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The technique of microbunched electron cooling (MBEC) is an attractive coherent cooling scheme with
potential applications in future high-energy circular colliders. In our previous work, we analyzed the
cooling of the energy spread using a one-dimensional (1D) technique that tracks the dynamics of
microscopic fluctuations in the hadron and electron beams. In this paper, we extend this approach so that it
covers the transverse emittance cooling as well. In order to do so, it is necessary to consider the betatron
motion of the hadron beam and take into account effects of the momentum dispersion in the modulator and
kicker regions. We derive relatively simple analytical expressions for the emittance and energy spread
cooling times in terms of the various beam and lattice parameters, allowing us to perform fast optimization
studies for an MBEC configuration. Verified through comparison with simulation, our theory can also
incorporate features such as plasma amplification stages, which are crucial components of a realistic
cooling system.
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I. INTRODUCTION

The technique of microbunched electron cooling
(MBEC), first proposed in Ref. [1], is a promising novel
scheme for enhancing the brightness of stored hadron
beams in future high-energy circular colliders. This require-
ment is a crucial one for achieving the high luminosities
needed for experiments in prospective hadron-hadron and
electron-ion machines. In common with other coherent
cooling schemes [2,3], in MBEC, the hadron beam first
imprints an energy modulation on a copropagating (cooler)
electron beam in a segment of the machine known as the
modulator. This energy modulation is then converted into a
density modulation (bunching) after the e-beam passes
through a dispersive chicane section with strength RðeÞ

56

(Fig. 1). In the meantime, the hadrons are transported
through their own—separate—section of the lattice, which

also includes a chicane with strength RðhÞ
56 . The bunched

electron beam then once again interacts with the hadrons in
a subsequent section of the machine (the kicker), in a way
that can ultimately lead to a significant reduction in the
hadron energy spread and transverse emittance after many
passages through the cooling section. In order to accelerate
this process and ensure that the cooling timescale is small
enough for practical purposes, additional amplification
stages are typically required, in which the bunching of

the electron beam is boosted through the space charge (or
plasma) effect. The latter feature is the main difference
between MBEC and other contemporary iterations of
coherent cooling, which typically rely on a narrow-band
gain mechanism in order to enhance the bunching (for
instance, the coherent cooling scheme of Ref. [3] utilizes a
free electron laser for this purpose, while that of [4] uses a
parametric resonance).
In our previous work [5,6], we presented a one-

dimensional (1D) theory for MBEC that described the
cooling of the hadron energy spread. Our analysis, which
only considered the longitudinal portion of the motion, was
based on a kinetic theory approach that tracks the evolution
of fluctuations in the hadron and electron beams as they
move through the cooling lattice. In particular, even though
both beams start from a state of uncorrelated shot noise,
their propagation develops correlations that can signifi-
cantly alter the value of macroscopic properties such as the
energy spread, leading to cooling. In this paper, we extend
this technique so that it can also deal with the mechanism of
transverse emittance cooling. In order to achieve this, it is
necessary to consider the transverse motion of the hadron
beam, including the momentum dispersion, whose inter-
play with the longitudinal dynamics is the root cause of
transverse cooling. We note, however, that our treatment is

FIG. 1. Schematic of a simple MBEC configuration.
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by no means a fully three-dimensional one: the other
essential components of our analysis, such as the motion
of the electron beam and the space charge effect, are still
being studied in a 1D context. Our main objective is to
derive usable analytical expressions for the cooling times of
the emittance and energy spread, which would enhance our
understanding of the underlying physics and facilitate
simple optimization studies.
This paper is organized as follows: in Sec. II, we

introduce the basic concepts regarding the betatron motion
of the hadrons (including the action-angle variables) and
review the description of the hadron shot noise in terms of
the fluctuation part of the beam distribution function. In
Sec. III, we study the evolution of fluctuations in the hadron
beam as the latter passes through the various stages of the
cooling system. The influence of the cooler electrons is
quantified by the space charge impedance, which—to a
large extent—is already known from our previous analysis.
In Sec. IV, the results of this study lead us to the
formulation of a kinetic equation for the averaged distri-
bution function of the hadrons, derived in the limit of small
chicane strength and weak vertical dispersion. For this
simplified case, we can show that the hadron energy spread
and emittance follow simple exponential decay laws. The
assumption of small dispersion and hadron chicane strength
is dropped in Sec. V, which derives a generalized version of
the kinetic equation. In Sec. VI, we utilize the above-
mentioned equation and its corollaries in order to obtain
analytical formulas that express the transverse and longi-
tudinal cooling times as functions of the various system
properties. Using these formulas, we optimize a simple
MBEC configuration for the parameters of the proposed
eRHIC electron-ion collider. In Sec. VII, we benchmark
our analytical expressions by comparing their predictions to
the output of a simple simulation algorithm, showing good
agreement between the two. In Sec. VIII, we discuss how to
include plasma amplification stages in our formalism,
outlining the modified expressions for the cooling time-
scales and providing an updated numerical estimate for
eRHIC. Finally, Sec. IX summarizes the basic conclusions
of our study. We use the Gaussian system of units through-
out this paper.

II. HADRON BEAM SHOT NOISE

In our previous work [5,6], we studied one-dimensional
(1D) shot noise effects in a particle beam by examining the
fluctuations in the beam distribution function. Here, we
extend this technique by also considering the transverse
motion of the beam, which was neglected in our earlier
treatment. Doing so is essential when we seek to describe
the mechanism of hadron transverse emittance cooling in
MBEC, a process which cannot be analyzed in a purely
one-dimensional fashion. That being said, we stress that the
motion of the cooler electron beam and the space charge
interaction in the modulator, plasma and kicker sections

are still being treated in the 1D limit. To start with, we
introduce some key variables related to the betatron motion
of the hadron beam, as the latter is transported from the
modulator to the kicker. Specifically, we need to define the
action-angle variables ðJ;ϕÞ in terms of the original
betatron coordinates ðy; P ¼ y0 ¼ dy=dsÞ, where y is the
vertical displacement and s refers to the longitudinal
coordinate along the ring. To simplify our analysis, we
only consider the vertical motion of the beam (i.e., the
motion in the y-direction), neglecting its horizontal
counterpart. The action variable J is given by

J ¼ 1

2βðsÞ ð½y − ηDðsÞ�2

þ fβðsÞ½P − ηD0ðsÞ� þ αðsÞ½y − ηDðsÞ�g2Þ; ð1Þ

where βðsÞ and αðsÞ ¼ −β0ðsÞ=2 are the standard Courant-
Snyder parameters, DðsÞ is the vertical dispersion, and η ¼
ΔE=E0 is the relative energy deviation of a hadron with
respect to the nominal energy E0 ¼ γmhc2. Here, we clarify
that the prime over the lattice functions denotes differ-
entiation with respect to s, just like in y0. For pure betatron
motion (that is, in the absence of any effects that can change
the hadron energy), J is a constant of the motion. For the
betatron angle ϕ, we have the relation

cosϕ ¼ y − ηDðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βðsÞJp ; ð2Þ

with dϕðsÞ=ds ¼ 1=βðsÞ. We also require the relations that
express the original coordinates in terms of the action-angle
variables, namely

y ¼ ηDðsÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βðsÞJ

p
cosϕ;

P ¼ dy
ds

¼ ηD0ðsÞ −
ffiffiffiffiffiffiffiffiffi
2J
βðsÞ

s
ðsinϕþ αðsÞ cosϕÞ: ð3Þ

The initial distribution function, which describes the
state of the hadron beam before the latter enters the
modulator section, can be written as

finitðz; η; J;ϕÞ ¼ n0hFhðη; JÞ þ δfðz; η; J;ϕÞ; ð4Þ

where, in keeping with our earlier notation, z ¼ s − v0t
refers to the longitudinal coordinate inside the bunch
[v0¼cð1−γ−2Þ1=2 is the nominal velocity]. Additionally,
n0h is the linear density of the hadron beam (number of
particles per unit length), Fh is the equilibrium beam
distribution and δf is the fluctuation part that contains
the shot noise. Here, we assume that the equilibrium hadron
distribution Fhðη; JÞ does not depend on the internal bunch
position z—an approximation which is justified by the fact
that we only consider fluctuations on a scale that is much
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smaller than the bunch length. Moreover, Fh does not
depend on the betatron angle ϕ; this reflects the fact that the
cooling timescale is much larger than the revolution period
of the ring. As a result, any ϕ-dependence is eventually
washed out over multiple turns. Lastly, the normalization of
Fh is defined by

