
 

Radiation of a charge in dielectric concentrator for Cherenkov radiation:
Off-axis charge motion
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A theoretical investigation of radiation field produced by a charge moving through the dielectric
concentrator for Cherenkov radiation is performed for the general case where a charge trajectory is shifted
with respect to the target axis. The idea of dielectric target with specific profile of the outer surface was
presented and investigated in our previous papers for the symmetric case. Here we show how nonsymmetric
field components generated in the bulk of the target affect field distribution near the focus where strong
concentration of the energy occurs. Possible applications of this target are discussed.
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I. INTRODUCTION

Uniform movement of a charged particle in a dielectric
medium with velocity exceeding the speed of light in this
medium is accompanied by Cherenkov radiation (CR)
discovered in 1937 [1] and theoretically interpreted the
same year [2,3]. Since that time this effect is widely used in
various areas of physics [3,4] including relatively novel
medical applications based on CR in biological tissues [5].
Today several modern trends based on beam-dielectric

interaction exist in accelerator physics. First, one should
mention the dielectric wakefield acceleration technique
which is now operating with Terahertz (THz) wakefields
[6,7] and has demonstrated Gigavolt per meter fields [8].
Dielectric-lined waveguides (or metallized capillaries) of
various transverse cross section, i.e., closed structures with
dielectric, are utilized within the mentioned scheme.
Second, similar waveguide structures loaded with dielectric
are considered nowadays as prospective candidates for
contemporary beam-driven sources of THz radiation
[9–11]. As was shown, with a proper electron beam and
dielectric structure the THz radiation of an extraordinary
peak power can be potentially obtained [8].
On the other hand, various opened dielectric structures

(without metallization at the outer surface) are extensively
studied nowadays for the development of both beam-driven
radiation sources (mainly in THz range) and noninvasive
systems of bunch diagnostics (including large-scale facili-
ties such as LHC). Diagnostics systems based on CR from

prolonged dielectric targets possess several advantages
compared to traditional schemes based on transition or
diffraction radiation. For example, a prismatic dielectric
target was used in a series of experiments [12,13] where
prominent possibilities to use this scheme for beam position
monitoring for high-energy electron and hadron beams
were demonstrated. Moreover, both mentioned prismatic
target and hollow conical target can be a powerful source of
radiation, including THz range [14–16].
Although the theory of CR in infinite or semi-infinite

dielectric media and dielectric-lined waveguide structures
is well developed [17–19], rigorous theoretical explanation
of the radiation processes emerging during the interaction
of charged particle with dielectric object of finite size (such
as prismatic or hollow conical targets mentioned above) is
extremely complicated. Therefore, various approximate
methods for calculation of radiation field are developed
[20–23]. One of them is our original combined approach
based on exact solution of certain “etalon” problem and
consequent taking into account the outer boundary using
ray-optics laws and Stratton-Chu formulas [24–28]. It is
worth noting that recent papers [27,28] dealt with conical
and prismatic objects which are of essential interest today
due to the aforementioned applications. The main advan-
tage of this combined approach is its asymptotic accuracy
with respect to the ratio between the wavelength and the
size of the target. Equally important is the fact that this
method has been recently approved by numerical simu-
lations in COMSOL Multiphysics [29].
In short, the mentioned approach consists of two steps.

At the first step we take into account only the single
interface which mainly interacts with a moving particle. For
example, this interface is the flat surface closest to the
charge trajectory in the case of prismatic target or the
cylindrical surface of the channel in the case of hollow
conical target. All other target surfaces are excluded from

*s.galyamin@spbu.ru

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 22, 083001 (2019)
Editors' Suggestion

2469-9888=19=22(8)=083001(12) 083001-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.22.083001&domain=pdf&date_stamp=2019-08-06
https://doi.org/10.1103/PhysRevAccelBeams.22.083001
https://doi.org/10.1103/PhysRevAccelBeams.22.083001
https://doi.org/10.1103/PhysRevAccelBeams.22.083001
https://doi.org/10.1103/PhysRevAccelBeams.22.083001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


consideration at this step and we arrive to the corresponding
“etalon” problem. A known rigorous solution of this
problem describes CR in the bulk of the target. At the
second step, we return the outer surface which is illumi-
nated by CR. Mainly, radiation escapes the target through
this surface (so called “aperture”). We consider interaction
of Cherenkov waves with this “aperture” using ray-optics
laws. In some cases, ray-optics consideration is suitable for
description of the radiated field outside the target. However,
if we are interested in the radiated field either in the
Fraunhofer zone or in the vicinity of focuses and caustics
(as in the present paper) where ray-optics formalism fails,
Stratton-Chu formulas can be utilized. Input values for
these formulas are tangential components of electric and
magnetic fields at the outer side of the aperture which are
calculated using Snell’s law and Fresnel coefficients.
Concerning the topic of the present paper, the discussed

approach was utilized to find the outer profile of the
axisymmetric dielectric target concentrating the majority
of generated CR in a small vicinity of a predetermined
focus point without any additional lenses or mirrors [25].
This target was called “dielectric concentrator for CR” and
was investigated in details for symmetric case (charge
movement along the target symmetry axis), including the
study of sensitivity with respect to the charge velocity
[29,30]. However, for the practical realization it is also
important to analyze the influence of the trajectory
deviation off the symmetry axis on the radiation character-
istics, which is the main goal of the paper.
The paper is organized as follows. In Sec. II we

formulate the problem for the EM radiation from a shifted
moving charge in the concentrator for CR, while for the
reader’s convenience we clarify the determination of the
target shape in Appendix A. The application of Stratton-

Chu formulas is presented in Sec. III while the rigorous
solution of the “etalon” problem is given in Appendix B.
Section IV contains numerical results while Sec. V dis-
cusses possible applications. Section VI finishes the paper.

