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The space charge limit (SCL) of emission from photocathodes sets an upper limit on the performance of
both high- and low-field electron guns. Generally, one is forced to strike a compromise between the space
charge limit and the cathode’s intrinsic emittance [I. Bazarov et al., Phys. Rev. Lett. 102, 104801 (2009)].
However, it is possible to nearly eliminate the SCL due to the image charge by engineering the topography
of the cathode’s surface. A cathode with a surface plasma frequency below the frequency spectrum of the
accelerating electrons will greatly reduce the polarization of the cathode and its image-charge field, thereby
mitigating the cathode’s space charge limit for photoelectric, thermionic, and field emission. In the work
presented here, a theory for the image-charge field of a disk of charge being accelerated from the cathode
surface is developed which includes the frequency-dependent effects of the cathode’s dielectric function.
This theory verifies the concept of SCL mitigation with a wire array metamaterial to design a metacathode
with greatly reduced image-charge fields. The details of the holistic metacathode design spanning 6 orders
of magnitude in scale are described.

DOI: 10.1103/PhysRevAccelBeams.22.084201

I. INTRODUCTION

Our ability to assemble subwavelength, atomlike struc-
tures into manmade metamaterials with exotic properties is
revolutionizing the fields of photonics, acoustics, and the
material sciences. Metamaterials consisting of 3D arrays of
“artificial atoms” in the form of miniature resonators have
been shown to exhibit unnatural optical properties like a
negative index of refraction. Research of these new materials
is beginning to make even outlandish concepts like optical
cloaking and perfect lenses demonstrable possibilities.
The goal of this paper is to incorporate these new

metamaterial ideas into beam physics and accelerator tech-
nology. Here, these concepts are applied to design a cathode
with the goal of mitigating the cathode’s space charge limit
of emission. This is done by choosing a metasurface whose
plasma frequency is below the frequency spectrum of the
emitted electrons’ image-charge field. It is shown that such a
metasurface can greatly reduce the image-charge field and
thereby mitigate the space charge limit (SCL).
A low image-charge field would enable all guns to operate

with higher-density bunches. A small image-charge field
would allow using a smaller laser spot without concern of the

space charge limit, thereby reducing the beam’s mean
transverse energy and intrinsic emittance. A smaller initial
beam size would also reduce the chromatic and geometric
aberrations in the injector’s optics. In addition, bunch length
elongation and other longitudinal dynamics should become
more linear without the image field.
In this work, the image method is used to obtain the

image-charge field near the surface of the cathode. This
field is evaluated at the electron bunch location and travels
with the bunch as it accelerates from the cathode. Fourier
transforms are used to combine the image-charge field
produced by the bunch with the cathode’s surface loss
function to calculate the total, frequency-dependent electric
field at the bunch. A simple wire array metamaterial is used
with the theory to calculate the range of the time-dependent
fields generated during the bunch-cathode interaction.
Here, we ignore the space-charge forces between elec-

trons within the bunch. These forces result from the bunch’s
self-energy or potential energy of assembly which drives
radial and longitudinal expansion. Researchers have shown
in both theory [1,2] and experiment [3] that, if this
expansion is linear, then it produces no emittance growth.
Section II describes the connection between the image

charge and the dielectric function. The relationship
between the dielectric function and the surface loss
function (also known as the image-to-real charge ratio)
is given, and the conditions for controlling the SCL
are described. Section III develops a thin disk model of
the beam which combines the time dependence of the
image field with the surface response function. In Sec. IV,
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a metasurface consisting of a rectangular array of parallel
wires is used to illustrate the large range of dielectric
properties a metamaterial can produce, and the design
features needed for a practical metacathode are discussed.
The section ends with a brief review of the nanotechnology
relevant to fabricating the metacathode. Section V describes
how these capabilities are factored into the metacathode
design. Section VI describes the metasurface features and
discusses its design details. Section VII contains concluding
remarks with suggestions for further research.

II. THE IMAGE CHARGE AND THE DIELECTRIC
FUNCTION OF CATHODES

The mirror image method [4] gives the ratio of the image
charge q0 to the real external charge q as

q0

q
¼ −

�
ϵc − 1

ϵc þ 1

�
; ð1Þ

where ϵc is the cathode’s relative electric permittivity
defined in terms of its electric permittivity ϵcathode and
electric susceptibility χe:

ϵcathode ¼ ϵ0ϵc ¼ ϵ0ð1þ χeÞ: ð2Þ

In this paper, the frequency-dependent relative permit-
tivity ϵcðωÞ is referred to as the dielectric function of the
cathode.
The surface loss function at low momentum transfer

[5] is

gðq → 0;ωÞ ¼
�
ϵðωÞ − 1

ϵðωÞ þ 1

�
: ð3Þ

Comparing with Eq. (1) indicates the image charge depends
upon the frequency and is the negative of the surface loss
function when q ∼ 0 for photoemission. Thus, we define
the surface loss function for the cathode as

gcðωÞ≡
�
ϵcðωÞ − 1

ϵcðωÞ þ 1

�
¼ − q0

q
: ð4Þ

The negative of the image-to-real charge ratio is the
cathode’s surface loss function.
The Drude theory of metals [6] defines the dielectric

function in terms of the metal’s plasma frequency and
relaxation or collision time. In this theory, the dielectric
function is specified by two parameters, ωp and τp:

ϵðωÞ ¼ 1 − ω2
p

ωðωþ i
τp
Þ : ð5Þ

Here, ωp is the plasma frequency which is related to n, the
number density of conduction band electrons,

ω2
p ¼ ne2

ϵ0m
; ð6Þ

and the relaxation time τp depends upon both the con-
duction band density and the dc electrical conductivity σ:

τp ¼ mσ

ne2
; ð7Þ

wherem is the mass of an electron and e is its charge. These
two properties determine the magnitude and frequency
behavior of q0=q and the SCL.
Using the Drude dielectric function in Eq. (4) allows

expressing the cathode’s surface response function in terms
of these two fundamental quantities:

gcðωÞ ¼
ω2
p

ω2
p − 2ωðωþ i

τp
Þ : ð8Þ

Table I gives the free electron properties of copper, a
material commonly used as a cathode in high-field rf guns.
For metals, the plasma frequency is 4 orders of magnitude
higher than the high-frequency edge of the image-charge
field’s frequency spectrum. Since the bunch time scale is of
the order of picoseconds, the high-frequency edge of the
image field is of the order of 1012 rad=s. The table shows
that the plasma frequency of copper is 1.64 × 1016 rad=s.
Therefore, for metal cathodes, one always has ω ≪ ωp,
gcðω ≈ 0Þ ¼ 1, and q0 ¼ −q.
In the case of multialkali cathodes [7], the imaginary part

of the dielectric function tends toward zero and ReðϵcÞ ≈ 6,
which gives gc ≈ 1 for frequencies at and lower than ωe. So
again q0 ¼ −q at the image-field frequencies. Therefore,
both metal and multialkali photocathodes have the same
negative image-charge fields.
The Drude dielectric function given in Eq. (5) is a

complex function whose real and imaginary parts are
plotted in Fig. 1. The figure shows the imaginary part
diverging at frequencies below the plasma frequency,
whereas the real part becomes the dc conductivity at ω ¼ 0.
The ratio of the image charge to the real charge [or

−gcðωÞ] for copper is shown in Fig. 2. The calculations use
Eq. (5) for the cathode dielectric function with copper’s
plasma frequency and relaxation time. Both the real and
imaginary parts diverge at a transition frequency where the

TABLE I. Free electron properties of copper. The electron
densities are taken from Table 1.1 and the relaxation times from
Table 1.3 in Ref. [6].

