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A particle, which moves in a crystal experiences weak interactions with electrons and nuclei along
with electromagnetic interaction. Measuring the polarization vector and the angular distribution of
charged and neutral particles scattered by axes (planes) of an unbent (straight) crystal enables to
obtain restrictions for the electromagnetic dipole moments value and for magnitudes of constants
describing T-odd (CP-odd) interactions beyond the standard model. Spin precession of channeled
particles in bent crystals at the LHC gives a unique possibility for measurement of constants
determining T-odd (CP-odd) violating interactions of short-lived baryons and τ-leptons with
electrons and nuclei (nucleons), similarly to the possibility of measuring particles’ electric and
magnetic moments. Methods to separate P-odd spin rotation from the MDM-caused and T-odd spin
rotations are discussed.
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I. INTRODUCTION

Violation of parity (P) and time reversal (T) sym-
metries lead to appearance of numerous processes
allowing investigation of physics beyond the standard
model. Recently, the experimental approach was pro-
posed [1–4] to search for the electromagnetic dipole
moments (EDM) of charged short-lived heavy baryons
and τ-leptons using bent crystals at LHC. According to
[5–7] the same approach gives a unique possibility for
investigation of P-odd T-even and P-odd T-odd (CP-odd)
interactions of short-lived baryons (τ-leptons) with elec-
trons and nuclei. Constraints on constants of the above
interactions can also be obtained.
This paper demonstrates that measuring the polarization

vector and the angular distribution of charged and neutral
particles scattered by axes (planes) of an unbent (straight)
crystal enables to obtain restrictions for the EDM value and
for magnitudes of constants describing T-odd (CP-odd)
interactions beyond the standard model.
This paper also considers how P- and T-odd effects,

which accompany interaction of baryons (τ-leptons) with
electrons and nuclei in crystals, influence EDM measure-
ment at the LHC. Experimental methods to distinguish
different contributions to spin rotation are suggested.

II. RELATIVISTIC PARTICLE SPIN
INTERACTIONS WITH CRYSTALS

Since the motion of a high energy particle in a
crystal is of quasiclassical nature, the evolution of the
particle spin in the electromagnetic fields inside the crystal
is governed by the Thomas-Bargmann-Michel-Telegdi
(T-BMT) equations [8]. The T-BMT equation describes
spin motion in the rest frame of the particle, wherein spin

is described by three component vector S⃗. In practice the
T-BMT equation well describes the spin precession in
external electric and magnetic fields encountered in typical
present accelerators. Study of the T-BMT equation enables
one to determine the major peculiarities of spin motion in
an external electromagnetic field, to describe the spin
rotation effect for particles in a crystal and to apply it
for measuring magnetic moments of unstable particles
[2,9–17]. However, it should be taken into account that
particles in an accelerator or a bent crystal have energy
spread and move along different orbits. This necessitates
to average the spin-dependent parameters of the particle
over phase space of the particle beam. That is why one
should always bear in mind the distinction between beam

polarization ξ⃗ and spin vector S⃗. A complete description of
particle spin motion can be made by the use of the spin
density matrices equation (for more details, see [10,18]).
For the case of ultrarelativistic baryons with spin S ¼ 1=2
the T-BMT equations supplied with the term, which is
responsible for interaction between particle EDM and the
electric field, can be written as follows (γ ≫ 1; γ is the
Lorentz factor) [1,2,19,20]:
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dξ⃗
dt

¼ ½ξ⃗ × Ω⃗magn� þ ½ξ⃗ × Ω⃗EDM�; ð1Þ

where ξ⃗ is the particle polarization vector, Ω⃗magn ¼
− eðg−2Þ

2mc ½β⃗ × E⃗⊥�, g is the gyromagnetic ratio (by defini-

tion, the particle magnetic moment μ ¼ egℏ
2mc S, where S is

the particle spin), Ω⃗EDM ¼ 2ed
ℏ E⃗⊥, E⃗⊥ is an electric field

component perpendicular to the particle velocity v⃗, the

unit vector β⃗ is parallel to the velocity v⃗, and quantity
D ¼ ed is the electric dipole moment.
Note that the authors of [3] use for electric dipole

moment the following expression: δ⃗ ¼ JdμBs⃗, where J
is the particle spin, d is the dimensionless factor referred to
as the gyroelectric ratio, μB ¼ eℏ

2mc is the particle magneton,
and s⃗ is the spin polarization ratio.
It should be mentioned that for particles with spin 3=2

(Ω� hyperon) T-BMT equations should be supplemented
by the terms which consider possession of electric quadru-
pole moment by the particle [10,11]. Moreover, the Ω�
hyperon could also possess the T-odd magnetic quadrupole
moment, because its spin value is as high as 3=2. According
to [10,11] investigation of spin rotation for Ω� hyperons
in straight and bent crystals enables to measure the
quadrupole moment of the Ω� hyperon, which cannot
be measured by the use of available in a laboratory
noncrystalline macroscopic nonuniform electric fields.

III. P- AND T-ODD SPIN INTERACTIONS
IN CRYSTALS

The general expression for the amplitude of elastic
coherent scattering of a spin 1=2 particle by a spinless
(unpolarized) atom in the presence of electromagnetic,
strong and P-, T-odd weak interactions can be written as

F̂ðq⃗Þ ¼ Aðq⃗Þ þ Bðq⃗Þσ⃗ N⃗þBwðq⃗Þσ⃗ N⃗w þBT σ⃗ N⃗T; ð2Þ

where Aðq⃗Þ is the spin-independent part of scattering
amplitude, which is caused by electromagnetic, strong
and weak interactions of the particle with electrons and
nucleus of the atom, ℏq⃗ ¼ ℏk⃗0 − ℏk⃗ is the transmitted
momentum, ℏk⃗0 is the momentum of the scattered particle,
ℏk⃗ is the momentum of the incident baryon, k⃗0 and k⃗ are

the wave vectors, N⃗ ¼ ½k⃗0×k⃗�
½k⃗0×k⃗�, N⃗w ¼ k⃗0þk⃗

jk⃗0þk⃗j, N⃗T ¼ k⃗0−k⃗
jk⃗0−k⃗j, σ⃗ ¼

ðσx; σy; σzÞ are the Pauli matrices.

The term, which is proportional to σ⃗N⃗, is responsible for
the contribution to the scattering process, which is caused
by spin-orbit interaction.
The spin-orbit electromagnetic interaction is determined

by the particle magnetic moment. The P-odd T-even part
of the scattering amplitude (it is proportional to σ⃗ N⃗W)
is determined by P-odd T-even interactions of baryon

(τ-lepton) with electrons and nuclei. The T-odd part of
the scattering amplitude (it is proportional to σ⃗ N⃗T) is
determined by the electric dipole moment and short-range
particle-electron and particle-nucleus T-odd interactions.
The measurement of the amplitude BT enables the study of
physics beyond the standard model and getting limits for
the constants, which determine such interactions in hadron
and lepton sectors.
The amplitude F̂ðq⃗Þ determines the cross section of

particle scattering by a crystal and polarization vector of
the scattered particle. Let us now consider a thin crystal,
for which effects caused by channeling are not essential.
The scattering cross section for a thin crystal can be
written as [11]

dσcr
dΩ

¼ dσ
dΩ

�
ð1 − e−u

2q2Þ þ 1

N

���X
n
eiq⃗r⃗

0
n

���2e−u2q2
�
; ð3Þ

where r⃗0n is the coordinate of the center of gravity of the

crystal nucleus, and u2 is the mean square of thermal
oscillations of nuclei in the crystal. The first term
describes incoherent scattering, caused by the thermal
vibration of crystal nuclei and the second one describes
the coherent scattering due to periodic arrangement of
crystal nuclei (atoms).
Quantity dσ

dΩ describes the cross section of baryon
scattering by atoms of the crystal:

dσ
dΩ

¼ trρ̂ F̂þðq⃗ÞF̂ðq⃗Þ; ð4Þ

where ρ̂ is the spin density matrix of the incident particle.
The polarization vector of the particle, which has under-

gone a single scattering event, can be found using the
following expression:

ξ⃗ ¼ trρ̂ F̂þ σ⃗ F̂

trρ̂ F̂þ F̂
¼ trρ̂ F̂þ σ⃗ F̂

dσ
dΩ

: ð5Þ

Using (2) one can obtain the following expressions for
polarization vector of the scattered particle [7]:

ξ⃗ ¼ ξ⃗so þ ξ⃗w þ ξ⃗T; ð6Þ

where ξ⃗so is the contribution to polarization vector due to
spin-orbit interaction, ξ⃗w is that due to weak parity violating
interaction, and ξ⃗T is the contribution caused by T-odd
interaction:

ξ⃗so ¼ fðjAj2 − jBj2Þξ⃗0 þ 2jBj2N⃗ðN⃗ · ξ⃗0Þ

þ 2ImðAB�Þ½N⃗ × ξ⃗0� þ 2N⃗ReðAB�Þg ·
�
dσ
dΩ

�
−1
;

ð7Þ
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ξ⃗w ¼ fðjAj2 − jBwj2Þξ⃗0 þ 2jBwj2N⃗wðN⃗w · ξ⃗0Þ

þ 2ImðAB�
wÞ½N⃗w × ξ⃗0� þ 2N⃗wReðAB�

wÞg ·
�
dσ
dΩ

�
−1
;

