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A model is described in which electrical breakdown in high-voltage systems is caused by stochastic
fluctuations of the mobile dislocation population in the cathode. In this model, the mobile dislocation
density normally fluctuates, with a finite probability to undergo a critical transition due to the effects of the
external field. It is suggested that once such a transition occurs, the mobile dislocation density will increase
deterministically, leading to electrical breakdown. Model parametrization is achieved via microscopic
analysis of oxygen-free high thermal conductivity Cu cathode samples from the CERN compact linear
collider project, allowing the creation and depletion rates of mobile dislocations to be estimated as a
function of the initial physical condition of the material and the applied electric field. We find analytical
expressions for the mean breakdown time and quasistationary probability distribution of the mobile
dislocation density, and verify these results by using a Gillespie algorithm. A least-squares algorithm is
used to fit these results with available experimental data of the dependence of the breakdown rate on the
applied strength of the electric field and on temperature. The effects of the variation of some of the
assumptions of the physical model are considered, and a number of additional experiments to validate
the model are proposed, which include examining the effects of the temperature and pulse length, as well as
of a time-dependent electric field, on the breakdown rate. Finally, applications of the model are discussed,
including the usage of the quasistatic probability distribution to predict breakdowns, and applying the
predictions of the model to improve the conditioning process of the cathode material.
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I. INTRODUCTION

The process of plastic deformation in metals is known to
be controlled by dislocation dynamics [1,2]. Due to the
stochastic nature of these dynamics, plastic deformation
can occur even below the yield point of the metal. For
example, aging can be observed in metals subjected to
cyclic low stresses, due to collective stochastic motion of
dislocations. These may lead to strain localization and
formation of structures known as persistent slip bands.
In particular, the formation of surface features occurs at
the surface-slip band intersection [3–7].
Even at stresses close to the yield point, a complete

analysis of the dislocation dynamics must take into account
the stochastic nature of mobile dislocation nucleation and
depletion [8]. For instance, it was shown experimentally
and through simulation that the compression of micro-
pillars, which can be formed as single crystals with a low

dislocation density, consists of a series of discrete slip
events, in which applied stress unpins sessile dislocations
and enables them to move to the surface of the crystal [9].
The probability distribution of such events was measured
[10] and shown to match simulations [11], and mean field
theories were developed which were able to reproduce the
stress-strain behavior of the micropillars [12–15].
In a previous study [16] we proposed that stochastic

fluctuations of the mobile dislocation density ρ control a
critical process in metallic surfaces subjected to an extreme
electric field. This critical process leads to plasma for-
mation between electrodes in vacuum, and to subsequent
arcing of current between the electrodes, serving as a major
failure mechanism in numerous applications [17–20].
Specifically, arcing between electrodes, known as break-
down, limits the design of linear accelerators, and as such is
a focal topic of the prospect study for a future compact
linear collider (CLIC) in CERN [21]. CLIC is planned to
operate at low breakdown rates (BDRs) with electric fields
of 100 MV=m and stronger applied between OFHC Cu
electrodes. Since a large amount of experimental results
and physical samples from the CLIC project are available
for analysis, this manuscript focuses on theoretical esti-
mates for OFHC Cu, the parameters of which are directly
derived using samples from the CLIC project. Results from
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CLIC consist of data collected both from setups where
short radio frequency (rf) electromagnetic pulses are
applied [22], and from setups in which the electric field
is constant (DC) [23].
The process of arc nucleation under extreme electric

fields is understood to be initiated by the glide of mobile
dislocations to the surface of the metal, due to local stresses
generated by the fields [24]. The mobile dislocations
arriving at the surface modify it, thus enhancing the electric
field and the current on the surface [25]. The enhanced
current then causes heating, which causes atoms to be
released from the cathode and to form a plasma [26,27],
allowing current to arc between the electrodes [17]. This
process is described schematically in Fig. 1.
Previous attempts to explain breakdown nucleation were

centered around the formation of distinct protrusions
leading to electric field enhancement, evidenced by
increased dark currents [28,29]. The enhanced electric
field can lead to heating, due to the current and field
emission effects after a significant surface protrusion
appears [30]. However, the formation process of such
protrusions in a metal subject to an electric field has not
yet been adequately described theoretically or observed
experimentally [19,25,28,29].
Our model, based on mobile dislocation density fluctua-

tions (MDDF) [16], complements these previous models
by proposing that surface features appear as a result of a
critical increase in the mobile dislocation density ρ.
According to this model, prior to breakdown, the mobile
dislocation density is in a long-lived metastable state,
fluctuating around a deterministically stable value ρ�.
When the population experiences a large enough fluc-
tuation to carry the mobile dislocation density beyond a
critical value ρc, a critical transition occurs, leading to a
deterministic increase in the mobile dislocation density,

which can lead to a localized increase in field emission, due
to plastic evolution of the surface. Therefore, the MDDF
model describes the process up to the formation of surface
deformations, while the subsequent processes of break-
down can be treated by the models previously mentioned
[19,25,28,29]. This post-nucleation evolution is not dis-
cussed here, and may, as well, not be deterministic. Indeed,
there are initial indications from microscopy and current
measurements suggesting the existence of subbreakdown
events, which may be a result of critical transitions which
did not develop into a full-blown breakdown [31].
In this study we extend the MDDF model [16] by

including insights from experimental observations pertaining
to its physical characteristics and parameters, and discussing
their implications for the model. In addition, we present
predictions of the model which are relevant for applications
in which electric field breakdown is significant.
The manuscript is organized as follows: In Sec. II we

present the physical basis of the model, consisting of
deterministic rate equations describing the creation and
depletion of mobile dislocations in a metal subjected to an
electric field. Then, in Sec. III, we describe the problem of
finding the BDR in terms of a birth-death master equation
[32] for the mobile dislocation population, thereby trans-
forming the problem of calculating the BDR to that of
finding the first passage time of a biased random walker.
Results of the model are compared to experimental mea-
surements of BDRs in OFHC Cu in Sec. IV, providing
estimates of observables such as the activation energy
and volume for mobile dislocation nucleation. In Sec. V we
examine variations of the physical assumptions of the
model, and demonstrate the robustness of the resulting
BDR dependence on the electric field. In Sec. VI we
propose specific experiments, which can serve to validate
the predictions of the model. Finally, in Sec. VII, possibil-
ities for reducing the BDR in real-life applications are
discussed.

