner of the right part of
Fig. 11), i.e., quite strong quadrupole strengths are neces-
sary. Furthermore, and for the chosen drift lengths, there are

FIG. 10. The horizontal (left) and vertical (right) chromaticities as parametrized with the drift lengths s1, s2, s3 (top) for the TME with
the trapezium dipole profile. In the bottom plot, the same parametrization is plotted and projected to the s1, s2 plane. High absolute
chromaticities correspond to red, whereas low absolute values are blue.
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no solutions that assure optics stability and low chroma-
ticities. Solutions that assure lattice stability (black points)
and for chromaticities ξx, ξy > −2.5 (magenta points) arise
when moving away from the TME to larger detuning
factors. Solutions with both focal lengths positive are
unstable. Even if the chosen cell characteristics result in
a confined ϵr region, the low emittances reached for a very
compact cell counteracts the fact that it is numerically
challenging to tune the cell. One can finally observe that
there is a well-determined focal length range in the middle
plot of Fig. 11, for which the cell can be tuned, satisfying
stability and feasibility criteria. For the opposite quadrupole
polarity (first quadrupole defocusing, see right plot of
Fig. 11), the zone spans a larger focal length range,
confined, though, to a narrow line, which may result in
a difficulty to reach numerically the desired solution.
Figure 12 shows the parametrization of the detuning

factor ϵr (a) and of the horizontal ξx (b) and vertical ξy
(c) chromaticity with the horizontal μx and vertical μy phase
advances, for the case of f1 > 0, f2 < 0 solutions which
appear only when μx > 0.5 · 2π. Towards high vertical
phase advances, the chromaticities for both planes have
high negative values (ξx, ξy < −3). Large horizontal phase
advances correspond to minimum dispersion and beta
functions at the center of the dipole that require strong
focusing and to that end, result in high chromaticities. It can

be noticed that for μy < 0.5 · 2π, there are low negative
chromaticities even for small detuning factors correspond-
ing to emittances close to the minimum one.
Solutions for f1 < 0, f2 > 0, corresponding to the

modified TME cell [19], also satisfy the stability criteria
for the chosen cell characteristics and are presented in
Fig. 13. These solutions appear always for μx < 0.5 · 2π.
The quadrupole strengths for the modified TME cell are
lower compared to the normal TME cell, as presented in
Fig. 11 (right). Knowing the FTME for the designed variable
bend, the restriction described in Eq. (25) sets an upper
limit to the detuning of the cell. Since the modified TME
cell requires a large detuning in order to get low horizontal
chromaticities, the final emittance reductions reached are
not sufficient. In this respect, the normal TME cell (having
f1 > 0, f2 < 0 solutions) will be further used for the
following numerical application to the CLIC DR optics
design.

VI. ALTERNATIVE CLIC DR DESIGN BASED
ON LONGITUDINALLY VARIABLE BENDS

AND HIGH FIELD WIGGLERS

As discussed in the previous section, the DR lattice [18]
has a racetrack shape with arc sections composed by TME
cells. The two long straight sections (LSS) are composed

FIG. 12. Parameterization of the detuning factor (a) and the chromaticities ξx (b) and ξy (c) with the horizontal μx and vertical μy phase
advances, for f1 > 0, f2 < 0, for the trapezium dipole profile.

FIG. 11. Parametrization of the beta and dispersion functions at the dipole center βcd, ηcd (left) and of the focal lengths, for f1 > 0,
f2 < 0 (middle) and for f1 < 0, f2 > 0 (right), with the detuning factor. The black squares indicate stability and the magenta ones
feasibility-low chromaticity solutions.
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by FODO cells housing rf cavities, injection, and extraction
equipment and mainly damping wigglers. The DR lattice
design is driven by the emittance requirements which for
ultralow values give rise to collective effects [18], with
intrabeam scattering (IBS) being the dominant one. An
alternative design is proposed, which aims to mitigate the
IBS effect for a compact ring, using in the arc cells the
designed variable bend presented earlier and an optimized
high-field wiggler in the FODO cells. The optimization
steps followed, as well as the final parameters for the
improved design are discussed in this section.

