
 

Calculating the polarization lifetime
from the Thomas-Bargmann-Michel-Telegdi equation
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It was observed at the Relativistic Heavy Ion Collider that the polarization of the stored beam decays
by 0.17 to 3% per hour. This effect could not be simulated up to now since the simulation time for an exact
calculation exceeded the computer capacity. To solve this problem the action of the whole arc was
considered as one element acting on the spin and not, as before, each optical element in the arc individually
(called lattice independent integration). In addition to former simulations the coupling of synchrotron and
betatron motions in the beam interaction regions and their action on the polarization were taken into
account (called addition of longitudinal dynamics). It is shown that with these two changes the action on the
polarization life time can be explained.
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I. INTRODUCTION

The Relativistic Heavy Ion Collider (RHIC) is designed
to study various aspects of quark and gluon matter. One of
the important programs involves colliding intense beams
of polarized protons. Collisions with highly polarized
protons is necessary to study physics sensitive to gluon
polarization.
To achieve high polarization during collisions, RHIC

is equipped with two helical dipole magnets known as
snakes. Each snake rotates the spin direction of the protons
by 180 degrees. This helps cancel the lower order field
perturbations which can depolarize the beam and keeps the
net spin precession rate per turn or spin tune (νs) energy
independent. RHIC is also equipped with a pair of spin
rotators located around each of the experiments (STAR and
PHENIX). They are also constructed from helical dipoles.
However they are designed to rotate the spin toward an
arbitrary direction at the collision point. The layout of the
accelerator complex is shown in Fig. 1.
RHIC typically achieves average polarization over single

6-8 hour store of 55%. One of the important factors
effecting the average proton polarization during a store
is the polarization lifetime. Polarization lifetime is defined
as the % reduction of polarization per hour. Measured
polarization lifetime in RHIC has varied between a low of

about 0.17% per hour to a high of 3% per hour. However
understanding polarization lifetime in the presence of
orthogonal snakes is still challenging. We do not yet possess
a good theory to explain polarization losses in this system,
neither has the community been able to simulate these losses.
For example direct spin tracking to simulate 1 hour of beam
timewould take 300 million turns in RHIC. A low resolution
study using larger step sizes (4–8 slices per quad/dipole)
would require approximately 1 hour to perform 100K RHIC
turns using the spin-orbit code teaspink [1]. Zgoubi [2]
another spin-orbit code has similar timescales. Thus to
simulate 1 hour of beam time would take at least 125 days.
Even if we would allocate the time we do not have the
computer resources to do this for any kind of realistic
distribution using existing direct tracking codes.
So in lieu of this, we have turned to the lattice

independent spin tracking methods developed previously
[3]. This approach involves integrating the Thomas-
Bargmann-Michel-Telegdi (T-BMT) spin equation using

FIG. 1. RHIC-AGS complex.
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only several spin resonances with a unitary 4th order
Gaussian quadrature integrator. This model, benchmarked
against direct spin-orbit tracking codes, has proven very
effective in simulating and studying polarization loss
during the RHIC acceleration ramp. However when ini-
tially applied to consider issues of polarization lifetime, it
could not generate polarization lifetime over 0.01% on the
timescales of several hours of beam time in RHIC.
This situation changed when we extended the algorithm

to include longitudinal dynamics. The introduction of
longitudinal dynamics provided a mechanism for polari-
zation lifetime on timescales similar to what was observed
in RHIC. In this paper we present the results from this
extension of the differential equation to handle longitudinal
dynamics.
Using this model we studied the effect of several lattice

parameters on polarization lifetime and found that the
existence of longitudinal dynamics appears to be necessary
to generate polarization lifetime on the timescales of 1 hour
of beam time. However the effect of longitudinal dynamics
is a purely threshold effect. Its existence is necessary for
the observation of a finite polarization lifetime, but the
details and values of associated parameters seem to play a
very small role in polarization lifetime for realistic values
used in RHIC. The most important factors in determining
the magnitude of the losses are the strength of the spin
resonances.
In addition we have also developed an analytical

approach to study the effect of longitudinal dynamics in
the T-BMT equation. We follow the approach outlined in
[4] and consider the system in the parametric resonances
formalism.
As we will discuss in the final sections, this model does

not capture all of the physics associated with polarization
lifetime. There are effects due to emittance growth and
higher-order fields which such a simple model ignores.
However this model does seem to capture most of the
important first-order effects which dominate the causal
factors for polarization lifetime.