II. MEAN-FIELD MODEL

A. Kinetic equations

Under externally applied stress, dislocations will glide
along slip planes [1]. The resulting mobile dislocation
density ρ is expressed as the total length of dislocations in
one slip plane, and therefore measured in units of nm−1.
Mobile dislocations can be blocked by various obstacles,
including interactions with other dislocations. Once ren-
dered sessile, dislocations can be released by processes
such as cross slip [33]. Thus, barriers serve both as sources
and sinks of mobile dislocations.
Figure 2 is a dark-field transmission electron microscopy

(TEM) image of a soft OFHC Cu cathode sample from
CLIC, under two-beam g:220 diffraction conditions.
Dislocation lines are seen to be aligned in a typical
ladder-like structure [34] in one active slip plane, which

FIG. 1. Schematic description of the stages leading to arcing:
(i) Extreme fields generate local stresses which, in turn, lead to
dislocation activity, causing mobile dislocations to glide to the
surface of the metal and modify it. (ii) The electric field and
current on the surface are enhanced due to the surface mod-
ifications. (iii) The enhanced current causes heating. (iv) Due to
the heating, atoms are released from the cathode and plasma is
formed, allowing current to arc between the electrodes.

ELIYAHU ZVI ENGELBERG et al. PHYS. REV. ACCEL. BEAMS 22, 083501 (2019)

083501-2



is parallel to the image plane, and separated from each other
by a transverse distance of ∼62 nm. The density of barriers
c can be estimated from the observed distance between
dislocation intersections, which is seen in the figure to be of
the order of ∼1 μm.
To find the creation and depletion rates of mobile

dislocations, we consider a zero-dimensional mean-field
model, in which the average value of the mobile dislocation
density in one slip plane is calculated. Thus, the effects of
variation of the mobile and sessile dislocation density
within the slip plane, which would lead to spatial variation
of the rates of creation and depletion, are neglected. Also,
the variation of the dislocation density and cross inter-
actions among slip planes are not taken into consideration.
Cross-interaction effects due to localized surface evolution
are not considered either, as these are expected to evolve
only following the nucleation of a breakdown event.
When an electromagnetic field is applied, the rate at

which new mobile dislocations are created is, therefore,
determined by the longitudinal density of barriers c within
the slip plane, and is proportional to the rate of creation of
mobile dislocations at each barrier. Since the creation of
mobile dislocations is thermally activated, the creation rate
should also be proportional to a temperature-dependent
factor exp½−ðEa −ΩσÞ=ðkBTÞ�, divided by the average
creation time of each mobile dislocation. Here Ea and Ω
are the activation energy and volume, respectively, of a
mobile dislocation nucleation source, whose values we
estimate in Sec. IV, while σ is the stress within the slip plane.
The average creation time t is calculated by considering a

typical Frank-Read type source [35]. In such a case
t ¼ L=v, with L the length of the source, and v the velocity
of the mobile dislocation. The threshold stress needed to
activate such a source is σth ¼ 2Gb=L, where G ¼ 48 GPa

is the shear modulus, and b ¼ 0.25 nm is the Burgers
vector [36]. If the amount of sources decreases rapidly as
a function of length, then the dislocation sources can be
described using a single L ≈ 2Gb=σ. For stresses ranging
from0.2MPa [37,38], up to 400MPa [33,39], the dislocation
velocity in Cu is approximately a linear function of σ,
v ¼ 50Ctσ=G, where Ct ¼ 2.31 × 103 m=s is the propaga-
tion velocity of sound in Cu [33]. Therefore the average
creation time satisfies, t ¼ G2b=ð25Ctσ

2Þ, giving us a total
creation rate

_ρþ ¼ 25κCtc
G2b

σ2 exp

�
−
Ea −Ωσ
kBT

�
; ð1Þ

where κ is a kinetic factor which depends on the activation
entropy of the sources [40], evaluated in Sec. IV.
To estimate the depletion rate of mobile dislocations,

we consider dislocation arrest at barriers and surfaces.
Assuming that the latter mechanism is considerably
slower than the former, we can approximate the depletion
rate as _ρ− ¼ ξcρv. Here ξ is a dimensionless proportion-
ality factor, representing trap efficiency. For simplicity,
we assign it a value of 1. Substituting once again for the
dislocation velocity v we have

_ρ− ¼ 50ξCtc
G

σρ: ð2Þ

B. In-plane stress

The stress in a slip plane is composed of two terms: the
Maxwell stress due to the applied electromagnetic fieldsE
and B, and the internal stress caused by the dislocations
themselves. The Maxwell stress in each direction, i.e.,
the force in each Cartesian direction per unit area of the
surface acting on the particles and fields inside the metal,
is given as

P
βTαβnβ, with Tαβ ¼ ϵ0½EαEβ þ c2BαBβ −

1
2
ðE2 þ c2B2Þδαβ�, where Ei and Bi are the Cartesian

components of the electric and magnetic field, and E
and B are their respective magnitudes [41]. In the case of a
static electric field (DC), the stress inside the slip plane,
close to the surface, can be estimated to have a uniform
value of ϵ0ðβEÞ2=2 in the direction perpendicular to the
surface [25]. Here, the dimensionless parameter β repre-
sents the ratio of the average stress inside the slip plane to
the stress on the surface. β is expected to depend on both
surface geometry and the electric field distribution.
Specifically, one may expect β to vary with ρ, since it
relates to plastic deformation of the surface [23,42,43].
However, due to the low variation range of ρ prior to
breakdown, we consider β to be constant per cathode
geometry (see Sec. IV). This is consistent with the fact
that no surface evolution was microscopically observed in
prebreakdown samples, as described in Sec. I.
In the case of an alternating electric field (rf), the in-plane

stress includes magnetic field terms, and components of

FIG. 2. (a) A dark-field TEM image of a soft OFHC Cu sample
(∼100 nm thick lamella) under two-beam g:220 diffraction
conditions, displaying a typical ladder-like dislocation structure,
with the corresponding diffraction pattern (upper left corner).
(b) Fourier filtered region enclosed by the dashed rectangle in (a),
spatial frequencies farther away than ∼10 μm−1 from the peak
spatial frequency filtered out. The FFT of the region is shown in
the upper left corner. The peak spatial frequency corresponds to a
transverse distance of 62 nm between dislocation lines.
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the electric field parallel to the surface, in addition to the
contribution of the perpendicular electric field. Above a
frequency of 1 GHz, and at subyield stresses, the effect of
the fields on the mobility of dislocations can be estimated
using the average of the fields over time. The additional
components of the stress are then linearly proportional to
the perpendicular field, so that their contribution can be
incorporated into the value of β.
Note that, due to the nature of the Maxwell stress tensor

Tαβ, stress will be induced in a metal even when it is
subject only to a magnetic field. In such a scenario [7], then,
breakdown nucleation should be ultimately attributed to
the applied magnetic field, since the effects of temperature
alone, within experimental ranges, cannot account for
breakdown on an initially smooth surface [30].
The second term of the stress, due to the internal stress

caused by the dislocations, is proportional to Gb=d, where
d is the average distance between dislocations [1,44]. In the
experimental setups examined in Sec. IV a pulsed electric
field is applied, and the BDR is constant over time. Since
there is no memory effect, we assume a constant sessile
dislocation population whose contribution to the total
stress from all slip planes saturates. As a result, we take
into consideration only the stress caused by the mobile
dislocations, whose density varies over time. In multi-
slip-plane systems d is proportional to ρ−1=2, with ρ
measured in units of nm−2 [1,44]. However, when consid-
ering only one slip plane as in our model, we expect the
relation to be d ∼ ρ−1, with ρ in units of nm−1, as described
above (and also see Sec. V). We therefore find that overall,
the stress is

σ ¼ ϵ0ðβEÞ2=2þ ZGbρ; ð3Þ

where the dimensionless parameter Z, in the second term
of the stress, is a structural parameter linking the stress to
the dislocation density. For concreteness, we assign it a
value of 1.