Number density nð=m3Þ 8.47 × 1028

Relaxation time τ (s) 2.7 × 10−14
Plasma freq. ωp (rad=s) 1.64 × 1016

dc conductivity (S/m) 6.3 × 107

Transition freq. ωt (rad=s) 1.16 × 1016
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real part switches between−1 to 0 and where the imaginary
part has a narrow, negative peak. This is the frequency
where the cathode’s image charge transitions from that of a
metal (q0 ¼ −q) to that of a vacuum (q0 ¼ 0). The vacuum-
like behavior is identical to the well-known phenomenon of
ultraviolet transparency in metals [8]. In the present case,
transparency occurs when q0 ¼ 0 and, from the beam’s
perspective, the cathode “disappears.”
The transition between metal-like and vacuumlike

occurs when

Re½gcðωtÞ� ¼
1

2
; ð9Þ

where ωt is the transition frequency. Using the Drude
dielectric function in the cathode’s response function in
Eq. (9) and solving for ωt gives

ω2
t ¼

1

2τ2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ4pω

4
p

q
− 1

2τ2p
: ð10Þ

Usually, for metals like copper, the plasma frequency is
greater than 1

τp
, and the transition frequency can be

approximated by

ωt ≅
ωpffiffiffi
2

p when
1

τp
≪ ωp: ð11Þ

On the other hand, a metasurface can be designed to have
a very short relaxation time in order to damp the ωt

oscillations. In this case, τ4pω
4
p ≪ 1, and the transition

frequency becomes the difference of two large numbers as
can be seen in Eq. (10). This numerical difficulty can be
removed by expanding the square root in powers of τp. The
first term of this series cancels the − 1

2τ2p
term, leaving

ω2
t ≅

ω4
pτ

2
p

4
− ω8

pτ
6
p

16
þOðω12

p τ10p Þ for τ4pω4
p ≪ 1: ð12Þ

III. THE IMAGE-CHARGE FIELDS IN SPACE,
TIME, AND FREQUENCY

This section discusses the potentials due to an infinitely
thin disk of uniform charge near the cathode surface. The
analysis derives the time dependence of the image-charge
electric field experienced by the disk as it accelerates from
the cathode. Multiplying the Fourier transform of the image
field times gcðωÞ gives the image-charge field as a function
of the frequency. Transforming this product back to time
gives the image-charge field as a function of the disk’s time
of travel from the cathode. This transformed image field
which is traveling with the disk now includes the electronic
response of the cathode.

A. Potentials at the cathode surface
and the Schottky effect

Our model for the electron bunch is an infinitely thin disk
of charge with a uniform charge density. The results given
here can be integrated over a finite bunch length to give the
fields for the ideal “beer can” bunch shape.
The derivation begins with the axial field of a solitary

disk of charge as shown in Fig. 3. We obtain the image-
charge field by scaling the disk’s charge by q0=q and
placing it at the image charge’s location behind the cathode.

FIG. 1. The complex dielectric function for copper at room temperature with different vertical and horizontal scales. The real part is
plotted with the solid red curves, and the imaginary part is plotted using dashed blue curves. The plasma frequency is 1.64 × 1016 rad=s
and is the frequency where the real part is zero.

FIG. 2. The image-charge to real-charge ratio q0=q ¼ −gcðωÞ,
as a function of the frequency for copper. The dashed blue
curve is the imaginary part, and the solid red curve is the real part.
A dash-dot line is drawn at q0 ¼ −q assumed in most current
cathode models. The transition frequency for copper is ωt ¼
1.16 × 1016 rad=s.
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The field from this “image disk” is then computed at the real
disk’s z position on the vacuum side. Assuming constant
acceleration in an applied field gives the image-charge field
at the disk vs the time of travel from the cathode.
The axial electric potential at point P the distance zP

from the surface of a disk with radius R and uniform
surface charge density Σ0 is found to be [9]

VdiskðzPÞ ¼
Σ0

2ϵ0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zP2 þ R2

q
− jzPj

�

¼ Q0

2πϵ0R2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zP2 þ R2

q
− jzPj

�
: ð13Þ

Here, R is the disk’s radius and zp is the distance the axial
point P is from the disk center.
The image method places a copy of the real charge with

opposite sign at the symmetrical position inside of the
cathode to calculate the image-charge field it produces at
the disk outside the cathode. Figure 4 shows the image
method’s configuration for a real-charge disk at z ¼ zs and
its image at z ¼ −zs. The disk and the image charge
converge at the cathode surface as zs → 0. Shifting Eq. (13)
to the image-charge location, using the surface loss
function for q0=q, and evaluating the potential at the disk
center, zP ¼ 0, gives the total potential energy at the center
of the real-charge disk as

V totalðzsÞ ¼ −Eazs − Q0

ϵ0πR2

�
ϵc − 1

ϵc þ 1

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2s þ

R2

4

r
− zs

�
:

ð14Þ

The first term on the right is the potential energy of the
applied field. The second term is the image-charge potential
energy at the center of a disk with radius R and charge Q0

located zs from the cathode surface.
Plots of the image-charge and the applied field potentials

for disk radii of 50, 100, and 200 μm are shown in Fig. 5.
The disk charge is a 50-pC disk, and the applied field is
50 MV=m. The figure shows that the potential well
disappears for R ≥ 200 μm. And when the well exists,
its peak is approximately 50 μm from the cathode. The
image potential is finite at zs ¼ 0 and is equal to

V imageðzs ¼ 0Þ ¼ − Q0

ϵ02πR

�
ϵc − 1

ϵc þ 1

�

¼ Q0

ϵ02πR
gcðωÞ: ð15Þ

The maxima of the potentials shown in Fig. 5 give the
Schottky potentials for various radii disks near a metallic
cathode. Setting the derivative of V totalðzÞ equal to zero
and solving for z gives the potential barrier’s maximum
location, zm, from the cathode surface. This distance is

zm ¼ R
2

1 − Ea
Ediskffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
�
1 − Ea

Edisk

�
2

r ; ð16Þ

FIG. 3. Parameters of a thin disk of charge.