ð8Þ

ξ⃗T ¼ fðjAj2 − jBT j2Þξ⃗0 þ 2jBT j2N⃗TðN⃗T · ξ⃗0Þ

þ 2ImðAB�
TÞ½N⃗T × ξ⃗0� þ 2N⃗TReðAB�

TÞg ·
�
dσ
dΩ

�
−1
;

ð9Þ

where ξ⃗0 is the polarization vector of a particle incident on a
target.
The differential cross section in the same case reads as

follows:

dσ
dΩ

¼ trρFþF

¼ jAj2 þ jBj2 þ jBwj2 þ jBT j2 þ 2ReðAB�ÞN⃗ · ξ⃗0

þ 2ReðAB�
wÞN⃗w · ξ⃗0 þ 2ReðAB�

TÞN⃗T · ξ⃗0: ð10Þ

While deriving expressions (7)–(9) and (10) the small
terms containing productions BBT , BBw and BwBT , which
describe interference between spin-orbit P-odd T-even and
P-odd T-odd interactions, are omitted.
These terms are much smaller compared to those

proportional to productions ABw and ABT , which describe
interference of weak interaction with strong and electro-
magnetic interactions.
However, the omitted contributions could be significant

for neutral particles (see comments hereafter).
In case of neutral particles there is no Coulomb scatter-

ing, therefore, the terms proportional to BBw and BBT
could also significantly contribute to anisotropy and spin
rotation. In this case expression (8) for ξw should be
appended with addition as follows:

Δξw ¼ f2ReðB�BwÞ½ðξ⃗0 N⃗ÞN⃗w þ ðξ⃗0N⃗wÞN⃗�

þ 2ImðB�BwÞ½N⃗ × N⃗w�g
dσ
dΩ

−1
: ð11Þ

Expression (9) for ξT should be appended with the
following summand:

ΔξT ¼ f2ReðB�BTÞ½ðξ⃗0 N⃗ÞN⃗T þ ðξ⃗0N⃗TÞN⃗�

þ 2ImðB�BTÞ½N⃗ × N⃗T �g
dσ
dΩ

−1
: ð12Þ

Expression (10) for dσ
dΩ should be appended with summand

dσapp
dΩ as follows:

dσapp
dΩ

¼ −2ImðB�BwÞξ⃗0½N⃗ × N⃗w�

− 2ImðB�BTÞξ⃗0½N⃗ × N⃗T �: ð13Þ

According to (7) the angle of polarization vector rotation
for a baryon scattered in a crystal is determined by rotations
around three mutually orthogonal directions (see terms
proportional to N, Nw, NT). The indicated rotations are
determined by electromagnetic, strong and weak P, T-odd
interactions. It should also be noted that initially unpolar-
ized particle beam (ξ0 ¼ 0) in a crystal acquires polariza-
tion directed along one of three vectors N⃗, N⃗w, N⃗T , which
carries information about all types of interaction too.
According to (10) amplitude interference results in asym-
metry in scattering caused by orientation of vectors N⃗T , N⃗,
N⃗w with respect to ξ⃗0; k⃗

0 and k⃗. Therefore, the angular
distribution of scattered particles intensity is anisotropic.
Thus, measurements of the polarization, the rotation angle
and the angular distribution of intensity for a particle beam
scattered by crystal axes enable to study T-odd interactions
of positive (negative) charged and neutral short-lived
baryons and τ-leptons. In particular, such measurements
allow one to obtain restrictions on electric dipole moment
of short-lived particles and other T-odd interactions in
hadron and lepton sectors. According to [5–7] the men-
tioned interactions can be much stronger than those
predicted by the standard model. Obtaining experimental
restrictions on these interactions is important [21–23].
Computer modeling is essential for further analysis.

Note that analyzing the angle of rotation and the angular
distribution one should consider trajectories of the scattered
particles with azimuth angles, which are in the vicinity φ
and φþ π (the z axis is directed along the momentum of the
incident particle). For such particles contributions to spin
rotation caused by EDM (T-odd interaction) have opposite
signs. As a result the T-odd spin rotation can be observed in
unbent crystal if we use subtraction of the measurement
results for angle ranges φ and φþ π from each other.
Such a procedure leads to summation of contributions from
T-odd rotation. Simultaneous measurement of spin orien-
tation for all φ values (as well as for all polar angles)
provides intensity increase and, therefore, increase in the
sensitivity of the EDM/MDM measurement. Note that use
of a crystal with polarized nuclei for measuring polarization
of scattered particles also could increase experiment sensi-
tivity. According to (10)–(12) the scattered initially non-
polarized particles acquire polarization, the value of which
is proportional to the amplitudes determined by the
considered interactions. Thus, use of nonpolarized incident
beam results in increase of intensity of scattered polarized
particles and, therefore, also enables enhancement of
experiment sensitivity.
Let us now evaluate the described effects starting from

estimation of anisotropy of the angular distribution of
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scattered particles. According to (10) the anisotropy value
is determined by interference of amplitude A with ampli-
tudes B, Bw and BT . The respective contributions to the
intensity of scattered particles associated with amplitudes’
interference are given by the following ratios:

G ¼ 2ReðABÞ
jAj2 ;

Gw ¼ 2ReðAB�
wÞ

jAj2 ;

GT ¼ 2ReðAB�
TÞ

jAj2 : ð14Þ

To observe anisotropy related to G, Gw or GT the
uncertainty in the number N of scattered particles δ ≈ 1ffiffiffi

N
p

should be made small. In other words the number of
scattered particles should satisfy the conditions as follows:

N >
1

G2
;
1

G2
w
;
1

G2
T
: ð15Þ

Let us now consider expressions (14) and (15) in more
detail. The amplitude A is the sum of the amplitudes Acoul
and As caused by Coulomb and strong nuclear scattering,
respectively. The amplitude of spin-orbit scattering B ¼
Bmagn þ Bso is caused by particle magnetic moment inter-
action Bmagn and by strong nuclear spin-orbit interaction
Bso. Let us start with evaluation of anisotropy G caused by
magnetic and strong nuclear spin-orbit interaction:

G ¼ 2ReðAsB�
magn þ AsB�

so þ AcoulB�
magn þ AcoulB�

soÞ
jAcoul þ Asj2

:

ð16Þ

For further analysis let us pay attention to the fact that from
results presented in [24] the scattering amplitude of a
particle, which possesses magnetic moment, by a Coulomb
field can be expressed as follows:

A ¼ AcoulðϑÞ þ i
1

2

�
g − 2

g
γ2 − 1

γ
þ γ − 1

γ

�
ϑAcoulðϑÞσ⃗ N⃗ :

ð17Þ

From (17) the following expression for amplitude Bmagn

can be obtained:

Bmagn ¼ i
1

2

�
g − 2

g
γ2 − 1

γ
þ γ − 1

γ

�
ϑAcoulðϑÞ: ð18Þ

As a result in the case of elastic Coulomb scattering
ReðAcoulB�

magnÞ ¼ 0. Analysis shows that for the contribu-
tion to the scattering amplitude caused by the spin-orbit

strong interaction one can obtain the expression similar
to (18) by using the optical model of a nucleus:

Bso ¼ i
1

2

�
gso − 2

g
γ2 − 1

γ
þ γ − 1

γ

�
ϑAsðϑÞ: ð19Þ

The quantity gso introduced in (19) is similar to the
magnetic g-factor and depends on the particle energy.
From (19) it follows that ReðAsB�

soÞ ¼ 0. Therefore,

ReðAB�Þ ≃ A00
sA0

coul

�
g − 2

4
þ gso − 2

4

�
γϑ;

here A0
coul ¼ ReAcoul and A00

s ¼ ImðAsÞ. The above expres-
sion is obtained with consideration of the imaginary part of
Coulomb amplitude A00

coul to be smaller as compared to its
real part A0

coul: A
00
coul is Zα times smaller as compared to

A0
coul (here α is the fine-structure constant).
To evaluate the imaginary part of amplitude A00

s of baryon
scattering by a nucleus let us use a model of diffraction
scattering. As a result in eikonal approximation A00

s reads as
follows:

A00
s ¼ Rnuc

J1ðRnuckϑÞ
ϑ

; ð20Þ

where Rnuc is the radius of nucleus, J1 is the Bessel
function of the first order. From (20) it follows that for
scattering angles ϑ ≤ 1

kRnuc
the imaginary part of scattering

amplitude A00
s ≈ kR2

nuc. The real part of Coulomb amplitude
A0
coul ¼ Zα

kϑ2 becomes comparable or even greater than A00
s for

scattering angles ϑ ≤
ffiffiffiffi
Zα

p
kRnuc

.
For a baryon with energy 1 TeV the scattering angle is

ϑ ≤
ffiffiffiffiffiffi
Zα

p
× 10−5. Therefore, in the range of angles, within

which A00
s ≃ A0

coul, parameter G ≃ ðgþgso
2

− 2Þγϑ ≃
ðgþgso

2
− 2Þ × 10−2. As a result, to comply inequality

N > 1
G2, the number of scattered particles should be

N ≃ 104 − 105.
Parameter gso depends on the energy of the incident

particle in contrast to the g-factor, which does not at
currently present particle energies. This fact makes it
possible to distinguish contributions from g and gso from
each other.
The number NΛþ

c
of charmed Λþ

c baryons produced by
1017 − 1018 protons in a tungsten target can be found using
data published in [1] that gives NΛþ

c
≈ 1013 − 1014. These

particles, move within angle 1
γ ≈ 10−3.