II. SPIN DYNAMICS REVIEW

The dynamics of the spin vector of a charged particle
with q charge in the laboratory frame is described by the
T-BMT equation,

dS⃗
dt

¼ q
γm

S⃗ × ½ð1þGγÞB⃗⊥ þ ð1þ GÞB⃗k�; ð1Þ

S⃗ is the spin vector of a particle in the rest frame, and B⃗⊥
and B⃗k are defined in the laboratory rest frame with respect

to the particle’s velocity. G ¼ g−2
2

is the anomalous mag-
netic moment coefficient which for protons is 1.7928474,
and γmc2 is the energy of the particle. Here we neglect
the electric fields. We can transform this equation by

expanding about a reference orbit described by the
Frenet-Serret coordinate system shown in Fig. 2. Thus
we have

dx̂
ds

¼ ŝ
ρ
;

dŝ
ds

¼ −
x̂
ρ
; and

dẑ
ds

¼ 0; ð2Þ

where ρ is the local radius of curvature for the reference
orbit. This is satisfactory for a trajectory in the plane (no
vertical bends). Particle motion can be parametrized in this
coordinate system as,

r⃗ ¼ r⃗oðsÞ þ xx̂þ zẑ: ð3Þ

Here, r⃗oðsÞ is the reference orbit, and ŝ ¼ dr⃗o=ds.
Following a standard derivation [5] the fields of the
T-BMT equation can be recast to first order in terms of
the transverse coordinates x, z and the local bending radius
ρ and their derivatives.

dS⃗
ds

¼ f⃗ × S⃗

f1 ¼ ð1þ GγÞz00

f2 ¼ −ð1þ GγÞz0=ρþ ð1þGÞ
�
z
ρ

�0

f3 ¼¼ −x00ð1þ GγÞ þGγ
ρ

: ð4Þ

Defining a two-component spinor Ψ such that the ith
component of the spin vector is given by

Si ¼ hΨjσijΨi ¼ Ψ†σiΨ: ð5Þ

The T-BMT equation becomes:

FIG. 2. The curvilinear coordinate system for a particle motion
in a circular accelerator. x̂, ŝ, and ẑ are the transverse radial, the
longitudinal, and the transverse vertical unit basis vectors, and
r⃗0ðsÞ is the reference orbit.
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dΨ
ds

¼ i
2
ðσ⃗ · f⃗ÞΨ¼ i

2
HΨ¼−

i
2

 Gγ
ρ −ζðsÞ

−ζðsÞ� −Gγ
ρ

!
Ψ: ð6Þ

Here we have dropped −x00ð1þGγÞ the first term in f3
since it is a small term compared to Gγ. However this
term can generate a set of important hybrid resonances
around the sidebands of dominant spin resonances [6].
Also σ⃗ ¼ ðσx; σs; σzÞ is a vector of the Pauli spin matrices
and ζðsÞ ¼ −f1 þ if2. Equation (6) is a form of the
Schroedinger equation, howeverΨ is here a classical vector
in which components, u and d, are related to the 3
components of S by

S1 ¼ u�dþ ud�

S2 ¼ −iðu�d − ud�Þ
S3 ¼ juj2 − jdj2: ð7Þ

Since H is Hermitian the magnitude of the spin vector

jS⃗j ¼ juj2 þ jdj2 ¼ Ψ†Ψ ð8Þ

remains constant. We chose the normalization condition for
the spinor function to be Ψ†Ψ ¼ 1.
The standard approach used in past books [7] and papers

by several authors including myself has been to follow
Courant and Ruth’s technical note [5]. Here Eq. (6) is
transformed by moving from s as the independent variable
to the turning angle Θ ¼ R s0 ds

ρ . Θ is usually equivalent to
the dipole bending angle but properly it is the spin
precession about the vertical axis. In this case ζ becomes
a function of Θ which is expanded in a Fourier series:

ζðΘÞ ¼
X
K

wKe−iKΘ: ð9Þ

Here K is the spin resonance frequency and wK is the
strength of the resonance at K ¼ Gγ. However there has
been some discussion that this approach might mishandle
the combined precessions about the horizontal and longi-
tudinal axis caused by quadrupole and solenoid fields in
the straight sections where ρ ¼ ∞ and the turning angle
does not advance. Ordinarily rotations about different axes
should not commute although here they are differentiated
by the fact that precessions about the horizontal are real
and those about the longitudinal axis are imaginary.
Additionally since we want to move to a differential
equation which is continuous to handle a continuous
approximation of the transverse phase effects due to
longitudinal dynamics, we have chosen to instead follow
a derivation developed later by Courant [8]. This approach
avoids any discontinuity in the differential equation which
the introduction of the turning angle as an independent
variable might cause. Instead it uses the average orbital

angle θ ¼ s
R with R equal to the average radius as the

independent variable and further Fourier expands in this
variable. Using the average orbital angle also maintains some
consistency with Hoffstaetter’s book [9] which also uses the
average orbital angle. Fortunately the new approach does not
alter the ultimate DEPOL algorithm used to calculate the
spin resonance strength developed in [5].
Using this new approach we can transform Eq. (6) into a

frame which beats with the turning angle Θ and the
averaged orbital angle θ. Θ advances only in the dipoles
giving dΘ ¼ ds=ρ. In the straight sections where ρ ¼ ∞
the change in orbital angle is zero (dΘ ¼ 0).