C. Deterministic fixed points

Defining new constants of the form α ¼ Ω=ðkBTÞ, A1 ¼
ϵ0ðβEÞ2=2, a2 ¼ ZGb, B1 ¼ 25κCtc exp ½−Ea=ðkBTÞ�=
ðG2bÞ, and b2 ¼ 50ξCtc=G, we arrive at

_ρ ¼ _ρþ − _ρ−; _ρþ ¼ B1σ
2eασ; _ρ− ¼ b2σρ; ð4Þ

with σ ¼ A1 þ a2ρ. As can be seen, A1 is the only
parameter that depends on the strength of the electric field.
The values of Ea ¼ 0.08� 0.002 eV, Ω ¼ 5.6� 0.2 eV=
GPa, κ ¼ 0.32� 0.02, and β ¼ 4.6� 0.1, found by the
fitting procedure in Sec. IV, give us the following values for
the constants: A1¼94PaðMV=mÞ−2 E2, a2 ¼ 12 GPa nm,
B1 ¼ 0.15 Pa−2m−1 s−1, b2 ¼ 2.4 Pa−1 s−1, and α ¼
220 GPa−1. Figure 3 shows the values of _ρþ and _ρ− for

these nominal values. In the rest of this manuscript, unless
stated otherwise, the results presented are for these values.
The fixed points can be found in the following way:

For ρ ≪ A1=a2, we find a stable fixed point at ρ� ¼
ðB1A1=b2ÞeαA1 , while for ρ ≫ A1=a2, we find an unstable
fixed point at ρc ¼ ðαa2Þ−1 ln½b2=ðB1a2Þ�. That is, when
ρ� < ρ < ρc we have _ρ− > _ρþ, meaning that the mobile
dislocation deterministically returns to the stable attracting
point ρ�. Whereas, when ρ > ρc, we have _ρþ > _ρ−,
meaning that the mobile dislocation density increases
beyond ρc, leading to eventual breakdown.
Note that as the electric field increases, ρ� and ρc

approach each other, and the assumption that ρ� ≪ ρc
becomes invalid. The values of ρ� and ρc coincide at a
bifurcation point, when the electric field is equal to the
deterministic breakdown field Eb. For E > Eb, we have
_ρþ > _ρ− for every ρ. Therefore, when a field greater than
Eb is applied, the system does not possess a stable fixed
point, and it progresses directly to breakdown.

D. Dislocation cells

Under applied stress, dislocations tend to become
organized in a cellular structure, where they are free to
glide within each cell, and the cells are separated by an
accumulation of sessile dislocations [45]. Figure 4 shows a
dark-field scanning transmission electron microscopy
(STEM) image of a cross section taken from a soft
OFHC Cu electrode which was fully conditioned, meaning
that it was exposed to a pulsed electromagnetic field of
increasing intensity and pulse length, so that its BDR
reached a saturation value. The borders of the cells appear
as curled white lines, where each cell is smaller than
10 μm. The cross section was taken from a region which is
at least 50 μm away from any breakdown site, demonstrat-
ing that the formation of cells is a phenomenon caused
by the stress generated by the electric field, and not by the
breakdowns themselves.
Assuming the dislocation population evolves independ-

ently in each cell, the addition or removal of a single mobile

FIG. 3. _ρþ (solid lines) and _ρ− (dashed lines) for five electric
fields (bottom to top): 150, 190, 230, 270, and 310 MV=m.
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dislocation will modify the mobile dislocation density by
approximately Δρ ¼ 0.1 μm−1. Since breakdown is a sur-
face phenomenon, we propose that it is driven by the
mobile dislocation population behavior in the cells adjacent
to the surface.

III. STOCHASTIC MODEL

A. Birth-death Markov process

Rate equation (4) demonstrates the existence of two
steady-state solutions, but provides no information con-
cerning the rate at which random fluctuations of the mobile
dislocation population will carry the system past the critical
point. To describe this dynamic behavior, we model the
dynamics as a birth-death Markov process [32]. Here the
value of ρ can increase or decrease by Δρ, with a transition
probability per unit time _ρþðρÞ=Δρ or _ρ−ðρÞ=Δρ, respec-
tively. These transitions are independent of the time history
of ρ, and correspond to the creation and pinning, respec-
tively, of one mobile dislocation in one slip plane inside a
cell close to the surface. This behavior can be viewed as a
biased random walk along the mobile dislocation density
axis.
For convenience, we define n ¼ ρ=Δρ, so that the step

size of every transition is �1. The possible states of the

system are thus described by an integer n, which assumes
values from 0 to nc ¼ ⌈ρc=Δρ⌉, where the typical fluctua-
tions are around n� ¼ bρ�=Δρ⌉. Defining A2 ¼ a2ncΔρ
and B2 ¼ b2ncΔρ, the birth and death rates of the Markov
process are

λn ¼ B1σ
2eασ; μn ¼

B2n
nc

σ ð5Þ

with σðnÞ ¼ A1 þ A2n=nc. Using these rates, the rate
equation can then be written as

_n ¼ λnðnÞ − μnðnÞ: ð6Þ

The corresponding master equation, describing the time
evolution of the probability to be in the state n, is

∂PnðtÞ
∂t ¼ λn−1Pn−1ðtÞ þ μnþ1Pnþ1ðtÞ − ðλn þ μnÞPnðtÞ:

ð7Þ

Finding the BDR is now equivalent to finding the mean
time it takes for the biased randomwalker to reach nc, when
starting from the vicinity of n� ¼ Oð1Þ [32].

B. Estimating the time to breakdown

Given the values of λn and μn for every 0 ≤ n < nc, the
mean time to reach nc from any state n can be written
recursively as

Tn ¼
λn

λn þ μn
Tnþ1 þ

μn
λn þ μn

Tn−1 þ
1

λn þ μn
: ð8Þ

The solution to this equation, with the boundary conditions
Tnc ¼ 0 (absorbing state at n ¼ nc) and T0 ¼ T1 þ λ−10
(reflecting boundary at n ¼ 0), is given, for any n < nc, by

Tn ¼
Xnc
i¼n

ϕi

�Xi

j¼0

1

λjϕj

�
; ð9Þ

with ϕn ¼
Q

n
m¼1 μm=λm [32]. Since the system resides in a

long-lived metastable state prior to escape, Tn is indepen-
dent of n, as long as n ¼ Oðn�Þ. The lines in Fig. 5, which
represent Eq. (9) and various approximations of it, see
below, agree well with the values found from numerical
simulations, see Appendix A.