II. PROBLEM FORMULATION

Figure 1 shows the geometry of the problem under
investigation. Note that along with Cartesian frame
ðx; y; zÞ, corresponding cylindrical frame ðρ;φ; zÞ is intro-
duced. A point charge q moves with a constant velocity
υ ¼ βc along straight trajectory inside the channel in the
axisymmetric dielectric target with permittivity ε and
permeability μ ¼ 1. Position of charge trajectory is deter-
mined by r0 and φ0, see Fig. 1(b).
Cylindrical coordinates ρ ¼ ρ0, z ¼ z0 of the outer

profile of the target are determined for r0 ¼ 0 as follows.
The point charge moving along the axis of the structure
(symmetric case) with the velocity υ ¼ βc generates
Cherenkov radiation inside the target with the correspond-
ing rays being directed at the angle α ¼ arcsin½1=ð ffiffiffi

ε
p

βÞ�
with respect to vertical direction, these rays are shown in
Fig. 1(a). It is supposed here that Cherenkov condition is
fulfilled,

ffiffiffi
ε

p
β > 1. The surface ρ0, z0 is determined by the

rule that all the refracted rays converge exactly into the
point x ¼ y ¼ 0, z ¼ zf. Details can be found in [25,29,31]
and in the Appendix A, in the issue we obtain the following
φ-independent surface:

ρ0ðθÞ ¼ rðθÞ sinðθÞ;
z0ðθÞ ¼ zf þ rðθÞ cosðθÞ; ð1Þ

where

FIG. 1. Geometry of the problem. (a) ðzxÞ-cut of the dielectric concentrator for Cherenkov radiation: the axisymmetric dielectric target
with the specific outer profile (determined by the function rðθÞ) and the inner channel of the radius a where the point charge q moves
along the straight trajectory shifted with respect to the z-axis. Depicted parameters are discussed in the text. (b) ðxyÞ-cut of the target (the
channel radius is enlarged for convenience) and the position of the charge shifted trajectory.
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rðθÞ ¼ fð1 − ffiffiffi
ε

p Þ½1þ ffiffiffi
ε

p
sinðαþ θÞ�−1: ð2Þ

Here parameter f can be called the “focal” parameter since
the distance between the focal point and the “nose” of the
target rðπÞ is proportional to f, i.e.,

rðπÞ ¼ fβð ffiffiffi
ε

p
− 1Þ

1 − β
: ð3Þ

Therefore, the larger f the larger distance between the focus
and the target. The maximum transverse size of the target
xmax determines the minimum angle θmin, the maximum
angle θmax is determined by the channel radius a.
For the symmetric case (r0 ¼ 0) the radiation properties

have been investigated in details, including dependence
of the field components behavior on deviation of actual
charge velocity from the “designed” velocity (sensitivity)
[29,30]. Moreover, the comparison between COMSOL
Multiphysics simulations and the developed theory has
been performed [29] and very good agreement has been
observed. Below we will investigate the influence of the
offset r0 on the radiation characteristics of the concentrator.

III. STRATTON-CHU FORMALISM

According to our method we utilize the Stratton-Chu
formulas [32,33] to calculate Cherenkov radiation exiting
the target. Recall that these integral formulas give an exact
result if tangential electric and magnetic fields are deter-
mined exactly at the surface of the integration (the aperture
Sa). In this paper we use the form of these formulas from
[33] (see also our papers [27,28,31]) with the outer surface
of the target (1) as the aperture:

4πE⃗ω ¼
Z
Sa

fik0½n⃗; H⃗a
ω�ψ þ i

k0
ð½n⃗; H⃗a

ω�; ∇⃗Þ∇⃗ψ

þ ½½E⃗a
ω; n⃗�; ∇⃗ψ �gdΣ; ð4Þ

where ψ is a Green function,

ψ ¼ exp ðik0R̃Þ=R̃;
R̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðy − y0Þ2 þ ðz − z0Þ2

q
; ð5Þ

dΣ is a surface element of Sa. As follows from Eq. (4),
electromagnetic (EM) field outside the target is determined
by the tangential electric and magnetic fields at the aperture
Sa. We utilize the following parametrization of the
Cartesian coordinates of the aperture via angles θ and φ:

x0ðθ;φÞ ¼ ρ0ðθÞ cosφ; y0ðθ;φÞ ¼ ρ0ðθÞ sinφ; ð6Þ

while z0ðθ;φÞ is given by (1) together with ρ0ðθÞ. In order
to calculate the parameters of the surface it is convenient
to use the tensor formalism by V. A. Fock [30,34] and

determine the metric tensor of the surface g [30]. Thus,
for the elementary square of the surface we obtain
dΣ ¼ ffiffiffi

