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A technique is proposed for determining beam dimensions on a target by measuring two-dimensional
angular distributions of the radiation for two distances between the crystal where the radiation is generated
and a coordinate detector. The dimensions are determined from the results of a least squares method
procedure with varying parameters, where the adjustable function is the distribution for a shorter distance
and the fitting function is the convolution of the angular distribution at a greater distance with a two-
dimensional Gaussian distribution whose parameters are uniquely related to the beam dimensions on the
target and the distances between the crystal and the detector. The minimum measured beam sizes are about
50–60 μm for the parametric x-ray mechanism and an electron energy of less than 1 GeVand 10–15 μm for
the mechanism of diffracted transition radiation and electrons with an energy above several GeV.
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I. INTRODUCTION

The divergence and transverse dimensions of accelerated
particles beams are important parameters of any acceler-
ator. Therefore, many methods for measuring them have
been developed and employed. Along with the use of
fluorescent screens, optical transition radiation (OTR) and
optical diffraction radiation are widely used to measure the
electron beam parameters. However, it has recently been
shown that OTR cannot be used to measure the profile of
electron beams of linear accelerators used to create a free-
electron x-ray laser [1], since the OTR becomes coherent if
the longitudinal size of the beam becomes comparable with
the wavelength of the detected radiation [2].
The most natural method to avoid this coherence effect is

to use radiation with a shorter wavelength. Several years
ago [3,4], the use of parametric x-ray radiation (PXR) to
determine the beam sizes was proposed. PXR is emitted in
the Bragg direction when a fast charged particle moves
through a crystal target; see, e.g., Ref. [5] and the literature
cited there. The benefits of using PXR for measuring the
particle beam parameters include good agreement between
measurement results and calculations for a wide range of

electron and photon energies [6], a low background level,
and the facility to change the photons’ energy and their
angular distribution by varying the orientation of the
crystal.
Measurements of the PXR angular distributions for fast

electrons in thin crystals with the help of coordinate
detectors, reported in Refs. [4,7,8], confirmed the possibil-
ity of determining the beam sizes using a detector located in
the immediate vicinity of the crystal [4], changing the shape
of the detected distributions depending on the beam size at
the crystal [7], and determining the beam size of particles
on a target with a pinhole camera [8].
Locating the coordinate detector in the immediate

vicinity of the crystal [4] is not always possible. In addition,
the problem arises of separating the detected radiation from
the background, the source of which are the elements of the
accelerator design. The use of a pinhole camera assumes an
azimuthal symmetry of the angular distribution of the
detected radiation; if this is not the case, an error will
arise in determining the beam dimensions from the mea-
surements [8].
Another significant disadvantage of the method in

Ref. [8] is the duration of the measurement process, due
to the hard collimation of the recorded radiation. These
shortcomings require the development of new methods for
measuring the transverse dimensions of a particle beam
based on measuring the total angular distribution of the
PXR and taking into account its features, in particular, the
azimuthal asymmetry and the contributions of other coher-
ent radiation mechanisms such as diffracted transition
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radiation (DTR) and diffracted bremsstrahlung (DB); see,
e.g., Refs. [6,9,10], and references therein.
From the foregoing, it is important and relevant to

conduct an analysis of the dependence of the angular
distributions of the coherent radiation of electrons in
crystals from the beam dimensions, the observation angle,
and other experimental conditions, aimed at developing a
new technique for determining the transverse dimensions of
electron beams of high energy.
Another method of beam size measurement is the use of

so-called wire scanners [11–13]. These devices measure
secondary electron emission [11] or bremsstrahlung, aris-
ing from the beam interaction with a thin carbon or
tungsten wire moved across the beam [12,13]. The method
allows the beam size to be determined up to 5–8 μm. To
determine the strengths and weaknesses of the suggested
new method as an alternative to existing methods, it is
instructive to compare it with the wire scanner method.