Z
∞

−∞
dη
Z

∞

0

dJ
Z

2π

0

dϕFhðη; JÞ

¼ 2π

Z
∞

−∞
dη
Z

∞

0

dJFhðη; JÞ ¼ 1: ð5Þ

The function δfðz; η; J;ϕÞ describes the statistical fluc-
tuations in the hadron beam and has an average value equal
to zero, so that hδfðz; η; J;ϕÞi ¼ 0, where the brackets
denote ensemble averaging. It is worth noting that, in order
to simplify our notation, we have dropped the independent
variable s from the arguments of δf as we will only be
calculating δf at specific locations along the MBEC lattice.
The one-dimensional Fourier transformation of δf is
defined by

δf̂kðη; J;ϕÞ ¼
Z

∞

−∞
dze−ikzδfðz; η; J;ϕÞ;

δfðz; η; J;ϕÞ ¼ 1

2π

Z
∞

−∞
dkeikzδf̂kðη; J;ϕÞ: ð6Þ

Neglecting the interaction between the hadrons, the corre-
lator for the random fluctuation part δf at two different
points in phase space is given by

hδfðz;η;J;ϕÞδfðz0;η0;J0;ϕ0Þi
¼ n0hFhðη;JÞδðz− z0Þδðη−η0ÞδðJ−J0Þδðϕ−ϕ0Þ: ð7Þ

The above relation is the basic result governing the initial
shot noise in the hadron beam. A corresponding relation for
δf̂k is

hδf̂kðη;J;ϕÞδf̂k0 ðη0;J0;ϕ0Þi
¼2πn0hFhðη;JÞδðkþk0Þδðη−η0ÞδðJ−J0Þδðϕ−ϕ0Þ: ð8Þ

Introducing the density fluctuation

δnðzÞ ¼
Z

∞

−∞
dη
Z

∞

0

dJ
Z

2π

0

dϕδfðz; η; J;ϕÞ; ð9Þ

one can readily show that

hδnðzÞδnðz0Þi ¼ n0hδðz − z0Þ; ð10Þ

which is identical to the result of the one-dimensional
analysis [5]. Another important quantity is the Fourier
spectrum of δnðzÞ, which is given by

δn̂k ¼
Z

∞

−∞
dze−ikzδnðzÞ

¼
Z

∞

−∞
dη
Z

∞

0

dJ
Z

2π

0

dϕδf̂kðη; J;ϕÞ: ð11Þ

The correlator for this new variable is simply

hδn̂kδn̂k0 i ¼ 2πn0hδðkþ k0Þ: ð12Þ

Finally, by integrating Eq. (7) over η0, J0 and ϕ0 and taking
the Fourier transform over z0, we obtain the following result
(frequently used in Appendixes A and B):

hδfðz; η; J;ϕÞδn̂ki ¼ n0hFhðη; JÞe−ikz: ð13Þ

III. DYNAMICS OF FLUCTUATIONS
IN THE HADRON BEAM

Propagating the hadron beam through the cooling
section results in a modification of its input distribution
function, a process which can lead to a cooling effect
(for both the emittance and the energy spread) after many
revolutions. In this section, we seek to quantify this
modification by tracking the evolution of the hadron
fluctuations from the modulator to the kicker. To start
with, we assume that the initial distribution function of the
hadrons is given by Eq. (4) and that the beam is in a state
with uncorrelated shot noise, as described by Eq. (7). To
distinguish between the initial fluctuation part of the
distribution function and its final counterpart, we will
change the notation δf in Eq. (4) to δfðMÞ, where M refers
to the modulator. The hadron beam first interacts with the
electrons in the aforementioned section, where each hadron
creates a perturbation in the electron beam. This perturba-
tion is localized in the immediate vicinity of the hadron.
Strictly speaking, electrons also perturb the hadron beam
during this interaction, but we will neglect this effect in our
analysis. The energy modulation imprinted on the electrons
in the modulator, like the subsequent kick that they impart
on the hadrons in the kicker, is the same as in our original
1D model. This is so because both of these energy changes
are produced by longitudinal density fluctuations, on which
transverse effects such as dispersion have no big impact
(apart from modifying the beam cross section). Moreover,
we assume that the modulator and kicker lengths are
relatively small, so that the lattice functions α, β and
D—as well as the orbit coordinate y and its slope y0 ¼
P—can be treated as constants for these two segments.
Thus, the vector ðy; P; z; ηÞT, which contains the phase
space coordinates of a single hadron, is not changed by
passage through the modulator and neither is the hadron
distribution function (here, T denotes the transpose).
On the other hand, tracking the distribution function

through the hadron transfer line between the modulator and
the kicker requires a more involved analysis. Since we are
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primarily interested in the interplay between the longi-
tudinal and the vertical degrees of freedom (d.o.f.), we need
to define a four-dimensional transport matrix Rt for the
hadrons, which is given by

Rt ¼

0
BBB@

R33 R34 0 R36

R43 R44 0 R46

R53 R54 1 RðhÞ
56

0 0 0 1

1
CCCA: ð14Þ

This matrix acts on the coordinate vector ðy; P; z; ηÞT and
propagates it from the end of the modulator section to the
start of the kicker. A useful set of general expressions for
the various matrix elements is given in Ref. [7]:

R33 ¼
ffiffiffiffiffi
β2
β1

s
ðcos μþ α1 sin μÞ; R34 ¼

ffiffiffiffiffiffiffiffiffi
β1β2

p
sin μ;

R43 ¼
α1 − α2ffiffiffiffiffiffiffiffiffi
β1β2

p cos μ −
1þ α1α2ffiffiffiffiffiffiffiffiffi

β1β2
p sin μ;

R44 ¼
ffiffiffiffiffi
β1
β2

s
ðcos μ − α2 sin μÞ; ð15Þ

and

R36 ¼ D2 − R33D1 − R34D0
1

R46 ¼ D0
2 − R43D1 − R44D0

1

R53 ¼ R43R36 − R33R46

R54 ¼ R44R36 − R34R46: ð16Þ

Here, the subscripts 1=2 refer to the beginning/end of the
hadron transfer line (respectively) while μ ¼ ϕ2 − ϕ1 is the
total phase advance for the same segment. We note that, in
the absence of dispersion, the matrix Rt becomes block-
diagonal and no coupling exists between the transverse and
longitudinal d.o.f. In addition, we emphasize that Rt is a
symplectic matrix, i.e., it satisfies the equality RT

t ΩRt ¼ Ω,
with

Ω ¼

0
BBB@

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

1
CCCA: ð17Þ

Making use of this property is necessary when one seeks to
derive the analytical results of Eqs. (15)–(16). Starting from
first principles, this calculation also utilizes Eq. (3).
The passage through the transfer line with transport

matrix Rt introduces a phase space transformation
ðz1; η1; J1;ϕ1Þ → ðz2; η2; J2;ϕ2Þ, with η2 ¼ η1, J2 ¼ J1,
ϕ2 ¼ ϕ1 þ μ and

z2 ¼ z1 þ R53y1 þ R54P1 þ RðhÞ
56 η1: ð18Þ

This changes the initial hadron distribution function finit
in the modulator into a different function f2 at the start of
the kicker, so that finit ¼ f1 → f2. The new distribution
function is obtained by expressing the old arguments in
terms of the new ones.1 For this, we need the backward
transformation from the kicker to the modulator, which is
given by the inverse matrix R̂t ≡ R−1

t . Using the sym-
plectic character of Rt, we can show that R̂t ¼ −ΩRT

t Ω.
Calculating R̂t and then multiplying this matrix by
ðy2; P2; z2; η2ÞT , one finds that

z1 ¼ z2 þ R46y2 − R36P2 − RðhÞ
56 η2

¼ z2 þ R46ðη2D2 þ
ffiffiffiffiffiffiffiffiffiffi
2β2J

p
cosϕ2Þ

− R36

�
η2D0

2 −

ffiffiffiffiffi
2J
β2

s
ðsinϕ2 þ α2 cosϕ2Þ

�
− RðhÞ

56 η2:

ð19Þ

Thus, the new hadron distribution function is

f2ðz; η; J;ϕÞ ¼ finitðzþ R46y − R36P − RðhÞ
56 η; η; J;ϕ − μÞ

¼ n0hFhðη; JÞ þ δfðMÞðzþ R46y − R36P

− RðhÞ
56 η; η; J;ϕ − μÞ; ð20Þ

where we have made use of Eq. (19). We note that we have
dropped the index 2 in the notation for the variables z, y, P
and ϕ—the fact that this distribution function refers to the
start of the kicker region is now indicated by indexing the
function f. In this expression, y and P are understood as
functions of J, ϕ, and η, as shown in Eqs. (3). In particular,

we note that the important quantityQ¼R46y−R36P−RðhÞ
56 η

can be written as

Qðη; J;ϕÞ ¼ −Q0ηþ Q̄ðJ;ϕÞ
¼ −Q0ηþ

ffiffiffi
J

p
ðQA cosϕþQB sinϕÞ; ð21Þ

where

Q0 ¼ RðhÞ
56 − R46D2 þ R36D0

2;

QA ¼
ffiffiffi
2

p �
R46

ffiffiffiffiffi
β2

p
þ R36

α2ffiffiffiffiffi
β2

p
�
;

QB ¼
ffiffiffi
2

p R36ffiffiffiffiffi
β2

p : ð22Þ

1Here we implicitly assume that the hadron motion from the
kicker to the modulator is Hamiltonian. As a result, the value of
the distribution function remains constant along individual phase
space trajectories.
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Lastly, we consider the passage through the kicker
section. In the latter, the hadrons change energy due to
the interaction with the fluctuational longitudinal electric
field of the electron beam, from an initial energy η2 to a
final energy η3 (so that η3 ¼ η2 þ ΔηðhÞðz2Þ, where ΔηðhÞ is
the energy change and the index 3 refers to the end of the
kicker). Here, we assume that the hadron longitudinal
positions are unchanged, z3 ¼ z2, which is valid for a
short kicker segment. This energy variation results in a
corresponding change of the action-angle variables: J3 ¼
J2 þ ΔJðhÞðz2; J2;ϕ2Þ and ϕ3 ¼ ϕ2 þ ΔϕðhÞðz2; J2;ϕ2Þ.
Analytical expressions for the shifts ΔJðhÞ and ΔϕðhÞ can
be obtained in the following way: using Eq. (1), one can
show that an energy change ΔηðhÞðz2Þ alters the action
variable by an amount equal to

ΔJðhÞðz2; J2;ϕ2Þ

¼ ΔηðhÞðz2Þ
ffiffiffiffiffiffiffi
2J2
β2

s
½ðβ2D0

2 þ α2D2Þ sinϕ2 −D2 cosϕ2�

þ ðΔηðhÞðz2ÞÞ2
2β2

½D2
2 þ ðβ2D0

2 þ α2D2Þ2�; ð23Þ

where we recall that α, β and D are treated as constants in
the kicker. Note that, in contrast to the energy, action and
betatron angle, the longitudinal electric field does not
change the offset y and the variable P, so y3 ¼ y2 and
P3 ¼ P2. A result of the synergy between dispersion and
energy change, this variation in the action is eventually
responsible for the emittance cooling effect. From Eq. (2),
the corresponding change in the angle ϕ is

ΔϕðhÞðz2; J2;ϕ2Þ

¼ ΔηðhÞðz2Þffiffiffiffiffiffiffiffiffiffiffiffi
2β2J2

p ½D2 sinϕ2 þ ðβ2D0
2 þ α2D2Þ cosϕ2�: ð24Þ

For the angular shift ΔϕðhÞ, it is only necessary to keep
terms linear in ΔηðhÞ. For the transformation of the
distribution function, we will need to express the initial
variables in terms of the final ones, which can only be done
in an approximate fashion. Keeping terms up to linear order
in ΔηðhÞ for all variables except the action (for which—as
before—we need to go up to second order), the result is

z2 ¼ z3;

η2 ¼ η3 − ΔηðhÞðz3Þ;
J2 ¼ J3 − ΔJ̄ðhÞðz3; J3;ϕ3Þ;
ϕ2 ¼ ϕ3 − ΔϕðhÞðz3; J3;ϕ3Þ; ð25Þ

where

ΔJ̄ðhÞðz; J;ϕÞ
¼ ΔJ̄ðh;1Þðz; J;ϕÞ þ ΔJ̄ðh;2Þðz; J;ϕÞ

≡ ΔηðhÞðzÞ
ffiffiffiffiffi
2J
β2

s
½ðβ2D0

2 þ α2D2Þ sinϕ −D2 cosϕ�

−
½ΔηðhÞðzÞ�2

2β2
½D2

2 þ ðβ2D0
2 þ α2D2Þ2�; ð26Þ

where ΔJ̄ðh;1Þðz; J;ϕÞ is the part that is proportional to
ΔηðhÞðzÞ while ΔJ̄ðh;2Þðz; J;ϕÞ is the quadratic term. This
transformation results in a new hadron distribution function
after the kicker, i.e., f2 → f3, where

f3ðz; η; J;ϕÞ ¼ f2ðz; η − ΔηðhÞ; J − ΔJ̄ðhÞ;ϕ − ΔϕðhÞÞ
¼ n0hFhðη − ΔηðhÞ; J − ΔJ̄ðhÞÞ
þ δfðMÞðzþ R46y − R36P − RðhÞ

56 η

þ RðhÞ
56 Δη

ðhÞ; η − ΔηðhÞ; J − ΔJ̄ðhÞ;

ϕ − μ − ΔϕðhÞÞ: ð27Þ

For brevity, in Eq. (27) we have omitted the argument z in
the functionΔηðhÞ and ðz; J;ϕÞ in bothΔJ̄ðhÞ andΔϕðhÞ. An
additional clarification is in order regarding a more subtle
point of Eq. (27): since the backward transformation of
Eq. (25) keeps y and P constant, the shift defined by it
only affects η out of the three arguments of the quan-

tity Qðη; J;ϕÞ ¼ R46y − R36P − RðhÞ
56 η.

As far as the specific expression for the hadron energy
change ΔηðhÞðzÞ is concerned, we can reuse the result
derived in our 1D analysis [5], namely

ΔηðhÞðzÞ ¼ −
rhc
2πγ

Z
∞

−∞
dkZðkÞδn̂ðMÞ

k eikz; ð28Þ

where ZðkÞ is the impedance associated with the hadron-

electron interaction, δn̂ðMÞ
k is the Fourier transform of the

initial density modulation δnðMÞðzÞ—obtained by setting

δf̂k → δf̂ðMÞ
k in Eq. (11)—and rh ¼ ðZeÞ2=mhc2 (where

Ze is the hadron charge and mh is the hadron mass).
Introducing the Fourier transform

Δη̂ðhÞk ¼
Z

∞

−∞
dze−ikzΔηðhÞðzÞ; ð29Þ

we also obtain

Δη̂ðhÞk ¼ −
rhc
γ

ZðkÞδn̂ðMÞ
k : ð30Þ

An analytical formula for the impedance ZðkÞ will be
introduced in Sec. VI. Even in this general form, Eq. (28)
is essential for calculating shot noise-related statistical
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averages (see Appendixes A and B). It is also important to

remember that δn̂ðMÞ
k is associated with the density fluc-

tuations in the modulator—the place where the initial
hadron fluctuations are imprinted on the electrons. These
fluctuations should be calculated using the initial fluc-
tuation part of the distribution function δfðMÞðz; η; J;ϕÞ.
When hadrons arrive at end of the kicker, their distribution
function has changed to f3, as given by Eq. (27).

IV. COHERENT COOLING IN THE LIMIT OF
WEAK DISPERSION AND SMALL HADRON

CHICANE STRENGTH

As we have already seen, the distribution function of the
hadron beam is altered as a result of the passage through the
cooling section. Introducing the difference