g
p

dθdφ, where

ffiffiffi
g

p ¼ −f2ð1 − ffiffiffi
ε

p Þ2 sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffi

ε
p

sinðθ þ αÞ þ ε
p

½1þ ffiffiffi
ε

p
sinðθ þ αÞ�3 : ð7Þ

The components of the unit normal n⃗ are

nρ ¼
sin θ þ ffiffiffi

ε
p

cos αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffi

ε
p

sinðθ þ αÞ þ ε
p ;

nz ¼
cos θ þ ffiffiffi

ε
p

sin αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffi

ε
p

sinðθ þ αÞ þ ε
p : ð8Þ

In order to find the fields E⃗a
ω and H⃗a

ω, we use our
combined approximate method mentioned in the
Introduction and approved in recent papers [27,29].
First, the corresponding etalon problem should be solved
to find the field in the bulk of target. For the geometry under
consideration the etalon problem is the determination of the
EM field in semi-infinite medium (r0 ≤ ρ < ∞) with
permittivity ε having circular channel inside which the
point charge q is moving along the straight shifted
trajectory. The geometry of this problem is shown in
Fig. 1(b). The exact solution of this problem is presented
in Appendix B. Note that the general solution of this
problem is known [17,35]. However, it is more convenient
to obtain this solution in the form used in [36,37], what is
done in the Appendix B.
This solution in the bulk of the dielectric, Eqs. (B28) and

(B29)(we put μ ¼ 1 and φ0 ¼ 0), allows concluding that
for ρjsj ≫ 1 the phase term of all summands with different
ν can be written as

exp ½ik0β−1ðzþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εβ2 − 1

q
ρÞ�; ð9Þ

i.e., it is the same as for the symmetric case r0 ¼ 0, see
Eq. (5) in [31]. This phase can be used to determine
corresponding CR rays having the following angle of the
refraction θt:

sin θt ¼
−β−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðθÞ2 þ r02ðθÞ
p ½rðθÞ sin θ − r0ðθÞ cos θ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εβ2 − 1

q
ðrðθÞ cos θ þ r0ðθÞ sin θÞ�; ð10Þ

where r0ðθÞ ¼ drðθÞ=dθ. Note that corresponding Eq. (7)
in [31] sadly contains misprints.
Field (B28) and (B29) can be separated into two polar-

izations with respect to the plane of incidence determined
by the incident ray and n⃗, see Fig. 1. “Parallel” polarization
(k) contains components Ezω, Eρω and Hφω. The corre-
sponding Fresnel coefficient is
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Tk ¼
2 cos θi

cos θi þ
ffiffiffi
ε

p
cos θt

: ð11Þ

“Orthogonal” polarization (⊥) contains components Hzω,
Hρω and Eφω. Corresponding Fresnel coefficient is

T⊥ ¼ 2
ffiffiffi
ε

p
cos θiffiffiffi

ε
p

cos θi þ cos θt
: ð12Þ

The angle of incidence θi can be obtained out of Snell’s lawffiffiffi
ε

p
sin θi ¼ sin θt and (10). The unit vector of the trans-

mitted wave e⃗k can be calculated as follows:

ekρ ¼ nρ cos θt − nz sin θt;

ekz ¼ nρ sin θt þ nz cos θt: ð13Þ

Transmitted field at the outer surface of the aperture is
determined via the component of the field being orthogonal
to the plane of incidence, i.e., Hφω for k-polarization and
Eφω for ⊥-polarization. In case ρ0jsj ≫ 1 (this means that
the aperture is supposed to be far enough from the charge
trajectory) at the inner side of the aperture we have

Ha−
φω ¼

qωexpðik0z0=βþ iρ0s−3πi=4Þ
iπυ2γ2

ffiffiffiffiffiffiffiffiffiffi
2

πρ0s

s

×
ik0
s2

�
−εsI0ðr0σ0ÞÃðE2Þ

0 þ2
X∞
ν¼1

Iνðr0σ0Þe
iπð1−νÞ

2

×cosðνφÞ
�
εÃðE2Þ

ν

�
is−

1

2ρ0

�
−

iν
βρ0

ÃðH2Þ
ν

��
; ð14Þ

Ea−
φω ¼ qω exp ðik0z0=β þ iρ0s − 3πi=4Þ

iπυ2γ2

ffiffiffiffiffiffiffiffiffiffi
2

πρ0s

s

×
ik0
s2

2
X∞
ν¼1

Iνðr0σ0Þe
iπð1−νÞ

2

× sinðνφÞ
�
iÃðH2Þ

ν

�
is −

1

2ρ0

�
−

ν

βρ0
ÃðE2Þ
ν

�
; ð15Þ

where notations are given in the Appendix B. The trans-
mitted fields at the outer surface of the aperture are

Ha
φω ¼ TkHa−

φω; E⃗k
ω ¼ Ha

φω½e⃗φ; e⃗k�;
Ea
φω ¼ T⊥Ea−

φω; H⃗⊥
ω ¼ Ea

φω½e⃗k; e⃗φ�; ð16Þ

therefore

Ea
ρω ¼ Ha

φωekz; Ea
zω ¼ −Ha

φωekρ;