A. Optimization of the arc TME cell

For the beam optics simulations performed with the
MADX code [6], the field variation of the designed tra-
pezium profile is being approximated by a sequence
of dipoles with varying field, as illustrated in Fig. 9.
The dipole length is L ¼ 0.58 m and the maximum dipole
field is 2.3 T. When the uniform dipoles of the current
design are replaced by variable bends, the resulted emit-
tance is lower than the required one. In this case, the
subtraction of some TME cells from the existing arc is
possible. Actually, the number of dipoles (i.e., total number
of TME cells) can be reduced to such an extent that the
required emittance is still achieved, thereby resulting in a
shorter ring.
As soon as the characteristics of the dipole are fixed, the

drift space lengths are chosen in accordance to the results
presented in Sec. IV. For a combined function dipole, i.e.,
having a small defocusing gradient (see Sec. IV), the IBS
effect is reduced through the increase of the vertical beam
size at the center of the bend. Basically, instead of having a
low β at the center of the dipole in both planes, the optics
matching imposes βy to be maximum there. Therefore,
there is a reduction of IBS growth rates. Keeping in mind
that a TME cell with a combined function dipole reduces
the IBS effect [20], assists in choosing the proper phase
advances, that guarantee low chromaticities and small
quadrupole strengths. The parametrization with the emit-
tance has shown that the quadrupole strengths for which

f1 > 0 and f2 < 0 (Fig. 12), can only be found for
μx > 0.5 · 2π. A good compromise for the horizontal phase
advance is to be around 0.51 · 2π and for the vertical phase
advances to be always below 0.5 · 2π. After a detailed
scanning of the cell characteristics, the horizontal and
vertical phases advances of the TME cell are respectively
chosen to be around 0.51 · 2π and 0.11 · 2π. Taking into
account the emittance reduction and detuning factors,
emittances smaller than the ones of the current design
with the uniform dipoles, are reached. In this respect, it was
possible to reduce the number of dipoles down to Nd ¼ 90
for the case of the designed trapezium profile with 2.3 T
maximum field.

B. Optimization of the FODO cell

Almost every FODO structure of the LSS accommodates
two wigglers. The ultimate purpose of using damping
wigglers is to further reduce damping times and thereby
maintain low emittances by reducing the impact of IBS,
but also of various collective effects. At the same time, the
fast damping time is imposed by the 50 Hz repetition rate of
the collider. The use of superconducting technology is
mandatory in order to have a high wiggler field and a
relatively short period for obtaining low emittances and fast
damping time. The superconducting magnet wigglers used
in the current design have a Bw ¼ 2.5 T peak field and
λw ¼ 5 cm period.
It was shown that by targeting higher wiggler fields not

only the emittance but also the IBS effect can be reduced
[21,22]. Taking into account the optimization of the arc
cells and the fact that the emittance with IBS is significantly
lowered after increasing the wiggler’s peak field, the FODO
cells per LSS can be reduced from 13 down to 10. The plots
in Fig. 14 show the MADX results of the parametrization
of the steady state transverse emittances including the IBS
effect with the wiggler peak field Bw, starting from the
2.5 T that is the field of the existing wiggler design, for 10
FODO cells. Clearly, the wiggler field increase corresponds
to a significant reduction of the IBS effect. The new
working point for the damping wigglers, that complies

FIG. 13. Parameterization of the detuning factor (a) and the chromaticities ξx (b) and ξy (c) with the horizontal μx and vertical μy phase
advances, for modified TME cell where f1 < 0, f2 > 0, for the trapezium dipole profile.
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with the technological restrictions, is proposed to be at
3.5 T and with a 49 mm period length, giving an output
emittance of around 435 nm-rad. This design necessitates a
different wire technology, using Nb3Sn material [23].

C. Optical functions and new design parameters

The final lattice, with a smaller number of dipoles and
wigglers than the ones of the existing design, is produced.
In Fig. 15 (left), the matched optics, i.e., horizontal
dispersion, horizontal and vertical beta functions, are
plotted for one arc TME cell. On the top part of the figure,
a schematic layout of the cell is presented, showing the two
doublets of quadrupoles and the sextupoles that are placed
between the two mirror symmetric defocusing quadrupoles
and between the dipole and the focusing quadrupoles. In
Fig. 15 (right), the matched optics of the dispersion
suppressor-beta matching section followed by the wiggler
FODO cell, are presented.
The parameters of the original design and the alternative

ones are displayed in Table I. The alternative designs
have 90 dipoles and 40 FODO cells with wigglers of 3.5 T
peak field, while the original has 100 uniform dipoles and