II. ACCOUNTING FOR THE SPATIAL
DIMENSIONS OF THE ELECTRON BEAM

As noted above, an advantage of the coherent radiation
of electrons in crystals for measuring the dimensions of an
electron beam is the good agreement between measurement
results and the calculations of Ref. [6], which allows us to
analyze the dependence of the characteristics of the angular
distribution of radiation on beam parameters through
calculations.
The influence of the beam dimensions and the distance

between the crystal and the detector on the measured two-
dimensional angular distribution of coherent radiation (see,
e.g., Ref. [4]) can be described by the following expression:

Yðθ0y;θ0xÞ¼
ZZ

Yðθy;θxÞGðθy → θ0y;θx → θ0xÞdθydθx; ð1Þ

where θx and θy are the horizontal and vertical projections,
respectively, of the photon emission angle, measured
relative to the Bragg direction. The reflecting plane is
positioned vertically. The functions Yðθ0y; θ0xÞ and Yðθy; θxÞ
are the angular distributions of the coherent radiation for an
extended and pointlike beam of particles on the target,
respectively. Integration is carried out within a full solid
angle. The function Gðθy → θ0y; θx → θ0xÞ describes the
relationship between the variables of each of these dis-
tributions. For a two-dimensional Gaussian distribution of
the spread of the points of entry of electrons into a crystal,
the function can be represented as

Gðθy → θ0y; θx → θ0xÞ

¼ R2

2πσyσx
exp

�
−R2ðθy − θ0yÞ2

2σ2y

�
exp

�
−R2ðθx − θ0xÞ2

2σ2x

�
;

ð2Þ

where σx and σy are characteristic beam dimensions in the
horizontal and vertical planes, respectively, and R is the
distance between the crystal and the detector.
In the experiment, the dependence of the output of the

radiation incident on the detector with a fixed aperture on
its position, that is, the vertical YðθyiÞ or horizontal YðθxiÞ
angular distributions, is determined. In particular, the
vertical distribution can be written in the following form:

YðθyiÞ ¼
Z Z

ΔΩðyiÞ
Yðθ0y; θ0xÞdθ0ydθ0x; ð3Þ

where ΔΩðyiÞ is the solid angle overlapped by the detector
located at the point yi, over which the integration is
carried out.
Using the calculation technique in Ref. [14] to account

for the spatial distribution of electrons incident on the
crystal requires taking into account the change in the
angle of the detector relative to the direction of the electron
beam for each point of the crystal on which the electrons
fall. This requires considerable computational time, making
the calculation almost impossible. However, the fact that a
shift of the emitting point is nearly equivalent to a change in
the position of the angle of the detector’s location in the
vertical or horizontal plane makes it possible to replace this
shift by a corresponding displacement of the detector
position. The characteristic size of the electron beam
usually does not exceed several hundred microns, whereas
the distance between the crystal and the detector is usually
on the order of one meter. Therefore, the change in the solid
angle covered by the detector unit due to a shift of the
radiating point in the first approximation can be neglected.
In other words, the presence of a beam projection on the

target is equivalent to increasing the real size of the detector
�δx=2, �δy=2 in both planes to �Δx=2 ¼ �δx=2� nσx
and �Δy=2 ¼ �δy=2� nσy, where σx;y is the character-
istic size of the electron beam in the horizontal and vertical
planes and n is the number of standard deviations consid-
ered. Because of the difference in the physics of the process
and the methodology for calculating the PXR and the
diffraction of real photons in the method of Ref. [14],
calculation methods that take into account the transverse
dimensions of the electron beam on the target are different
for each of these radiation mechanisms.
The method [14] is based on the PXR kinematic theory

[15] and dynamic x-ray diffraction theory using the Darvin
and Prins approach for x-ray multiple rediffraction on the
crystal planes [16,17]. This allows the description of the
absolute coherent emission yield and the emission angular
distributions for a pointlike electron beam with an error of
less than 15% [18].
A detailed description of the technique for each radia-

tion mechanism and a comparison between experimental
results [19,20] and calculations is given in Ref. [21]. This
technique was used to compare measured PXR spatial
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distributions from a thin silicon crystal and controlled sizes
of an electron beam [7] with calculations and showed a
satisfactory agreement [22].