Δf ¼ f3ðz; η; J;ϕÞ − finitðz; η; J;ϕÞ; ð31Þ

we anticipate that the ensemble-averaged value hΔfiwould
be nonzero (but much smaller in absolute value than
n0hFh). This behavior is due to transport-related correla-
tions developing in the beam, which shift it away from its
initial state of uncorrelated shot noise [see the arguments of
δfðMÞ in Eq. (27)]. As in our original 1D analysis, we
associate this average value of Δf with the change of the

equilibrium distribution function Fh during one revolution
period T:

n0hT
∂Fh

∂t ¼ hΔfi: ð32Þ

In a manner analogous to the study of synchrotron oscil-
lations in a ring, this partial differential equation describes
the temporal evolution of the hadron beam over a timescale
that is much larger than T. This essentially allows us to
replace an iterative map formalism with one that assumes a
slow, continuous dependence with respect to t.
In what follows, our immediate objective is to calculate

hΔfi. To simplify our analysis, we will assume that the

longitudinal shift Q ¼ R46y − R36P − RðhÞ
56 η is small and

neglect terms of higher than the first order in this expres-
sion. Reviewing Eqs. (15)–(16) and (21)–(22), we can

easily establish thatQ has a small value when RðhÞ
56 , R36, and

R46 are, in turn, small. For the last two matrix elements, this
is equivalent to stating that the dispersion is weak. In
addition, we will use the smallness of the fluctuations in the
beam and treat ΔηðhÞ and δfðMÞ as small quantities as well
(∼ε), neglecting terms of order ε3 and higher. Using the
Taylor expansion in terms of the parameter ε (and recalling
the decomposition of the action shift given by Eq. (26), we
obtain

hΔfi≈ − n0hhΔJ̄ðh;2Þi∂JFh þ
1

2
n0hhðΔηðhÞÞ2i∂ηηFh þ n0hhΔηðhÞΔJ̄ðh;1Þi∂ηJFh þ

1

2
n0hhðΔJ̄ðh;1ÞÞ2i∂JJFh

− hΔηðhÞ∂ηδfðMÞi − hΔJ̄ðh;1Þ∂JδfðMÞi − hΔϕðhÞ∂ϕδfðMÞi − ðR46y − R36P − RðhÞ
56 ηÞhΔηðhÞ∂zηδfðMÞi

− ðR46y − R36P − RðhÞ
56 ηÞhΔJ̄ðh;1Þ∂zJδfðMÞi − ðR46y − R36P − RðhÞ

56 ηÞhΔϕðhÞ∂zϕδfðMÞi
þ RðhÞ

56 hΔηðhÞ∂zδfðMÞi; ð33Þ

where, for purposes of notational simplicity, we have
omitted the arguments η, J in the function Fh and
z; η; J;ϕ − μ in δfðMÞ. In obtaining the result given above,
we have used the fact that hδfðMÞi ¼ 0 and hΔηðhÞi ¼
hΔJ̄ðh;1Þi ¼ hΔϕðhÞi ¼ 0. The last (triple) equality can be
justified as follows: taking the Fourier transform of the

relation hδfðMÞi ¼ 0, we obtain hδf̂ðMÞ
k i ¼ 0. In view of

Eqs. (11) and (28), this implies that hδn̂ðMÞ
k i ¼ 0 and

hΔηðhÞi ¼ 0. Since ΔJ̄ðh;1Þ and ΔϕðhÞ are both proportional
to ΔηðhÞ [see Eqs. (26) and (24)], the remaining two
equations follow directly.
Calculating all the terms on the right-hand side (RHS) of

Eqs. (33) is a lengthy analytical exercise that is carried

out in Appendix A. Here, we only state the final result,

which is a kinetic equation for the averaged distribution

function Fh:

∂Fh

∂t ¼Dη
∂2Fh

∂η2 þDϵ
∂
∂J
�
J
∂Fh

∂J
�

þw0ð0Þ rh
Tγ

�
−S

∂ðJFhÞ
∂J þðS−RðhÞ

56 Þ
∂ðηFhÞ
∂η

�
; ð34Þ

where S≡ R46D2 − R36D0
2, w

0ð0Þ is the value of the wake
derivative dwðzÞ=dz at z ¼ 0 (the wake function wðzÞ being
defined in Eq. (A8) in terms of the impedance) and

Dη ¼
n0h
4πT

�
rhc
γ

�
2
Z

∞

−∞
dkjZðkÞj2;

Dϵ ¼
D2

2 þ ðβ2D0
2 þ α2D2Þ2
β2

Dη; ð35Þ

are the diffusion coefficients. The latter are labeled
so because the first two terms on the RHS of Eq. (34)
describe the diffusion, whereas the remaining three terms
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describe the cooling. Here, we must clarify that we have
neglected the contribution due to the wake at the origin
given by Eq. (A7), which would have added a term equal
to −ðrh=TγÞwð0Þ∂ηFh ¼ ðrhc=2πTγÞ½

R∞
−∞ dkZðkÞ�∂ηFh to

the RHS of Eq. (34).
The first thing one has to verify is that Eq. (34) conserves

particles. For this we integrate both sides of the kinetic
equation by

R∞
−∞ dη

R∞
0 dJ. After integration by parts, we

indeed find that the total number of particles is conserved, i.e.,

d
dt

Z
∞

−∞
dη
Z

∞

0

dJFh ¼ 0: ð36Þ

Next, we calculate the rate of change for the beam
energy spread ση and the transverse emittance ϵ, which are
defined by

σ2h ¼ 2π

Z
∞

−∞
dη
Z

∞

0

dJη2Fh;

ϵ ¼ 2π

Z
∞

−∞
dη
Z

∞

0

dJJFh: ð37Þ

Here, the 2π factor comes from the normalization given by
Eq. (5). Combining Eq. (34) with the definitions given
above, we obtain

dσ2h
dt

¼ −2w0ð0Þ rh
Tγ

ðS − RðhÞ
56 Þσ2h þ 2Dη ¼ −

σ2h
Nη

cT
þ 2Dη;

dϵ
dt

¼ w0ð0Þ rh
Tγ

SϵþDϵ ¼ −
ϵ

Nϵ
cT

þDϵ; ð38Þ

where we have introduced the cooling times for energy
spread and emittance (Nη

c andNϵ
c) in terms of the revolution

period T. Neglecting the diffusion effects quantified by Dη

andDϵ, we can see that simultaneous exponential cooling of
the energy spread and the emittance is possible ifw0ð0ÞS < 0

and w0ð0ÞðS − RðhÞ
56 Þ > 0. The effect of the dispersion is

contained in the parameter S ¼ R46D2 − R36D0
2. Using

Eqs. (15) and (16), we obtain a general expression for this
quantity, namely

S ¼ D1D2ffiffiffiffiffiffiffiffiffi
β1β2

p ½ðα1α2 þ 1Þ sin μþ ðα2 − α1Þ cos μ�

þD1D0
2

ffiffiffiffiffi
β2
β1

s
ðα1 sin μþ cos μÞ

−D0
1D2

ffiffiffiffiffi
β1
β2

s
ðcos μ − α2 sin μÞ þD0

1D
0
2

ffiffiffiffiffiffiffiffiffi
β1β2

p
sin μ:

ð39Þ
This is in agreement with Ref. [7]. In the absence of
dispersion, S ¼ 0 and only cooling of the energy spread
is possible (which is essentially the 1D case studied before).
It is alsoworth noting that the scaled cooling rates satisfy the
relation

1

2Nη
c
þ 1

Nϵ
c
¼ −w0ð0Þ rh

γ
RðhÞ
56 ; ð40Þ

the RHS of which does not depend on the dispersion
(provided we neglect a small, quadratic dependence of the
wake with respect to the dispersion). On the other hand, the

ratio of the rates is given by Nϵ
c=N

η
c ¼ 2ðRðhÞ

56 − SÞ=S.

V. ANALYSIS FOR ARBITRARY VALUES
OF THE MATRIX ELEMENTS

In this section, we generalize the kinetic equation for the
hadron distribution function Fh by removing the
assumption about the smallness of the various transport

matrix elements (namely R36, R46, and RðhÞ
56 ). This gener-

alization does not change the expressions for the diffusion
terms but it does modify the calculation for the cooling
terms. The details of this updated derivation are contained
in Appendix B. After going through it, we find that the new
kinetic equation is

∂Fh

∂t ¼ Dη
∂2Fh

∂η2 þDϵ
∂
∂J
�
J
∂Fh

∂J
�
þ rhc
2πγT

∂
∂η
�
Fh

Z
∞

−∞
dkZðkÞfeikQ0ηJ0ðkR

ffiffiffi
J

p
Þ − 1g

�

þ rhc
2πγT

iS
∂
∂J
�
Fh

Z
∞

−∞
dkZðkÞeikQ0η

2
ffiffiffi
J

p
J1ðkR

ffiffiffi
J

p Þ
R

�
; ð41Þ

where we have included the diffusion terms from Eq. (34) and (again) subtracted the effect of the wake at the
origin. Additionally, we clarify that Jn are the Bessel functions of the first kind and recall thatQ0 ¼ RðhÞ