Φ ¼ e
i
2
χσzΨ

χ ¼ Gγðθ − ΘÞ: ð10Þ

The BMT equation now becomes:

dΦ
ds

¼ −
i
2

 
Gγ
R −ζe−iχ

−ζ�eiχ − Gγ
R

!
Φ: ð11Þ

Ignoring the effects of longitudinal motion, one can
evaluate the cumulative effect of the lattice on the spin,
by expanding ζe−iχ in the average orbital angle θ

ζe−iχ ¼ 1

R

X
K

wKe−iKθ: ð12Þ

In the case of closed orbit errors, imperfection spin
resonances will occur when K ¼ integer and the strength
can be calculated using:

wK ¼ −1
2π

Z
2πR

0

ζeiðKθ−χÞds: ð13Þ

If there are betatron oscillations present, then intrinsic spin
resonances will occur when K ¼ k�Q where Q is the
betatron tune and k is an integer. In this case the Fourier
integral can involve an irrational K values and it is properly
evaluated over an infinite number of turns,

wK ¼ lim
NT→∞

−1
2πNT

Z
LNT

0

ζeiðKθ−χÞds: ð14Þ

Or m turns if K ¼ n=m or one turn if K is an integer. Even
in the irrational case it can be possible for the integral to be
evaluated using only one turn due to cancelation of terms
and the ability to factor out the positive and negative
betatron frequency components. Here, L ¼ 2πR is the path
length around the lattice. If evaluated when Gγ ¼ K this
returns us to the original DEPOL [5] formulation:
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wK ¼ lim
NT→∞

−1
2πNT

Z
LNT

0

�
ð1þ GγÞ

�
z00 þ iz0

ρ

�

− ið1þGÞ
�
z
ρ

�0�
eiKΘðsÞds: ð15Þ

The calculation of Eq. (15) has been implemented in a
program called DEPOL [5] which has been used for many
decades to evaluate spin resonances in the AGS and
RHIC machines. A version to handle the case of betatron
coupling due to skew quadrupole fields and solenoidal
magnets was developed later [10]. There also exists a
code called SPRINT [11] which can perform this calcu-
lation for an arbitrary spin orientation (i.e., stable spin
direction nonvertical) based on the code SLIM [12] and
using the approach outlined in [9].
It is convenient to write Eq. (6) in terms of θ,

dΦ
dθ

¼ −
i
2

�
Gγ −ζ̂ðθÞ

−ζ̂ðθÞ� −Gγ

�
Φ: ð16Þ

Here, ζ̂ðθÞ ¼PK wKe−iKθ and for a single resonance
term in wKe−iKθ Eq. (16) can be cast as a homogeneous
second order differential equation (see e.g., [4]). In the
nonaccelerating case (Gγ ¼ constant) this differential equa-
tion has only constant coefficients and thus the solution is
like a damped harmonic oscillator. In the accelerating case
(Gγ ¼ Gγ0 þ αθ) the coefficients are functions of θ, and
solutions can be found following Froissart-Stora [13], given
by the confluent hypergeometric functions. In the asymptotic
limit of θ → �∞ these functions have simpler forms. Using
this, the amount of depolarization caused by acceleration
through any given single spin resonance can be evaluated
with the famous Froissart-Stora formula,

Pf

Pi
¼ 2e−ðπjwK j2=2αÞ − 1; ð17Þ

where,

α ¼ 1

ωrev

dνs
dt

ð18Þ

is the rate of change of the spin tune divided by the angular
revolution frequency ωrev, and

Pf

Pi
is the ratio of final vertical

to initial vertical polarization. For a flat orbit in a constant
vertical field α ≈ dðGγÞ=dθ.

III. LATTICE INDEPENDENT INTEGRATION

We have previously developed a code to integrate the 2D
spinor form of the T-BMT equation [Eq. (16)] [3]. Using a
4th order Magnus Gaussian quadrature integrator described
in [14] we can integrate Eq. (16) for an arbitrary ζ̂ðθÞ.
In this code the effect of snakes are handled separately and

are added at the appropriate place in θ as optically trans-
parent thin spin kicks using the matrix,