C. Metastable approximation

The exact solution for τ, presented in the previous section
[see Eq. (9)], is highly cumbersome. In order to provide
insight into the effect of physical constants and parameters
on the BDR, it is possible to employ a metastable
approximation (see below). Starting from some arbitrary
initial condition, the system settles after a relaxation time tr

FIG. 4. A dark-field STEM image of a cross-sectional lamella
from a fully conditioned (see main text) OFHC soft Cu electrode,
under two-beam g:111 diffraction conditions, showing disloca-
tion cells separated by dislocation walls. The cross section was
taken from a region far (at least 50 μm away) from any break-
down site. The dislocation walls appear as curled thin bright lines,
as opposed to long straight dislocation segments inside the cells
which are organized in a ladderlike structure.
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in a metastable state centered about n�. Assuming tr ≪ τ,
we can employ the metastable assumption, where the
probability of being absorbed into n ¼ nc is given as
Pn¼ncðtÞ ¼ 1 − e−t=τ, while Pn<ncðtÞ ¼ πne−t=τ, where πn
is a normalized time-independent quasistationary proba-
bility distribution (QSD) [46–51].
Substituting the metastable ansatz into Eq. (7) and

assuming that τ is exponentially large, to be verified
a posteriori, yields the quasistationary master equation

λn−1πn−1 þ μnþ1πnþ1 − ðλn þ μnÞπn ¼ 0: ð10Þ

Together with the fact that μ0 ¼ 0 and πn<0 ¼ 0, the
solution for πn is

πn ¼ π0
Yn
m¼1

λm−1

μm
; ð11Þ

where π0 is found via the normalization conditionPnc−1
n¼0 πn ¼ 1 [32]. Substituting the values of λn and μn

from Eq. (5) into Eq. (11) yields

πn ¼ π0
ncη

nþ ncη

�
A1B1

B2η

�
n

× exp

�
nαA1

�
1þ n − 1

2ncη

��
Γðnþ ncηÞ
n!ΓðncηÞ

; ð12Þ

where η ¼ A1=A2, and ΓðxÞ is the Gamma function.
For the nominal set of parameters, up to the close vicinity

of E ¼ Eb, π0 ≫ πn>0, and therefore π0 ≈ 1. Alternatively,
to achieve a more accurate normalization of the distribu-
tion, we notice that the maximum of the distribution is
obtained at n ¼ 0, and the width of the distribution isOð1Þ.

As a result, the bulk of the QSD can be found by linearizing
the reaction rates close to the maximum, and obtaining λn ≈
A2
1B1eαA1 and μn ≈ A1B2n=nc. Using Eq. (11), the approxi-

mate QSD resulting from these linear rates is a Poisson
distribution with a mean (and variance) of

R ¼ A1B1

B2

nceαA1 : ð13Þ

Therefore, the normalization factor for the QSD is
π0 ¼ e−R. Figure 6 shows excellent agreement between
the theoretical and simulation results for πn, for the nominal
parameters and five different electric fields.
Since the flux through nc determines the escape rate, the

mean breakdown time is given by

τ ≃ ðλncπncÞ−1; ð14Þ

which is found from Eq. (7) for n ¼ nc.
Using the Stirling approximation ΓðzÞ ¼ ð2π=zÞ1=2

ðz=eÞz, the rightmost factor in Eq. (12), containing the
Gamma functions, becomes, for n ¼ nc,

Γðnc þ ncηÞ
nc!ΓðncηÞ

¼ 1ffiffiffiffiffiffiffiffiffiffi
2πnc

p ð1þ ηÞnc
�
1þ 1

η

�
ncη−1=2

: ð15Þ

Therefore,

πnc ¼
e−Rffiffiffiffiffiffiffiffiffiffi
2πnc

p
�
1þ 1

η

�
−3=2

exp

�
−
αA1

2η

�
e−ncΔS; ð16Þ

where

FIG. 5. Mean breakdown time τ as a function of the electric
field relative to τðE0 ¼ 180 MV=mÞ, calculated using the exact
formula [Eq. (9), solid line], the metastable approximation
[Eqs. (12) and (14), dashed line], the metastable approximation
with an additional Stirling approximation of πn [Eqs. (14) and
(18), dash-dotted line], and the simulation (triangles). The size of
the symbols here and in all figures accounts for simulation errors,
see Appendix A.

FIG. 6. The probability of being at state n, calculated from the
metastable approximation [Eq. (12), line] and the simulation
(triangles) for the nominal parameter set and electric fields of 180,
200, 220, 240, and 260 MV=m (from bottom to top). Here we
chose nc þ 7 as an absorbing state, to clearly demonstrate the
minimum at n ¼ nc, see Appendix A.
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ΔS ¼ ln
B2

A1B1

− αA1

�
1þ 1

2η

�
− ðηþ 1Þ ln

�
1þ 1

η

�
:

ð17Þ

Plugging this result, together with λnc , into Eq. (14), yields

τ ¼ AencΔS; ð18Þ
with

A ¼
ffiffiffiffiffiffiffiffiffiffi
2πnc

p exp ½R − αA1ð1þ 1
2ηÞ�

A2
1B1

�
1þ 1

η

�
−1=2

: ð19Þ

Here, ncΔS serves as a barrier that the system needs to
overcome in order to enter the breakdown state.
As an alternative to the discrete calculation in Eq. (11), it

is possible to employ the WKB ansatz, and express πn as an
exponential function [46,49–51]

πðqÞ ∼ expfnc½Sðq�Þ − SðqÞ� þ S1ðq�Þ − S1ðqÞg; ð20Þ

where q ¼ n=nc, q� ¼ n�=nc, and

SðqÞ ¼ −
Z

q
ln
wþðξÞ
w−ðξÞ

dξ; S1ðqÞ ¼
1

2
ln½wþðqÞw−ðqÞ�:

ð21Þ

HerewþðqÞ¼λðncqÞ=nc andw−ðqÞ¼μðncqÞ=nc. Although
the WKB approximation is not formally valid when n� ¼
Oð1Þ as in our case [49–51], since the barrier for break-
down is large, using Eq. (20) to calculate the QSD and τ, for
various electric fields, yields results which coincide in the
leading order with those of the above method [52].
Our analytical results, given by Eqs. (17)–(19), contain

a nontrivial dependence of τ on E. Indeed, while it can be
shown that for E ≃ Ec the term A1 ∼ E2 dominates the
exponent in Eq. (18), for E < Ec, where breakdown is

fluctuation-driven, our results can be approximated by a
linear dependence of ln τ on E,

τ ≃ C exp½γð1 − E=E0Þ�: ð22Þ
Here E0 is a reference field, and γ and C are constants
independent of E. This is demonstrated in Figs. 5 and 7 (for
fields between 50 and 300 MV=m). Note that, while within
the range of currently available data, this behavior is similar
to that derived in Ref. [53], τ ∼ expðαE2Þ, the models
diverge outside that range, see Fig. 7.