56 − S. An expression
for the important new parameter R ¼ ðQ2

A þQ2
BÞ1=2 can be obtained using Eqs. (15), (16), and (22). The end result is

R2 ¼ 2
1þ α21
β1

D2
1 þ 2

1þ α22
β2

D2
2 − 4

ð1þ α1α2Þ cos μþ ðα1 − α2Þ sin μffiffiffiffiffiffiffiffiffi
β1β2

p D1D2 þ 2β1D0
1
2 − 4

ffiffiffiffiffiffiffiffiffi
β1β2

p
cos μD0

1D
0
2 þ 2β2D02

2

þ 4α1D1D0
1 þ 4α2D2D0

2 þ 4

ffiffiffiffiffi
β2
β1

s
ðsin μ − α1 cos μÞD1D0

2 − 4

ffiffiffiffiffi
β1
β2

s
ðsin μþ α2 cos μÞD2D0

1: ð42Þ
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In the limit of small R and Q0, Eq. (41) reduces to Eq. (34)
in the previous section (recall that

R
∞
−∞dkikZðkÞ¼

−2πw0ð0Þ=c). Moreover, we can easily show that the
generalized kinetic equation conserves the total number
of hadrons, i.e., it satisfies Eq. (36).
Next, we seek general expressions that govern the

evolution of key beam parameters, in a manner analogous
to Eq. (38). Combining the definitions for the energy spread
σh and the emittance ϵ [Eq. (37)] with the new evolution
equation for Fh and neglecting the diffusion effects, we
eventually obtain the expressions

dσ2h
dt

¼ −
σ2h
Nη

cT

¼ −
4rhc
γT

Re
Z

∞

0

dkZðkÞ
Z

∞

−∞
dη
Z

∞

0

dJ

× ηFh½eikQ0ηJ0ðkR
ffiffiffi
J

p
Þ − 1� ð43Þ

and

dϵ
dt

¼ −
ϵ

Nϵ
cT

¼ −
4rhc
γT

Re
Z

∞

0

dkZðkÞ
Z

∞

−∞
dη
Z

∞

0

dJ

×
iS
R
Fh

ffiffiffi
J

p
J1ðkR

ffiffiffi
J

p
ÞeikQ0η; ð44Þ

where we have performed some integration by parts and
also used the general property Zð−kÞ ¼ Z�ðkÞ. Here, we
have also reintroduced the scaled cooling times Nη

c and Nϵ
c,

first discussed in the previous section.
At this point, we find it useful to clarify a subtlety that

could be potentially confusing. Since our aim is to describe
the dynamics of the cooling process, the average hadron
beam distribution function Fh, apart from η and J, also
depends on the time t. As a result, beam properties that are
expressible as moments of Fh (like the energy spread and
emittance) are also functions of t. However, the reader will
note that we have suppressed this time dependence in the
derivation of the RHS of the kinetic equation [Eqs. (34) and
(41)]. This has been done for reasons of notation simpli-
fication but it should be borne in mind that these equations
are, in fact, valid for all t. Of course, the temporal evolution
described by them is slow in the sense that its characteristic
timescale is much larger than the revolution period T.
For the limiting case of small dispersion and chicane

strength, we have seen that the cooling effect follows a
simple exponential decay law [expressed by Eq. (38) if the
diffusion terms are neglected]. For this example, the scaled
cooling times Nη

c, Nϵ
c are constant. For the more general

evolution laws given by Eq. (43)–(44), the decay pattern of
the beam properties is not exactly exponential and cannot
be determined analytically. Moreover, the cooling times
(being related to the logarithmic derivatives of the energy

spread and emittance) are now functions of time. In this
case, we are typically more concerned with the values of the
cooling times at t ¼ 0. This allows us to use the initial value
of the distribution function Fh in the RHS of Eqs. (43) and
(44), which is quite useful since the function Fhðη;J;t¼0Þ
can be expressed analytically. Apart from facilitating our
further analysis, this approximation has some practical
applications as well. For some scenarios, the cooling is only
meant to counteract effects such as intrabeam scattering
(IBS), which would tend to reduce the brightness of the
hadron beam in a collider. In such a case, we are primarily
interested in matching the initial cooling times to their IBS
counterparts. Having such a setup in mind, in the following
section, we seek to derive expressions for the initial cooling
times for the purpose of optimizing them with respect to the
lattice and beam parameters.

VI. OPTIMIZATION OF THE COOLING RATES

To start with, we introduce some simplifications regard-
ing the MBEC configuration under consideration. In
particular, we assume that β1 ¼ β2 ¼ β0, D1 ¼ D2 ¼ D0,
α1 ¼ α2 ¼ 0 and D0

1 ¼ D0
2 ¼ 0. In this case we have

R33¼R44¼cosμ, R34 ¼ β0 sin μ, R43 ¼ − sin μ=β0, R36 ¼
−ð1þ cos μÞD0, and R46 ¼ D0 sin μ=β0. Moreover, S ¼
D2

0 sin μ=β0 and R2 ¼ 8D2
0 sin

2ðμ=2Þ=β0. For the initial
hadron distribution function, we select

Fh ¼Fhðη;J; t¼ 0Þ¼ 1

ð2πÞ3=2σhϵ
exp

�
−

η2

2σ2h

�
exp

�
−
J
ϵ

�
;

ð45Þ

where ϵ is the transverse (vertical) emittance and σh is the
energy spread. The fact that β and D have the same values
at the modulator and the kicker ensures that the vertical size
Σy of the hadron beam is the same at these two locations.
The latter quantity is expressed by Σy ¼ ðΣ2

0 þD2
0σ

2
hÞ1=2,

where Σ0 ¼
ffiffiffiffiffiffiffi
ϵβ0

p
is the vertical size in the absence of

dispersion. We also assume that the same is true of the
horizontal beam size Σx ≡ Σ, which does not have a
dispersive contribution. Thus, in our model, the hadron
beam has a common (in general, elliptical) cross section in
the two cooling modules where it interacts with the electron
beam. The size aspect ratio of the hadron beam is
r ¼ Σy=Σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 þD2
0σ

2
h=Σ2

p
, where r0 ¼ Σ0=Σ is the

aspect ratio for zero dispersion. To further simplify our
treatment, we also assume that the cooler electron beam has
an elliptical cross section that perfectly overlaps with that
of the hadron beam at the modulator and the kicker.
Next, we introduce the following scaled quantities:

k̂ ¼ kΣ=γ, qh ¼ RðhÞ
56 σhγ=Σ, qs ¼ Sσhγ=Σ, Q̂0 ¼ qh − qs,

qr ¼ γR
ffiffiffi
ϵ

p
=Σ, η̂ ¼ η=σh, and Ĵ ¼ J=ϵ. In terms of this

scaling, the relations for the cooling times become
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1

Nη
c
¼ 4ϵrhc

Σ
Re
Z

∞

0

dk̂Zðk̂Þ
Z

∞

−∞
dη̂
Z

∞

0

dĴ

× η̂Fhðeik̂Q̂0η̂J0ðqrk̂
ffiffiffî
J

p
Þ − 1Þ ð46Þ

and

1

Nϵ
c
¼ 4ϵrhc

Σ
Re
Z

∞

0

dk̂Zðk̂Þ
Z

∞

−∞
dη̂
Z

∞

0

dĴ

× i
qs
qr

Fh

ffiffiffî
J

p
J1ðqrk̂

ffiffiffî
J

p
Þeik̂Q̂0η̂: ð47Þ

The analytical expression for the impedance Z when no
plasma amplification stage is present between the modu-
lator and the kicker is given by

Zðk̂Þ ¼ −
4iIeLmLk

cΣ2γ3IAσe
qek̂ expð−k̂2q2e=2ÞH2ðk̂; rÞ; ð48Þ

where Ie is the electron beam current, IA ¼ ec=re ≈ 17 kA
is the Alfven current (re ¼ e2=mec2 is the classical electron
radius), Lm, Lk are the lengths of the modulator and kicker
sections (respectively), σe is the rms energy spread of the

electron beam and qe ¼ RðeÞ
56 σeγ=Σ is the scaled electron

chicane strength. Moreover, the function H is given by

Hðk̂; rÞ ¼ i
2

Z
∞

−∞
dẑΦðẑ; rÞe−ik̂ ẑ ¼

Z
∞

0

dẑΦðẑ; rÞ sinðk̂ ẑÞ;

ð49Þ

where Φðẑ; rÞ is the space charge interaction function. The
physical interpretation of Φ can be stated as follows: to
describe the space charge interaction between the hadron
and electron beams, we subdivide each of them into slices
with charge Ze and −e (respectively) and a common
elliptical cross section with transverse rms sizes Σx ¼ Σ
and Σy. The force between two slices separated by a
distance z is then given by