Ts ¼ e−i
π
2
n̂s·σ⃗ ð19Þ

with ns ¼ ê1 cosϕs þ ê2 sinϕs and ϕs the snake angle.
However as long as the system was held away from a low

order snake resonance, integrating this system with any
combination of intrinsic and imperfection resonances over
600 million turns showed no mechanism for polarization
loss greater than 0.01%.
So we introduced the effect of longitudinal motion into

our system. The effects of longitudinal motion on trans-
verse betatron motion have been studied and derived in
several standard textbooks (e.g., see [7]) using the sychro-
betatron Hamiltonian. However since we are analyzing a
reduced “smoothed” system, a smooth approximation using
Hills equation is easier and more appropriate. To under-
stand the effects of longitudinal motion on spin we need to
first understand its effect on transverse motion. In the
simplest case a single particle’s vertical motion without
longitudinal effects can be characterized by

d2zðsÞ
ds2

þ ω2
β

c2
zðsÞ ¼ 0: ð20Þ

Here c is the speed of light and ωβ, the angular betatron
frequency, is the angular revolution frequency ω0 times Q
the betatron tune. Solutions give transverse harmonic
motion oscillating with the betatron tuneQ each revolution.
However if the particle resides in a rf-bucket one must
consider its longitudinal motion inside of the bucket as well
and the equation of motion becomes,

d2zðs; δ; τÞ
ds2

þ ω2
β½δðsÞ�
c2

zðs; δ0; τ0Þ ¼ 0: ð21Þ

Here τ defines the time difference relative to the center of
the rf-bucket. Here τ0 ¼ τð0Þ or the initial τðsÞ value. It can
also be expressed in terms of the longitudinal position (σ) in
the rf-bucket τ ¼ σ=c. δ ¼ Δp=p is the relative momentum
difference from the on momentum particle. Here δ0 ¼ δð0Þ
or the initial δðsÞ value. If we expand the betatron
frequency to first order in δ we obtain,

ωβ½δðsÞ� ¼ ω0Qþ ξω0δðsÞ; ð22Þ

where ξ ¼ dQ
dδ is the linear chromaticity. We can also

approximate the longitudinal motion inside the rf-bucket
using,
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δðsÞ ¼ −ωs

ηc
r sinðωss=cþ ϕÞ

τðsÞ ¼ rc cosðωss=cþ ϕÞ: ð23Þ

Here ωs ¼ ω0Qs is the synchrotron angular frequency, ϕ
is the phase of the synchrotron motion, η the phase-slip
factor, defined as the fractional change of the revolution
period per unit of δ. Following [15,16,17], an approximate
solution to Eq. (21) has the form,

zðs; δ; τÞ ≈ Ae�iΦðs;δ;τÞ ð24Þ

where A is the constant amplitude and,

Φðs; δ; τÞ ¼
Z

s

0

ds0½ω0Q=cþ ω0ξδðs0Þ=c�

¼ ω0Qs=cþ ξω0

η
½τðsÞ − τð0Þ�

¼ ω0Qs=cþ ξω0τð0Þ
η

½cosðωss=cÞ − 1�

þ ξδð0Þ
Qs

sinðωss=cÞ: ð25Þ

Here we recast the phase in terms of initial τð0Þ and δð0Þ
using the transformation from the frame rotating with the
synchrotron frequency,

�
τ

δ

�
ðsÞ ¼

 
cosðωss=cÞ η

ωs
sinðωss=cÞ

− ωs
η sinðωss=cÞ cosðωss=cÞ

!�
τ

δ

�
ð0Þ:

ð26Þ

The result of the longitudinal motion is the addition of a
betatron phase modulating term which oscillates with the
synchrotron frequency. The modulation of the betatron
phase as function of τð0Þ has been measured extensively
and has actually been employed to measure the linear
chromaticity of a lattice at the SPS, Tevatron and RHIC
machines [15,18,19].
Writing τð0Þ as τ0 and moving from s to angle θ

using ωss=c ¼ Qsθ, we can now model the effect of
longitudinal motion via a phase modulation term gðθÞ ¼
ei

ξω0τ0
η ½1−cosðQsθÞ�. This betatron phase modulation will effect

the spin resonance by modulating its betatron phase terms
in ζ̂ðθÞ. The betatron phase terms for the spin resonances
are contained in the complex phase of the wK ¼ ake−iϕK

terms. Here ak is the magnitude of the resonance jwKj and
ϕK the complex phase which is due to the betatron phase.
So one needs only add the modulated phase to the complex
phase.
Thus to model the longitudinal effect on the spin

resonances we multiply our gðθÞ term by the ζ̂ðθÞ term
[we now call ζ0ðθÞ] to obtain a new ζ̂,

ζ̂ðθÞ ¼ ζ0ðθÞgðθÞ
¼
X
K

wKe
−iKθþi

ξω0τ0
η ½1−cosðQsθÞ�: ð27Þ

Here the initial betatron phase is absorbed into the
complex phase of wK ¼ aKe−iϕK . We choose the initial
δð0Þ ¼ 0 since that will only alter the constant initial phase
and should not contribute to the dynamics which drive
polarization lifetime.
In addition to the phase effect there is also a direct

energy modulating effect which has previously been
described by Lee and Berglund [20]. This effect modifies
Gγ as follows,

GγðθÞ ¼ ðGγ0 þ αθÞ½1þ δðθÞ�: ð28Þ

Here we have left out the relativistic β2 since for the
regimes we are interested in it is ≈1. Because we have
chosen δð0Þ ¼ 0, in terms of θ, δðθÞ ¼ ωsτ0 sinðQsθÞ=η,
we track assuming all particles have the same initial
emittance with an evenly distributed betatron phases ϕK
between 0 and 2π. For each tracking we give ω0, ωs, η; Cδ

and to simulate the effects of different beam actions we give
τ0 and ak for each grouping of K resonances considered.
Our actual implementation updates gðsÞ only once per turn
since the timescale of the synchrotron motion is on the
order of 100’s of turns.