52 FODO cells with wigglers of 2.5 T peak field. The
parameters for the alternative new design are given for the
case of uniform and variable bends, keeping the same arc
TME cells and FODO cells, so as to have a fair comparison.
By having exactly the same arc cells (length, angle and
phase advances), the emittance is reduced by 40% only due
to the use of the variable bends. For the alternative design,
the optimal horizontal phase advance is slightly above 180
deg., resulting in larger quadrupole strengths whose length
had to be increased in order to keep the gradient below
100 T=m and so, the total length of the TME cell became
7% longer. On the other hand, the chromaticity is signifi-
cantly smaller for the new DR design. Both the original
and the alternative design with variable bends can reach
the target emittances including IBS (as calculated by the
Bjorken-Mtingwa formalism through MADX [6]), with the
alternative one giving a 13% shorter ring circumference.
Apart from achieving a lower emittance using the tra-
pezium profile, it is possible to allow significant margin for
the 500 nm target, for an eventual increase of the required
bunch population, as lately proposed due to the CLIC
rebaselining [24]. Indeed, for the case of low energy CLIC

FIG. 14. The dependence of the steady state emittances (ϵxIBS and ϵyIBS) color-coded with their ratio with respect to the corresponding
equilibrium emittances (ϵx0 and ϵy0) on the wiggler peak field Bw, for the trapezium dipole profile.

FIG. 15. Optical functions of the TME cell (left) and the dispersion suppressor-beta matching section followed by the FODO cell
(right), when using in the arcs the trapezium dipole profiles.
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which needs a higher bunch charge of Nb ¼ 5.7 × 109 the
final emittances are increased up to 472 nm and 4.6 nm in
the horizontal and vertical plane, respectively, still remain-
ing below the design target.

D. Dynamic aperture

The on- and off-momentum dynamic aperture (DA) of
the ring was estimated for particles tracked with the PTC
module of MADX [6]. Figure 16 shows the maximum initial
positions of particles that survived over 1000 turns,
normalized to the horizontal and vertical beam sizes, at
the point of calculation (σx¼273.0 μm and σy ¼ 40.2 μm).
This simulation includes the effect of chromaticity sextu-
poles and magnets fringe fields but no other additional
imperfection such as misalignments or magnet errors.

TABLE I. Design parameters for the original and the improved design of the CLIC DRs, for the case of Nb ¼ 4.1 × 109.

Original design Alternative design
Parameters, Symbol [Unit] Uniform Uniform Trapezium

Energy, E [GeV] 2.86 2.86
Bunch population, Nb [109] 4.07 4.07
Circumference, C [m] 427.5 373.7
Basic cell type in the arc/LSS TME=FODO TME/FODO
Number of arc cells/wigglers, Nd=Nw 100=52 90=40
RF Voltage, VRF [MV] 4.50 6.50
Harmonic number, h 2850 2493
RF Stationary phase [°] 62.3 58.9 63.0
Momentum compaction, αc [10−4] 1.3 1.3 0.88
Damping times, (τx, τy, τl) [ms] (1.98, 2.05, 1.04) (1.24, 1.28, 0.33) (1.19, 1.23, 0.31)
Energy loss/turn, U [MeV] 4.0 5.6 5.8
Quadrupole gradient strengths, (k1, k2) [T/m] ð26;−53Þ ð66;−98Þ ð67;−98Þ
Phase advances per arc cell, ðμx; μyÞ [360°] 0.408=0.050 0.510/0.110
Horizontal and vertical tune, (Qx, Qy) (48.35, 10.40) (51.16, 14.56) (51.18, 14.55)
Horizontal and vertical chromaticity, (ξx, ξy) ð−113;−82Þ ð−57;−70Þ ð−67;−75Þ
TME cell length, Lcell [m] 2.44 2.62
Dipole field, (Bmin; Bmax) [T] (0.97, 0.97) (0.97, 0.97) (0.62, 2.32)
Lengths and bending radii ratio, (λ; ρ̃) (1, 1) (1, 1) (0.04, 0.26)
Normalized gradient in dipole [m−2 or T/m] −1.1 or −10.5 −1.1 or −10.5

Wiggler peak field, Bw [T] 2.5 3.5
Wiggler length, Lw [m] 2 2
Wiggler period, λw [cm] 5.0 4.9

Without IBS
Normalized horiz. emittance, γϵx [nm-rad] 312.2 574.1 350.3
Normalized vert. emittance, γϵy [nm-rad] 3.3 3.3
Energy spread (rms), σδ [%] 0.11 0.15
Bunch length (rms), σs [mm] 1.4 1.6
Longitudinal emittance, ϵl [keVm] 4.4 5.8