Ha
ρω ¼ −Ea

φωekz; Ha
zω ¼ Ea

φωekρ: ð17Þ

Equations (16) and (17) show that the field distribution
over the outer surface of the aperture is defined and all the

things needed for the evaluation of the integral (4)
are ready.
Prior presenting numerical results, let us discuss the

obtained analytical results. The “mode” with number ν ¼ 0
is manifested in k-polarization only. The corresponding
φ-independent term in Eq. (14) is equal to the one in the
case with nonshifted charge multiplied by a factor
I0ðr0σ0Þ < 1. Therefore, due to this zeroth “mode” the
same effect of concentration will take place in the non-
symmetrical case (with corresponding scaling of the field).
In particular, the transverse electric field produced by the
concentrator in this term is exact zero for ρ ¼ 0 [30].
However, modes with numbers ν ≥ 1 will add φ-dependent
field distribution over the aperture, therefore, altering this
result. In Sec. IV we will clarify (using corresponding
numerical examples) the questions concerning the required
number of asymmetric modes to be taken into account and
their influence on the field distribution near the focal plane.

IV. NUMERICAL RESULTS

Herewe present results of EM field calculation in the area
outside the target (mainly, near the focal point which is of the
most interest) using Eq. (4). The limits of integration over φ
are ð0; 2πÞ, while the limits of integration over θ, θmin and
θmax, are determined by dimensions of the concentrator.
A numerical code was realized in MATLAB with the use

of the Parallel Computing Toolbox for evaluation of inte-
grals (4). An approximate time consumed for the calculation
of each subplot (100 × 100 points) in Fig. 3 was in the range
50–250 seconds per CPU core depending on the model of
processor.
The set of parameters that were used for numerical

calculations is presented in Table I. First, we have put

TABLE I. Parameters of numerical calculations.

Parameter Value

ω 2π · 100 GHz
λ 0.3 cm
c=ω ¼ λ=ð2πÞ 0.05 cm
β 0.8
“Focal” parameter f 500c=ω ≈ 24 cm
rðπÞ 540c=ω ≈ 26 cm
q 1 nC
xmax 500c=ω ≈ 24 cm
xeffmax 340c=ω ≈ 16 cm
a c=ω
θmin 162°
θmax 179°
ε 1.6
α 80°
αtar 73°
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zf ¼ 0, i.e., position of the designed focus is z ¼ 0. Then,
we have determined all the dimensions in units of c=ω for
the chosen frequency ω. The channel radius was chosen to
be a ¼ c=ω and this radius determines θmax. Dielectric
permittivity ε was chosen so that α was relatively large. In
this case the rays inside the target propagate with relatively
small angle with respect to z-axis and target longitudinal
and transverse dimensions are comparable (contrary to the
case of relatively small α where the target is strongly
prolonged [38]).
Transverse dimensions of the target are determined by

xmax, see Fig. 1(a). Back slope of the target is cut by straight
line determined by αtar which should be smaller than α. In
this case, the ray originating from the most distant (from the
focus) point of the target will reach the aperture. This ray is
shown in Fig. 1(a). This ray also determines the “effective”
transverse size of the target xeffmax which is smaller than xmax.
This point is taken into account in calculations: upper limit
θmax is determined by xeffmax.
Figure 2 illustrates dependence of absolute values of

Exω, Ezω, and Eω on z for x ¼ r0 and y ¼ 0 (along straight
line parallel to z-axis) and for three values of
r0 ¼ a=10; a=4; a=2. Black (thickest) line shows field
generated by 0th (symmetrical with respect to φ) mode
in Eq. (14). Recall that this mode gives the same field as in

symmetrical case [only scaled by the factor I0ðr0σ0Þ]. One
can see that transverse field Exω is negligible near z-axis,
which is natural due to the symmetry considerations, while
longitudinal field Ezω is dominant. These are results
obtained earlier [30,38].
The cyan (thinner) line in Fig. 2 shows field generated by

two those modes (0th and 1st), while dashed magenta line
shows field generated by three of those modes, 0th, 1st, and
2nd. As one can see, even for r0 ¼ a=2 contribution of the
2nd mode is negligible, therefore we can restrict ourselves
by taking into account mentioned three modes in Eqs. (14)
and (15).
It should be noted that EM field of the νth mode is

proportional to the term Iνðr0σ0Þ. In our case (see Table I),
the argument of the modified Bessel function for the largest
considered offset r0 ¼ a=2 ¼ λ=ð4πÞ is r0σ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
=

ð2βÞ ¼ 0.375, therefore it can be considered as small for
0 < r0 < a=2. This leads to the conclusion that each mode
is proportional (in the leading order) to ðr0σ0Þν and,
therefore, contributions of high-order modes decrease with
ν, this fact has been illustrated above in Fig. 2. It should be
underlined that the above conclusion on the number of
modes required for correct EM field description is con-
nected mainly with the small channel radius a in compari-
son with the wavelength λ. If we consider channel with