IV. NUMERICAL INTEGRATION SETUP

Our code was set up to integrate Eq. (16) with ζ̂ðθÞ
given by:

ζ̂ðθ; mÞ ¼
X
K

wKe
−iKθþi

ξω0τ0
η ½1−cosð2πQsmÞ�: ð29Þ

Here m is the turn number and wK are evaluated using
Eq. (15). The phase due to the synchrotron motion is
updated only once per turn as is the value of Gγ. Prior to
integration Eq. (16) was transformed to the interaction
frame using U ¼ e

−i
2
Gγθσz . The new equation written in

matrix form, with its initial conditions is,

Ψ0 ¼ AðθÞΨ; Ψðθ0Þ ¼ Ψ0: ð30Þ

The 4th order Magnus Gaussian quadrature integrator
evaluates the matrix AðθÞ at two orbital locations

θ þ ð1
2
�

ffiffi
3

p
6
Þh with step size h:

A1 ¼ A

�
θn þ

�
1

2
−

ffiffiffi
3

p

6

�
h

�

A2 ¼ A

�
θn þ

�
1

2
þ

ffiffiffi
3

p

6

�
h

�
: ð31Þ
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These are then used to calculate theΩ used to propagate the
spinor:

Ω½4�ðhÞ ¼ h
2
ðA1 þ A2Þ − h2

ffiffiffi
3

p

12
½A1; A2�

Ψnþ1 ¼ expðΩ½4�ðhÞÞΨn: ð32Þ

Here we use the identity,

expðia⃗ · σ⃗Þ ¼ cosðjajÞI þ i
sinðjajÞ
jaj a⃗ · σ⃗ ð33Þ

to evaluate the matrix exponential, where jaj¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21þa22þa23

p
. We decompose our Ω into a⃗ · σ⃗ using a1 ¼

ℑðΩ12Þ; a2 ¼ ℜðΩ12Þ; a3 ¼ ℑðΩ11Þ to apply Eq. (33). In
our case h ¼ π=20 was used yielding a total of 40 steps
from θ 0 to 2π. At θ ¼ π and 2π a snake spin transport
matrix given by Eq. (19) is applied with ϕs ¼ �π=4. The
code is available at [21].

V. NUMERICAL ERROR CHECK

Since we are running our integrator over 108 turns one
important concern is the development of roundoff errors and
deviations from unitarity. Checks of unitarity found devia-
tions of less than 1 × 10−8 after tracking over two hours. We
also performed reverse tracking. For 128 particles tracked
over 1 hour (2.5 × 108 turns) reverse tracking recovered the
starting spin values to within 5 × 10−6 (see Fig. 3).

VI. POLARIZATION LIFETIME AND ITS CAUSES

As can be seen in Fig. 4 the integration of the T-BMT
equation for a single resonance with two orthogonal snakes,
over 2 hours of beam time, show no observable polarization
loss for τ0 ¼ 0. The introduction of longitudinal motion
however changes this situation very dramatically.
Additionally the threshold appears to be less than
10−18 sec in τ0 amplitude (δ̂ ≈ 2.8 × 10−13) since that is
the smallest τ0 value we checked and still observed
polarization decay on the hour timescale. However above
τ0 ¼ 10−16 sec (δ̂ ≈ 2.8 × 10−11) the decay became more
pronounced assuming a level of polarization loss fairly
constant out to as high as τ0 ¼ 10−8 sec (δ̂ ≈ 2.8 × 10−3).
In the presence of six additional nearby intrinsic resonances
we see that like the single resonance case, it is only with the
introduction of longitudinal motion that a discernable
polarization decay appears on the timescales of 1 hour
(see Fig. 5). Concerning the response of the polarization
lifetime to different factors related to longitudinal motion,
there are several noticeable features. First although the
overall polarization lifetime is rather insensitive to the
magnitude of synchrotron tune, chromaticity and longi-
tudinal amplitude they do provide for a larger spread in the
turn-by-turn average polarization.
So for example we saw that with only 10−16 sec timing

offset from the bucket center polarization decay sets in. But
above this, changes of initial τ0, synchrotron tune and
chromaticity show little correlation with increased decay
rates, but they do demonstrate larger polarization spread
(see Fig. 6). While longitudinal dynamics seems essential
to trigger the process of polarization decay, the response is
rather insensitive to changes in longitudinal parameters.
In the range of reasonable values for synchrotron tune,
momentum offset and chromaticity, decay rates do not
change significantly.