With IBS
Normalized horiz. emittance, γϵx [nm-rad] 478.9 648.7 434.7
Normalized vert. emittance, γϵy [nm-rad] 5.0 4.5 4.2
Energy spread (rms), σδ [%] 0.11 0.15
Bunch length (rms), σs [mm] 1.5 1.6
Longitudinal emittance, ϵl [keVm] 4.7 5.8
IBS factors hor./ver./long. 1.53=1.52=1.08 1.13=1.35=1.01 1.24=1.26=1.02

FIG. 16. The on and off momentum dynamic aperture of the
DR for the trapezium dipole profile, for δp ¼ 0, δp ¼ 0.5%
and δp ¼ −0.5%.
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The results for δp ¼ 0 are shown in blue, for δp ¼ 0.5% in
red and for δp ¼ −0.5% in yellow. The dynamic aperture
achieved is remarkable (almost 14 mm in the horizontal
plane and 5 mm in the vertical plane), allowing very
comfortable on-axis injection. A working point optimiza-
tion, with simulations including misalignments, coupling
and their correction, the nonlinear effect of wigglers
and space charge tune-shift, was further studied to fully
quantify the nonlinear performance of the new design [25],
which was found robust and adequate.

VII. CONCLUSIONS

An analytical parametrization of the TME cell, based on
linear optics considerations and the thin lens approxima-
tion, has been derived for the case of longitudinally variable
bends. By choosing dipole profiles with longitudinally
varying magnetic fields, subject to certain constraints, the
emittances reached are lower as compared to the ones
achieved by uniform dipoles. Among the nonuniform
dipoles studied, it is found that the one having a bending
radius forming a trapezium profile provides the largest
emittance reduction. The design of the hyperbolic field
profile that uses permanent magnets reaches 2.3 T at the
highest field region and performs very well in terms of
emittance reduction [17]. This innovative design could be
applied in any low emittance ring.
The phase advances that determine the properties of a

TME cell with the designed variable bend, can be chosen
following the design goals. The applied optics stability and
magnet feasibility requirements constrain the cell character-
istics, starting from the drift lengths and the polarity of the
quadrupoles.
This analytical approach is used in order to define the

appropriate initial conditions for matching the lattice and for
finding optimal regions of operation for the best perfor-
mance, subsequently verified numerically with MADX. The
CLIC DRs are chosen for numerically applying the concept
of including variable bends in the TME arc cells, and thereby
demonstrate clearly the reduction of the emittance as
compared to the previous design, with uniform dipoles.
The emittance is so much reduced and lower with respect to
the target one, allowing the removal of a few TME cells.
Moreover, by using Nb3Sn high-field wigglers the final

emittances including IBS are significantly reduced, as well,
resulting to the elimination of a few LSS FODO cells. As the
chromaticities are kept low, and the TME cell horizontal
phase advance is close to π, the new proposed design
achieves excellent DA that can be improved after a further
working point optimization [25]. The alternative DR design
achieves all target parameters (even for increased bunch
charge) although the circumference is reduced by around
13%, as compared to the original one.

ACKNOWLEDGMENTS

We are particularly indebted to two anonymous referees
whose constructive criticisms improved by far the clarity and
quality of the paper. The research leading to these results
has received funding from the European Commission under
the FP7 Research Infrastructures project EuCARD-2, Grant
Agreement no. 312453 and the European Unions Horizon
2020 Research and Innovation programme under Grant
Agreement No. 730871.

APPENDIX A: QUADRUPOLE FOCAL LENGTHS
IN THE LIMIT OF SMALL DRIFT LENGTHS

Following Eqs. (5), the full expressions of the quadru-
pole focal lengths, f1 and f2, at the limits where the drifts

s1, s2 and s3 are zeroed are (i) lims1→0f1 ¼ s2ðηcdþθ̃Þ
ηcdþθ̃−ηss1þs2θ

and lims1→0f2 ¼ s2ηss1
ηcdþθ̃−ηss1

(ii) lims2→0f1 ¼ 0 and

lims2→0f2 ¼ 0 (iii) lims3→0f1 ¼ s2g1
g1þs2θ

and lims3→0f2 ¼ 0

where:

ηss1 ¼
−2ðηcdþθ̃Þs3

s2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðηcdþθ̃Þs3

s2
2

β2cdθ−g2L=2
β2cdθ

2þg2
2

r

and for g1 and g2 given by Eq. (7).