FIG. 2. Field behavior along the line parallel to z-axis and having offset r0 in x-direction. Black (thickest) line (multiplied by factor 10
in the left column to be recognized from zero) corresponds to the contribution of the term with ν ¼ 0 in Eq. (14). Cyan (thinner) and
magenta (dashed) lines correspond to the contribution of two terms (with ν ¼ 0, 1) and three terms (with ν ¼ 0, 1, 2), correspondingly,
in Eqs. (14) and (15). Top row is for r0 ¼ a=10, middle row is for r0 ¼ a=4, and bottom row is for r0 ¼ a=2. Note that black line on the
second plot in the first line is present but partially covered by the other ones.
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radius compared to or larger than the wavelength this result
will be essentially altered.
Moreover, if a is much larger than the wavelength,

i.e., σ0a ≫ 1, then jAðE;H2Þ
ν j ∼ expð−σ0aÞ and EM field

in the bulk of the target is exponentially small for small
offsets, i.e., for σ0r0 ≲ 1. However, for the offset
comparable with channel radius (σ0r0 ∼ σ0a ≫ 1) the
field can be effectively generated. In this case, the
question on the number of required modes should be
considered separately.
In order to illustrate the main results we will plot

two-dimensional field distributions. Figure 3 shows two-
dimensional distribution of the longitudinal (Ezω) and the
transverse (Eρω) components over xy-plane for the
symmetric case r0 ¼ 0. Note that this is not a principally
new result but a new illustration of the previous results
obtained in [29,30]. As one can clearly see from Fig. 3,
the transverse field is exact zero on the symmetry axis
while the longitudinal field is maximal here. The trans-
verse field quickly increases while the observation point

is shifted from the z-axis and has its maximum value
around two times larger compared to the maximum of
Ezω. In all cases, fields strongly decrease with an
increase in shift of the observation plane from the focal
plane z ¼ 0. The total field is practically determined
by the transverse field excluding the mentioned central
area (a circle with radius ≈3a) where the longitudinal
field is dominant.
The field distribution for the case with a charge shifted

from the z-axis is shown in Fig. 4 for the focal plane
z ¼ zf ¼ 0. Note that tendencies in field behavior con-
nected with the shift of the observation plane from the
focal plane (z < 0 or z > 0) are practically the same as
for symmetrical case. The magnitudes of transverse and
longitudinal fields also differ approximately by the factor
5 and increase almost linearly with increasing r0.
The most interesting feature is occurred in longitudinal

field (see Fig. 4, left column). For the relatively small offset
(r0 ¼ a=10) this field is strongly asymmetric with respect
to x ¼ 0. The stronger peak is located in the area x > 0,

FIG. 3. Two-dimensional distribution of the absolute values of the longitudinal (Ezω), the transverse (Eρω), and the total (Eω) field
over xy-plane for symmetrical case r0 ¼ 0. Plane z ¼ zf ¼ 0 is the focal plane of the concentrator. Calculation parameters are
given in Table I.
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i.e., in the area where the shifted charge propagates (recall
that φ0 ¼ 0, therefore the charge is shifted to the positive
x). With an increase in r0 these peaks become more
symmetrical (r0 ¼ a=4), and for relatively large offset
(r0 ¼ a=2) we have two almost symmetrical peaks located
approximately at x ¼ 6.7a and x ¼ −8.7a, i.e., far enough
from the charge trajectory. A more detailed position of the
discussed peaks is shown in Fig. 5.
In turn, the transverse field (see Fig. 4, second column)

also has an essential asymmetry for relatively small offsets
(r0 ¼ a=10). It is worth noting that the peak of transverse
field is shifted in opposite direction compared to the shift of
the charge trajectory, its approximate location is x ¼ −2.3a
(see Fig. 5 for details). Therefore in this case (small offset)
one can potentially detect these peaks separately: the peak
of Ezω for x > 0 and the peak of Eρω for x < 0. For larger
offsets, the peak of Eρω becomes practically symmetric in
both x and y direction, is located nearly in the center and
totally dominates the longitudinal peak.

V. DISCUSSIONS

Possible applications of the presented dielectric concen-
trator would lie in the area of beam diagnostics and beam
manipulation. Since strong field concentration takes place
in the focal plane near the focal point, sensitivity and
accuracy of mentioned diagnostics can be essentially
increased. For example, peculiarities of field distribution
for r0 ≠ 0 can be used for determination of beam shift and
positioning of the beam toward the axis of the structure.
Note that the difference between magnitudes of two peaks
of top plot in Fig. 5 depends on r0. For r0 ¼ a=10 left peak
magnitude is about 50% of the right peak magnitude while
for r0 ¼ a=2 the left peak magnitude is about 90% of the
right peak magnitude. Moreover, these peaks are shifted for
several values of a (in our case from ≈5 to ≈8) from the
axis, thus, simplifying the detection of the field. However,
to realize this diagnostic scheme one should separate the
longitudinal field from the much more intensive transverse