III. ANALYSIS OF DEPENDENCE OF RADIATION
ANGULAR DISTRIBUTIONS ON BEAM SIZES

The good agreement between the measured and calcu-
lated dependences obtained in Ref. [21] allows us to
analyze the effect of the electron beam profile on the
recorded radiation intensity distribution by calculations and
to choose the most simple and convenient way of meas-
uring the characteristic beam dimensions. To simplify the
problem, the calculations are performed for the experimental
conditions in Ref. [20] for the reflecting plane (011). The
electron beam energy is 255 MeV, and the sample used is a
diamondwith a large face perpendicular to the h100i axis and
a thickness of 50 μm. The dimensions of the electron beam
on the target are σx ¼ 0.3 mm and σy ¼ 0.9 mm.
As can be seen from Eqs. (1) and (2), a change in the

distance between the crystal and the detector leads to a
change in the recorded radiation distribution, which can be
used to estimate the beam size. To demonstrate this, Fig. 1
shows the vertical angular distributions of radiation for the
following distances R between the crystal and the detector:
5, 1, 0.5, and 0.2 m. All the conditions except for the
distances coincide with the conditions of the experiment in
Ref. [20]. For convenience of comparison, the calculation is
performed for different detector element sizes and motion
steps, chosen so that the solid angle overlapped by the
detector unit remains constant. Since the photon yield for
higher reflection orders does not exceed 3%–5% of the first
allowed order intensity of reflection (022) [20], the con-
tributions of higher orders were not taken into account.
As can be seen from Fig. 1, the distribution for the

distance of 5 m practically coincides with that for a
pointlike beam. As R decreases, the difference between

these distributions and the distribution for a pointlike beam
increases.
As a characteristic of the shape of the measured angular

distribution of the radiation yield Y for a fixed distance
between the crystal and the detector Rj, it is most
convenient to take the variance of this distribution DðθyÞRj

:

DðθyÞRj
¼

P
n
i¼1 YRj

ðθyiÞ · ðθyi − θ̄Rj
Þ2P

n
i¼1 YRj

ðθyiÞ
; ð4Þ

where n is the number of points in the measured depend-
ence and θ̄Rj

is the coordinates of its center of gravity.
The simulation shows that the distribution variance

increases when the beam size increases and when the
distance between the crystal and detector decreases. To
confirm this, Fig. 2 presents the dependence of the effective

divergence σ0yj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðθyÞRj

−DðθyÞR¼∞

q
on the distance

between the crystal and the detector for the conditions of
the experiment [20]. The electron beam sizes are σx ¼
0.3 mm and σy ¼ 0.9 mm. Here, DðθyÞRj

and DðθyÞR¼∞

are the variances of the radiation angular distributions for
extended and pointlike electron beams, respectively
(see Fig. 1).
Figure 2 shows that σyj ¼ Rj · σ0yj changes from 0.75 to

0.9 mm, has a weak dependence on the distance between
the crystal and the detector, and is close to the beam size
value σy ¼ 0.9 mm used in the simulation. A significant
difference is observed only for Rj ¼ 5 m, where the
emission angular distribution practically coincides with
that for a pointlike beam and σ02yj ≪ DðθyÞRj

.
As noted above, a similar ratio of beam dimensions to the

target measured with the aid of PXR detection and optical
transition radiation was obtained in Ref. [8]. Therefore,
Rj · σ0yj can be considered an estimate of the beam size σ̃y.
The observed difference between σ̃y and σy is due to the
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FIG. 1. Vertical angular distribution of radiation for the
experimental conditions in Ref. [20] and the reflecting plane
(011). Electron energy 255 MeV; diamond crystal thickness,
50 μm; (022) reflection order; observation angle ΘD ¼ 32.2°.
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FIG. 2. Dependence of the effective divergence σ0y and the beam
size estimate σy on the distance between the crystal and the
detector for the conditions of the experiment [20].
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influence of the beam dimensions in the horizontal plane on
the measured vertical distribution. The simulation shows
that, for the horizontal beam size σx ∼ 0.01 mm, the values
σ̃y and σy coincide.
The main difficulty in using the proposed technique in a

real experiment is the requirement to have information on
the variance of the angular distribution for a pointlike beam
or the angular distribution measured for a very large
distance between the crystal and the detector. The use of
the calculated distribution in practice is not feasible, since
the efficiency of coordinate detectors is known with an
accuracy not better than 5%–10%. Moreover, the diver-
gence of the electron beam and the degree of crystal
imperfection, which affect the angular distribution of
radiation, as a rule are not known precisely.
To solve this problem, we can use the fact that the

unknown variance of the distribution for a pointlike
beam in accordance with the expression σ0yj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðθyÞRj

−DðθyÞR¼∞

q
can be obtained frommeasurements

of another distance between the crystal and the detector,
which allows us to neglect the value DðθyÞR¼∞.
Consider measurements carried out for two distances

between the crystal and the detector R1 and R2, and
R1 ¼ k · R2, where k significantly differs from unity. In
this case, we can write the equation relating the variance of
the distribution for these distances:

ðσy=R2Þ2 − ðσy=R1Þ2 ≈DðθyÞR2
−DðθyÞR1

: ð5Þ
From this, we can obtain the following estimate of the
characteristic beam size:

eσy ≈ k · R2ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðθyÞR2

−DðθyÞR1

q
: ð6Þ

The estimate obtained in this way using dependencies in
Fig. 1 for distances between the crystal and detector of
R1 ¼ 1 m and R2 ¼ 0.5 m gives σ̃y ≈ 0.78 mm, which
coincides with the value obtained using the angular dis-
tribution for the pointlike beam and the distance of 1 m
σy ¼ 0.784 mm; see Fig. 2.
Calculations show that the beam size on the target also

affects the angular distribution for other orientations,
crystals, and observation angles. The degree of this
influence depends on the ratio of the value σ0 ¼ σ=R
and the characteristic angle of photon emission at

Θph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ−2 þ ω2

p

ω2

q
, where γ is the Lorentz factor and ω

and ωp are the photon energy and the plasmon energy of
the medium, respectively.
For large Θph and small σ0, the difference between

DðθyÞRj
and DðθyÞR¼∞ appears too small, and the equa-

tions σ0yj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðθyÞRj

−DðθyÞR¼∞

q
and fσyj ¼ Rj · σ0yj

become invalid. The distance of 5 m where σ̃y ∼ 1.7 mm
is about twice the real beam size (see Fig. 2) and

corresponds with a ratio of σ0 ¼ 0.18 mrad and Θph ¼
2.94 mrad of about 0.06. Therefore, confident use of the
proposed method for estimating the size of the beam on the
target σ is possible only if the condition σ0 ¼ σ=R2 ≥
0.1 Θph is satisfied, where R2 is the smaller of the two
distances between the crystal and the detector.
The main problem in its realization is the ineradicable

mutual influence of the beam sizes in the vertical and
horizontal planes on the recorded angular distributions in
another direction, as noted above.

IV. PROPOSED MEASUREMENT TECHNIQUE

It is not possible to solve the problem of the mutual
influence of the beam sizes in both planes on the measured
radiation intensity distribution in these directions. Therefore,
from the one-dimensional distributions described in formula
(3) in the vertical and horizontal directions, it is necessary to
go to two-dimensional distributions. For a coordinate detec-
tor located at a distance R, the measured two-dimensional
radiation intensity distribution YRðθyi ; θxjÞ can be written in
analogy with Eq. (3) in the following form:

YRðθyi ; θxjÞ ¼
ZZ

ΔΩðyi;xjÞ

YRðθ0y; θ0xÞdθ0ydθ0x; ð7Þ

where YRðθ0y; θ0xÞ is the convolution of the radiation angular
distribution for the pointlike beam with a Gaussian distri-
bution whose parameters, in accordance with Eqs. (1)
and (2), are determined by the beam sizes and the distance
between the crystal and the detector. As before,ΔΩðyi; xjÞ is
the solid angle overlapped by the detector element located at
the point yi, xj, over which the integration is performed.
The difference between the distributions YR1

ðθyi ; θxjÞ
and YR2

ðθyi ; θxjÞ, measured for distances R1 and R2,
respectively, is due only to the characteristic beam
dimensions and the distances between the crystal and the
detector. As in the case of one-dimensional distributions,
we assume that R1 ¼ k · R2 and the solid angles overlapped
by the detector units are the same in each measurement. In
the first approximation, we can assume that YR2