APPENDIX B: INTEGRALS FOR THE
EMITTANCE OF A VARIABLE BEND

In order to calculate the emittance of a variable bend
described by two different bending radii functions along its
length, Eq. (15) is used, with the integrals I1-I8 being:

I1¼
ZL1

0

θ21
jρ1ðsÞj3

ds1; I2¼
ZL1þL2

L1

ðθ2þθL1
Þ2

jρ2ðsÞj3
ds; I3¼

ZL1

0

1

jρ1ðsÞj3
ds; I4¼

ZL1þL2

L1

1

jρ2ðsÞj3
ds; I5¼

ZL1

0

2
−sθ1þ θ̃1
jρ1ðsÞj3

ds

I6¼
ZL1þL2

L1

2
−sθ2þ θ̃2−L1θL1

þ θ̃L1

jρ2ðsÞj3
ds; I7¼

ZL1

0

ð−sθ1þ θ̃1Þ2
jρ1ðsÞj3

ds; I8¼
ZL1þL2

L1

ð−sθ2þ θ̃2−L1θL1
þ θ̃L1

Þ2
jρ2ðsÞj3

ds; ðB1Þ

where θL1
¼ θðs ¼ L1Þ and θ̃L1

¼ θ̃ðs ¼ L1Þ.
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APPENDIX C: EMITTANCE REDUCTION FACTOR

As discussed in Sec. III, the emittance reduction factors for the step and the trapezium variable bend profiles depend only
on ρ̃ and λ and their full expressions are given by:

FTMEstep
¼2ðλþ ρ̃Þ3ð1þ ρ̃2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ̃3

λ1ρ̃
4þλ2ρ̃

5þλ3ρ̃
7þλ4ρ̃

8þλ5ρ̃
9þλ6ρ̃

10þλ7ð1þ9ρ̃3þ18ρ̃6Þþλ8ðλ9ρ̃11þλ10ρ̃
12þ ρ̃13Þ

s
;

where λ1 ¼ 4λ4ð5þ 18λÞ, λ2 ¼ λ2ð9þ 45λþ 64λ2Þ, λ3 ¼ 12λ4ð5þ 21λÞ, λ4 ¼ λ2ð31þ 210λþ 399λ2Þ, λ5 ¼
λð27þ 155λþ 240λ2Þ, λ6 ¼ 3ð3þ 15λþ 20λ2Þ, λ7 ¼ 4λ6, λ8 ¼ ð4þ 15λþ 15λ2Þ, λ9 ¼ 3λ7=ð4λ4Þ and λ10 ¼ λ9=λ.

FTMEtrapezium
¼ 4

ffiffiffi
2

p
r1ðr2λþ ρ̃ ln ρ̃Þ3 ffiffiffiffiffiffiffiffiffiffiffiffiffi

w2=w3

p
w1

;

where r1 ¼ ρ̃þ 1, r2 ¼ ρ̃ − 1 and:

w1 ¼ 2r32ð2þ 3r1ρ̃Þλ2 − 6r2ρ̃2ðr1r2 − 2ρ̃2 ln ρ̃Þλþ 3ðr1r2 − 2ρ̃2 ln ρ̃Þρ̃3 þ 6ρ̃5ðln ρ̃Þ2;
w2 ¼ r32ð2þ r1ρ̃Þw1;

w3 ¼ w3aλþ w3bλ
2 þ w3cλ

3 þ w3dλ
4 þ w3e;

for w3a¼90r2ρ̃4ðr22f−8þ ρ̃½5þð−1þr2Þρ̃�gþ4ð−1þr2Þρ̃ln ρ̃½−2r2þ ρ̃ ln ρ̃�Þ, w3b ¼ 15r22ρ̃
3fr22½20þ 3ð2þ r1Þr2ρ̃�þ

4ρ̃2 ln ρ̃½−2r2 þ 3ð−1þ r2Þ ln ρ̃�g, w3c ¼ −120r42ρ̃2ðr1r2 − 2ρ̃2 ln ρ̃Þ, w3d ¼ 16r62ð1þ 3r1ρ̃Þ and w3e ¼ 45ρ̃5ðr22f−44þ
ρ̃½−3þ ð−5þ r2Þρ̃�g þ 4 ln ρ̃½4r1r2 þ 6r2ρ̃þ ð−1þ r2Þρ̃2 ln ρ̃�Þ.
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