IV. MODEL FITTING AND VALIDATION

As described in Sec. II, there are four parameters in the
MDDF model whose values are not taken from standard
properties of the cathode material or estimated from direct
observations. The first two of these are the free energy of
activation Ea and the activation volume Ω of mobile
dislocation nucleation in Eq. (1). The third parameter is
κ, see Eq. (1), which is a temperature-independent kinetic
prefactor of the rate constant of dislocation nucleation.
Finally, the fourth parameter β, in Eq. (3), represents the in-
plane effective attenuation or enhancement of the electro-
magnetic field.
The purpose of this section is to describe the calibration

of these four parameters by fitting the results of the model
to experimental data of BDRs as a function of the electric
field and the temperature. The quality of the fit can serve as
a validation of the model, and the resulting values will be
compared to previous estimates, and used to predict the
results of future experiments.
Most of the available experimental data was acquired

from the CLIC prospect study, in which the BDRs are
measured in breakdowns per pulse per meter of accelerator
(bpp/m). Thus, to translate bpp/m units to the natural
characteristic time of the MDDF model, the mean break-
down time per slip plane τ, the CLIC accelerator geometry
must be taken into consideration. Every meter of the CERN
CLIC accelerator is planned to contain 100 cathode irises,
in each of which a ring of 2.35 mm diameter and 1 mm
width is subjected to the electric field pulse [21]. The
surface area of one dislocation cell is approximately
Δρ−2 ¼ 10−4 mm. Assuming an active slip plane can
develop independently in each dislocation cell, the number
of active slip planes in one meter of accelerator length is
thenN ≈ 1.5 × 107. The BDR, in bpp/m, is tN=τ, where t is
the time duration of one pulse. With t ¼ 230 ns in the
experimental data [22], the resulting conversion of units
between the BDR and τ is

R ¼ 3.45
bpp s
m

τ−1: ð23Þ

The numerical results of the MDDF model can be
compared to experimental data, which consists of sets

FIG. 7. BDR as a function of the electric field. The solid line is
the metastable approximation [Eq. (9) in the main text], the
triangles are the simulation results, and the dashed and dotted
lines are linear and quadratic fits, respectively, see text.
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of measurements of the BDR as a function of the electric
field, where each set of measurements was taken in a
different physical structure. The sets are divided into three
groups: (1) Seven sets measured in different structures in
the CERN CLIC project at room temperature [Fig. 8(a)]
[22]. (2) Three sets measured at SLAC [Fig. 8(b)].
The two sets on the left of the figure were measured at
room temperature (300 K), and the set on the right was
measured at 45 K. The leftmost set and the set on the right
were measured in the same structure [54]. Although the
data set at 45 K consists of a number of measurements,
the field varies over a small range. Thus, we consider this
data as a single average value. (3) A set measured in the
CERN CLIC project [the pentagons in Fig. 8(c)]. This set
of data is considered by CLIC to be the most accurate
to date [55], and will therefore be used here as a
reference set.
Since the parameters Ea, Ω, and κ should depend on the

properties of the material itself, which is identical for all
structures, we expect the value of β alone to vary among the
structures. Despite the fact that β is not known a priori for
any structure, it is clear from Eq. (3) that the MDDF model
is invariant for a constant βE. Therefore, rescaling the
electric field should yield a fit, for all the data sets, with the

same values for all four parameters. Figure 8(c) shows the
data sets from group (1) rescaled so that their measured
BDRs as a function of the field are all fitted by the same
exponential relation as that of the reference set. A LSQ fit
to the rescaled data was performed (see Appendix B for
details), yielding an optimal fit for the nominal set
described in Sec. II, namely Ea ¼ 0.08� 0.01 eV, Ω ¼
5.6� 0.1 eV=GPa, κ ¼ 0.32� 0.01, and β ¼ 4.6� 0.1.
Figure 9 shows the value of the quality measure of the
fit, Q, for the six two-dimensional cross sections of the
four-dimensional phase space ðEa;Ω; κ; βÞ. The circle
shows the location of the nominal parameter set in each
cross section.
The activation energy Ea ¼ 0.08 eV is consistent with

that previously found for dislocation nucleation from
existing sources [56], and considerably lower than the
activation energy for dislocation nucleation in configura-
tions with no preexisting sources [40,57,58]. The activation
volume is Ω ¼ 5.6 eV=GPa ¼ 57b3, with b the Burgers
vector. This result is consistent with experimental results, in
which the activation volume was found to be within the
range 10b3 < Ω < 124b3 [56,58].

(a)

(b) (c)

FIG. 8. BDRas a function of the electric field: (a)Group (1) in the
text, measured at 300 K in various structures [22]. (b) Group (2) in
the text. The two data sets on the left were measured at 300 K, and
the set on the right was measured at 45 K [54]. In (a) and (b), the
lines represent a fit to the MDDF model with the nominal set of
parameters, except for β, which varies among the data sets.
(c) Group (3) in the text represented by the yellow pentagons
[55], andgroup (1),with the electric fields scaled, represented by all
other symbols. The line in (c) represents a fit to the MDDF model
with the nominal set of parameters (including β).

(a) (b)

(c) (d)

(e) (f)

FIG. 9. The LSQ fit measure Q [see Eq. (B1)] as a function of
(a)Ω andEa, (b) β and κ, (c) κ andEa, (d) β andΩ, (e) κ andΩ, and
(f) β andEa. In each graph, the two remaining parameters of the set
(Ea,Ω, κ, β) are held at their nominal values. The circle shows the
location of the nominal parameter set in the phase space.
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V. SENSITIVITY OF THE MODEL TO PHYSICAL
ASSUMPTIONS

In this section we consider possible variations of the
physical model, and examine the effect they would have on
the predictions of the MDDF model.