Hereafter, let us consider the incidence of Λþ
c baryons on

a target at the angle equal to or greater than the Lindhard
angle, which is for Si (Ge) of order ϑL ≈ 6ð7Þ × 10−6 rad.
Let us consider a range Δϑ ∼ 10−5, which amounts to
several Lindhard angles. Within this range Δϑ

γ ∼ 10−2,
therefore, the number of Λþ

c baryons within this range is
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ΔNΛþ
c
≈ 1011 − 1012. Let us now give evaluation for the

number of these particles scattered in a crystal of thickness
l ¼ 0.1 cm:

N ≈
dσ
dΩ

ΔΩNatlΔNΛþ
c
≈ 10−2ΔNΛþ

c
≈ 109 − 1010;

here Nat is the number of atoms in 1 cm3 of target. This
value complies condition N > 1

G2 ≈ 104 − 105 that enables
carrying measurement of baryon magnetic moment by
analysis of anisotropy of angular distribution of scattered
baryons.
Let us now evaluate baryon scattering anisotropy, which

is caused by T-odd processes, for example, presence of
particle EDM of order e · d ∼ 10−17 e cm.
For a particle possessing EDM, which is scattered in an

electric field, the following expression for amplitude BT in
eikonal approximation can be used:

BTðϑÞ ¼ idkϑAcoul ¼
d
λc

γϑAcoulðϑÞ; ð21Þ

where λc ¼ ℏ
mc is the Compton wavelength of the particle.

For the supposed EDM value amplitude BT appears to be 3
orders smaller as compared to amplitude of magnetic
scattering Bmagn. Therefore, GT ≈ 10−3 G and the number
of particles required to make anisotropy, which is asso-
ciated with amplitude BT , is higher 106 times i.e., required
number of particles N > 1010 − 1011. Recall that above for
the target with high Z and thickness l ¼ 0.1 cm we have
obtained N ≈ 109 − 1010. Therefore, increasing the target
thickness to l ¼ 1 cm (such a target is still quite thin) and
optimizing all the experiment parameters one could expect
to observe EDM-caused anisotropy and that caused by
other T-odd interactions. Such a possibility is important
for studying EDM and T-odd interactions of short-lived
particles.
Let us now dwell on the possibility to investigate EDM

and other T-odd interactions for τ-leptons, which do not
undergo strong interactions. The EDM-caused anisotropy
for τ-leptons is suppressed, because the contribution to the
cross section, which is caused by interference of Coulomb
amplitude and amplitude BT defined by (21), is equal to
zero. The nonzero summand is due to interference of
Coulomb amplitude and T-odd amplitude caused by neutral
currents. Restriction for the magnitude of the latter amplitude
enables to evaluate the constant of corresponding interaction.
The mentioned interaction is now persistently studied for
electrons in optical experiments with atoms [23].
Let us now evaluate the angle of spin rotation for a

scattered particle, which possesses EDM. According to (9)
the additional polarization component, which arises due to
rotation around N⃗T , is determined by the expression as
follows:

ΔξTrot ¼
2ImðAB�

TÞ
jAj2 : ð22Þ

Therefore, for a particle scattered in the Coulomb field the
angle of spin rotation can be evaluated using (7) as follows:

ϑs ≃ ΔξTrot ≃
d
λc

γϑ: ð23Þ

According to (23) the angle of spin rotation grows with
growth of scattering angle and γ (with scattering angle
growth the angles of spin rotation caused by other T-odd
interactions also grow). For d ¼ 10−17 cm and λc ¼
10−14 cm the angle of rotation isΔξTrot ≃ 10−3γϑ, therefore
for a particle with γ ∼ 103 the angle of spin rotation is
expected to be as high as the scattering angle: ϑs≃
ΔξTrot ≃ ϑ. Hence, for γ ¼ 103 and scattering angle ϑ ≃
10−4 − 10−5 the angle of spin rotation ϑs ≃ ΔξTrot ≃
10−4 − 10−5. The number of detected particles is
N > 1

ϑ2s
≃ 108 − 1010. Recall that in this case spin rotates

around direction N⃗T , which is determined by the direction
of transferred momentum q⃗.
Investigation of anisotropy and rotation angle caused by

amplitude of weak P-odd interaction Bw, which is deter-
mined by neutral P-odd currents, is of interest for short-
lived baryons and τ-leptons. Recall that for electrons the
neutral currents were observed in two types of experiments:
at deep inelastic scattering at SLAC accelerator [25–28]
and in optical experiments in Novosibirsk [29].

IV. RELATIVISTIC PARTICLE SPIN ROTATION
AND INTERACTIONS IN BENT CRYSTALS

Let us now consider a particle moving in a bent crystal.
Expressions for energy of interaction between a particle
and a crystal plane (axis), which are obtained in [5–7],
allow us to find the equation describing evolution of the
particle polarization vector in a bent crystal. The mentioned
equations differ from those describing spin evolution in
external electromagnetic fields in vacuum by the presence
of terms which define contributions to spin rotation from P
and T (CP) noninvariant interactions between electrons and
nuclei. As a result, when carrying the experiments for
search the EDM of short-lived baryons and τ-leptons in a
bent crystal in addition one can also obtain restrictions for
constants of T-odd interactions in hadron and lepton
sectors. Moreover, a new effect, which is caused by
nonelastic processes, arises: along with the spin precession
around vectors N⃗m, N⃗T , β⃗, the spin components directed
along vectors N⃗m; ðN⃗T; β⃗Þ appear and, thus, spin dichroism
occurs. Let us remind that N⃗m ¼ ½β⃗ × n⃗x�, N⃗T ¼ k⃗0−k⃗

jk⃗0−k⃗j, the

unit vector β⃗ is parallel to the velocity v⃗. Let us elucidate the
effect of dichroism on the example of P-odd spin rotation
and dichroism.
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Let us note that as scattering amplitude F̂ is a complex
value, so potential energy Û is also a complex value. The
real part of this energy describes changes in particle energy
as a result of interaction with matter, the imaginary part
describes absorption.
Every spin-dependent contribution to Û is of the

following structure:

Â ¼ −ðαþ iβÞσ⃗ N⃗ : ð24Þ
Let us compare this expression with that for energy of the
interaction between the magnetic moment μ⃗ and the
magnetic field B⃗:

Ûmagn ¼ −μσ⃗ B⃗ : ð25Þ

It can be seen that terms proportional to α in Â cause spin
rotation around N⃗. The imaginary part shows that absorp-
tion in matter depends on spin orientation regarding N⃗. As a
result the spin component directed along N⃗ can appear
(spin dichroism occurs [10]).
The analogy between (24) and (25) leads us to the

conclusion that a particle in matter is affected by pseudo-
magnetic fields caused by strong and weak interactions (for
low energy neutrons the effects determined by such fields
were discovered and have been investigated for many years,
see [10]). Let us consider now baryons with polarization
vector oriented at a certain angle to the direction of β⃗ be
incident on medium. This baryon state can be considered
as a superposition of two states with polarizations along
and opposite to the momentum direction defined by unit
vector β⃗. The wave function of a particle before entering the
target reads as

ψðr⃗Þ ¼ eik⃗ r⃗χn; χn ¼
�
c1
c2

�
; ð26Þ

or

ψðr⃗Þ ¼ c1eik⃗ r⃗
�
1

0

�
þ c2eik⃗ r⃗

�
0

1

�
: ð27Þ

Suppose the direction β⃗ is along the z axis. The coefficients
c1 and c2 in polar coordinates are defined in [8,10] as
follows:

c1 ¼
�
�e−iφ=2 cos

ϑ

2

�

c1 ¼
�
eiφ=2 sin

ϑ

2

�
;

where ϑ and φ are the polar and azimuthal angles. The state
ð1
0
Þ has the refractive index nþ, while state of type ð01Þ has

the refractive index n−. If a baryon with spin parallel to
vector β⃗ [spin state ð1

0
Þ] is incident on the target, its motion

in matter can be described by wave function ψþðrÞ ¼
eiknþzð1

0
Þ. If a baryon with spin antiparallel to β⃗ [spin state

ð0
1
Þ] is incident on the target, then in matter it is described by

the wave function ψ−ðrÞ ¼ eikn−zð0
1
Þ. If a baryon with an

arbitrary spin direction falls on the target, its wave function
[see (27)] is the superposition of states ð1

0
Þ and ð0

1
Þ. As a

consequence, the wave function of a baryon in matter is
also the superposition of these states, and can be written as

ψðr⃗Þ ¼
�
c1 ψþ ðr⃗Þ
c2 ψ− ðr⃗Þ

�
¼ c1eiknþz

�
1

0

�
þ c2eikn−z

�
0

1

�
:

ð28Þ

Now let us consider how baryon polarization changes as
they penetrate into the interior of the target (with the growth
of the target thickness). Suppose we have a detector that
transmits the particles with spin polarized along a certain
direction in the detector (the axis of the detector) and
absorbs the particles with the opposite spin direction. Such
a detector is the analog of the Nicol prism [30] used in
optics for analyzing the polarization of light. When
polarized light is incident on the Nicol prism, one compo-
nent of light polarization passes through it, while the
component orthogonal to the axis of the Nicol prism is
absorbed. In the case of baryons, a target with polarized
nuclei may act as a detector. As the scattering cross section
of a polarized baryon depends on whether the baryon spin
is oriented along the direction of the polarization vector of
the nucleus or is opposite to it, so baryon absorption in the
detector exhibits the same dependence [10]. Suppose that
the detector axis is parallel to the z axis, along which the
detector nuclei are polarized. In this case the detector
analyzes those components of baryon spin, which are
directed along the z axis and in opposite direction. From
(28) it follows that the amplitude AðþÞ of probability to find
the baryon with spin state ð1

0
Þ, i.e., to find the baryon

polarized parallel to the z axis, is given by the expression

AðþÞ ¼ð1 0Þψ¼c1eiknþz:

The probability is

PðþÞ
z ¼jð1 0Þψ j2¼jc21je−2kImðnþÞz¼jc1j2e−ρσþz: ð29Þ

Similarly, the probability Pð−Þ
z to find the baryon polarized

opposite to the z axis is

Pð−Þ
z ¼jð0 1Þψ j2¼jc2j2e−2kImðn−Þz¼jc2j2e−ρσ−z; ð30Þ

where σ� is the total cross section of scattering the baryon
polarized parallel (antiparallel) to the baryon momentum by
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the nucleus. Since owing to P-violation in matter ImðnþÞ ≠
Imðn−Þ (σþ ≠ σ−), so one of the components of the baryon
spin wave function decays faster and at some depth the
rapidly damped component may be neglected. The beam
will appear polarized along the z axis (along the direction of
the particle momentum n). Let us now rotate the detector so
that its polarization axis becomes perpendicular to the
direction n. Choose the direction of the polarization axis of
the detector as the x axis. Now the detector analyzes those
components of the baryon spin, which are directed along
and opposite to the x axis. To determine the probability

Pð�Þ
x to find the component of the baryon spin parallel

(antiparallel) to the direction of the x axis, one should
expand the wave function (28) in terms of the spin wave
functions χ�x , which are the eigenfunctions of operator Ŝx of
the spin projection onto the x axis. They have the form

χ�x ¼ 1ffiffiffi
2

p
�

1

�1

�
:

As a result, we find that probabilities Pð�Þ
x of baryon

spin polarization along and opposite to the x axis change
with z as

PðþÞ
x ¼ 1

2
fjc2j2e−2kImðnþÞz þ jc2j2e−2kImðn−Þz

þ 2jc1jc2je−kImðnþþn−Þz cos ½kReðnþ − n−Þzþ δ�g;

Pð−Þ
x ¼ 1

2
fjc1j2e−2kImðnþÞz þ jc2j2e−2kImðn−Þz

− 2jc1jc2je−kImðnþþn−Þz cos ½kReðnþ − n−Þzþ δ�g;
ð31Þ

where δ ¼ δ1 − δ2 is the difference of the initial phases of
states with baryon spin polarization along and opposite to
the z axis (c1 ¼ jc1jeiδ1 ; c2 ¼ jc2jeiδ2). If at z ¼ 0, the
baryon is polarized along x, i.e.,

c1 ¼ c2 ¼
1ffiffiffi
2

p ; δ ¼ 0;

then with growing z the polarization opposite to x appears
and further change of polarization looks like oscillations.
When baryons pass through the target, one of the compo-
nents decays more strongly and the baryon beam eventually
becomes polarized along or opposite to the z axis. When a
beam polarized along the z axis is incident onto the target,
no oscillations emerge: only damping occurs. Using (28),
one can find the baryon polarization vector

p⃗n ¼
hψ jσ⃗jψi
hψ jψi : ð32Þ

As a result,

pnx ¼ 2Reðc�1c2ψ�þψ−Þhψ jψi−1
pny ¼ 2Imðc�1c2ψ�þψ−Þhψ jψi−1;
pnz ¼ ðjc1ψþj2 − jc2ψ−j2Þhψ jψi−1: ð33Þ

Suppose that baryon spin in vacuum is directed
perpendicular to the polarization vector of a nuclei.
Choose this direction as the x axis. In this case

c1 ¼ c2 ¼ 1=
ffiffiffi
2

p
:

Using relations (33), we obtain

pnx ¼ cos½kReðnþ − n−Þz�e−kImðnþþn−Þzhψ jψi−1;
pny ¼ − sin½kReðnþ − n−Þz�e−kImðnþþn−Þzhψ jψi−1;

pnz ¼
1

2
ðe−2kImðnþÞz − e2kImðn−ÞzÞhψ jψi−1

p2
x þ p2

y þ p2
z ¼ 1: ð34Þ

According to (34) when a baryon penetrates into the
interior of the target, its polarization vector rotates about
the particle’s momentum direction n⃗ through the angle

θ ¼ kReðnþ − n−Þz

¼ 2πρ

k
Reðfþ − f−Þz

¼ ReðUþ
W −U−

WÞ
ℏ

z
c
: ð35Þ

At the same time, when baryons pass through matter, the
transverse components pnx and pny of the polarization
vector decay because baryon absorption depends on spin
orientation, and finally the beam appears to be polarized
along or opposite to the z axis. Thus, the dependence of
baryon absorption in the target on the orientation of their
spin results in the fact that polarization vector p⃗n (recall that
jp⃗nj ¼ 1) not only rotates about the z axis (about the
direction of momentum), but also turns to the z axis (the
end point of the polarization vector moves along the unit
sphere). If the dependence of absorption on spin orientation
can be neglected, the polarization vector rotates about the
direction of particle momentum β⃗ only in the ðx; yÞ plane.
In terms of kinematics, this phenomenon is analogous to
the light polarization plane rotation in a magnetic field (the
Faraday effect), while spin oscillations along and opposite
to the direction of the x axis are analogous to the transitions
K0 ⇄ K̄0 occurring in regeneration of neutral K-mesons
(see e.g., [25]).
Let us now consider a particle moving in the straight

(unbent) crystal. The expression for U contains a group of
terms proportional to either electric field projection onto the

x axis or derivative of electrons and nuclei density
dNeðnucÞðxÞ

dx .
As a result, a particle moving between the planes
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experiences the influence of pseudomagnetic fields that
reverse sign due to transverse oscillations of a channeled
particle. This leads to the fact that the total spin rotation in
such fields is suppressed (although suppression fades with
growth of particle energy). The argument mentioned above
does not concern the spin rotation effect and spin dichroism
caused by weak P-odd T-even interaction. This effect
increases with growth of crystal thickness (the effect also
occurs in amorphous medium) [10].
Equations describing spin rotation in a bent crystal can

be obtained by the following approach [5,7]. Spin wave
function jΨðtÞi meets the equation as follows:

ih
∂jΨðtÞi

∂t ¼ Ûeff jΨðtÞi: ð36Þ

Baryon polarization vector ξ⃗ can be expressed as follows:

ξ⃗ ¼ hΨðtÞjσ⃗jΨðtÞi
hΨðtÞjΨðtÞi : ð37Þ

Thus the equation for spin rotation of a particle (γ ≫ 1),
which moves in a bent crystal, reads as follows [7] (also see
the Appendix):

dξ⃗
dt

¼ ½ξ⃗ × Ω⃗mso� −
2

ℏ
½δmðxÞ þ δs0ðxÞ�fN⃗m − ξ⃗ðN⃗m · ξ⃗Þg

þ ½ξ⃗ × Ω⃗T � þ
2

ℏ
½δEDMðxÞ þ δTeðxÞ þ δTnucðxÞ�

× fN⃗T − ξ⃗ðN⃗T · ξ⃗Þg þ ½ξ⃗ × Ω⃗W � −
2

ℏ
δWfβ⃗ − ξ⃗ðβ⃗ · ξ⃗Þg;

ð38Þ

where

Ω⃗mso ¼ Ω⃗MDM þ Ω⃗so ¼ −
�
eðg− 2Þ
2mc

ExðxÞ þ
2

ℏ
αsoðxÞ

�
N⃗m;

Ω⃗T ¼ Ω⃗EDM þ Ω⃗Ten ¼
2

ℏ
½dExðxÞ þ αTeðxÞ þ αTnucðxÞ�N⃗T;

Ω⃗w ¼ 2

ℏ
αwβ⃗:

Let us note that vector ½β⃗ × E⃗� is parallel to vector N⃗m ¼
½β⃗ × n⃗x� and N⃗m ¼ −N⃗ [see (A17)], β⃗ ¼ k⃗

k is the unit vector

along the direction of particle momentum, vector E⃗ is
parallel to N⃗T ¼ n⃗x and n⃗x is the unit vector along axis x.
Let us compare Eq. (38) with (1), which has the form as
follows:

dξ⃗
dt

¼ ½ξ⃗ × Ω⃗magn� þ ½ξ⃗ × Ω⃗EDM�:

According to (38) the baryon spin rotates around three
axes [5,6]: the effective magnetic field direction
N⃗mjj½β⃗ × E⃗�, the electric field direction N⃗T jjE⃗ and the
momentum direction β⃗. Nonelastic processes in crystals
result in a new effect: those terms in (38), which include
deltas (δm, δs0; δEDM, etc.), lead to the appearance of a
polarization vector component directed along vectors N⃗m,
N⃗T and β⃗. Therefore, spin dichroism induces polarization to
particles moving in a bent crystal. Being measured this
polarization gives information about MDM/EDM and other
interactions. As it is mentioned before, the use of initially
nonpolarized beams and polarized crystals could enhance
sensitivity of measurements, when polarization of the
transmitted through the crystal beam is analyzed. Let us
pay attention to the fact that appearance of the spin
component directed along the effective magnetic field B�

(N⃗m direction) is caused by both T-odd spin rotation around
the direction of the electric field E⃗ (N⃗T direction) and spin
dichroism due to nonelastic processes at the interaction of
the particle magnetic moment with atoms in the bent
crystal. It can be seen that appearance of such a spin
component imitates the result of the T-noninvariant rotation
(Figs. 1 and 2).
Contributions to Eq. (38), which are caused by the

interaction between baryon and nuclei, depend on distri-
bution of nuclei density NnucðxÞ [see terms proportional to
αs0ðxÞ; δs0ðxÞ; αTnucðxÞ; δTnucðxÞ]. As a result, for positively
charged particles, moving in the channel along the trajec-
tories located in the center of the channel, such contribu-
tions are suppressed. Thus, according to (38), when one
conducts and interprets experiments aimed for measuring
the EDM, one should consider the fact that the angle of spin
rotation provides information about the sum of contribu-
tions to T-noninvariant rotation. The mentioned rotation
is determined by both the EDM and the short-range
CP-noninvariant interactions. Nonelastic T-noninvariant

FIG. 1. Spin rotation caused by magnetic moment and
T-reversal violation interactions (including EDM). Black arrows
represent spin rotation about the effective magnetic field (about
bent axis, direction N⃗m), red arrows represent spin component
caused by EDM (direction N⃗T), purple arrows represent the
new effect—appearance of the spin component directed along
N⃗m owing to the spin dichroism (spin rotation and dichroism
in direction N⃗T owing to T-reversal violation and P-violating
interactions are not shown here for simplicity).
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processes also lead to spin dichroism in the direction of N⃗T
that gives additional opportunities for EDM measurement.
Let us consider the contribution to the angle of spin rotation
caused by spin dichroism in direction N⃗m. According to
[5–7] coefficient δm reads as follows:

δm ¼ 1

4dydzmc2

�
g − 2

2

� ∂
∂x δV

2ðxÞ

¼ 1

4dydz
mc2

�
g − 2

2

� ∂
∂x

Z ��Z
Vcoulðx; y; zÞdz

	
2

−
�Z

Vcoulðx; y; zÞdz
	
2
�
dy; ð39Þ

where Vcoulðx; y; zÞ ¼
P

iVeðx − xi; y − yi; z − ziÞ−
Vnucðx − ηfx; y − ηfy; z − ηfzÞ, xi, yi, zi are the coordinates
of the ith electron in the atom, ηfx, ηfy, ηfz are the
coordinates of the atom nucleus. Let us choose the position
of equilibrium point for the oscillating nucleus as the
origin of coordinates. The overline denotes averaging of
positions of electrons and nucleus over the distribution
of electrons and nucleus positions in the atom; in other
words, it denotes averaging with the wave functions of
atoms in the crystal.
To conduct estimations the shielded Coulomb potential

is used for Coulomb energy of interactions between baryon
and electrons; electrons are supposed to be distributed
uniformly in the area, which dimensions are about the
shielding radius. In this case the following estimations for
δm can be obtained: δm ∼ 108 − 109 s−1 depending on the
position of the baryon trajectory in the planar channel.
According to [1,2] the expected experimental sensitivity for
EDM is ed ∼ 10−17 e cm. Spin rotation frequency reads as
follows:ΩEDM ¼ 2edE

ℏ . The magnitude of the E-field, which
affects baryons in a bent crystal, can be obtained from

expression E ¼ mγc2

eR , where R is the radius of crystal
curvature. Therefore ΩEDM ¼ 2 d

R
W
ℏ , where W is the energy

of baryon. For R ¼ 30 m, d ∼ 10−17 cm and W ¼ 1 TeV
we have ΩEDM ≃ 107 s−1. As a result, the nonelastic

processes, which are caused by magnetic moment scatter-
ing, can imitate the EDM contribution. Surely, a more
detailed computer simulation is needed. The contributions
of P-odd and T-even rotation effect to the general spin
rotation can be evaluated in the following way. Precession
frequency Ωw is determined by the real part of the
amplitude of baryon weak scattering by an electron
(nucleus). This amplitude can be evaluated by Fermi theory
[25,26] for the energies, which are necessary for W and Z
boson production or smaller:

ReB ∼ GFk ¼ 10−5
1

m2
p
k ¼ 10−5

ℏ
mpc

mγ

mp
¼ 10−5λcp

mγ

mp
;

ð40Þ

where GF is the Fermi constant, mp is the proton mass, λcp
is the proton Compton wavelength. For particles with
energy from hundreds of GeV to TeV ReB ∼GFk ¼
10−16 cm. For different particle trajectories in a bent crystal
the value of precession frequency Ωw could vary in the
range Ωw ≃ 103 − 104 s−1. Therefore, when a particle
passes 10 cm in a crystal, its spin undergoes additional
rotation around the momentum direction at angle
ϑp ≃ 10−6 − 10−7 rad. Such angle of rotation is small as
compared to the one caused by EDM d ∽ 10−17 cm (at
such EDM value precession frequency ΩEDM ∽ 107 s−1,
which leads to the rotation angle ϑ ∽ 10−3–10−4 rad).
However, the effect might be greater for heavy baryons.
The mechanism causing the effect growth for heavy
baryons is similar to that for their EDM growth (see the
explanation for the growth of constant dT in [7]).
Absorption caused by the parity violating weak interaction
also contributes to change in the spin direction [see the
terms proportional to δW in (38)]. This change in spin
direction is described by the imaginary part of weak
scattering amplitude and is proportional to the difference
of total scattering cross sections σ↑↑ − σ↓↑ [5,6]. This
difference is proportional to the factor, which is determined
by interference of Coulomb and weak interactions for
baryon (τ-lepton) scattering by an electron, as well as by
interference of strong (Coulomb) and weak interactions for
particle scattering by nuclei [5,6]:

σ↑↑ð↓↑Þ ¼
Z

jfcðnucÞ þ B0w � Bwj2dΩ; ð41Þ

σ↑↑−σ↓↑¼2

Z
½ðfcðnucÞ þB0wÞB�þðfcðnucÞ þB0wÞ�B�dΩ:

ð42Þ
When baryon trajectory passes in the area, where collisions
with nuclei are important (this occurs in the vicinity of
potential barrier for positively charged particles), the value

FIG. 2. Spin rotation caused by magnetic moment, T-reversal
violation interactions (including EDM), P-violation spin rotation
about direction β⃗ (orange arrow) and spin component in direction
β⃗ caused by spin dichroism (green arrow). Spin components
caused by spin dichroism in direction N⃗m and direction N⃗T are
not shown for simplicity.
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δW ∼ 106 − 107 s−1. Similar to real part ReB for the case
of heavy baryons the difference in cross sections grows.
Multiple scattering also contributes to spin rotation and
depolarization [5,10,11]. Particularly, due to interference of
magnetic, weak and coulomb interactions, the root-mean-
square scattering angle appears changed and dependent
on spin orientation with respect to vectors N⃗m, N⃗T and β⃗.
When measuring MDM and T-odd spin rotation in a bent
crystal, one can eliminate parity violating rotation in the
following way (see Fig. 3).
By turning the crystal 180° around the direction of

incident baryon momentum one could observe that P-odd
spin rotation does not change, while the sign of MDM
and T-odd spin rotations does due to change of the
electric field direction. Subtracting results of measure-
ments for two opposite crystal positions one could obtain
the angle of rotation, which does not depend on P-odd
effect. Such measurement can be made using the idea
presented in [2], according to which to control the
systematic uncertainties two crystals (with up and down
bending) should be used enabling to induce opposite spin
precession for channeled baryons. According to analysis
[3] such measurements allow to suppress P-odd effect
contribution. Separation of two contributions, that caused
by MDM and another one caused by T-odd spin rotation,
is possible when comparing the experimental results for
two initial orientations of polarization vector ξ⃗0. Namely,
ξ⃗0kN⃗m and ξ⃗0kN⃗T , i.e., the initial polarization ξ⃗0 is
directed either along the bending axis of the crystal or
along E⃗� (see Fig. 4).

V. CONCLUSION

The channeled particle, which moves in a crystal,
besides electromagnetic interaction experiences weak
interaction with electrons and nuclei, as well as strong
interaction with nuclei. Measurements of polarization
vector and angular distribution of charged and neutral
particles scattered by axes (planes) of unbent crystal
enable to obtain limits for the EDM value and for the
values of constants describing P- and T-odd interactions
beyond the standard model. When analyzing particle spin
rotation, which is caused by electric dipole moment
interaction with the electric field, one should consider
noninvariant spin rotations both P-odd, T-even and P-odd,
T-odd, resulting from weak interaction of baryons and
τ-leptons with electrons and nuclei. As demonstrated
above, spin precession of channeled particles in bent
crystals at the LHC gives a unique possibility for
measurement of constants determining T-odd, P-odd
(CP) violating interactions and P-odd, T-even interactions
of baryons and τ-leptons with electrons and nucleus
(nucleons) beyond the standard model. As far as proton
beams at LHC are nonpolarized, in [1–4] was proposed
the experimental approach, which enables obtaining

FIG. 3. By turning the crystal 180° around the direction of
incident baryon momentum one could observe that P-odd spin
rotation does not change, while the sign of MDM and T-odd spin
rotations does due to change of the electric field direction.
Subtracting results of measurements for two opposite crystal
positions one could obtain the angle of rotation, which does not
depend on P-odd effect.