FIG. 4. The positions of a real disk of charge and its image with
respect to the cathode surface.

FIG. 5. The image-charge potential energy and the applied
potential energy [as given by Eq. (14)] at the center of a 50-pC
disk of charge as a function of its distance from a cathode with
q0 ¼ −q. The potential for an applied field of 50 MV=m is given
by the solid red curve. The dashed curves are the potential
energies for disks with 50-, 100-, and 200-μm radii. Note that
the maximum of the potential barrier is approximately 50 μm
from the cathode surface and moves toward the cathode with an
increasing disk radius.
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where

Edisk≡ Q0

ϵ0πR2

�
ϵc−1

ϵcþ1

�
¼ Q0

ϵ0πR2
gcðωÞ¼

Σ0

ϵ0
gcðωÞ: ð17Þ

The potential well disappears when the applied field Ea
equals the image-charge field at the disk, Edisk. Evaluating
V total at zm gives the Schottky potential for the disk of
charge:

VSchottkyðEa; EdiskÞ ¼ ϕdisk ¼
R
2

Ea
e

�
Ea
Edisk

− 2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 − Ea

Edisk

�
2

r : ð18Þ

From these relations, we can establish the connection
between the space charge limit and the cathode’s surface
loss function. In photocathode guns, a commonly used
definition states that the SCL is reached when the field of
the polarization charge density induced on the surface by
the bunch (also known as the image field) equals the
applied field. Equation (16) agrees with this definition,
since zm ¼ 0 and ∇V ¼ 0 when Edisk ¼ Ea ¼ ESCL.
Therefore, the SCL field depends upon the surface loss
function:

ESCLðωÞ≡ Q0

ϵ0πR2

�
ϵc − 1

ϵc þ 1

�
¼ Q0

ϵ0πR2
gcðωÞ: ð19Þ

It is interesting to note that the image-charge potential
of a single electron is similarly affected by the cathode’s
dielectric function. In this case, an electron’s total potential
energy including the cathode’s surface loss function is

ϕeðzÞ ¼ −eEaz − e2

16πϵ0

�
ϵc − 1

ϵc þ 1

�
1

z
: ð20Þ

As described earlier, the Schottky potential is the total
potential energy evaluated at its maximum, which is

ϕSchottky ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eEa

4πϵ0

�
ϵc − 1

ϵc þ 1

�s
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eEa

4πϵ0
gcðωÞ

s
: ð21Þ

The relative permittivity of most cathode materials is large
compared to 1; therefore, gc ≈ 1, and Eq. (21) reverts to the
usual expression for the Schottky potential of a single
electron.

B. Time dependence of the image-charge fields

We now calculate of the time-dependent image field at
the center of the disk. The potential energy of the image
charge at the center of a disk with uniformly distributed
charge Q0 a distance zs from a cathode surface is

V imageðzsÞ ¼ − Q0

ϵ0πR2

�
ϵc − 1

ϵc þ 1

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2s þ

R2

4

r
− zs

�
: ð22Þ

The divergence of the potential energy, E
⇀ ¼ −∇⇀V, gives

us the image charge’s electric field acting on the center of
the disk:

EimageðtÞ ¼
Q0

ϵ0πR2

�
ϵc − 1

ϵc þ 1

�0B@ zsðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zs2ðtÞ þ R2

4

q − 1

1
CA: ð23Þ

zsðtÞ is the disk’s distance from the cathode at time t. If we
assume the disk’s motion is only due to its acceleration in
the applied field, then

zsðtÞ ¼
1

γ0
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðγ0ctÞ2 þ 1

q
− 1

i
: ð24Þ

Here, γ0 ≡ Ea
mc2 is the normalized applied field.

Inserting Eq. (24) into Eq. (23) and finding a closed
expression for the Fourier transform seems impossible.
Instead, a very good approximation for EimageðtÞ is a
heuristic Gaussian function. Setting the width and ampli-
tude of a Gaussian equal to those for Eimage gives the
following useful and accurate approximation:

EGaussian
image ðtÞ¼− Q0

ϵ0πR2

�
ϵc−1

ϵcþ1

�
e−ðt2=2σ2t Þ; t≥0: ð25Þ

The rms width of the Gaussian, σt, is the image-charge field
duration, which is a function of the disk radius and the
normalized applied field:

σ2t ≡ ð1þ γ0R=
ffiffiffiffiffi
12

p Þ2 − 1

ð2 ln 2Þγ02c2 : ð26Þ

Figure 6 shows that EGaussian
image closely matches Eimage, which

justifies using it for Eimage in the remainder of this paper.
Figure 7 shows the image-charge field duration σt as a

function of the applied field for various disk radii. Clearly,
the field’s duration increases with larger disk radii and
decreases at higher applied fields. Taking the limit of
Eq. (26) as the applied field becomes infinite leads to a
minimum value of the image field duration time for a given
disk radius:

limγ0→∞σt ¼
R

2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p
ln 2

p ≅ 1.5R ½mm� ps: ð27Þ

Therefore, even with an infinitely large applied field, the
electrons will experience the space-charge image field for
approximately a picosecond unless the cathode radius size
is very small.
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C. Frequency dependence of the image-charge fields

Realizing that the image field is the product of
frequency- and time-dependent functions, we make this
separation explicit by writing the field as

EGaussian
image ðω; tÞ ¼ Q0

ϵ0πR2
gcðωÞfðtÞ; ð28Þ

where gcðωÞ is the cathode’s surface loss function and fðtÞ
is defined as the Gaussian field shape function:

fðtÞ≡ e−ðt2=2σ2t Þ: ð29Þ

The Fourier transform of fðtÞ is another Gaussian given by

f̃ðωÞ ¼
ffiffiffi
2

π

r
σte−ðσ

2
tω

2=2Þ ð30Þ

with 1=σt as the rms frequency spread of the transformed
image-charge field. In this paper, the Fourier transform of a
function is denoted by the function with a tilde symbol.
The Fourier transform of the image-charge field is thus

the product of the surface loss function and the transformed
field shape function:

ẼGaussian
image ðωÞ ¼ Q0

ϵ0πR2
gcðωÞf̃ðωÞ: ð31Þ

In this product, the surface loss function acts like a low-
pass filter on f̃ðωÞ, allowing only frequencies below the
transition frequency to pass.
Since ẼimageðωÞ can be represented by a Gaussian

centered at ω ¼ 0, it is convenient to define the high-
frequency edge of ẼimageðωÞ at its half-height as ωe. Thus,
from Eq. (30),

e−ðωe
2σ2t =2Þ ¼ 1

2
: ð32Þ

Solving for the edge frequency ωe gives

ωe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2j ln 1

2
j

q
σt

¼ 2
��� ln 1

2

���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ02c2

ð1þ γ0R=
ffiffiffiffiffi
12

p Þ2 − 1

s
: ð33Þ

Thus, the edge frequency is a function of the disk radius
and the applied field.
The temporal behavior and the magnitude of the image-

charge field depends upon the edge frequency relative to
the transition frequency. There are three types of image
fields depending upon ωt with respect to ωe. They are as
follows.
If ωt > ωe, then q0=q ¼ −1 with no imaginary part. This

is true for all currently used cathodes.
If ωt ¼ ωe, then q0=q has both real and imaginary parts.