FIG. 4. Two dimensional distribution of absolute values of longitudinal (Ezω) and transverse (Eρω) and total field over xy-plane in the
focal plane of the concentrator (z ¼ 0) for three values of charge’s shift r0 ¼ a=10; a=4; a=2. Calculation parameters are given in
Table I.
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field which is rather challenging. On the other hand, strong
peak of the transverse field can be utilized for the same
purpose if we are interested in relatively small offsets. As it
is seen from the bottom plot in Fig. 5, for r0 ¼ a=10 the
peak is located at x ¼ −2.3a which is far enough from the
structure axis and suitable for detection.
If the bunch is well aligned along the axis (r0 ¼ 0), it

experiences influence of the longitudinal field (Ezω) only,
see Fig. 3. Interaction between the bunch and strongly
concentrated radiated field can lead to longitudinal modu-
lation of the bunch. As it has been experimentally shown
in [9], a 2-inch-long dielectric-lined capillary can produce
energy modulation with approximately 0.25 MeV magni-
tude which corresponds to 5 MV=m longitudinal field
magnitude inside the capillary. In the case shown in
Fig. 3, an interaction area (focal spot) can be approximately
estimated to be 6 cm-long. Moreover, as was shown in
Ref. [29], if typical energy spread inside the bunch (about
0.5%) is taken into account, the focal spot length is
increased up to 2.5 times. Therefore, interaction area in
the case of the concentrator is comparable or larger than
that in Ref. [9]. As our additional calculations show, a
typical value of Fourier harmonic magnitude of the

longitudinal field ≈10−5 MV=m · s is achieved, at least,
in the frequency range 100–200 GHz. Therefore, we can
approximately estimate the peak magnitude of the radiation
pulse (produced by this frequency range) in the focal area
by a simple multiplication of the mentioned Fourier
harmonic magnitude by the factor 2π · 100 GHz. This
results in approximately 6 MV=m longitudinal field mag-
nitude and leads to a conclusion that the discussed bunch
modulation is potentially achievable.

VI. CONCLUSION

In the present paper, we have presented analytical and
numerical investigation of the EM radiation produced by a
point charge moving through the dielectric concentrator for
Cherenkov radiation (see [25]) for the case of off-axis
charge movement. The problem has been solved using an
original approach (developed and verified in our previous
papers) suitable for investigation of radiation from various
dielectric targets of finite size with several sharp interfaces.
It is worth noting that this approach possesses asymptotic
accuracy with respect to the ratio between wavelength and
transverse size of the target.
Contrary to the symmetric case considered in our papers

earlier, here the strong asymmetry of the field distribution
near the focal plane is observed and illustrated. For example,
with an increase in charge offset, peak of longitudinal field is
first shifted in the direction of charge shift and then is divided
into two peaks. Since the difference between magnitudes of
these peaks depend on charge offset, detection of these peaks
can be possibly used for determination of the charge offset
and the charge alignment inside the structure. Note that
transverse position of the discussed peaks is several channel
radii, therefore they can be potentially detected without a
need to deflect or damp the charge.
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APPENDIX A: DETAILED EXPLANATION OF
THE OUTER SURFACE OF THE

CONCENTRATOR FOR CR

Figure 6 explains the determination of the surface shape
of the target under consideration in more detail. Let us
imagine a single ray of CR directed to the focus point. This
ray is inclined with respect to the z-axis by the angle
π=2 − α, where α ¼ arcsin½1=ð ffiffiffi

ε
p

βÞ�. In the Cartesian
coordinate frame ðz0; x0Þ associated with this ray, the outer
surface profile corresponds to a branch of hyperbola (red
line): �

z0

a0

�
2

−
�
x0

b0

�
2

¼ 1; ðA1Þ

FIG. 5. Dependence of absolute values of longitudinal (Ezω)
and transverse (Eρω) field over x for y ¼ z ¼ 0 for three values of
charge’s shift r0 ¼ a=10; a=4; a=2. Calculation parameters are
the same as in Fig. 4.
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where the standard hyperbola parameters are

a0 ¼ fffiffiffi
ε

p þ1
; b0 ¼f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε

p
−1ffiffiffi

ε
p

−1

s
; c0 ¼ f

ffiffiffi
ε

pffiffiffi
ε

p þ1
; ðA2Þ

while ðc0Þ2 ¼ ða0Þ2 þ ðb0Þ2 and f ¼ a0 þ c0. Recall that a0
is the semimajor axis, c0 is the distance from the coordinate
frame origin to the focus and the ratio b0=a0 determines the
asymptotes. The focus lying oh the z-axis is the focus of the
concentrator. If we put the origin of the polar coordinate
frame ðr; uÞ in this focus we obtain the following standard
parametrization for the discussed branch of hyperbola:

rðuÞ ¼ p0

ϵ0 cos u − 1
¼ fð ffiffiffi

ε
p

− 1Þffiffiffi
ε

p
cos u − 1

; ðA3Þ

where p0 ¼ ðb0Þ2=a0 and ϵ0 ¼ c0=a0 > 1 is the eccentricity.
If we take into account the simple relation between u and θ,

u ¼ 3π

2
− ðαþ θÞ;

we arrive at Eq. (2). Finally, in order to obtain the full outer
surface of the concentrator shown in Fig. 1, we should cut
the piece of Eq. (2) determined by the range ½θmin; θmax�
(this piece is shown by solid red in Fig. 6) and rotate this
piece over the z-axis.