FIG. 4. Separation of the contributions caused by MDM and
T-odd spin rotation is possible when comparing experimental
results for two initial orientations of polarization vector ξ⃗0.
Namely: ξ⃗0kN⃗m and ξ⃗0kN⃗T , i.e., the initial ξ⃗0 is parallel to the
bending axis of the crystal or E⃗�. In a real situation rotating the
crystal by 90° so that the direction of ξ⃗0 is parallel to B⃗� can be
more convenient. Let us remind that the polarization of the Λþ

c is
perpendicular to the production plane. Purple arrows represent
the new effect—appearance of the spin component directed along
N⃗m owing to the spin dichroism caused by baryon (τ-lepton)
scattering due to magnetic moment interaction with Coulomb
field of electrons and nuclei.
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polarized beams of short-lived baryons (τ-leptons) by
means of their generation at reactions of a proton with a
nucleus. Analysis of baryon (τ-lepton) polarization is
carried by investigation of angular distribution of its
decay products. Another approach enabling to produce
polarized short-lived baryons and analyze their polariza-
tion implies use of a crystal with polarized nuclei [10].
The main systematic effects for the EDM measurements
are as follows: rotation of particle magnetic moment, spin
dichroism caused by scattering of a baryon (τ-lepton),
which occurs when particle magnetic moment interacts
with Coulomb field of electrons and nuclei, and spin
dichroism caused by scattering, which occurs due to P-
odd T-even weak interactions of the particle with elec-
trons and nuclei.
According to [2] the systematic effect caused by rotation

of particle magnetic moment can be eliminated by use of
two crystals. In this case the sensitivity of EDM ∼
10−17 e cm can be achieved.
According to the results discussed before, using two

crystals or rotating one crystal 180° around the direction of
incident baryon momentum one could exclude influence
from both P-odd T-even rotation and P-odd T-even spin
dichroism on sensitivity of EDM measurements and pro-
vide the sensitivity of EDM ∼ 10−17 e cm.
To separate the contributions caused by EDM (T-odd

interactions) and magnetic spin dichroism, one can com-
pare experimental results for two different initial orienta-
tions of polarization vector ξ⃗0, namely: ξ⃗0kN⃗m and ξ⃗0kN⃗T ,
i.e., the initial ξ⃗0 is parallel to the bending axis of the crystal
or the vector E⃗. In a real situation rotating the crystal by 90°
so that the direction of ξ⃗0 is parallel to B� can be more
convenient. We remind that the spin component caused
by magnetic spin dichroism is directed along N⃗mjjB⃗�. This
spin component is orthogonal to E⃗�, around which spin
rotation caused by EDM occurs (see Fig. 4). Therefore,
the contribution caused by magnetic spin dichroism (it is
directed along N⃗m ⊥ k⃗) is suppressed when one measures
spin component, which appears due to EDM and is directed
along particle momentum (see the lower plot in Fig. 4).
As a result, the sensitivity of EDM ∼ 10−17 e cm remains
available. To separate P-noninvariant rotation from the
MDM- and EDM-induced (T-odd) spin rotations both
the method of turning the crystal by 180° and the method
of using two crystals suggested in [2] can be used. To
separate contributions caused by MDM and T-odd inter-
actions, two bent crystals placed perpendicular to each
other or rotation of the crystal by 90° can be used.
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APPENDIX: EFFECTIVE POTENTIAL ENERGY
FOR DIFFERENT INTERACTION TYPES

1. Effective potential energy of a spin particle
moving close to the crystal planes (axes)

As it is stated above, elastic coherent scattering of a
particle by an atom is caused by electromagnetic interaction
of the particle with the atom electrons and nucleus as well
as weak and strong nuclear interaction with electrons and
nucleus. The general expression for the amplitude of elastic
scattering of a particle with spin 1

2
by spinless or unpolar-

ized nuclei (2) can be written as

F̂ðq⃗Þ ¼ Acoulðq⃗Þ þ Asðq⃗Þ þ ½Bmagnðq⃗Þ
þ BSðq⃗Þ�σ⃗½β⃗ × q⃗� þ ½Bweðq⃗Þ þ Bwnucðq⃗Þ�σ⃗N⃗w

þ ½BEDMðq⃗Þ þ BTeðq⃗Þ þ BTnucðq⃗Þ�σ⃗ q⃗; ðA1Þ

where q⃗ ¼ k⃗0 − k⃗; β⃗ ¼ k⃗
k ; Acoulðq⃗Þ is the spin-independent

part of the amplitude of elastic Coulomb scattering of the
particle by the atom; Asðq⃗Þ is the spin-independent part
of the scattering amplitude, which is caused by strong
interaction (the similar contribution caused by weak inter-
action is negligibly small and hereafter is omitted).
The spin-dependent amplitude, which is proportional

to Bmagnðq⃗Þ, is determined by electromagnetic spin-orbit
interaction. The term proportional to Bsðq⃗Þ is responsible
for the contribution of the spin-orbit strong interaction to
the scattering process of a baryon by a nucleus.
The term proportional to P-odd pseudoscalar σ⃗N⃗w (unit

vector N⃗w ¼ k⃗0þk⃗
jk⃗0þk⃗j) includes two contributions: (a) contri-

bution to the amplitude proportional to BweðqÞ, which
describes elastic scattering caused by the parity violating
weak interaction between the baryon and electrons; (b) con-
tribution to the amplitude proportional to Bwnucðq⃗Þ, which
describes elastic scattering caused by the parity violating
weak interaction between the baryon and the nucleus.
The term proportional to T-odd (CP-odd) pseudoscalar

σ⃗ q⃗ includes three contributions: (a) contribution propor-
tional to BEDMðqÞ describes elastic scattering of a baryon,
which possesses EDM, by the atom’s Coulomb field;
(b) contribution proportional to BTeðqÞ describes short-
range T-noninvariant interaction between the baryon and
electrons; (c) contribution to the amplitude, which is
proportional to BTnucðqÞ, describes scattering caused by
T-noninvariant interaction between the baryon and
nucleons.
By using amplitude F̂ðqÞ potential energy Ûðr⃗Þ can be

expressed as the sum of terms each of them describing
contribution of different interactions to Ûðr⃗Þ:

Ûðr⃗Þ ¼ Ucoulðr⃗Þ þUSðr⃗Þ þ Ûmagnðr⃗Þ þ Ûspðr⃗Þ
þ ÛWðr⃗Þ þ ÛTðr⃗Þ; ðA2Þ
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where Ucoulðr⃗Þ is the Coulomb potential energy of inter-
action between the baryon and the crystal, which is
investigated in detail for particles channeling in the crystal;
USðr⃗Þ describes the spin-independent contribution of
nuclear interactions to the potential energy of interaction
with the crystal; Ûmagnðr⃗Þ describes the contribution to
Ûðr⃗Þ caused by interaction between the baryon’s magnetic
moment and the atom’s electric field; Ûspðr⃗Þ is the
contribution caused by spin-orbital nuclear interactions;
ÛWðr⃗Þ describes the contribution caused by parity violating
weak interactions; ÛTðr⃗Þ describes the contribution caused
by T-violation interactions between the particle and the
crystal.
Let us now consider how different terms, which ampli-

tude (A1) includes, contribute to the effective potential
energy of particle interaction with the crystal.
The Coulomb amplitude, described by the first term

in (A1), leads to a conventional expression for potential
energy of interaction between a charged particle and a
plane (axis).
The second term Asðq⃗Þ is caused by the short-range

interaction. Amplitude Asðq⃗Þ can be written as

AsðqÞ ¼ AnucðqÞΦoscðq⃗Þ; ðA3Þ

where AnucðqÞ is the spin-independent part of the amplitude
of elastic scattering by the resting nucleus, Φoscðq⃗Þ is the
form factor caused by nucleus oscillations in the crystal.
Owing to the short-range kind of strong interactions

amplitude, Anucðq⃗Þ is equal to zero-angle scattering ampli-
tude Að0Þwithin the range of scattering angles ϑ≤ 1

kRosc
≪1.

Form-factor Φoscðq⃗Þ has the form [8]

Φoscðq⃗Þ ¼
X
n

ρnhφnðrÞje−iq⃗ r⃗jφnðrÞi

¼
Z

e−iq⃗ r⃗Nnucðr⃗Þd3r; ðA4Þ

where φnðrÞ is the wave function describing the vibrational
state of nuclei in the crystal, summation

P
nρn means

statistical averaging with Gibbs distribution over the vibra-
tional states of nucleus in the crystal. Let us remind that
squared form-factor Φoscðq⃗Þ is equal to Debye-Waller
factor, Nnucðr⃗Þ is the probability density for vibrating
nuclei to be detected in point r⃗,

R
Nnucðr⃗Þd3r ¼ 1.