Fz ¼ −
Ze2

Σ2
Φ
�
γz
Σ
; r

�
: ð50Þ

The function Φðẑ; rÞ is studied extensively in Appendix C,
where a fitting formula for it is given. In Fig. 2 we plot this
function for several values of the beam aspect ratio r. Also
included is a companion plot of the function Hðk̂; rÞ. We
note that, compared to our earlier calculation of Z in
Ref. [5], switching to an elliptical cross section for the two
beams only affects the interaction function Φ, leaving the
other details of our derivation unchanged.
Combining Eq. (48) with Eqs. (46) and (47), we obtain

1=Nη
c ¼ 4IeLmLkrh

Σ3πγ3IAσeσh
Iη;

1=Nϵ
c ¼

4IeLmLkrh
Σ3πγ3IAσeσh

Iϵ ð51Þ

and

Iη ¼ qeRe
Z

∞

0

dk̂ k̂ expð−k̂2q2e=2ÞH2ðk̂; rÞRηðk̂Þ;

Iϵ ¼ qeRe
Z

∞

0

dk̂ k̂ expð−k̂2q2e=2ÞH2ðk̂; rÞRϵðk̂Þ; ð52Þ

where

Rηðk̂Þ¼4πiσhϵ
Z

∞

−∞
dη̂ η̂

Z
∞

0

dĴFh

�
1−eik̂Q̂0η̂J0

�
qrk̂

ffiffiffî
J

p ��
ð53Þ

and

Rϵðk̂Þ ¼ 4πσhϵ
qs
qr

Z
∞

−∞
dη̂
Z

∞

0

dĴFh

ffiffiffî
J

p
eik̂Q̂0η̂J1

�
qrk̂

ffiffiffî
J

p �
:

ð54Þ

Substituting the initial beam distribution of Eq. (45), which
can be written as

FIG. 2. Left panel: Plot of the interaction functionΦðẑ; rÞ in terms of ẑ, for three different values of the aspect ratio r. Right panel: Plot
of the function Hðk̂; rÞ in terms of k̂, for the same values of r.
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Fh ¼
1

ð2πÞ3=2σhϵ
exp

�
−
η̂2

2

�
expð−ĴÞ; ð55Þ

into Eqs. (53) and (54), we find that

Rηðk̂Þ ¼ 2Q̂0k̂ exp

�
−
k̂2Q̂2

0

2
−
k̂2q2r
4

�
ð56Þ

and

Rϵðk̂Þ ¼ qsk̂ exp

�
−
k̂2Q̂2

0

2
−
k̂2q2r
4

�
: ð57Þ

As a consequence, the integrals Iη and Iϵ become

Iη ¼ 2ðqh − qsÞqe
Z

∞

0

dk̂k̂2 exp½−k̂2ðq2e þ ðqh − qsÞ2Þ=2

− k̂2q2r=4�H2ðk̂; rÞ ð58Þ

and

Iϵ ¼ qsqe

Z
∞

0

dk̂k̂2 exp½−k̂2ðq2e þ ðqh − qsÞ2Þ=2− k̂2q2r=4�

×H2ðk̂; rÞ; ð59Þ

where we recall that Q̂0 ¼ qh − qs. From the above results,
we can readily deduce a simple relationship between the
cooling times for the energy spread and the transverse
emittance, namely

Nϵ
c

Nη
c
¼ 2Q̂0

qs
¼ 2

qh − qs
qs

: ð60Þ

This result for the ratio of the cooling times is identical to
the one derived (in a different context) at the end of Sec. IV.
From an inspection of Eqs. (58) and (59), we obtain

some important preliminary insight regarding the influence
of dispersion on the cooling effect. To begin with, for zero
dispersion (D0 ¼ 0) R2 ¼ S ¼ 0 so qr ¼ qs ¼ 0. In this
case, Iϵ ¼ 0 and there is no emittance variation (cooling or
heating). Moreover, the expression for the longitudinal
cooling rate [Eq. (58)] reduces to the one obtained in our
earlier 1D analysis—in Ref. [5]. For nonzero dispersion
one can have cooling of both the energy spread and the
transverse emittance, provided that qh > qs. An interesting
situation occurs when the dispersion and the hadron
chicane strength are such that qh ¼ qs (or Q̂0 ¼ 0), in
which case the longitudinal rate becomes zero (Iη ¼ 0). For
qh < qs, one still has emittance cooling but now this is
accompanied by heating in terms of the energy spread.
Even though the expressions for the cooling integrals are

more complicated than their 1D counterparts, they still
allow us to optimize the parameters of a relatively simple
MBEC configuration. To demonstrate this, let us consider a

scenario in which all parameters are fixed except D0, μ,

RðhÞ
56 , and RðeÞ

56 . Moreover, we choose to confine our
attention to the case of zero cooling for the energy spread.
As we have seen, this simplification removes one d.o.f.

since RðhÞ
56 is always chosen so that qh ¼ qs. Our objective

is to maximize the emittance cooling rate 1=Nϵ
c, which is

equivalent to optimizing Iϵ. After some manipulation,
Eq. (59) can be rewritten as

Iϵ ¼ qe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uv2 − u2=ð4ϒ2Þ

q Z
∞

0

dk̂k̂2H2
�
k̂; r0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p �

× exp

�
−ðq2e þ uÞ k̂

2

2

�
: ð61Þ

Here, we have expressed the beam aspect ratio r as r ¼
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
, where v≡ σhD0=Σ0 and we have also intro-

duced the variables u ¼ q2r=2 andϒ ¼ γϵ=ðΣσhÞ. The main
advantage of this rearrangement is that the effect of
dispersion is now contained in only two parameters
(u and v). Expressed in this form, Iϵ can be maximized
using a typical unconstrained optimization software pack-
age. For a numerical illustration, we have considered a
parameter set that is representative of the proposed eRHIC
electron-ion collider (see Table I). Assuming βx ¼ βy ¼
β0 ≈ 50 m, we have Σ ¼ ffiffiffiffiffiffiffiffiffi

ϵxβx
p

≈ 680 μm and Σ0 ¼ffiffiffiffiffiffiffiffiffi
ϵyβy

p ¼ ffiffiffiffiffiffiffi
ϵβ0

p
≈ 250 μm. Thus the aspect ratio without

dispersion is r0 ¼ Σ0=Σ ¼ 0.37 while ϒ ¼ γϵ=ðΣσhÞ ¼
1.24. For these parameters the optimum value of Iϵ is
0.103, obtained for u ¼ 0.229, v ¼ 1.581, and qe ¼ 0.482
(we also have qs ¼ 0.75). In terms of the original (dimen-
sional) quantities, this optimum point yields a dispersion
D0 ¼ β0ðϒvÞ=ðγr0Þ ≈ 0.87 m and a phase advance μ ¼
2sin−1ð ffiffiffi

u
p

=ð2ϒvÞÞ ≈ 0.24. The hadron/electron chicane

strengths are RðhÞ
56 ¼ qhΣ=ðγσhÞ ¼ 3.8 mm and RðeÞ

56 ¼
qeΣ=ðγσeÞ ¼ 1.1 cm.
In order to verify that the above-mentioned parameters

correspond to an optimum solution, we scan the dispersion
while keeping all other quantities fixed and plot the cooling

TABLE I. Parameters of the eRHIC collider with a hypothetical
MBEC cooling section.

Proton energy γmhc2 [GeV] 275
Proton relative energy spread, σh 4.6 × 10−4

Electron energy γmec2 [MeV] 150
Electron relative energy spread, σe 1 × 10−4

Relativistic factor, γ 293
Electron beam current, Ie [A] 30
Electron bunch charge, Qe [nC] 1

Proton rms bunch length, σðhÞz [cm] 5

Revolution period T [s] 1.2 × 10−5

Horizontal/vertical proton emittance ϵx=ϵy [nm] 9.2=1.3
Modulator and kicker lengths Lm, Lk [m] 50
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times as a function of D0. From Eq. (51), we recall that the
scaled cooling times are given by 1=Nη

c ¼ A0Iη and
1=Nϵ

c ¼ A0Iϵ, where the dimensionless prefactor A0 is
given by

A0 ¼
4Ieffe LmLkrh
Σ3πγ3IAσeσh

: ð62Þ

Here, the peak electron beam current Ie has been replaced

by an effective value of Ieffe ≈ cQe=ð
ffiffiffiffiffiffi
2π

p
σðhÞz Þ ≈ 2.4 A.