ðθyi ; θxjÞ is
the convolution of the distribution YR1

ðθyi ; θxjÞ with a
Gaussian distribution with a variance that depends on the
unknown sizes of the beam on the target and the values R1

and R2.
To determine the beam dimensions on the target, we use

the least squares method, minimizing the quadratic form:

Xn
i¼1

Xm
j¼1

�
YR2

ðθyi ;θxjÞ−
1

2πσ0xσ0y

Xn
i0¼1

Xm
j0¼1

YR1
ðθyi0 ;θxj0Þ

×exp

�
−
ðθyi−θyi0 Þ2
2ðσ0yÞ2

�
exp

�
−
ðθxj−θxj0 Þ2
2ðσ0xÞ2

��
2

¼Min; ð8Þ

YU. A. GOPONOV et al. PHYS. REV. ACCEL. BEAMS 22, 082803 (2019)

082803-4



where m and n are the number of points of the measured
distributions in the horizontal and vertical directions,
respectively. By analogy with the one-dimensional case,
the fitting parameters σ0x and σ0y, minimizing this form, are
related to the beam size estimates on the target eσx and eσy
as follows:

σ̃y;x ≈
k · R2ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p σ0y;x: ð9Þ

To test the proposed method and determine the limits of
its applicability, a simulation of the beam size estimation
from two-dimensional distributions using the convolution
parameter variation method is carried out. The simulation is
performed for the experimental conditions in Ref. [19], that
is, a silicon crystal with a (011) reflecting plane and an
observation angle of 32.2°. The characteristic angle of
the PXR emission is Θph ¼ 3.317 mrad. The electron
energy is E0 ¼ 255 MeV. The detector pixel sizes are
0.1 and 0.2 mm in both directions for R2 ¼ 0.5 m and
R1 ¼ 1 m, respectively. The sizes of the electron beam on
the crystal are σx ¼ 0.3 mm and σy ¼ 0.8 mm. Figure 3
shows the vertical (a) and horizontal (b) distributions
passing through the reflex center. As the model angular
distribution of the PXR, the Feranchuk-Ivashin distribution
[23] is chosen:

YPXRðθx; θyÞ ¼ NPXRðωÞ
θ2xcos22ΘB þ θ2y
ðθ2x þ θ2y þ Θ2

phÞ2
: ð10Þ

Here, NPXRðωÞ is the multiplier that characterizes the PXR
yield, and ΘB is the angle of the crystal plane rotation with
respect to the electron beam direction.
To obtain the radiation angular distribution for a point-

like beam, the model distribution was convolved with a
two-dimensional Gaussian distribution with θe ¼ 0.3mrad,
where θe is the electron beam divergence. The contribution
of the diffraction of real photons to the total radiation
intensity for these conditions does not exceed a few percent
[14] and, therefore, is not taken into account.
Two other curves are shown in Fig. 3, corresponding to the

extended electron beam for distances between the crystal and
detector of R1 ¼ 2R2 ¼ 1 m and R2 ¼ 0.5 m, respectively.
To take into account the possible effect of the statistical
spread of the measurement results, the dependences for the
extended electron beams aremade to be “noisy” according to
the uniformdistribution and error region�10% at eachpoint.
The error in determining the fitting parameters and

estimating the beamdimensions obtained using the proposed
technique does not exceed a few percent. The dependence
obtained by “fitting” is practically the same as the curve for
the shorter distance and, therefore, is not given.
To determine the method sensitivity, we carried out a

sequence of beam size estimations for the same beam size
values and different noisy angular distributions from the

distances between the crystal and the detector. The simu-
lations were made for σx ¼ 0.3 mm and σy ¼ 0.8 mm. The
other parameters were the same as for Fig. 3. The
dependence of the obtained σ̃y;x values on the shorter
distance is presented in Fig. 4. As errors, we took the
standard deviations of the estimated values from the
average value. As before, the ratio R1 ¼ 2R2 is fulfilled.
From Fig. 4, we can see that for this distance region the

errors of the beam size estimate in the vertical and
horizontal directions are not worse than 5%–7%.
However, for a distance of more than 1 m, the σ̃x values
differ from the true amount σx ¼ 0.3 mm, while the σ̃y
values are close to the real amount σy ¼ 0.8 mm. For these
distances, the ratio of σ0x ¼ σx=R2 < 0.3 mrad and Θph ¼
3.317 mrad becomes less than 0.1. For both the one-
dimensional and two-dimensional cases for smaller values
of σ0, the distinction between distributions for different
distances is practically absent, and the method loses
sensitivity.