The imaginary part is at its maximum. The image-charge
field strongly oscillates at the transition frequency, which
could seed unwanted microbunching instabilities and
reduce beam brightness or be used to prebunch the beam.
If ωt < ωe, then q0=q ∼ 0 for both real and imaginary

parts. Without the image-charge field, there is no space
charge limit to the emission.

D. The image-charge electric field fourier
transformed with the surface loss function

Since Eimageðω; tÞ is an even function in time, the cosine
representation for the Fourier transform is used [10].
Hence, the Fourier transform of the image field is given by

ẼimageðωÞ ¼
2

π

Z∞
0

Eimageðω; tÞ cosωtdt; ð34Þ

0 20 40 60 80 100 120
0

5

10

15

20

FIG. 7. The image field duration time as a function of the
applied field for various disk radii.

FIG. 6. Comparison of the image field given by Eqs. (23) and
(24) (solid red curve) with the heuristic Gaussian function in
Eq. (25) (dashed blue curve). The disk radius is 1 mm,
Ea ¼ 20 MV=m, and the cathode dielectric constant is 100.
The field is given per picocoulomb of negative disk charge. The
inset shows the disk position from the cathode as a function of
the time.
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and its transformation back to the time coordinate is
denoted by the script of the function,

EimageðtÞ≡
Z∞
0

ẼimageðωÞ cosωtdω: ð35Þ

The script EðtÞ is used to avoid confusion with the EimageðtÞ
which is already in Eq. (23). In addition, writing Eq. (35)
with EimageðtÞ could also cause confusion with Eimageðω; tÞ,
which is a function of two variables; see Eq. (28). EimageðtÞ
includes the effects of the surface loss function, while
EimageðtÞ does not.
ẼimageðωÞ is the Fourier spectrum of the image-charge

field seen by the disk as it accelerates from the cathode.
Assuming the Gaussian formulation for EimageðtÞ is valid,
the Fourier spectrum is easily found to be

ẼGaussian
image ðωÞ ¼ −

ffiffiffi
2

π

r
Q0

ϵ0πR2

�
ϵcðωÞ − 1

ϵcðωÞ þ 1

�
σte−ðω

2σ2t =2Þ:

ð36Þ

Equation (36) gives the frequency spectrum of the
image-charge field responding to the electrical impulse
of the accelerating disk. Transforming ẼGaussian

image ðωÞ back to
time gives the time-dependent image field modified by the
cathode’s response:

EGaussian
image ðtÞ ¼ −

ffiffiffi
2

π

r
Q0

ϵ0πR2
σt

Z∞
0

�
ϵcðωÞ − 1

ϵcðωÞ þ 1

�

× e−ðω2σ2t =2Þ cosωtdω: ð37Þ

Using Drude’s theory for the dielectric function, the
integral can be written in terms of the plasma frequency
and the relaxation time of the cathode surface:

EGaussian
image ðtÞ ¼ −

ffiffiffi
2

π

r
Q0

ϵ0πR2
σt

Z∞
0

�
ω2
p

ω2
p − 2ωðωþ i

τp
Þ
�

× e−ðω2σ2t =2Þ cosωtdω: ð38Þ

For a cathode with ωt ≫ ωe, then ϵc ≫ 1; therefore,
ðϵc−1ϵcþ1

Þ → 1 and q0 ¼ −q. In this case, the Fourier transform
of ẼðωÞ returns the original image field such that
EimageðtÞ ¼ Eimageðω ¼ 0; tÞ, which is not a very interesting
result. However, if one instead uses a cathode with a
transition frequency below ωe, then some interesting effects
can be discovered as will be described in Sec. IV.

E. Transverse size of the polarization
surface charge density

In this subsection, the transverse size of the cathode
necessary for the metasurface properties to dominate in
electron emission is determined. The metasurface should
be large enough to encompass all the polarization charge
induced on the cathode’s surface by the disk of charge. It is
interesting to note that the polarization charge does not
propagate or spread across the cathode. Instead, it is localized
on the cathode surface beneath the emitted electrons.
Figure 8 shows the three views of the cathode-disk

geometry in which an infinitesimal of charge, dQ ¼
Σ0rdrdα0, located on the disk at coordinates (r; α0) polar-
izes charge on the cathode surface at (ρ; α). The bracketed
quantity in the integrand’s denominator is the square of the
three-dimensional distance between the points (ρ; α) on the
cathode and (r; α0) on the disk (Fig. 8, side view).
The polarization charge density on the cathode surface

at radius ρ induced by the infinitesimal charge dQ at a
distance d from a surface and radius ρ from the center of the
disk is [4]

dσpol ¼ − 1

2π

�
ϵc − 1

ϵc þ 1

��
d

ðρ2 þ d2Þ3=2
	
dQ: ð39Þ

The total polarization charge density at the point (ρ; α) on
the cathode is found by integrating over the disk’s charge
distribution:

σpolðρ; αÞ ¼ − d
2π

�
ϵc − 1

ϵc þ 1

�

×
Z2π
0

ZR
0

Σ0rdrdα0

½ρ2 þ d2 þ r2 − 2ρr cosðα − α0Þ�3=2 :

ð40Þ

Because of the disk’s axial symmetry, there is no loss of
generality setting α ¼ 0 and determining the charge density
profile along the x axis. Doing this and performing the
radial integral gives

σpolðρ;α ¼ 0Þ

¼ − d
2π

�
ϵc − 1

ϵc þ 1

�
Σ0

Z2π
0



− s2 − ρR cosα0

ðR2 þ s2 − 2ρR cosα0Þ1=2 þ s

�

×
dα0

s2 − ρ2cos2α0
; ð41Þ

where s2 ¼ ρ2 þ d2. This expression is numerically inte-
grated to obtain the polarization charge density.
Figure 9 shows the polarization charge density along the

x axis for a 100-pC, 1-mm radius disk positioned 0.03, 0.3,
and 3 mm from the cathode. The figure indicates that the
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transverse extent of the polarization charge is about the
same as the disk size, which in this case is 2 mm in
diameter. From this transverse distribution, we conclude
that the metasurface should be at least twice the emission
area to include tails of the distribution.
Because the thickness of the polarized layer is only a few

angstroms [11], one would assume that the metacathode
can be made very thin. However, the actual thickness will
depend upon the type of metasurface and its surface loss
function. This is discussed with more detail in Sec. IV B.