This is necessary in order to account for the finite
longitudinal size of both beams, which are assumed to
have Gaussian current profiles (more details can be found
in Ref. [6]). The results of the dispersion scan are given in
Fig. 3. A minimum of the transverse cooling time is indeed
observed at D0 ¼ Dopt ¼ 0.87 m, the minimum value
being ∼18 h. As we ramp up the dispersion, we observe
a transition from a state of zero transverse cooling (for
D0 ¼ 0) to a state of zero longitudinal cooling (for
D0 ¼ Dopt), followed by heating of the energy spread
and suboptimal cooling of the emittance. We also note
that the case with D0 ¼ 0 corresponds to optimum longi-
tudinal cooling (with a timescale ≈7.7 h). Finally, for

D0 ≈ 0.82Dopt ≈ 0.72 m, we have tðηÞc ≈ tðϵÞc ≈ 22 h.

VII. COMPARISON WITH SIMULATION

In order to benchmark our analytical theory, we have
carried out simulations of MBEC that take into account the
transverse motion of the hadrons. In these simulations,
electrons and hadrons are represented by macroparticles
(slices) that interact with the force given by Eq. (50).
Initially, Ne electron macroparticles are randomly distrib-

uted in the interval 0 < z < Δz with the energy ηðeÞi of the
ith electron randomly assigned from a Gaussian distribu-
tion with an rms width σe. Periodic boundary conditions are
imposed at the boundaries of the interval ½0;Δz�. As far as
the hadron coordinates are concerned, the energy ηðhÞ,

vertical slope P ¼ dy=ds and betatron position ȳ are all
drawn from Gaussian distributions with widths σh, Σ0

0 ¼ffiffiffiffiffiffiffiffiffi
ϵ=β0

p
and Σ0 ¼

ffiffiffiffiffiffiffi
ϵβ0

p
(respectively). In the presence of

dispersion the hadron vertical position is y ¼ D0η
ðhÞ þ ȳ.

Such a hadron macroparticle is placed at a random location
within the interval and the energy of each electron i is

changed by ΔηðeÞi ¼ fz;iLm=γmec2, where fz;i is the force
exerted by the hadron on electron i. On the next step,
corresponding to the passage of the hadrons from the
modulator to the kicker, the hadron coordinate vector
ðz; ηðhÞ; y; PÞT is transformed according to the transport
matrix Rt, which is given by Eq. (14). On the other hand,

the electrons pass through the chicane RðeÞ
56 where they are

shifted longitudinally by RðeÞ
56 ðηðeÞi þ ΔηðeÞi Þ. Finally, in the

kicker itself, the hadron energy is changed from ηðhÞ to
ηðhÞ þ ΔηðhÞ with ΔηðhÞ ¼PNe

i¼1 fz;iLk=γmhc2, where now
fz;i denotes the force acting on the hadron from ith
electron. Because of the dispersion D0, this energy kick
also results in a variation of the action variable J. After the
kick, the action change is calculated with the help of
Eq. (1), ΔJ ¼ Jfinal − Jinit. This procedure is repeated M
times and the longitudinal cooling rate is estimated as an
average overM runs of the difference ðηðhÞ þ ΔηðhÞÞ2 − σ2h.
An entirely analogous procedure for ΔJ yields the trans-
verse cooling rate.
By a proper scaling of the dimensional variables of

the simulation problem, one can show that it is determined
by several dimensionless parameters. The first one,
ν ¼ n0eΣ=γ, is equal to the number of electrons within a
length Σ=γ, a quantity that is proportional to the electron
beam current Ie. Two more parameters, A1 and A2,
characterize the interaction strength in the modulator and
the kicker normalized by the electron and hadron energy
spread, respectively,

A1 ¼
ZreLm

γΣ2σe
; A2 ¼

rhLk

ZγΣ2σh
: ð63Þ

Furthermore, apart from the dimensionless chicane
strengths of qe and qh, consideration of the transverse
motion introduces some additional scaled parameters into
the simulation setup. Almost all of these, namely the phase
advance μ, the zero-dispersion aspect ratio r0 of the hadron
beam and v ¼ σhD0=Σ0, have already been mentioned in
the previous sections (the only new addition being the
variable v1 ≡ γD0=β0). Calculating the numerical values of
ν, A1 and A2 for the eRHIC parameters in Table I, we find

ν¼1.5×106; A1¼7.8×10−6; A2¼9.3×10−10: ð64Þ

Simulations with these values are computationally chal-
lenging due to the large number of required macroparticles
and small values of the interaction strengths. To avoid this

0 0.5 1 1.5 2
0

20

40

60

FIG. 3. Transverse and longitudinal cooling times as a function
of dispersion.
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problem we used larger values for A1 and A2 and smaller
values for ν, in particular

ν¼ 5× 102; A1 ¼ 2× 10−2; A2 ¼ 5× 10−5: ð65Þ

For the other scaled parameters, we use the dispersion and
phase advance values obtained from the optimization study
of the previous section. These yield μ ¼ 0.24, r0 ¼ 0.37,
v ¼ 1.58 and v1 ¼ 5.25. As far as the chicane strengths are
concerned, we scan qe around its optimum value of 0.482
for a fixed qh ¼ 1.25qs ¼ 0.94. The results of this scan are
shown in Fig. 4, where we plot the scaled cooling times as a
function of qe. Good agreement is observed between theory
and simulation for both the transverse and the longitudinal
cooling time. A deviation of a few percent can probably be
attributed to diffusion effects, which can also be tracked
analytically. Of course, our simulations have a limited
scope in the sense that they do not represent the output of a
fully 3D algorithm. Some preliminary work regarding a 3D
MBEC simulation (and theory) is presented in Ref. [8].

VIII. ADDITION OF PLASMA
AMPLIFICATION STAGES

The analysis carried out so far refers to an MBEC
configuration with no plasma amplification stages. Each of
the latter typically consists of a long drift section (the length
being comparable to the plasma oscillation wavelength of
the electron beam) followed by a chicane. Including any
number of such stages after the first electron chicane would
only change the expression for the impedance, which
would be modified according to Zðk̂Þ→Zðk̂ÞGðk̂Þ.

Here, Gðk̂Þ is a gain factor that depends on the various
parameters of the plasma stages (drift lengths, added
chicane strengths, local electron beam size etc).
Analytical expressions for G are available in [6] for some
simple cascade configurations. Incorporating this new
space charge impedance in our formalism is a straightfor-
ward exercise; it merely adds a multiplicative factor ∝ G to
the integrand of Iη and Iϵ, while also boosting the value of
the prefactor A0 by a corresponding constant. Specifically,
for a cascade of two plasma stages (as shown in Fig. 5), the
transverse cooling integral becomes

I0ϵ ¼ qsqe;1

Z
∞

0

dk̂k̂2 expf−k̂2½q2e;1
þ ðqh − qsÞ2�=2 − k̂2q2r=4g
×H2ðk̂; rÞg1ðk̂Þg2ðk̂Þ; ð66Þ

with

g1ðk̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂H1ðrpk̂Þ

rp

s
qe;2 expð−k̂2q2e;2=2Þ

× sin

 
rp

ΩpLd

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k̂H1ðrpk̂Þ

rp

s !
ð67Þ

and

g2ðk̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂H1ðrpk̂Þ

rp

s
qe;3 expð−k̂2q2e;3=2Þ

× sin

 
rp

ΩpLd

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k̂H1ðrpk̂Þ

rp

s !
; ð68Þ

being the contributions of the individual plasma stages.

Moreover, H1ðk̂Þ≡Hðk̂; r ¼ 1Þ, qe;j ¼ Rðe;jÞ
56 σeγ=Σ (for

j ¼ 1, 2, 3) are the scaled electron chicane strengths, Ld

is the common length of the two drift sections and Ωp ¼
ðc=rpΣÞðIe=γ3IAÞ1=2 is the plasma oscillation frequency.
Here, rpΣ≡ Σp represents the local electron beam size at
the plasma stages, the beam being assumed round at these
two locations. The emittance cooling time is now given by
1=Nϵ

c ¼ A0
0I

0
ϵ, where the new prefactor is expressed by

A0
0 ¼

8ðĪeffe Þ2LmLkrh
Σ3πγ4I2Aσ

3
eσh

: ð69Þ

FIG. 5. An MBEC configuration with two plasma amplification stages.