A. Dependence of stress on dislocation density

The MDDF model discusses in-plane mobile disloca-
tion density fluctuations, neglecting interactions between
slip planes. The mobile dislocation density ρ is therefore a
two-dimensional density, measured in units of length per
area, nm−1. In the case where ρ is defined as the volume
density of mobile dislocations in units of length per
volume, nm−2, the average distance between dislocations
is proportional to ρ−1=2 [1,44]. The stress in this case is
σ ¼ ϵ0ðβEÞ2=2þ ZGbρ1=2, leading to modified creation
and depletion rates [Eqs. (1) and (2)] of

_ρþ ¼ 25κCtc
G2b

σ2 exp

�
−
Ea −Ωσ
kBT

�
; _ρ− ¼ 50ξCtc

G
σbρ

ð24Þ
where c ¼ 1 μm−2 is now the volume density of the
barriers, while all other constants retain their original
meaning. The factor of b in the depletion term was added
in order to correctly describe the probability of two
dislocations interacting, now in a volume instead of a
plane, assuming that the width of a dislocation is equal to
the Burgers vector b.
As seen in Fig. 10(a), for adjusted values of the

parameter set Ea, Ω, κ, and β, the volume density creation
and depletion rates, _ρþ and _ρ−, exhibit the same qualitative
behavior as in the two-dimensional density model.
The same considerations as in the latter model can then
be applied, once again yielding the ln τ ∼ E dependence
described in Sec. III.
In general, the stress can have a power dependence on

the mobile dislocation density of the form σ ¼
ϵ0ðβEÞ2=2þ ZGðbρÞν with some value of ν. When con-
sidering a volume dislocation density we took ν ¼ 1=2,
with an additional correction to Eq. (2) due to dimensional
considerations. As another example, we examine the case
in which ν ¼ 2, i.e., the stress is proportional to the two-
dimensional dislocation density squared. Here, the value of
Z, the proportionality constant linking the stress to the
mobile dislocation density, is expected to be different.
Indeed, choosing Z ¼ 5 × 104, the same qualitative behav-
ior of _ρþ and _ρ− can be produced for the nominal
parameters found in Sec. IV, as can be seen in Fig. 10(b).

B. Effect of sessile and mobile dislocations

Another assumption in the model, justified in Sec. II,
is that the stress is affected by the mobile dislocations only.
If the stress caused by sessile dislocations contributes

significantly to the overall stress, Eq. (3) becomes σ ¼
ϵ0ðβEÞ2=2þ ZmGbρþ ZsGbs, with Zm and Zs being
proportional factors defining the relative contributions of
the mobile and sessile dislocations to the stress, respec-
tively, and s ≈ 20 μm−1 the density of sessile dislocations
(see Sec. II and Fig. 2). Examining the extreme case in
which Zm ¼ Zs ¼ 1, a parameter set can be found for
which _ρþ and _ρ− exhibit the same qualitative behavior as in
the original model, where Zs ¼ 0, as seen in Fig. 10(c).
Here, too, the calculation yields a ln τ ∼ E dependence as in
Sec. III.

VI. PROPOSED EXPERIMENTS

A. Temperature dependence

As discussed in Sec. IV, experiments to date were carried
out primarily at a temperature of 300 K. In calibrating
the model to find the unknown parameters, only one
measurement point at a different temperature of 45 K
was available [54]. However, the model predicts a strong
dependence of the BDR on temperature, due to the explicit
dependence of α in Eq. (18) on the temperature, and the fact
that nc decreases for increasing temperature. Figure 11
shows the dependence of the BDR on the temperature for
three electric fields, and Fig. 12 shows the BDR as a
function of the electric field for four different temperatures.
The effect of the temperature is the most pronounced for
weaker electric fields, because the stronger the electric

(a)

(b) (c)

FIG. 10. _ρþ (solid lines) and _ρ− (dashed lines) for the nominal
set of parameters and an electric field of (from bottom to top) 150,
190, 230, 270, and 310 MV=m, in (a) a model describing mobile
dislocation volume density fluctuations, (b) a model with σ ∼ ρ2

(here Z ¼ 5 × 104), and (c) a model in which both sessile and
mobile dislocations contribute to the average stress.
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field is, the greater the stress and therefore the lower the
activation enthalpy is, thus making the temperature less
significant in Eq. (1).
Experiments, supplying data of BDRs at different

temperatures and fields, would be instrumental for deter-
mining the nature of the temperature dependence of the
BDR. This dependence can then be compared to the
predictions of the model, and can be used, in addition,
to produce more accurate estimates of the activation energy
and volume of dislocation nucleation.

B. Pulse length dependence

As mentioned in Sec. I, the electromagnetic field driving
the breakdown, in some applications, is a pulsed rf signal.
In the context of the CLIC project, for example, pulse
lengths tpulse between 50 and 400 ns were examined, with a
duty cycle of 50 Hz [59].
Figure 13 shows the cumulative probability distribution

function (CDF) of ttr in a simulation, with the nominal set
of parameters and E¼ 250 MV=m. Here ttr is defined as

the time it takes to reach the critical point n ¼ ncðEÞ,
starting from n ¼ n�ðEÞ. For tpulse on the order of ttr (or
shorter), a significant number of trajectories, which would
have reached the critical point, will rapidly go to n ¼ 0
once the field is switched off. Therefore, in this regime, we
expect a strong dependence of the BDR on tpulse, which can
be empirically shown to satisfy

R ¼ R0 þmðtpulse − t0Þe−δ=t; ð25Þ
see Fig. 14. Here, R is the BDR, and R0, t0, m, and δ are
constants depending on the field.
The BDR was shown, experimentally, to have an expo-

nential or power-law dependence on tpulse [22,60,61].

FIG. 11. BDR as a function of the temperature for the nominal
parameter set, calculated using the metastable approximation
[Eq. (18)]. The lines, from bottom to top, are for fields of 180,
220, and 260 MV=m.

FIG. 12. BDR as a function of the electric field calculated using
the exact formula [Eq. (9), lines] and the simulation (triangles).
The results are plotted, from bottom to top, for temperatures of
100, 200, 300, and 400 K.

FIG. 13. Cumulative distribution function of the time duration
of the trajectory to the critical point ttr (see text), for the nominal
set of parameters and an electric field of 250 MV=m. The inset
shows the probability distribution function, drawn as a histogram
of forty-eight bins, each bin 12.5 ns wide. Both curves were
found by simulating 105 breakdown events.