0

100

200

300

400

500
model
pointlike beam
1 m
0.5 m
1 m
(with error)
0.5 m
(with error)

Y
ie

ld
 (

ar
b.

 u
ni

ts
)

y
 (mrad)

(a)

0

100

200

300

400

500

-30 -20 -10 0 10 20 30

-30 -20 -10 0 10 20 30

model
pointlike beam
1 m
0.5 m
1 m
(with error)
0.5 m
(with error)

Y
ie

ld
 (

ar
b.

 u
ni

ts
)

x
 (mrad)

(b)

FIG. 3. Angular distribution of radiation in the vertical (a) and
horizontal (b) directions, showing a model PXR angular distri-
bution, radiation distribution for a pointlike electron beam, and
distributions for the extended electron beam with distances R1 ¼
1 m and R2 ¼ 0.5 m. Electrons energy 255 MeV; silicon crystal;
(022) reflection order; observation angle ΘD ¼ 32.2°.
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It is important to note that the two-dimensional method
allows us to determine the beam size in both directions,
while the one-dimensional case provides an estimate of the
larger beam size only.
Equally important is the requirement σx;y ∼ δx;y, that is,

the size of the element of the coordinate detector δx;y should
be comparable with the characteristic particle beam dimen-
sions on the target. For a pixel size in both directions of
0.05 mm, σ̃y;x can be reliably determined with an error of
about 10% even for R2 ¼ 0.5 m and beam sizes σx ¼
0.1 mm and σy ¼ 0.3 mm, that is, for σ0x ∼ 0.05 Θph.
Assuming that the observation angle and the distance

between the crystal and the coordinate detector, achieved in
the experiment [7], are close to the limits, it is possible
to estimate the minimum sizes of the electron beam
available for the proposed method. This experiment was
performed for an electron energy of 855 MeV, (004)
reflection order of a silicon crystal, an observation
angle of 22.5°, and a distance between the crystal and
the detector of R ¼ 0.35 m that gave a spacing between
the electron beam line and the detector center of about
130 mm. The characteristic angle of the PXR emission is
Θph ≈ 1.54 mrad, and the minimum confidently estimated
beam size is σ ≈ 0.1R2 · Θph ∼ 50–60 μm.
In other words, a technique based on measuring the

spatial distribution of the PXR beam for two distances
provides a beam size measurement of the order of 100 μm
and higher, which is typical for middle energy accelerators.
However, this does not make possible measurements on the
order of tens of microns in modern sources of fourth-
generation radiation [1], for which there is a problem in
measuring the transverse sizes of an electron bunch with
small longitudinal sizes [2].
As noted in Ref. [24] and confirmed in Refs. [25,26], for

an electron energy above several GeV, the contribution of
the DTR at the center of the reflex becomes significantly

greater than the contribution of the PXR, and the resulting
angular distribution of the radiation yield varies signifi-
cantly. Figure 5 gives an example vertical angular dis-
tribution of the radiation for a pointlike electron beam
and an observation angle ΘD ¼ 32.2°, an electron energy
of 10 GeV, and a silicon crystal 20 μm thick with the
plane (011) turned on an angleΘB ¼ 16.1°. The divergence
of the electron beam is 5 μrad. Located at a distance of
2 m from the crystal, a detector with dimensions of
20 × 20 μm2 is translated in steps of 20 μm through the
center of the radiation angular distribution. The curves
are the results of calculating PXR and DTR using the
technique of Ref. [14]. The contribution of DB is absent,
since ω ¼ 11.64 keV ≪ γωp ∼ 603 keV.
As can be seen from Fig. 5, the angular density of the