IV. CATHODE DESIGN WITH METASURFACES

A metasurface is a surface composed of a pattern of
structures, each of which is smaller than the wavelength
of the radiation of interest. For photon wavelengths longer
than the structure spacing and size, these artificial atoms
interact with radiation like atoms in an atomic lattice. Such

an artificial “atomic” structure can have significantly
different electronic properties than those of natural bulk
materials. Varying the type of structures and their patterns
produces a wide range of electrical and magnetic proper-
ties, including many which are otherwise unobtainable in
nature. In the case of cathode design, an important
electronic property is the dielectric function which affects
the electron’s initial dynamics via the surface loss function.
The metasurface’s dielectric function is determined by its
structure, and, as will be shown, the metasurface can be
structured to mitigate the cathode’s SCL.

A. The surface loss function and general behavior
of a wire-array metasurface

Studies of the electrical properties of “artificial dielectrics”
began in the 1940s. An early description of wire arrays in
terms of a plasma was given by Rotman, who simulated
microwave antennas consisting of 1D, 2D, and 3D wire
arrays [12]. More recently, wire arrays which mimic
materials with a very low plasma frequency are discussed
by Pendry et al. [13]. In this work, Pendry describes a 3D
cubic lattice of wires and emphasizes the importance of the
wire radius being much smaller than the wire spacing.
Here, we study a 1D metamaterial consisting of a

rectangular pattern of thin metal wires aligned parallel to
the z axis. The direction of the wires determines the electric
field polarization coupling to the array’s dielectric function.
If the wires are thin compared to the wire spacing, the array
is nearly transparent to the x and y components of the
applied field. Adding thin wires aligned parallel to the x
and y axes would make a 3D metamaterial which would
couple to all three components of the applied electric field.
The elements of the 3 × 3 diagonal dielectric function
tensor would be determined by the wire spacings, radii, and
conductivities of the wires parallel to each of the three axes’
directions.

FIG. 9. The polarization charge density on the cathode surface
for a R ¼ 1 mm radius disk with Qdisk ¼ 100 pC. The calcu-
lations assume q0 ¼ −q. Lineout profiles of the surface charge
density are shown for the disk at d ¼ 0.03, 0.3, and 3 mm from
the cathode. The surface charge density of the disk, Σ0, is shown
with a horizontal dash-dotted line.

FIG. 8. The geometry for calculating the polarization charge density on the cathode surface. The side view shows the distance between
the point (ρ; α) on the cathode surface and the point (r; α0) on the disk. The disk has a uniform surface charge density of Σ0. The
polarization charge density at the point on the cathode is given by integrating the disk’s surface charge density over r and α0. The x axis is
into the page in the side view, and the z axis is out of the page in the cathode-vacuum and disk plane views.
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The 1D metamaterial shown in Fig. 10 has a plasma
frequency with z polarization given by [14]

ω2
wire ¼

2πc2

a2 ln a
r

ð42Þ

and relaxation time

τwire ¼
r2σwire
2ϵ0c2

ln
a
r
: ð43Þ

Here, a is the center-to-center distance between the wires, r
is the wire radius, and c is the vacuum speed of light. The
conductivity of each wire is σwire, and the host material
between the wires is assumed to be a vacuum. The objective
is to find values for the three metasurface parameters (a, r,
and σwire) which reduce the transition frequency by 6 orders
of magnitude from 1016 to 1010 rad=s. To do this, we fix the
wire radius and the wire conductivity and vary the wire
spacing to lower ωt.
Table II gives the characteristics of metasurfaces with

wire spacings corresponding to the three frequency regions
described earlier, and Fig. 11 shows their image-charge
fields and −gcðωÞ. For all three spacings, the wire radius is
1 μm, and the wire conductivity is equal to that of copper.
The applied field is 50 MV=m, which combined with a
R ¼ 1 mm disk radius gives σt ¼ 6.9 ps-rms. The edge
frequency is ωe ¼ 1.7 × 1011 rad=s. The wire spacings
a ¼ 0.5, 1.3, and 10 mm correspond to ωt > ωe,

ωt ≅ ωe, and ωt < ωe, respectively. The image-charge
fields in Fig. 11 follow the behavior described in
Sec. III C for these three frequency ranges.

B. Practical metacathode design

Although instructive, the wire arrays with millimeter
spacing described in the last subsection are not practical
cathode designs for high-brightness electron guns. A
realistic metacathode would have a wire-to-wire spacing
of microns in order to have thousands of wires over a
millimeter size area. This thousandfold reduction (milli-
meters to microns) in spacing is possible by simultaneously
shrinking the wire radius and reducing the wire conduc-
tivity. In this miniaturized design, the metacathode
becomes an array of hundreds of thousands of low
conductivity nanowires (NWs).
There are two surface loss regimes which decide how the

thousandfold reduction in the wire spacing can be achieved,
the low-loss and high-loss regimes. [See the discussion
in Sec. II for Eqs. (10)–(12).] In the low-loss or long
relaxation time regime, the real part of the surface loss
function is larger than the imaginary part, and in the
high-loss or short relaxation time regime, the imaginary
part dominates.
The low-loss or long relaxation time regime occurs

when τpωp ≫ 1 and has a transition frequency equal to
ωp=

ffiffiffi
2

p
or

ωt ¼
c
a

ffiffiffiffiffiffiffi
π

ln a
r

r
for τpωp ≫ 1: ð44Þ

Therefore, for low-loss metasurfaces, low transition
frequencies can be obtained only by making the wire
spacing large. This point was illustrated in Fig. 11, where
a spacing of 10 mm was needed to lower the transition
frequency enough to suppress the image field.
On the other hand, for a high-loss metasurface, the

relaxation time is short compared to a plasma period, e.g.,

FIG. 10. A 1D wire-array metamaterial consisting of a rec-
tangular array of parallel wires with spacing a and wire radius r.
These dimensions combined with the wire conductivity σwire
specify the plasma frequency and the relaxation time of the
metamaterial. Since the wires are aligned along the z axis, it is
only the z component of the electric field which can electrically
polarize the wires. The x- and y-field components are unaffected
by the array.

TABLE II. Parameters of rectangular arrays of parallel wires
for three wire spacings. The wire conductivity is σwire ¼
6.3 × 107 S=m, and the wire radius is r ¼ 1 μm for all three
spacings. The image field duration or transit time is σt ¼ 6.9 ps.
The applied field is 50 MV=m.