APPENDIX B: SOLUTION OF
ETALON PROBLEM

For the case under consideration, geometry of the
“etalon” problem is shown in Fig. 1(b). Within this section,
cylindrical frame (ρ, φ z) is utilized. One should find the
EM field in semi-infinite medium (a ≤ ρ < ∞) with

permittivity ε and permeability μ having a cylindrical
channel where a charge propagates along shifted trajectory.
It is supposed that the trajectory is shifted in φ ¼ φ0

direction and r0 is the value of this shift. In addition, we
will refer to the area ρ ≤ a as “area 1” and to the area ρ ≥ a
as “area 2.” As was mentioned above, despite the fact that
general solution of this problem is known [17,35] it is useful
to obtain it in more convenient form, similar to that
in [36,37].
The problem is solved for Fourier transforms of field

components, for example:

E⃗ω ¼ 1

2π

Z þ∞

−∞
E⃗ expðiωtÞdt: ðB1Þ

Charge and current densities have the form

ρq ¼ q
δðρ − r0Þ

ρ
δðφ − φ0Þδðz − υtÞ;

j ¼ ρqυ; j⃗ ¼ je⃗z: ðB2Þ

Here υ ¼ βc and δðφ − φ0Þ means 2π-periodic function
with corresponding δ singularity in each period. This
function can be decomposed in Fourier series as follows:

δðφ − φ0Þ ¼
1

2π

Xþ∞

ν¼−∞
expð−iνðφ − φ0ÞÞ: ðB3Þ

For the radial part in (B2) the following decomposition
holds for arbitrary integer ν [39]:

δðρ − r0Þ
ρ

¼
Z þ∞

0

JνðρξÞJνðr0ξÞξdξ; ðB4Þ

where Jν is Bessel function of order ν. Fourier transforms
(B1) of the sources (B2) have the form:

ρqω¼
q
2πυ

δðρ− r0Þ
ρ

δðφ−φ0Þexp
�
i
ωz
υ

�
; jω¼ υρqω:

ðB5Þ

From Maxwell’s equations for magnitudes of Fourier
harmonics

rotE⃗ω ¼ ik0μH⃗ω;

rotH⃗ω ¼ −ik0εE⃗ω þ 4π

c
j⃗ω;

εdivE⃗ω ¼ 4πρqω; divH⃗ω ¼ 0; ðB6Þ

k0 ¼ ω=c, one can obtain the following two equations
for longitudinal components of electric and magnetic
field [36,37]:

FIG. 6. Detailed description of the outer surface of the con-
centrator for CR.
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ΔEzω þ k20εμEzω ¼ 4π

ε

∂ρqω
∂z −

4πiωμ
c2

jω;

ΔHzω þ k20εμHzω ¼ 0; ðB7Þ

where

Δ ¼ ∂2

∂ρ2 þ
1

ρ

∂
∂ρþ

1

ρ2
∂

∂φ2
þ ∂2

∂z2 ; ðB8Þ

and the following expressions for the rest of the field
components:

Eρω ¼ i
k0ε

�
1

ρ

∂Hzω

∂φ −
∂Hφω

∂z
�
;

Hρω ¼ −i
k0μ

�
1

ρ

∂Ezω

∂φ −
∂Eφω

∂z
�
; ðB9Þ

� ∂2

∂z2 þ k20εμ

�
Hφω ¼ 1

ρ

∂2Hzω

∂z∂φ þ ik0ε
∂Ezω

∂ρ ;

� ∂2

∂z2 þ k20εμ

�
Eφω ¼ 1

ρ

∂2Ezω

∂z∂φ − ik0μ
∂Hzω

∂ρ : ðB10Þ

Since z-dependence in sources (B5) is expðiωz=υÞ, field
components should have the same dependence, i.e.:

fE⃗ω; H⃗ωg ¼ f ⃗Ẽω;
⃗H̃ωg exp

�
i
ωz
υ

�
; ðB11Þ

therefore ∂=∂z → ik0=β in Eqs. (B7)–(B10). Moreover,

since ⃗Ẽω should be 2π periodic function, it should be
decomposed in a Fourier series, similar to (B3):

⃗Ẽω ¼
Xþ∞

ν¼−∞

⃗Ẽων expð−iνφÞ; ðB12Þ

therefore ∂=∂φ → −iν in Eqs. (B7)–(B10). Taking into
account all these considerations, we obtain from Eq. (B7)

� ∂2

∂ρ2 þ
1

ρ

∂
∂ρþ s2 −

ν2

ρ2

�
Ẽzων ¼ 4πQ̃ων;� ∂2

∂ρ2 þ
1

ρ

∂
∂ρþ s2 −

ν2

ρ2

�
H̃zων ¼ 0; ðB13Þ

Q̃ων ¼
iqσ2

4π2ωϵ
eiνφ0

Z þ∞

0

JνðρξÞJνðr0ξÞξdξ; ðB14Þ

s2 ¼ k20
β2

ðεμβ2 − 1Þ; σ2 ¼ −s2: ðB15Þ

A particular solution (this solution will be supported by
upper index (i) and will be further referred to as the

“incident” field) of Eq. (B13) is H̃ðiÞ
zων ¼ 0,

ẼðiÞ
zων ¼ iqσ2

πωϵ
eiνφ0

Z þ∞

0

JνðρξÞJνðr0ξÞ
s2 − ξ2

ξdξ: ðB16Þ

We will further suppose that the incident field (B16) is
determined inside the vacuum channel (area 1, ρ ≤ a),
where ε ¼ μ ¼ 1, σ2 ¼ σ20 ¼ k20β

−2ð1 − β2Þ ¼ k20β
−2γ−2, γ

is Lorentz factor. Integral over ξ in (B16) is tabular [40],
and we obtain:

ẼðiÞ
zων ¼−iqσ20

πω
eiνφ0

(
Kνðr0σ0ÞIνðρσ0Þ for ρ≤ r0;

Iνðr0σ0ÞKνðρσ0Þ for ρ≥ r0;
ðB17Þ

where Iν and Kν are modified Bessel and Hankel functions,
correspondingly, σ0 ¼

ffiffiffiffiffi
σ20

p
, Re ffip > 0.