FIG. 3. Average evolution of polarization for forward and
reverse tracking for 1 hour (1 hour forward, 1 hour reverse).
Path’s diverged initially because reverse tracking is staggered
by one turn and printing is done every 2000 turns. We track at
Gγ ¼ 191.5 including a single resonance at K ¼ 191.693 with
wK ¼ 0.017646þ 0.054524i. Other beam parameters are
Q ¼ 30.693, Cδ ¼ 2.0, Qs ¼ 8.9 × 10−4, η ¼ 0.001566 and
τ0 ¼ 0.1 ns. Note Sz ¼ 0.976 is the vertical (z) component of
stable spin direction for this system calculated via stroboscopic
averaging.

FIG. 4. Turn-by-turn average evolution of polarization for
different initial τ0 in presence of a single resonance with two
orthogonal snakes. All other beam parameters are same as in
Fig. 3. Note we also considered τ0 ¼ 10−15 but did not plot it as it
overlaid the 10−16 trace.
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However polarization lifetime is very sensitive to the
magnitude of the nearby intrinsic spin resonances. Here
both proximity and strength play a role. Although the
generally the proximity of the resonance is important, it
appears that numerology is also a factor. In Fig. 7 we
simulated the effects of a single spin resonance on beam
stored at different energies.These simulations are per-
formed by varying the location and strength of an intrinsic
resonance. These were done using fractional tunes of
0.683 and 0.693. We can see how for each resonance
the polarization loss is proportional to the strength jwj. This
maps out a polarization response curve for each resonance
location. However the polarization losses are not always a
direct function of the distance to the resonance. This in part
is probably due to our tune’s proximity to the 0.7 odd order
snake resonance. There are probably other factors having to
do with moving in and out of a parametric resonance region
which will be discussed later.
Next we computed the response to various beam emit-

tances. In the real machine there are several nearby intrinsic
spin resonance. We used DEPOL [5] to calculate the
strengths of the six nearest intrinsic spin resonance at
100 GeV (Gγ ¼ 191.5). Since the intrinsic spin resonance
is proportional to the square root of the normalized
emittance we can rescale an intrinsic spin resonance at
one emittance to an arbitrary emittance using:

jwðϵÞj2 ¼ ϵ

ϵc
:jwðϵcÞj2:

ϵc
jwðϵÞj2
jwðϵcÞj2

¼ ϵ ð34Þ

FIG. 5. Turn-by-turn average evolution of polarization for beam
stored at Gγ ¼ 487 with different initial τ0 including the effects
of six neighboring resonances: K1 ¼ 486.309, K2 ¼ 487.309,
K3¼488.309, K4¼486.691, K5 ¼ 487.691, and K6 ¼ 488.691.
Here the strengths given by, w1 ¼ 0.018036 þ 0.063010i,
w2 ¼ −0.000942 − 0.002246i, w3 ¼ 0.005438 − 0.001752i,
w4 ¼ 0.002344 − 0.006428i, w5 ¼ 0.005042þ 0.001384i, and
w6 ¼ −0.028228 − 0.009498i. These strengths are twice the
DEPOL calculated value for 10 mm-mrad normalized emittance.
This translates into a particle with 40 mm-mrad normalized
emittance. For example see Eq. (34).

FIG. 6. Turn-by-turn average polarization for two different τ0
values with Qs ¼ 8.9 × 10−4, chromaticity ¼ 2.0 (top). Turn-
by-turn average evolution of polarization for initial synchrotron
tune Qs ¼ 8.9 × 10−4 and 89.0 × 10−4 with τ0 ¼ 5.0 nsec
and chromaticity ¼ 2.0 (middle). Turn-by-turn evolution for
chromaticity ¼ 5 and 10 with Qs ¼ 8.9 × 10−4 and τ0 ¼ 5.0
nsec (bottom). The computations are all performed for stored
Gγ ¼ 191.5 and vertical tune of 30.693 with four intrinsic
resonances calculated from the FY15 100 GeV pp lattice. We
included six resonances K1 ¼ 191.693, K2 ¼ 190.307, K3 ¼
192.307, K4 ¼ 190.693, K5 ¼ 191.307, and K6 ¼ 192.693. The
associated DEPOL calculated strengths at 10 mm-mrad normal-
ized emittance for this lattice are w1 ¼ −0.000095 − 0.001703i,
w2 ¼ −0.006119 − 0.007888i, w3 ¼ 0.000000þ 0.001605i,
w4¼−0.000029þ0.000269i,w5¼0.008823þ0.027262i, w6 ¼
0.000646 − 0.001524i. These were all scaled up to reflect
a 40 mm-mrad normalized emittance. For example see
Eq. (34).
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Here ϵc is the emittance of the calculated intrinsic spin
resonance. In our case they were calculated at 10 mm-mrad
normalized emittance. Then for our simulations we multi-
plied all the resonances by a scale factor S to evaluate the
effect of different emittances. To recover the emittances we
can take S210 mm mrad to obtain our mm mrad normal-
ized value. In Fig. 8 we show depolarization versus
emittance for different τ0 values. In addition to the intrinsic
spin resonance, the effects of imperfection spin resonances
can be considered. In this case the imperfection spin
resonance strength are independent of emittance, so their
magnitude is held fixed, while the intrinsic’s strength are
scaled. The result of a study for the RHIC lattice are shown
in Figs. 9 and 10. In Fig. 9 a study for 255 GeV is shown
where the nearest imperfection resonance is at Gγ ¼ 487.
In Fig. 10 a study for 255 is plotted comparing with
those for 100 GeV. For the 100 GeV case the nearest are at
Gγ ¼ 191 and 192 (we picked 191) are shown. In all cases
the effects of the imperfection resonance on polarization