FIG. 14. BDR as a function of the pulse length, tpulse, for the
nominal set of parameters and an electric field of 250 MV=m,
found from the numerical simulations (triangles). The line is a fit
to Eq. (25).
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However, the validity of using the existing data to determine
the dependence is limited, as it consists of either a small
sample [60], or of measurements taken during the condition-
ing process, when the BDR is still dominated by extrinsic
processes [61]. At the very least, the BDR is expected to
saturate for a continuous-wave rf signal, and therefore the
exponential or power-law dependence holds only for a
limited range of pulse lengths.
Under the assumption of pulse independence, the dis-

tribution of breakdowns in timewithin each pulse should be
an increasing function, due to the finite evolution time ttr.
Figure 15 shows this distribution for E¼ 250 MV=m
and a pulse duration of 400 ns. For a given time interval
ðt; tþ dtÞ within a pulse, an event will mature if it began
within the time interval ðt − ttr; tþ dt − ttrÞ. Given that a
breakdown occurred, the probability that it occurred within
an interval dt is, therefore, ðdt=tpulseÞ

R
t
0 PðttrÞdttr, where

PðttrÞ is linearly proportional to the probability distribution
function shown in the inset of Fig. 13. This integral,
however, is simply the CDF of ttr, and therefore the
probability distribution in Fig. 15 is linearly proportional
to the CDF in Fig. 13. This non-Poissonian distribution
becomes predominantly Poissonian for times that are sig-
nificantly greater than ttr.
If, however, the interval between pulses is smaller than

the typical relaxation time, then the breakdown probability
should not depend on the pulse duration alone, but rather
on the combined effect of exposure to the field and the
relaxation achieved between pulses. In this case, the variation
in the BDR within the pulse can be small, and characterized
by a constant probability, similarly to the slow variation
observed for t > 500 ns in Fig. 13. Indeed, in Ref. [62] it
was shown that the breakdown distribution does not vary

significantly within the pulse. However, an increase in the
breakdown probability was observed for one of the
structures studied in Ref. [62]. Due to this fact, together
with the need to correct for conditioning effects, we chose
not to include this data as a constraint on the MDDF
model. As explained, if the system does not reach full
relaxation between pulses, we expect the BDR to depend
on the duty cycle of the pulses, rather than solely on the
pulse length. Therefore, experiments involving variation
of the duty cycle, as well as further data regarding the
pulse-length dependence during and after conditioning,
can help determine the exact nature of the pulse-length
dependence of the BDR. This may serve to quantify the
memory effect between and within pulses.

C. Field ramping

Traditionally, kinetic processes leading to transitions
have been studied by varying the driving force at a
constant rate, measuring changes in the observed tran-
sition rate [63]. In general, increasing the electric field at a
constant rate χ leads to a corresponding mean breakdown
field EBDðχÞ. Using the τðEÞ dependence from Eq. (22) for
constant fields, we find that, if the field at time t is E, the
upper limit of the mean breakdown time is tþ τ½EðtÞ�.
Then, from Eq. (22) and the relation t ¼ E=χ, the upper
limit of the mean field at which breakdown occurs is
Eþ χC exp½γð1 − E=E0Þ�. Assuming an adiabatic increase
of E, i.e., χτ ≪ E, we can use this upper limit as an
estimate of the mean breakdown field. The lowest upper
limit fulfilling this condition for any E is

EBD ¼ E0

γ

�
γ − ln

E0

γχC
þ 1

�
: ð26Þ

Figure 16 shows EBD as a function of the field increase
rate χ for four temperatures. For each temperature, C and γ
were found from a linear fit to the results of the model for a
constant field, and were then used in Eq. (26). Simulated
breakdown fields are consistent with (and, as expected,
slightly lower than) the results of Eq. (26). All the mean
breakdown times corresponding to data points in Fig. 16
are greater than 2 × 105 seconds of total field exposure
time, equivalent to 1012 typical 200 ns pulses.
It can be shown from Eq. (26) that ln χ is a linear function

of EBD=E0 − 1, and that the slope of this function is γ, as
shown in Fig. 17. Hence, the value of γ, for a given
structure at a given temperature, can be found experimen-
tally by measuring EBD. BDRs in the MDDF model are
analogous to chemical reaction rates in singly-activated
kinetic scenarios. The driving force for the transition is
provided in the MDDF model by E, instead of the temper-
ature T in the chemical reactions, with γ defining the
sensitivity of the BDR to the electric field, in the same way
that the activation energy defines the sensitivity of the
reaction rate to the temperature. The theoretical results

FIG. 15. Probability of a breakdown occurring as a function of
the time within the pulse, found by simulation, for the nominal set
of parameters, an electric field of 250 MV=m, and a total pulse
duration of 400 ns. The probability distribution is presented as a
histogram of sixteen bins, each bin 25 ns wide, and normalized by
the total BDR at 250 MV=m and a pulse length of 400 ns. The
total number of breakdowns is 106.
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described in Fig. 17 can serve as a basis for a future
experiment, which will assist in identifying the controlling
kinetics. The proposed experiment is analogous to the
Kissinger method [63], where the activation energy of a
chemical reaction is found by increasing the temperature
of a specimen at several constant heating rates, and
measuring the exothermic peak temperature Tm as a
function of the heating rate [63].

VII. DISCUSSION AND CONCLUSIONS

The mobile dislocation density fluctuations (MDDF)
model describes the plastic response to an applied field, via

a stochastic process. This early stage evolution can nucleate
consequent dynamics, which are described by other models
[25–29,53]. In addition, the model defines some unique
features of breakdown nucleation, which have not been
directly treated by previous models. First, breakdown is a
critical process, which develops within several tens of
nanoseconds for parameter values around those of the
nominal parameters, see Sec. VI. This can explain why
prebreakdown surface modifications are not observed in
samples, regardless of proximity to the breakdown sites
and time of exposure to the field. Second, breakdown
occurs deterministically for electric fields greater than
Eb, at which a bifurcation occurs where ρ� and ρc merge.
Finally, when the time to nucleate breakdown is compa-
rable to the pulse length, the BDR exhibits both a
Poissonian and a non-Poissonian regime within each pulse,
see Fig. 15. For the nominal parameter set, this time is on
the order of several tens of nanoseconds, suggesting BDR
reduction for pulse lengths that are shorter than Oð10 nsÞ.
In addition to qualitative observations, the MDDF model

yields quantitative estimates, following calibration of the
unknown physical parameters, which are in agreement
with experimental results. The agreement of the stochastic
analysis and simulation results enable the use of the former
in cases where running the simulation is prohibitively long.
This expands the range of parameters and scenarios in
which the predictions of the MDDF model can be applied
and put to test. The model was used to predict BDRs
outside the currently available experimental data, see Fig. 7
and Sec. VI. Experiments conducted over these ranges,
where the predictions of the MDDF model and previous
models diverge, can serve to distinguish between models.
Apart from predicting BDRs, the MDDF model can be

used to characterize aspects of a system prior to breakdown.
Specifically, the QSD of the mobile dislocation density (see
Sec. III) can be calculated with the metastable approxima-
tion, or from numerical simulations. The standard deviation
of the QSD is found to be an increasing function of the
electric field, and can be calculated directly from the QSD
for each field, see Fig. 18. In addition, a simpler expression
of the standard deviation is derived by assuming that the
QSD can be approximated as a Poisson distribution in
the vicinity of n� (see Sec. III), and therefore it can be
estimated as the square root ofR in Eq. (13). This increase
with field may be observed experimentally, by measuring
acoustic emission signals, or by measuring the dark
current between the cathode and anode as a function of
the applied electric field [64]. This would allow the
development of methods to detect early warning signals
of imminent breakdowns [65].
Such methods can be useful as part of the conditioning or

other operational schemes. At present, conditioning involves
both extrinsic processes in which contaminants are removed
from the surface, and intrinsic processes in which the surface
structure of the cathode metal is modified [59]. For example,

FIG. 17. Logarithm of the field increase rate as a function of
EBD=E0 − 1, for temperatures of (lines from right to left) 100,
200, 300, and 400 K. Here EBD is the mean breakdown field, and
E0 is a reference field of 180 MV=m [as in Eq. (22)]. The slopes
of the lines, from right to left, are 62.3, 41.7, 35.4, and 32.6,
which are the values of γ in Eq. (22) for each of the corresponding
temperatures.