The “scattered” field is the general solution of homo-
geneous equations in (B13) which can be easily trans-
formed to Bessel or modified Bessel equations. Inside
the vacuum channel (area 1, ρ ≤ a, σ ¼ σ0), it is convenient
to decompose this general solution over linearly indepen-
dent solutions of modified Bessel equation, Iνðρσ0Þ and
Kνðρσ0Þ. Since it should contain no singularity for ρ → 0,
we obtain:

Ẽð1Þ
zων ¼ AðE1Þ

ν Iνðρσ0Þ; H̃ð1Þ
zων ¼ AðH1Þ

ν Iνðρσ0Þ: ðB18Þ

Outside the vacuum channel (area 2, ρ ≥ a), it is convenient
to decompose this general solution over linearly indepen-

dent solutions of Bessel equation, Hð1Þ
ν ðρsÞ and Hð2Þ

ν ðρsÞ,
where s ¼

ffiffiffiffiffi
s2

p
, Im ffip > 0. Since it should represent an

outgoing wave, we obtain:

Ẽð2Þ
zων ¼AðE2Þ

ν Hð1Þ
ν ðρsÞ; H̃ð2Þ

zων¼AðH2Þ
ν Hð1Þ

ν ðρsÞ: ðB19Þ

Boundary conditions (continuity of Ẽzων, H̃zων, Ẽφων, and
H̃φων) for ρ ¼ a result in 2 × 2 linear system for unknown

AðE1;2Þ
ν and AðH1;2Þ

ν . The determinant is

Δν¼ ½νðβaÞ−1Iνðσ20þ s2Þ�2

−
½σ20sεH0

νIνþ s2σ0I0νHν�½σ20sμH0
νIνþ s2σ0I0νHν�

H2
ν

;

ðB20Þ

where

Iν ≡ Iνðaσ0Þ; Hν ≡Hð1Þ
ν ðasÞ;

I0ν ≡ dIνðξÞ
dξ

				
ξ¼aσ0

; H0
ν ≡ dHð1Þ

ν ðξÞ
dξ

				
ξ¼as

: ðB21Þ

Coefficients are expressed as follows:
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ÃðE1Þ
ν ¼ 1

ΔνH2
ν
f½νðβaÞ−1Iνðσ20 þ s2Þ�2H2

νKνI−1ν

þ ½σ20sμH0
νIν þ s2σ0I0νHν�

× ½σ20sεH0
νKν þ s2σ0K0

νHν�g; ðB22Þ

ÃðH1Þ
ν ¼ νIνðσ20 þ s2Þ

iβaΔνHν
f½σ20sεH0

νKν þ s2σ0K0
νHν�

þ KνI−1ν ½σ20sεH0
νIν þ s2σ0I0νHν�g; ðB23Þ

where, in addition to (B21),

Kν ≡ Kνðaσ0Þ; K0
ν ≡ dKνðξÞ

dξ

				
ξ¼aσ0

; ðB24Þ

ÃðE2Þ
ν ¼ ÃðE1Þ

ν
Iν
Hν

þ Kν

Hν
; ÃðH2Þ

ν ¼ ÃðH1Þ
ν

Iν
Hν

ðB25Þ

and

Aν ¼ Ãν
qω

iπυ2γ2
expðiνφ0ÞIνðr0σ0Þ: ðB26Þ

Using the properties of Bessel functions, I−ν ¼ Iν,
K−ν ¼ Kν, H−ν ¼ expðiνπÞHν, one can show that

Δ−ν ¼ Δν; ÃðE1Þ
−ν ¼ ÃðE1Þ

ν ; ÃðH1Þ
−ν ¼ −ÃðH1Þ

ν ;

ÃðE2Þ
−ν ¼ ÃðE2Þ

ν

expðiνπÞ ; ÃðH2Þ
−ν ¼ −ÃðE2Þ

ν

expðiνπÞ : ðB27Þ

Using (B27), one can present the scattered field in the bulk
of medium (area 2) in the following convenient form:

Eð2Þ
zω ¼ qωexpðiωz=υÞ

iπυ2γ2

�
I0ðr0σ0ÞHð1Þ

0 ðρsÞÃðE2Þ
0

þ2
X∞
ν¼1

cos½νðφ−φ0Þ�Iνðr0σ0ÞÃðE2Þ
ν Hð1Þ

ν ðρsÞ
�
;

ðB28Þ

Hð2Þ
zω ¼−qωexpðiωz=υÞ

iπυ2γ2

×2
X∞
ν¼1

sin½νðφ−φ0Þ�Iνðr0σ0ÞiÃðH2Þ
ν Hð1Þ

ν ðρsÞ: ðB29Þ
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