lifetime manifest themselves above 0.01 with significant
losses at 0.1. Using the curves similar to those shown
in Figs. 6 and 7 one can provide an estimate for the
polarization lifetime by interpolating loss versus emittance
curves and then integrating over the emittance distribution.
Assuming a Gaussian distribution,

ρðϵÞ ¼ e−
ϵ

2ϵ0

2ϵ0
ð35Þ

one obtains,

Polloss ¼
Z

ϵmax

0

dϵρðϵÞfðϵÞ: ð36Þ

Here fðϵÞ is a fit of the polarization loss versus emittance
curves. In Fig. 10 we plot the estimated polarization
lifetimes using this approach for both the FY15 and
FY17 lattices. From this we can see that fðϵÞ should be
well approximated by a linear function:

FIG. 7. Polarization deviation from stable spin direction
after 1.77 hours at stored Gγ ¼ 191.5, with Qs ¼ 8.9 × 10−4

and τ0 ¼ 0.1 nsec. We consider the effects for a single intrinsic
resonance. We compare the K ¼ 221 −Qy and the K ¼ 222 −
Qy resonance for two different tunes 30.693 and 30.683. This
gives four lines at K ¼ 190.307, 191.307, 190.317, and
191.317. We plot against jwj.

FIG. 8. Polarization deviation from stable spin direction after
1.77 hours at stored Gγ ¼ 191.5, with Qs ¼ 8.9 × 10−4. We
consider the combined effects of the 6 nearby intrinsic reso-
nances. These are shown for different τ0 plotted against particle
emittance.

FIG. 9. Polarization deviation from stable spin direction after
1.77 hours for different initial imperfection resonances for
Gγ ¼ 487. Here the vertical tune was held at 29.691 with six
intrinsic resonances calculated from the FY17 RHIC 255 GeV
lattice located at K ¼ 486.309, 487.309, 488.309, 486.691,
487.691, and 488.691.

FIG. 10. Polarization loss per hour versus rms beam emittance
for FY15 100 GeV lattice (Gγ ¼ 191.5) and the FY17 255 GeV
lattice (Gγ ¼ 487).
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fðϵÞ ¼ mϵþ b: ð37Þ

Equation (36) can now be evaluated to give:

Pollossðϵ0; ϵmaxÞ ¼ bþ 2ϵ0m −
mϵmax

e
ϵmax
2ϵ0 − 1

: ð38Þ

Using the linear fits to the plots like those shown in Fig. 10
we can extract our slope (m) and constant (b) to estimate
the lifetime for different emittances.

VII. COMPARISON WITH MEASURED DATA

In Table I we show the measured lifetimes from four
years of RHIC operations. These include FY12, FY13,
FY15, and FY17 RHIC runs. This data is derived from
[22] described in [23]. These results show that the rotators
can have a detrimental effect on polarization lifetime.
Especially if we consider the case of FY15 when the same
lattices were run with and without the rotators. The rotators
can have an effect identical to an imperfection spin
resonance via two mechanisms. The first is if the rotators
fail to be spin transparent and introduce a spin kick. This
error in the rotation angle is given by,

weff ¼
Δϕ
π

: ð39Þ

So for example an 18 degree error will yield 0.1 imper-
fection spin resonance.
Additionally our experience in adjusting the currents in

the spin rotators have shown that there is a significant effect
on the orbit from the rotators. This change in orbit can
effect the strength of the nearest imperfection spin reso-
nance. It has also been observed that the orbit can in turn
effect the spin orientation achieved by the rotator. For
example drifts in the orbit around the rotators have been
correlated with drifts on the longitudinal orientation of the
spin vector measured by the detectors.