2. Effective potential energy determined
by the anomalous magnetic moment

According to (A1) the scattering amplitude, which is
determined by baryon’s anomalous magnetic moment, has
the form

F̂magnðqÞ ¼ BmagnðqÞσ⃗½β⃗ × q⃗�: ðA5Þ

For the first step the perturbation theory can be used and
amplitude F̂ð1Þ reads as

F̂ð1Þ
magnðq⃗Þ ¼ ifcoulðq⃗Þ

ℏ
mc

�
g − 2

2

�
1

2
σ⃗½β⃗ × q⃗�; ðA6Þ

where fcoulðq⃗Þ is the amplitude of Coulomb scattering of a

baryon by an atom in the first Born approximation; β⃗ ¼ k⃗
k,

m is the baryon mass.
It should be noted that the coefficient in (A6), by which σ⃗

is multiplied, is purely imaginary. Using (A6) one can
obtain the expression for effective interaction energy as
follows:

ÛmagnðxÞ ¼ −
eℏ
2mc

g − 2

2
σ⃗½E⃗planeðxÞ × β⃗�; ðA7Þ

where E⃗planeðxÞ denotes the electric field, produced in point
x by the crystallographic plane. In the axis case Umagnðρ⃗Þ
can be obtained by replacement in (A7) of x by ρ⃗ and of
E⃗planeðxÞ by E⃗axisðρ⃗Þ, respectively.
Effective interaction energy (A7) can be rewritten as

follows:

Ûmagn ¼ −
eℏ
2mc

g − 2

2
ExplaneðxÞσ⃗ N⃗; ðA8Þ

where N⃗ ¼ ½n⃗x × β⃗� is the unit vector, n⃗x ⊥ β⃗, unit vector β⃗
is parallel to the crystallographic plane.
Expression (A8) for the effective potential energy

comprises the factor, which is purely real. However, the
coefficient in the expression for scattering amplitude F̂ðq⃗Þ,
by which σ⃗ is multiplied, has nonzero both real and
imaginary parts. Due to this fact, the effective potential
energy Û also has nonzero both real and imaginary parts.
In the second order of perturbation theory this coefficient

in amplitude F̂ðq⃗Þ is not purely imaginary as well—it has a
nonzero real part. According to [7] the following expres-
sion for the contribution F̃ð2ÞðqÞ to the amplitude F̂ðq⃗Þ can
be obtained:

F̃ð2Þðq⃗ ¼ τ⃗Þ ¼ i
k

4πℏ2c2

ZZ
e−iτ⃗r⃗⊥

��Z
V̂ðr⃗⊥; zÞdz

	
2

−
�Z

V̂ðr⃗⊥; zÞdz
	
2
�
d2r⊥; ðA9Þ

where V̂ðr⃗⊥;zÞ¼V̂coulðr⃗⊥;zÞþV̂magnðr⃗⊥;zÞ, V̂magnðr⃗⊥;zÞ¼
−μaσ⃗½E⃗ðr⃗⊥;zÞ×β⃗�, z axis of the coordinate system is
directed along the unit vector β⃗, β⃗ is the unit vector
directed along the particle momentum before scattering
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ℏk⃗, μa is the anomalous magnetic moment of the particle
μa ¼ eℏ

2mc ðg−22 Þ.
When deriving (A9), the particle energy is considered to

be much greater than the electrons’ binding energy in atoms
and the atoms’ binding energy in the crystal. As a result it is
possible at first to examine scattering of electrons by a
nucleus, which rests in point ri, and, then, to average the
result over the electron and nuclei positions with wave
functions jΦai (impulse approximation, for example see
[31]). The overline in (A9) and hereafter denotes such a
kind of averaging. The contribution caused by interference
between magnetic and nuclear scattering, and the contri-
butions determined by the particle squared magnetic
moment, should complete the expression mentioned above.
For positively charged particles, moving far from the top of
the potential barrier, the contribution caused by interactions
with nuclei is suppressed and is omitted in consideration
hereafter. Contributions proportional to the particle squared
magnetic moment are smaller than those caused by inter-
ference between magnetic and Coulomb scattering and,
thus, is also omitted. According to [7] the following
expression for the contribution to the effective potential
energy caused by the amplitude F̃magnðτ⃗Þ can be obtained:

Ûð2Þ
magnðxÞ¼−i

1

4dydzmc2

�
g−2

2

� ∂
∂xδV

2ðxÞ σ⃗ N⃗; ðA10Þ

where N⃗ ¼ ½n⃗x × β⃗�, n⃗x ⊥ β⃗; n⃗x is the unit vector along
axis x,

δV2ðxÞ ¼
Z ��Z

Vcoulðx; y; zÞdz
	
2

−
�Z

Vcoulðx; y; zÞdz
	
2
�
dy:

Similarly for the case of axial channeling (A10)
converts to

Ûð2Þ
magnðρ⃗Þ ¼ −i

1

dzmc2

�
g − 2

2

�
σ⃗
h
∇ρδV2ðρ⃗Þ × β⃗

i
: ðA11Þ

In the planar channeling case Ûmagn is determined by

ÛmagnðxÞ ¼ −
eℏ
2mc

g − 2

2
σ⃗½E⃗plane × β⃗�

− i
1

4dydzmc2

�
g − 2

2

� ∂
∂x δV

2ðxÞ σ⃗ N⃗

¼ −ðαm þ iδmÞσ⃗ N⃗; ðA12Þ

where

N⃗ ¼ ½n⃗x × β⃗�;

αm ¼ eℏ
2mc

g − 2

2
Ex;

δm ¼ 1

4dydzmc2

�
g − 2

2

� ∂
∂x δV

2ðxÞ

and δV2ðxÞ¼R f½RVcoulðx;y;zÞdz�2−½
R
Vcoulðx;y;zÞdz�2gdy

is the mean-square fluctuation of energy of Coulomb
interaction between the baryon and the atom.
Similarly for the axial channeling case the following

expression can be obtained:

Ûmagnðρ⃗Þ ¼ −
eℏ
2mc

g − 2

2
σ⃗½E⃗axis × β⃗� þ Ûð2Þ

magnðρ⃗Þ; ðA13Þ

where Ûð2Þ
magnðρ⃗Þ is determined by (A11).

3. Effective potential energy Û determined
by spin-orbit interaction

According to (A1) the part of the scattering amplitude
caused by strong spin-orbit interaction has the form

F̂spðq⃗ ¼ τ⃗Þ ¼ Bsðτ⃗Þσ⃗½β⃗ × τ⃗�: ðA14Þ

The coefficient Bsðτ⃗Þ can be expressed similar to (A3) as
follows:

Bsðτ⃗Þ ¼ Bnucðτ⃗ÞΦoscðτ⃗Þ; ðA15Þ

where Bsnucðτ⃗Þ describes scattering by a resting nucleus,
Φoscðτ⃗Þ is the form factor determined by nucleus oscil-
lations in a crystal.
In the considered case the short-range character of the

nuclear forces and small (as compared to the amplitude of
nucleus oscillations) nucleus radius enables assumption
Bsnucðτ⃗Þ ≈ Bsnucð0Þ. It is important that the coefficient
Bsnucð0Þ has nonzero both real and imaginary parts:

Bsnucð0Þ ¼ B0
snuc þ iB00

snuc: ðA16Þ

This is similar to the amplitude, which describes scattering
of the magnetic moment by the atom (nucleus). To obtain
the expression for the effective potential energy the
summation over τx should be conducted in (A14). The
resulting expression is similar to that for Ûmagn. For
example, for planar channeling effective potential energy
Û determined by spin-orbit interaction between baryon and
nucleus reads as follows:

Ûso ¼ −ðαs þ iδsÞσ⃗ N⃗; ðA17Þ

where
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N⃗ ¼ ½n⃗x × β⃗�;

αs ¼ −
2πℏ2

mγdydz

∂Nnuc

∂x B00;

δs ¼
2πℏ2

mγdydz
B0 ∂Nnuc

∂x : ðA18Þ

In the case of axial channeling,

ÛsoðρÞ ¼
2πℏ2

mγdz
ðB00 − iB0Þσ⃗½∇⃗ρNnucðρ⃗Þ × β⃗�: ðA19Þ

4. Effective potential energy Û determined
by P-odd and T-even interactions

The next group of terms, which are proportional to Bw,
is determined by weak P-odd and T-even interactions.
According to (A1) the corresponding terms in the scattering
amplitude can be written as

F̂wðq⃗Þ ¼ ½Bweðq⃗Þ þ Bwnucðq⃗Þ�σ⃗N⃗w: ðA20Þ

Contribution Bweðq⃗Þ caused by parity violating weak
interaction between the baryon and electrons can be
expressed as follows:

Bweðq⃗Þ ¼ B̃weðq⃗ÞΦeðq⃗Þ; ðA21Þ

where B̃we is the coefficient defining baryon elastic scatter-
ing amplitude by resting electron f̂weðqÞ¼ B̃weσ⃗N⃗w,
Φeðq⃗Þ ¼