Frequency range ωt > ωe ωt ≅ ωe ωt < ωe

Wire spacing a (mm) 0.5 1.3 10
Array plasma freq.
ωwire (rad=s)

6.0 × 1011 2.2 × 1011 2.5 × 1010

Relaxation time
τwire (s)

2.5 × 10−10 2.8 × 10−10 3.6 × 10−10

Transition frequency
ωt (rad=s)

4.3 × 1011 1.5 × 1011 1.7 × 1010

Edge frequency
ωe (rad=s)

1.7 × 1011 1.7 × 1011 1.7 × 1011
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τpωp ≪ 1, and the transition frequency is instead given
by Eq. (12). In this case, the transition frequency scales
according to

ωt ∝
r

ffiffiffiffiffiffiffiffiffi
σwire

p
a

for τpωp ≪ 1: ð45Þ

In this case, it is possible to lower the transition frequency
by reducing r

ffiffiffiffiffiffiffiffiffi
σwire

p
. Therefore, by greatly shrinking both

the wire radius and conductivity, one can achieve low
transition frequencies with micron scale wire spacings.

C. Review of the nanowire technology and its
application to metacathode design

The previous subsection has shown that wire radii of tens
of nanometers and wire spacings of a few microns are
needed for a realistic metacathode. In this subsection, it is
shown that such nanowire dimensions are well within
the fabrication capability of contemporary silicon lithog-
raphy. This technology has demonstrated the fabrication
of dense rectangular arrays of freestanding, microns-tall
silicon pillars. The process of template-based metal-
assisted chemical etching [15] has been used to produce
vertically aligned wires as small as 5 nm in diameter [16].
Control of the precise positioning, radius, and length of the

nanowires has been demonstrated using electron beam
lithography and inductively coupled-plasma reactive ion
etching [17,18]. In fact, silicon nanowires (SiNWs) with a
height to diameter aspect greater than 200 have been
achieved with a high density over a 1 × 1 mm area [16].
Therefore, 10-nm diameter nanowires could be as tall
as 2 μm.
The electrical conductivity of the SiNWs can be con-

trolled by the type and amount of doping used. The
resistivity of silicon at room temperature is 2300 Ωm,
which is much higher than the desired resistance of
0.028 Ωm (see Table III). However, the semiconductor
industry has shown that the resistivity of silicon can be
precisely controlled in the 0.01–0.1 Ωm range with p
doping [16].
In other work on a vertical field effect transistor (FET)

[19], researchers created a SiNW FET which has NW
dimensions and resistivity compatible with our metaca-
thode design. The conducting channel of the SiNW FET is
a 60-nm diameter, 1.7-μm-long SiNW coated with an
insulating layer of 25-nm-thick SiO2. The SiNW resistivity
is 0.028 Ωm (hole concentration of 4 × 1015 cm−3), which
is also acceptable for the resistivity of the metacathode
NWs. The gate electrode is a 100-nm-thick layer of
aluminum covering the lower micron of the wire. In these

FIG. 11. The frequency spectra and the image-charge fields vs the time for three wire array metamaterials with spacings of a ¼ 0.5,
1.3, and 10 mm corresponding to ωt > ωe, ωt ≅ ωe, and ωt < ωe, respectively. The other array characteristics are given in Table II. The
image field and its frequency spectrum for q0 ¼ −q are plotted with red dashed lines for reference and comparison. The applied field is
not shown. Upper plots: The image-charge field frequency spectrum normalized at ω ¼ 0 and the real and imaginary parts of the surface
loss function. The vertical dash-dotted line is the edge frequency at ωe ¼ 1.7 × 1011 rad=s. Red dashed curve: 1

σt

ffiffi
π
2

p
f̃ðωÞ. Blue solid

curve:−RegcðωÞ. Green solid curve: −ImgcðωÞ. Lower plots: The image-charge field per pC at the disk center. Blue solid curve:
ReEGaussian

image ðtÞ; green solid curve: ImEGaussian
image ðtÞ; red dashed curve: EimageðtÞ with q0 ¼ −q.
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experiments, a metal patch on the SiNW’s top was used as
the drain electrode for the current measurements.
Measurements of the SiNW vertical FET showed a

current of 18 μA through the SiNW for a gate bias of
−4 V [19]. This current is due to the impact ionization
field effect [20], which is controlled by the Al gate. If
one considers each SiNW in a 2-μm space array emitting
this current, then the total current density would
be 28 μA=wire × 2.5 × 105 wires=mm2 ¼ 7 A=mm2.

This current is much lower than the limiting current due
to the resistance of the 60-nm SiNW. The resistance-limited
current Iwire is the voltage across the wire divided by the
wire’s resistance. For a large tip field enhancement, the
voltage across a wire which is h long and with βtip for
the tip’s field enhancement factor is ∼βtipEah. A SiNW
with the dimensions and conductivity given in Table III
has a resistance of 13 MΩ and βtip ¼ 400 (see Sec. V).
Therefore, the SiNW resistance-limited current with an
applied field of 5 MV=m is

Iwire ¼
V tip

Rwire
¼ βtipEah

Rwire
¼ 208 μA=SiNW:

Since there are 2.5 × 105 SiNWs=mm2, the resistance-
limited current density is 52 A=mm2. The resistance-limited
photoelectric surface charge density of a 10-ps-long laser
pulse would be 520 pC=mm2.
This charge density is far beyond the space charge limit

of a cathode at 5 MV=m. As discussed earlier, the SCL
occurs when Eimage ¼ Ea. Then in terms of the image field
per charge, Eimage=q, the image field limited charge is

QSCL ¼ Ea

Eimage=q
:

Figure 12(b) shows that for a q0 ¼ −q cathode at 5 MeV=m
(dashed red curve) the SCL charge density is 143 pC=mm2,
since Eimage=q ¼ −3.5 × 104 ðV=mÞ=pC, whereas for the
metacathode Eimage=q is −2.5×103 ðV=mÞ=pC. Therefore,
the metacathode’s SCL charge is 14 times larger or
2 nC=mm2. And, as just shown, this is well above the
resistance-limited charge density of 520 pC=mm2 for the
SiNW array. Therefore, the metacathode produces negli-
gible image fields, and from the beam’s perspective the
cathode disappears.

TABLE III. The nanowire specifications and metasurface and
beam parameters for the metacathode. The NW specifications are
based upon demonstrated SiNW properties [19].