DTR is more than 500 times larger than the PXR intensity.
In the center of the reflex, the difference is even greater.
Therefore, the PXR contribution, in the first approximation,
can be considered as having no singularities and can, in
general, be neglected. The presence of a bright narrow peak
in the angular distribution of the radiation close to the PXR
angular distribution allows the use of the above-described
technique not only for PXR, but also for DTR. In this case,
the characteristic angle of photon outputΘch is close to γ−1;
that is, for electron energies above 5 GeV, it decreases by 10
or more times compared with Θph. As a result, the
minimum beam size measured by the proposed method
decreases from hundreds to tens of microns.
To verify this, a simulation of the electron beam size

estimate with an energy of 10 GeV is carried out. The
simulation is performed for the following conditions: reflec-
tion (022) from a silicon crystal, an observation angle of
32.2°, and detector element dimensions for a shorter distance
of 0.01 × 0.01 mm2. The dimensions of the electron beam
on the crystal are σx ¼ 15 and σy ¼ 20 μm. The divergence
of the electron beam is θe ¼ 15 μrad. Figure 6 shows the
DTR vertical angular distribution passing through the center
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FIG. 4. Dependence of the beam size estimates from the
distance between the crystal and the detector. Silicon; electron
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of the radiation spot. As has been shown in several papers
(see, e.g., Refs. [10,27]), the two-dimensional angular
distribution of the DTR can be represented as

YDTRðθx; θyÞ ¼ NDTRðωÞ
θ2xcos22ΘB þ θ2y

½ðθ2 þ Θ2
phÞðθ2 þ γ−2Þ�2 ; ð11Þ

where θ2 ¼ θ2x þ θ2y and NDTRðωÞ is the multiplier that
characterizes the DTR output and depends on the viewing
angle, the order of reflection, and the photon energy. For the
reasons mentioned above, the PXR contribution was not
taken into account. To obtain the radiation angular distribu-
tion for a pointlike electron beam, the DTR distribution was
convolved with a two-dimensional Gaussian distribution
with θe ¼ 15 μrad. Two other curves correspond to the
extended electron beam and distances between the crystal
and the detector ofR1 ¼ 2 mandR2 ¼ 1 m, respectively. To
take into account the possible effect of the statistical spread of
the measurement results, the dependences for an extended
electron beam are made to be noisy at each point, similar to
the PXR angular distribution (see the comments for Fig. 3).
As in the case of PXR, the error in determining the fitting

parameters and estimating the beam dimensions obtained
using the proposed technique for these conditions does not
exceed a few percent.
To determine the method sensitivity, we carried out a

sequence of beam size estimations for the same beam size
and different noisy angular distributions from the distances
between the crystal and the detector. The dependence of
the obtained σ̃y;x values with their errors on the shorter
distance is presented in Fig. 7. As before, the condition
R1 ¼ 2R2 is fulfilled. The simulation was made for the
beam sizes σx ¼ 20 μm and σy ¼ 30 μm.

From Fig. 7, we can see that for this distance region errors
of the beam size estimate in the vertical and horizontal
directions are no more than 5%–7%. As in the case of PXR,
the difference between the estimated value σ̃x;y and the true
amount σx;y increases with increasing R2. These differences
become greater than the standard deviation values of σ̃x;y for
R2 of about 2.5 and 5 m for the horizontal and the vertical
sizes, respectively, when σ0x;y ¼ σx;y=R2 ∼ 0.1 Θch and less,
where Θch is γ−1 ≈ 51.1 μrad. For small values of σ0, the
distinction between distributions for different distances is
practically absent, and the method loses sensitivity. It should
be noted that for a larger “noise” level, a difference between
the σ̃x;y value and true σx;y amount begins to appear for
smaller distances.
If the electron beam symmetry planes do not coincide

with the horizontal and vertical planes (see, e.g., Ref. [13]),
the azimuth direction angle between the symmetry and
horizontal planes may also be included and determined
under the fitting procedure.
The requirement of σx;y ∼ δx;y in the case of DTR and

electron energies above 5 GeV becomes even more
significant due to the limitation of the pixel size of x-ray
coordinate detectors. In the already mentioned work [7], a
detector was used with pixel sizes of 11.2 × 11.6 μm2.
Therefore, we can assume that the minimum confidently
estimated beam size is σ ≥ 10 μm.
The main requirement for the successful implementation