R
e−iq⃗ r⃗Neðr⃗Þd3r,

R
Neðr⃗Þd3r ¼ Z, Z is the

nucleus charge. Minor corrections caused by thermal oscil-
lations of atoms’ centers of gravity are not considered below.
To take them into consideration one should multiply Φeðq⃗Þ
by Φoscðq⃗Þ, which is the form factor defined by oscillations
of the atom’s nucleus.
Term Bwnucðq⃗Þ [see (A20)], which is caused by parity

violating weak interaction between a baryon and a nucleus,
reads as follows:

Bwnucðq⃗Þ ¼ B̃wnucðq⃗ÞΦoscðq⃗Þ; ðA22Þ

where B̃wnuc is the coefficient defining the amplitude of
baryon elastic scattering by the resting nucleus
f̂wnuc ¼ B̃wnucσ⃗N⃗w.
In case when angle ϑ ≃ τ

k ≪ 1 the coefficients B̃weðq⃗Þ
and B̃wnucðq⃗Þ can be approximated by B̃weðq⃗Þ ≃ B̃weð0Þ and
B̃wnucðq⃗Þ ≃ B̃wnucð0Þ, respectively. As a result expressions
for the effective potential energy Ûw of P-violating inter-
action of a baryon with a crystal plane (axis) were obtained.
Effective potential energy Û determined by P-odd and
T-even interactions in the case of plane:

ÛwðxÞ ¼ ÛweðxÞ þ ÛwnucðxÞ ¼ −½αwðxÞ þ iδwðxÞ�σ⃗ β⃗;
ðA23Þ

where

αwðxÞ ¼
2πℏ2

mγdydz
½B̃0

weð0ÞNeðxÞ þ B̃0
wnucð0ÞNnucðxÞ�;

δwðxÞ ¼
2πℏ2

mγdydz
½B̃00

weð0ÞNeðxÞ þ B̃00
wnucð0ÞNnucðxÞ�;

ðA24Þ

where signs 0 and 00 denote the real and imaginary parts of
the quantity, respectively.
In the case of axial channeling the same reads as

follows:

Ûweðρ⃗Þ ¼ −
2πℏ2

mγdz
fB̃weð0ÞNeðρ⃗Þ

þ B̃wnucð0ÞNnucðρ⃗Þgσ⃗N⃗w;

NeðnucÞðρ⃗Þ ¼
Z

NeðnucÞðρ⃗; zÞdz: ðA25Þ

5. Effective potential energy Û determined
by the electric dipole moment and other

T-noninvariant interactions

Let us consider now the electric dipole moment and
other T-noninvariant contributions to the spin rotation.
According to (A1) the corresponding terms in the
scattering amplitude can be written as

F̂TðqÞ ¼ ½BEDMðqÞ þ BTeðqÞ þ BTnucðqÞ�σ⃗ q⃗ : ðA26Þ

Let us consider the term F̂EDMðqÞ ¼ BEDMðq⃗Þσ⃗ q⃗. The
coefficient BEDMðqÞ has nonzero both real and imaginary
parts BEDMðqÞ ¼ B0

EDM þ iB00
EDM. By the approach used

for deriving F̂magnðqÞ, for F̂EDMðq⃗Þ one can obtain

F̂EDMðq⃗Þ ¼ −i
mγd
2πℏ2

Vcoulðq⃗Þσ⃗ q⃗þ
k

4πℏ2c2

×
ZZ

e−iq⃗⊥ r⃗⊥
��Z

V̂ðr⃗⊥; zÞdz�
2

−
�Z

V̂ðr⃗⊥; zÞdz
	
2
�
d2r⊥; ðA27Þ

where V̂ðr⃗Þ ¼ Vcoulðr⃗Þ þ VEDMðr⃗Þ, VEDM ¼ −Dσ⃗ E⃗ is the
energy of interaction between the electric dipole moment
D ¼ ed and the electric field E⃗. Let us remind that
amplitude F̂Tðq⃗Þ contains terms caused by EDM and
those determined by short-range T-noninvariant inter-
actions of a baryon with electrons and nuclei BTeðq⃗Þ
and BTnucðqÞ. Contributions caused by these terms should
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also be added to the effective potential energy of the
interaction between the baryon and nuclei of the crystal
ÛTðxÞ (see [7]):

ÛTðxÞ ¼ ÛEDM þ ÛTe þ ÛTnuc ¼ −½αTðxÞ þ iδTðxÞ�σ⃗N⃗T;

ðA28Þ

where αT ¼αEDMþαTeþαTnuc;δT ¼δEDMþδTeþδTnuc.
Expressions for coefficients αTeðnucÞ and δTeðnucÞ can be

evaluated in terms of scattering amplitude in the follow-
ing way. Let us define the form factor determined by
electrons distribution in an atom and nucleus oscillations:

BTeðq⃗Þ ¼ B̃Teðq⃗ÞΦeðq⃗Þ; BTnucðq⃗Þ ¼ B̃Tnucðq⃗ÞΦoscðq⃗Þ;
ðA29Þ

where Φeðq⃗Þ ¼
R
e−iq⃗ r⃗Neðr⃗Þd3r, Neðr⃗Þ is electron dis-

tribution density in the atom,
R
Neðr⃗Þd3r ¼ Z, Z is the

nucleus charge, Φoscðq⃗Þ is determined by (A4), B̃Te is the
coefficient defining amplitude of baryon scattering by a
resting electron f̂Te ¼ B̃Teðq⃗Þσ⃗ q⃗, B̃nucðqÞ is the coeffi-
cient defining amplitude of baryon scattering by a resting
nucleus f̂Tnuc ¼ B̃nucðq⃗Þσ⃗ q⃗. Let us remind that in com-
pliance with [7] the contribution caused by elastic
coherent scattering should be subtracted from amplitude
BT . However, at high energies this contribution is
negligibly small in comparison with nonelastic contribu-
tions to the amplitude and, therefore, can be omitted.
Due to the short-range character of T-noninvariant

interactions at angle ϑ≃ τ
k≪1 coefficients B̃Teðq⃗Þ≃ B̃Teð0Þ

and B̃nucðq⃗Þ ≃ B̃nucð0Þ.
Due to the short-range character of T-noninvariant

interactions at angle ϑ≃ τ
k≪1 coefficients B̃Teðq⃗Þ≃ B̃Teð0Þ

and B̃nucðq⃗Þ ≃ B̃nucð0Þ. As a result, the following expres-
sions can be obtained:

ÛTeðxÞ ¼ i
2πℏ2

mγdydz
B̃Teð0Þ

dNeðxÞ
dx

σ⃗N⃗T;

ÛTnucðxÞ ¼ i
2πℏ2

mγdydz
B̃Tnucð0Þ

dNnucðxÞ
dx

σ⃗N⃗T;

NeðnucÞðxÞ ¼
Z

NeðnucÞðx; y; zÞdydz: ðA30Þ

Coefficients B̃Teð0Þ and B̃Tnucð0Þ are complex values:

B̃TeðnucÞð0Þ ¼ B̃0
TeðnucÞ þ iB̃00

TeðnucÞ:

As a result, T-violating interactions lead to a contribution to
potential energy (A28). Energy of electric dipole moment
interaction with electric field reads as follows:

ÛEDM ¼ −edEplðxÞσ⃗N⃗T − i
d

2dydzℏc
∂
∂x δV

2ðxÞ σ⃗ N⃗T;

ðA31Þ

where unit vector N⃗T is orthogonal to the crystal plane,
E⃗plðxÞ ¼ ExN⃗T .
Evidently, ÛEDM can be expressed as

ÛEDM ¼ −ðαEDM þ iδEDMÞσ⃗N⃗T: ðA32Þ

Similar to Ûmagn energy ÛEDM has nonzero both real and
imaginary parts. The expression for Ûmagn converts to
ÛEDM by replacement g−2

2
→ 2 d

λc
(λc ¼ ℏ

mc is the Compton

wavelength of the particle) and N⃗ → N⃗T . Short-range T-
odd interactions give contributions to the effective potential
energy that can be written as

ÛTeðnucÞðxÞ ¼ −½αTeðnucÞ þ iδTeðnucÞ�σ⃗N⃗T; ðA33Þ

where

αTeðnucÞ ¼
2πℏ2

mγdydz
B̃00
TeðnucÞ

dNeðnucÞðxÞ
dx

;

δTeðnucÞ ¼
2πℏ2

mγdydz
B̃0
TeðnucÞ

dNeðnucÞðxÞ
dx

:

For interaction with crystal axis,

ÛTeðnucÞðρ⃗Þ ¼ −
2πℏ2

mγdz
ðB̃00

TeðnucÞ þ iB̃0
TeðnucÞÞσ⃗∇⃗ρNTeðnucÞðρ⃗Þ:

ðA34Þ

Thus in the experiment aimed to obtain the limit for
the EDM value, the limits for the scattering amplitudes,
which are determined by short-range T(CP)-noninvariant
interactions between baryons (τ-leptons) and electrons,
and nuclei, will be obtained as well. The obtained
values of these amplitudes for different interaction types
allows one to restore the values of corresponding
constants, too. It should be noted that constant of
interaction between a heavy baryon (tau-lepton) and
an electron (nucleus, nucleon) can be greater than that
for light particle interaction. This effect can be explained
by the reasoning similar to that explaining the expected
EDM growth for a heavy baryon [6]. T-odd interaction
mixes heavy baryon stationary states with different
parity more effectively that for light baryons due to
probably smaller spacing between energy levels corre-
sponding to these states.
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