(a) (b)

(c) (d)

FIG. 16. Mean breakdown field as a function of the field
increase rate for a linearly incrementing field, calculated using the
metastable approximation [Eqs. (18) and (26), solid line] and the
simulation (squares with error bars), for temperatures of (a) 100,
(b) 200, (c) 300, and (d) 400 K.

ELIYAHU ZVI ENGELBERG et al. PHYS. REV. ACCEL. BEAMS 22, 083501 (2019)

083501-12



in the CLIC project, conditioning is done in a test stand
reproducing the characteristics of the application setup, and
typically takes six months to complete [61]. Combining the
ability to monitor early warning signals, together with an
understanding of the physical mechanism underlying con-
ditioning, may allow the design of an improved conditioning
procedure.
To conclude, a theoretical link between fluctuations in

the mobile dislocation density, and its stochastic response
to an external field, is offered as a source for the critical
process of breakdown under extreme electric fields. The
MDDF model developed from this theory is analyzed and
shown to provide a good fit to a wide set of experimental
data, most of which was made available through the CLIC
collaboration, and to direct microscopic observations char-
acterizing the dislocation structure in electrodes. Using the
model, expected responses in performed and planned
experimental scenarios are presented. We suggest that
experiments, utilizing temperature and drive rate variations,
can lead to significant improvement in the ability to identify
specific mechanisms controlling the critical transition which
leads to eventual breakdown. In addition, estimates are made
of prebreakdown changes in the evolution of dislocations.
Such changes may lead to an observable prebreakdown
signal, which is currently under investigation.
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APPENDIX A: KINETIC MONTE-CARLO
SIMULATION

In this Appendix we describe the kinetic Monte-Carlo
simulations used to describe the time evolution of the system
and to compute the QSD and τ. The simulations implement a
Gillespie algorithm, tracking a single-step biased random
walker along the n axis. The time spent between adjacent
steps is randomly selected from the exponential distribution,
P ¼ e−t=T=T, with T ¼ ðλn þ μnÞ−1 the average time spent
between steps in the state n.
To verify the time calculations in the simulations, a

histogram was created detailing, for every value of n, the
distribution of the amount of time spent in every step in
which the system was in state n. This is shown in Fig. 19.
The line in the figure represents the theoretical mean time
spent at every step. We find that the time distribution is as
expected.
To find τ as a function of the electric field, the

simulations were run at least 102 times for a number of
electric fields, with a reflecting state at n ¼ 0 (i.e., μ0 ¼ 0)
and an absorbing state at nc, as was assumed in the exact
and metastable analyses. The time spent at each step, from
the beginning of the run until reaching n ¼ nc, was
summed in order to find the breakdown time of each
run. The mean breakdown time τ was then calculated by
averaging the results of all the runs for that electric field,
and the error in τ was calculated as the standard deviation
of the results. In order to find the QSD, the simulations
were run, beginning at n ¼ 0, for at least 1011 steps every
time, for a number of electric fields.

APPENDIX B: LSQ FIT

The logarithm of the BDR in the reference data set
depends linearly on the magnitude of the electric field [see
Fig. 8(c)]. Comparing this relation to Eq. (22) yields γ ¼
31.4 (at T ¼ 300 K). Using the conversion ratio given by
Eq. (23), we also find that log10½Rhotðbpp=mÞ� ¼ −5.89,
where Rhot is the BDR at E¼ 180 MV=m and T ¼ 300 K.
To incorporate the temperature dependence of the BDR

into the parameter fit, we note that the leftmost data set in

FIG. 18. Standard deviation of the QSD as a function of the
electric field, calculated numerically from the QSD of the
metastable approximation [Eq. (11), solid line], calculated by
treating the QSD approximately as a Poisson distribution
[Eq. (13), dashed line], and found from the simulation (triangles).

FIG. 19. Probability distribution of the amount of time spent
every step, for every n.
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Fig. 8(b) and the single measurement at 45 K must be fitted
with the same β since they were both measured in the same
structure, or, equivalently, the electric field must be scaled
identically in both sets. Scaling the fields, so that the data
of the leftmost set matches the fit of the reference set, yields
a scaled field of 300 MV=m for the measurement at 45 K.
Comparing the BDRs of this measurement and the refer-
ence set, we have log10ðRhot=RcoldÞ ≈ 1.8, where Rcold is the
BDR at E¼ 300 MV=m and T ¼ 45 K.
Defining Q1 ¼ log10½Rhotðbpp=mÞ� and Q2 ¼ log10

ðRhot=RcoldÞ, the LSQ fit was carried out by finding the
lowest value of the total quality measure Q in the four-
parameter phase space (Ea, Ω, κ, β), where

Q ¼ 4

�
γ

31.4
− 1

�
2

þ
�

Q1

−5.89
− 1

�
2

þ
�
Q2

1.8
− 1

�
2

þ
�
nc;hot
30

− 1

�
2

þ
�
nc;cold
30

− 1

�
2

þ
�

Ea

0.1 eV
− 1

�
2

: ðB1Þ

Here, nc;hot is nc at E¼ 180 MV=m and T ¼ 300 K, and
nc;cold is nc at E ¼ 300 MV=m and T ¼ 45 K. These were
included in the quality measure because the statistical
mean-field analysis and the metastable approximation
are valid only when nc ≫ 1. The target values for these
measures were chosen because they are larger than the
calculated values in the whole region of the phase space
where the parameters have plausible values, so that the
larger nc;hot and nc;cold are, the smaller Q is. Similarly, the
lowest theoretical estimate of Ea to date is ∼0.1 eV [56],
while within the phase space where the other parameters
have plausible values it is found that Ea < 0.1. Therefore,
Ea was added as a quality measure with a target value of
0.1 eV, so that the greater Ea is, the smaller Q is. The value
of γ was given greater weight than the other measures as
its relative error is smaller by ∼4 than that of the other
measures.
Table I summarizes the measures of the LSQ fit, their

target value, and the relative weight of each measure. The
optimal set of parameters found from the fit is the nominal
set described in Sec. II.
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