of the proposed method for estimating the dimensions of
an electron beam on a target from measured radiation
intensity distributions is the equality of the solid angles
overlapped by the “element” of the detector for both
distances. The emission of secondary electrons and photons
from the region where x-ray photons interact with the
detector material distorts the measured distribution,
“smoothing” it. This problem requires additional study,
including the selection of a coordinate detector for possible
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FIG. 7. Dependence of the beam size estimates on the distance
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measurements and determining an appropriate viewing
angle, crystal, a model for the characteristics of the
detector, and their effect on the measurement results.

V. CONCLUSIONS

The transverse size of a particle beam σx;y in a linear
electron accelerator can be determined by measuring the
two-dimensional angular distributions of the particle radi-
ation in thin crystals: PXR or DTR for two distinct
distances between the crystal and the coordinate detector.
As discussed in Sec. III, the horizontal beam size meas-
urement is affected by the vertical beam size and vice
versa for the one-dimensional method; therefore, we have
proposed a two-dimensional method in Sec. IV, where
the horizontal and vertical beam sizes can be obtained
independently.
The PXR and DTR angular distributions look like a

funnel with a solution angle Θch. Therefore, in the angular
distribution, the influence of the vertical beam size on the
vertical angular distribution is stronger than the horizontal
one and vice versa. This allows estimating both vertical and
horizontal beam sizes almost separately.
The beam dimensions are determined by fitting the

distribution for a shorter distance by a convolution of
the distribution for a larger distance with a two-dimensional
Gaussian distribution whose parameters are uniquely
related to the beam dimensions and the distances between
the crystal and the detectors.
The limit of the applicability of the technique is the

condition σx;y=R > 0.1 Θch. For the PXR mechanism, the
characteristic angle Θch coincides with Θph, and, for
the mechanism of DTR, for thin crystals and electron
energies above several GeV, it is close to γ−1.
An additional requirement is the fulfillment of a con-

dition on the ratio of the characteristic beam dimensions
and the dimensions of the detector element σx;y ∼ δx;y.
Simultaneous fulfillment of these requirements limits the
measured beam size to 50–60 μm for the PXR mechanism
and an electron energy of less than 1 GeV and 10–15 μm
for the mechanism of DTR and electrons with an energy
above several GeV.
The proposed method for estimating the electron beam

sizes is model independent and does not require knowledge
of the divergence of the beam and the degree of perfection
of the crystal. The main requirement of the applicability of
the technique is identifying the true angular distribution of
the radiation in each of the measurements for different
distances between the crystal and the detector and an
adequate definition of the background, including for large
observation angles relative to the center of the reflex, since
the fit includes an allowance for the deviation of the
distributions over the entire measured angular range. The
technique is weakly sensitive to pulse heating of the target
if it does not destroy the crystal [28] and can be used on

intense beams of linear accelerators creating x-ray free-
electron lasers [1].
The best resolution of wire scanners (less than 10 μm) is

better than that for the methods proposed in this manu-
script. However, many conventional wire scanners employ
wires with diameters of 100 μm or less. These resolutions
are comparable to that for our method. Furthermore, wire
scanners have some disadvantages such as (i) some of them
are one-dimensional monitors—i.e., the horizontal and
vertical beam sizes cannot both be determined at the same
time; (ii) wire vibration problems, which are severe
especially for thin wires—i.e., high-resolution wire scan-
ners; (iii) the handling of secondary radiation or particle
detectors is not simple (sometimes careful simulation is
necessary); and (iv) a bending magnet is necessary to
measure bremsstrahlung beam cleaning.
In our proposed method, both the horizontal and vertical

beam sizes can be determined at the same time. Moreover, x
rays can be extracted to air through a Be window at a large
angle with respect to the beam direction (i.e., the back-
ground level is low), and conventional two-dimensional
x-ray detectors can be used. We think that the experimental
setup is no more complicated than that for wire scanners.
Therefore, we believe that our proposed method is impor-
tant as an alternative to wire scanners.
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