Nanowire specifications

Tip coating
5-nm of DLC or monolayer

of diamondoid

Tip shape Ellipsoid � � �
Minor axis radius b 30 Nanometers
Spacing a 2.0 Microns
Length h 1.35 Microns
Field enhancement factor 400 � � �
Resistivity ρwire 0.028 Ωm
Conductivity σwire 36 Ω−1 m−1
Resistance Rwire 13 MΩ

Metasurface parameters
Active cathode area 1 mm × 1 mm
Wire density 2.5 × 105 nanowires=mm2

Array plasma frequency ωwire 1.8 × 1014 rad=s
Relaxation time τwire 8.3 × 10−5 Femtoseconds
Array transition frequency ωt 1.4 × 109 rad=s

Beam parameters
Cathode radius R 1 mm
Cathode applied field Ea 5 MV=m
Normalized applied field γ0 9.8 � � �
Image-charge field duration σt 22 Ps
Image-charge field edge
frequency ωe

5.4 × 1010 rad=s

FIG. 12. (a) The Fourier spectrum of the image field shape function f̃ðωÞ=f̃ð0Þ (red dashed curve) as a function of the angular
frequency. The edge frequency is shown at ωe. The real (blue solid curve) and imaginary (green solid curve) parts of the cathode surface
loss function −gcðωÞ. The transition frequency is indicated at ωt. (b) The real (blue solid curve) and imaginary (green solid curve) parts
of the image-charge field of the metacathode. The image-charge field per pC for the standard cathode (red dashed curve) is shown for
reference. All curves are calculated using the design parameters given in Table III.

TOPOLOGICAL CATHODES: CONTROLLING … PHYS. REV. ACCEL. BEAMS 22, 084201 (2019)

084201-11



In this design, it is assumed that all the nanowire tips are
electron emitters. However, because of their nanometer
size, the wires will exhibit strong quantum effects, which
will confine the electrons and limit how many will be
emitted. The quantized states in the quantum well (QW) on
the surface are filled by electrons tunneling through from
the silicon substrate. However, given the dimensions of
most QWs, the energy of the lowest-lying quantum state is
high in the conduction band, where there are very few
electrons available to fill the QW and subsequently be
emitted. Therefore, the typical QW can have limited charge
emission. Fortunately, these detrimental quantum effects
can be turned to our advantage by utilizing phenomena like
quantum resonance tunneling to enhance the emission.
Because of field penetration into the QW, an external

field (with the proper polarity) can bend the QW’s states
downward in energy to the bottom of the SiNW’s con-
duction band, where there are more electrons. Those
conduction electrons at the energy of the quantum state
will resonantly tunnel though the SiNW-QW barrier and fill
the quantum state. This quantum state then quickly decays
by electron emission, because the applied field also lowers
the second QW-vacuum barrier.
To summarize SiNW photoemission at a high applied

field, electrons are photoexcited from the SiNW valence
band to the conduction band, and these electrons then
resonantly tunnel through the SiNW-QW barrier to the bent
quantum state and onto the vacuum through the QW-
vacuum barrier. In this manner, the quantum state acts like a
“wire” resonantly conducting electrons from the SiNW’s
conduction band to the vacuum.
Further details of resonant tunneling are given by

Litovchenko et al. [21], whose research shows that a
quantum well forms within a 5-nm-thick diamondlike
carbon (DLC) layer with a 1.5-eV-high barrier between
the silicon nanowire and the DLC. Both theoretical and
experimental field emission studies exhibit a prominent
peak in the field emission current when the applied field is
approximately 2 × 109 V=m due to enhanced transmission
through the quantum state as just described. Therefore, to
take advantage of this effect, the SiNW tip should be coated
with a 5-nm layer of DLC and a field enhancement factor
and applied field necessary to produce a 2 GV=m tip field.
This field is easily achieved even at a low applied field
because of the tip’s large field enhancement factor. The
engineering of the SiNW and its tip are discussed in the
next two sections.

V. METACATHODE DESIGN PARAMETERS
AND CHARACTERISTICS

The metacathode design is based upon the capabilities of
current nanometer-scale lithography technology as reported
in the literature. To add confidence to the design concept,
the metacathode specifications given in Table III are the
same as those of the SiNW FET described in Sec. IV.

The published results of the SiNW FET show that the NW
dimensions and properties needed for the metacathode
design are realistic and can be fabricated using proven
lithographic techniques. Therefore, given the discussion of
the last section, the metacathode will be made of 30-nm
radius silicon nanowires with a resistivity of 0.028 Ωm and
wire separation of 2 μm.
This leaves the SiNW’s length left to determine. While

the theory only loosely specifies the wire’s length by
simply requiring it should be longer than cτwire, a more
specific requirement can be established by considering the
βtip needed to achieve a tip field of 2 GV=m. And, although
the radius is constrained by the surface loss function, one
can freely adjust the wire height to obtain any desired field
enhancement factor.
In addition to the wire’s height-to-radius ratio, the tip’s

field enhancement also depends upon the shape of the tip.
The field enhancement of a tip with a spherical shape is
much lower than for an ellipsoid shape given the same wire
height-to-radius ratio [22]. For example, a spherical tip wire
with h=r ¼ 100 has a field enhancement factor of ∼100,
while for an ellipsoid tip with h=r ¼ 100 the field enhance-
ment is ∼5000. This sensitivity to tip shape expands the
range of tip fields a given applied field can produce. In
other words, high cathode field guns require less tip field
enhancement and, therefore, the tip should have a spherical
shape, while in low cathode field guns the tip shape should
be an ellipsoid to increase the field enhancement. These
details of the tip’s shape become important if resonant
tunneling is used to enhance the emission.
According to the work of Litovchenko et al. [21], an

applied field of 2 GV=m is necessary to bend the quantum
state energies of a QW inside a 5-nm-thick layer of DLC
down to the bottom of the conduction band. The SiNW tip
field is given by

Etip ¼ βtipEa: ð46Þ

Therefore, with 5 MV=m for the design applied field,
the tip field enhancement factor necessary to achieve
Etip ¼ 2 GV=m is

βtip ¼
Etip

Ea
¼ 400: ð47Þ

As explained earlier, either a spherical or ellipsoidal tip
shape can be used to obtain the same field enhancement
factor; however, their aspect ratios will be very different.
Referring to the literature [22], one finds the following wire
height-to-radius ratios for the two shapes which give the
same field enhancement factor:

h
r
¼ 500 for a spherical tip ð48Þ

and
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h
b
¼ 45 for an ellipsoid tip; ð49Þ

where h is the wire height, r is the radius of the spherical
tip, and b is the length of the semiminor axis of the
ellipsoid. The major axis of the ellipsoid is aligned along
the wire’s center line.
Equation (48) indicates that a spherical tip is not

technically feasible, because an applied field of 5 MV
requires the extreme aspect ratio of 500 to achieve
βtip ¼ 400. However, the aspect needed for the ellipsoid
tip [Eq. (49)] is 10 times less and has been demonstrated
[15,16]. Therefore, an ellipsoid is selected for the tip shape.
Hence, with b ¼ 30 nm, the SiNW height is 1.35 μm.
Table III summarizes the metacathode design specifica-

tions and parameters which are grouped into the three
categories of nanowire, metasurface, and beam.
The wire and array values in Table III are used to

compute curves shown in Fig. 12. The upper portion
(positive abscissa values) in Fig. 12(a) shows the Fourier
transform of the Gaussian field shape function [Eq. (29)]
of the electrons as they accelerate from the cathode. The
spectrum is constant from zero frequency out to the edge
frequency ωe ¼ 5.4 × 1010 rad=s.
The lower portion (negative abscissa values) in Fig. 12(a)

plots the real and imaginary parts of q0=q [also known
as −gcðωÞ] for the metacathode. The real and imaginary
parts of the surface loss function are highly broadened
at the transition frequency, since this is a high-loss meta-
surface with τpωp ≪ 1. The transition frequency is
ωt ¼ 1.4 × 109 rad=s; hence, ωt ≪ ωe, and the image field
is reduced a factor of 14.
Figure 12(b) compares the image fields of a normal

cathode (q0 ¼ −q) with the metacathode design given
in Table III. The normal cathode image field is