Using Table I and Eq. (38) with the approach described
in the previous section, we can estimate an effective
imperfection spin resonance for each of these runs. The
effective imperfection represents the combined contribu-
tion from both the lattice and the rotators (if turned on).
These estimates are summarized in Table II.
This estimate is accomplished by calculating the polari-

zation lifetimes using the respective lattices for each run
and including imperfection spin resonances from 0 to 0.2.
This corresponds to snake or rotator detuning of 0 to
36 degrees. These lifetimes are calculated for emittances
and tunes which reflect the values using in operations, for
example between 2.5–3.5 mm-mrad normalized and frac-
tional tunes between 0.683–0.691.

VIII. PROBLEM OF VERY LONG TRACKING

While tracking over 1–2 hours delivers results consistent
with observations, polarization loss seems overestimated
by 1–2 percent per hour when the tracking is extended
beyond 2 hours. In Fig. 11 we can see an example of a
6 hour tracking simulation. One of the interesting features
is the existence of “kinks.” At the moment it is unclear if
this is a result of long-term numerical issues, or due to
the fact that we are reaching the limits of this type of
approximation. It is possible that the several simplifying
assumptions made to the transverse, longitudinal, and spin
motion make such long term estimates invalid. In addition
beam diffusion and loss impact the larger emittance
particles more than the small ones. Thus we are counting
a significant number of particles which normally would
have been lost and not weighed in the average polarization.
In addition there are periodic kicks due to intrabeam
scattering and beam-beam which could move the particles
in and out of resonance tongue regions, so that particles
do not reside in a higher order parametric resonance region
long enough to see the strong effect observed in the
simulation.

TABLE I. Measured polarization lifetimes from FY12, FY13,
FY15, and FY17 polarized proton runs with and without spin
rotators. * These are stores which used the same lattice as in
FY12.

Lattice/Run
Measured

Rot. Off [%/hr]
Measured

Rot. On [%/hr]

Blue p-p 255 GeV FY17 0.38� 0.03
Blue p-Au 100 GeV FY15 0.18� 0.02
Blue p-p 100 GeV FY15 0.95� 0.02 1.26� 0.02
Blue p-p 255 GeV FY13* 0.839� 0.05
Blue p-p 255 GeV FY12 0.76� 0.065
Yellow p-p 255 GeV FY17 0.42� 0.03
Yellow p-p 100 GeV FY15 0.5� 0.02 0.52� 0.02
Yellow p-p 255 GeV FY13* 0.75� 0.05
Yellow p-p 255 GeV FY12 1.05� 0.077

TABLE II. Estimate of the strength of the effective imperfection
spin resonance for RHIC Runs based Table I.

RHIC Lattice/Run Rotator

Estimate of
Effective Spin

Imperfection Range

Blue p-p 255 GeV FY17 Off 0–0.05
Blue p-Au 100 GeV FY15 Off 0.05–0.1
Blue p-p 100 GeV FY15 Off 0.1–0.2
Blue p-p 100 GeV FY15 On 0.2
Blue p-p 255 GeV FY13* On 0–0.05
Blue p-p 255 GeV FY12 On 0- 0.05
Yellow p-p 255 GeV FY17 Off 0–0.05
Yellow p-p 100 GeV FY15 Off 0.1–0.2
Yellow p-p 100 GeV FY15 On 0.1–0.2
Yellow p-p 255 GeV FY13* On 0.05
Yellow p-p 255 GeV FY12 On 0.05–0.1
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IX. SUMMARY

We have extended our lattice independent spin tracking
code to include the effects of longitudinal dynamics. The
contribution from longitudinal dynamics adds an oscillat-
ing betatron phase component to the complex first-order
spin resonance strength. It also modulates the bare spin
tune Gγ due to the contribution of the energy via δ. In the
single resonance model this added dynamics causes loss of
polarization over which is otherwise absent in the single
resonance model with orthogonal snakes.
Including multiple spin resonances without longitudinal

dynamics also does not generate polarization loss on the
timescale of several hours. However as in the single
resonance case, the addition of longitudinal motion causes
polarization losses on the order of 0.2%-1%/hour. This loss
rate is consistent with observed loss rates in RHIC.
Our studies show that the existence of longitudinal

dynamics is the most important factor in causing polari-
zation loss for a stored beam. Although necessary to cause
polarization loss, the actual magnitude of the longitudinal
parameters possible in RHIC appears to have little signifi-
cance. For example polarization loss was insensitive to the
values of synchrotron tune, chromaticity, and longitudinal
emittance.
After longitudinal dynamics, the next important factor in

determining polarization loss for the stored beam, is the
strength of the intrinsic and imperfection spin resonances,
their numerology and proximity. Finally we have recast the
single resonances T-BMT equation into a parametric reso-
nance formalism including simplified longitudinal dynamics.
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