∼3.5 × 104 ðV=mÞ=pC, while the metacathode’s is
2.5 × 103. This is a 14-fold reduction in the image field.
And, finally, the tip of each SiNW should be coated with

a work function reducing material in order to improve the
photoemission QE. A thin layer of a material such as
diamondoid or DLC have been shown to lower the work
function of nanowires. The diamondoid coating is a self-
assembled monolayer of molecules whose dipolelike
image-charge fields reduce the work function [23]. And,
as described in Sec. IV, a few-nanometers-thick layer of
DLC allows resonant tunneling from the silicon into the
vacuum via the quantum states of the QW on the tip of the
SiNW [24].

VI. METACATHODE ENGINEERING DESIGN

Figure 13 shows the metacathode design with specifi-
cations given in Table III. The drawing shows the design at
three length scales spanning 6 orders magnitude from
millimeters to nanometers. Beginning at the millimeter
scale, a rectangular array of SiNWs extends over an area of
a millimeter by a millimeter with 2.5 × 105 SiNWs=mm2.
Assuming each SiNW is an electron emitter, then emission
from a 1-mm-diameter area will produce a beam consisting
of ∼200 000 low-charge beamlets which quickly homog-
enize into a single high-charge electron bunch.
The dimensions of the SiNWs and other design details

can be seen in the micron-scale drawing. The doped SiNWs
forming the wire array are 1.35 μm tall with a separation of
2 μm. Each SiNW has a radius of 30 nm, and the tip is
ellipsoid shaped to give a field enhancement factor of 400.
This makes the tip field 2 GV=m with an applied field of
5 MV=m. The nanometer-scale drawing shows that the
SiNW tip is coated with a 5-nm-thick layer of DLC or a
monolayer of diamondoid to reduce the work function.

FIG. 13. Conceptual drawing of the metacathode.
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The SiNWs penetrate a top layer of 25-nm SiO2 and
terminate in 50 nm of n-type silicon (200-Ωm resistance)
over a high-conductivity (like gold) substrate. This oxide-
silicon-metal substrate design copies that of Björk et al.
[19] and is similar to the oxide-metal configuration for a
single-photon QW light source [25]. This combination of
dielectric and metal substrate is included in the metaca-
thode design, quoting Claudon et al. “to avoid detrimental
plasmonic antenna effects at the nanowire–metallic film
interface…” [25], which for the metacathode design means
the oxide helps to muffle the high-frequency, (ω > ωt)
surface plasmon effects and the n-type silicon layer
conducts current between the nanometer scale of the
SiNW to the mesoscale.

VII. CONCLUSIONS AND DISCUSSION

This paper shows that it is possible to design cathode
surfaces which mitigate the space charge limit due to the
image charge and make the cathode appear “transparent” to
the electrons. The resulting increase in the total accelerating
electric field at the cathode’s surface can be significant
for high-charge bunches, especially in low-voltage guns.
As described in Sec. IV C, the SCL of a metacathode with a
field of 5 MV=mwas increased a factor of 14 (from 143 pC
to 2 nC) compared to the SCL of a normal cathode. This
means the metacathode allows high bunch charge operation
in low-voltage electron guns.
The metacathode design presented here is a major

departure from standard cathodes, which are intentionally
fabricated to be physically and chemically flat. Instead, the
wire-array metacathode described in this paper consists of a
dense pattern of silicon nanowires with a surface density of
2.5 × 105 SiNWs=mm2. Each SiNW is 60 nm in diameter
and 1.35 μm high above an insulating layer of SiO2 just
25 nm thick. The SiNW penetrates the SiO2 layer and
electrically connects with 50-nm-thick layer of n-type
silicon on top of an Au substrate.
This is truly atom-by-atom engineering. Because a

silicon atom has a diameter of 0.111 nm, there are only
540 atoms across the SiNW’s diameter of 60 nm. It is this
fantastic capability of modern lithography to accurately
fabricate large areas of these atom-scale structures which
makes metacathodes possible. As a result, the specifica-
tions for the metacathode design are shamelessly borrowed
from this work. Specifically, the dimensions of a proven
vertical SiNW field effect transistor are used in the
metacathode design.
While not discussed in this paper, there remain the

important topics of beam brightness and emittance of the
metacathode. The metacathode intrinsic emittance is
related to the energy spread of the QW state through
which the emission occurs. And it is expected that most of
the metacathode’s extrinsic emittance growth occurs during
the expansion and merger of the beamlets as they accelerate

from the SiNW tips. These and related topics will be
revisited in future papers.
However, in anticipation of these future discussions, it is

interesting to comment that lower intrinsic emittance
should be possible for emission via resonant tunneling.
This is a result of the emission proceeding through a single
state in the QW which acts like an energy filter on the flux
of electrons passing through the QW from the SiNW’s
conduction band and onto the vacuum. Ideally, the intrinsic
emittance could be as small as the energy width of the
quantum state. According to the uncertainty principle, the
width is related to the inverse of the decay time. Therefore,
a fast decay rate (lots of electrons emitted) implies a short
decay time leading to a large energy spread of the quantum
state. Hence, it appears that, like the QE and emittance
of other cathodes, an increase in emission also increases
the intrinsic emittance. Future studies should investigate the
interplay between the transmission through the barriers, the
state’s energy spread, and the emission efficiency.
In addition, the effects that intra- and interband tran-

sitions have on the metasurface’s dielectric function should
be investigated. These studies should include topologies
such as Dirac cones, Weyl points, and other exotic states.
Dirac cones and a band structure in the cathode’s dielectric
function can be produced using a wire pattern with two or
more different-sized SiNWs [26].
This work opens a new direction for electron source

research with direct applications in accelerator technology.
Metacathodes present the exciting prospect of controlling
image- and space charge forces at the cathode surface on
the micron scale by custom engineering of the cathode’s
dielectric function.
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