FIG. 4. Simulated vs theoretical cooling times.
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Here, Īeff ¼ 2−1=4Ie

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðeÞz =σðhÞz

q
is the effective electron

beam current for the case of two plasma stages and σðeÞz ¼
cQe=ð

ffiffiffiffiffiffi
2π

p
IeÞ is the electron rms bunch length. The cool-

ing time for the energy spread can still be expressed
by Eq. (60).
Using these updated expressions a lattice parameter

optimization is possible, in a manner entirely analogous
to the case with no plasma stages. For the eRHIC parameter
set of Table I, we assume that the e-beam at the plasma
stages can be squeezed to a size rpΣ ≈ 135 μm (so that
rp ¼ 0.2). The optimum cooling time [∼ðA0

0I
0
ϵÞ−1] is

now about 4 min. As far as the optimized machine
parameters are concerned, we have D0≈1.3m, μ ≈ 0.37,

RðhÞ
56 ¼ 1.25 cm, Rðe;1Þ

56 ¼ Rðe;2Þ
56 ¼ Rðe;3Þ

56 ¼ 2.5 cm. The
necessary drift length is Ld≈Σγ3=2

ffiffiffiffiffiffiffiffiffiffiffi
IA=Ie

p
≈81m. Thus

we see that, by adding amplification stages, the cooling
time can be greatly reduced, though diffusion effects and
nonlinear behavior in the plasma modules may also become
more important than before [6].

IX. SUMMARY

In this paper, we have developed a theoretical formalism
that describes the influence of transverse beam dynamics
on the mechanism of microbunched electron cooling
(MBEC). Extending our earlier one-dimensional (1D)
treatment, we modify our kinetic theory-based approach
in order to include the transverse (betatron) motion of the
hadron beam. The latter is treated in a systematic and
rigorous fashion that explicitly takes into account the
interplay between the transverse and longitudinal d.o.f.
This allows us to quantify the effect of the various hadron
lattice functions on the cooling of the energy spread. More
importantly, it also enables us to demonstrate how some
of these parameters—in particular, the dispersion—are
responsible for the cooling of the transverse emittance.
The crucial role of dispersion in generating emittance
cooling has also been emphasized in the context of optical
stochastic cooling [9]. To ensure that our analysis does not
become prohibitively cumbersome, we only consider the
vertical component of the hadron betatron motion and keep
the other aspects of our derivation in a purely 1D frame-
work. In particular, the space charge interaction is
described in terms of a 1D Gaussian slice model while
the transverse motion of the cooler electron beam is
completely neglected. These assumptions do impose some
restrictions on the applicability of our model; in particular,
we cannot use it for a fully rigorous study of how the
various details of a realistic beamline would affect MBEC.
However, our work does result in relatively simple ana-
lytical formulas for the transverse and longitudinal cooling
times, which are subsequently verified through comparison
with simulation. We have used these expressions in an

optimization study of a conceptual MBEC configuration
for the eRHIC collider. The basic conclusion is that, by a
proper choice of the hadron lattice properties (i.e.,
dispersion, phase advance etc), one can obtain a similar
degree of cooling for both the emittance and the energy
spread. The resulting requirements for the lattice are not
excessive (the necessary dispersion value being about 1 m,
the chicane strength ∼1 cm) but the obtained cooling times
are rather high (∼20 h). This can be improved through the
use of plasma amplification stages, which aim to enhance
the bunching of the electron beam and reduce the cooling
times to levels that allow us to counteract effects such as
intrabeam scattering (∼1 h or lower). Our analysis can
easily incorporate this important feature, and parameter
optimization is still feasible in this case. The addition of
two plasma stages, each with a length ∼80 m, appears to be
sufficient for our purposes. Overall, this work effectively
complements Refs. [5,6] by showing that MBEC can
provide transverse, as well as longitudinal, cooling for a
hadron beam. We expect that the methods outlined in this
paper will be a useful addition to the toolbox required for
future studies of MBEC.
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APPENDIX A: KINETIC EQUATION IN THE
LIMIT OF SMALL DISPERSION AND HADRO

CHICANE STRENGTH

The first four terms of Eq. (33) (i.e., those up to the
second line of the said equation) are responsible for the
diffusion effects. In order to calculate the averages involved
in them, we use Eqs. (24) and (26) in conjunction with
Eqs. (12) and (28). Moreover, we have the following
complication: since the cooling is a slow process that takes
place over many revolutions around the ring, a particular
hadron each time arrives at the cooler with approximately
the same values of J and η, but different betatron phases ϕ.
Thus, apart from ensemble averaging, we also need to
average Δf over the betatron angle ϕ. We denote the
averaging over the phase ϕ by the symbols ⊲…⊳.
It is straightforward to show that ⊲hΔηðhÞΔJ̄ðh;1Þi⊳ ¼ 0
and

⊲hðΔJ̄ðh;1ÞÞ2i⊳ ¼ −2JhΔJ̄ðh;2Þi

¼ J
hðΔηðhÞÞ2i

β2
½D2

2 þ ðβ2D0
2 þ α2D2Þ2�;

ðA1Þ

in view of which the diffusion terms add up to
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1

2
n0hhðΔηðhÞÞ2i∂ηηFhþn0h

hðΔηðhÞÞ2i
2β2

× ½D2
2þðβ2D0

2þα2D2Þ2�ð∂JFhþJ∂JJFhÞ: ðA2Þ

The average of ðΔηðhÞÞ2 is, in turn, given by

hðΔηðhÞÞ2i ¼
�
rhc
2πγ

�
2
Z

∞

−∞
dkdk0ZðkÞZðk0Þ

× eikzþik0zhδn̂ðMÞ
k0 δn̂ðMÞ

k i

¼ n0h
2π

�
rhc
γ

�
2
Z

∞

−∞
dkjZðkÞj2: ðA3Þ

Combining the above, the diffusion terms can be written in
a compact fashion as:

n20h
4π

�
rhc
γ

�
2
Z

∞

−∞
dkjZðkÞj2

×

�∂2Fh

∂η2 þD2
2 þ ðβ2D0

2 þ α2D2Þ2
β2

∂
∂J
�
J
∂Fh

∂J
��

:

ðA4Þ

The next three terms [in the third line of Eq. (33)] are due
to the self-interaction of particles. In fact, we can show that
only the first of these is nonzero. To demonstrate this, we
start from Eq. (13), which can be restated as

hδn̂ðMÞ
k δfðMÞðz; η; J;ϕ − μÞi ¼ n0hFhðη; JÞe−ikz: ðA5Þ

As a direct result of the above relation, we have

hδn̂ðMÞ
k ∂ηδfðMÞi ¼ n0h∂ηFhe−ikz;

hδn̂ðMÞ
k ∂JδfðMÞi ¼ n0h∂JFhe−ikz;

hδn̂ðMÞ
k ∂ϕδfðMÞi ¼ 0;

hδn̂ðMÞ
k ∂zδfðMÞi ¼ −ikn0hFhe−ikz: ðA6Þ

Combining the first of these results with Eq. (28), we obtain

−hΔηðhÞ∂ηδfðMÞi ¼ rhc
2πγ

Z
∞

−∞
dkZðkÞhδn̂ðMÞ

k ∂ηδfðMÞieikz

¼ rhc
2πγ

n0h∂ηFh

Z
∞

−∞
dkZðkÞ

¼ −n0h
rh
γ
wð0Þ∂ηFh: ðA7Þ

Here, we have introduced the value of the wake function
wðzÞ at the origin z ¼ 0. The wake is given in terms of the
impedance ZðkÞ by

wðzÞ ¼ −
c
2π

Z
∞

−∞
dkZðkÞeikz: ðA8Þ

The fact that wðzÞ is a real quantity requires that Zð−kÞ ¼
Z�ðkÞ (see Ref. [5]). The term given by Eq. (A7) does not
have an impact in the cooling process and is typically
ignored in the analysis even if wð0Þ is nonzero. For the
second of the self-interaction terms, Eq. (A6)—along with
Eqs. (26) and (28)—gives

− hΔJ̄ðh;1Þ∂JδfðMÞi

→
rhc
2πγ

ffiffiffiffiffi
2J
β2

s
⊲ððβ2D0

2 þ α2D2Þ sinϕ −D2 cosϕÞ⊳

×
Z

∞

−∞
dkZðkÞhδn̂ðMÞ

k ∂JδfðMÞieikz ¼ 0; ðA9Þ

as a result of the ϕ-averaging. An entirely analogous
reasoning shows that the final term is zero, i.e.,

hΔϕðhÞ∂ϕδfðMÞi ¼ 0: ðA10Þ

Next, we move on to the remaining four terms of
Eq. (33), which contain the cooling effect. For these we
need a corollary of Eq. (A5), namely

hδn̂ðMÞ
k ∂zηδfðMÞi ¼ −ikn0h∂ηFhe−ikz;

hδn̂ðMÞ
k ∂zJδfðMÞi ¼ −ikn0h∂JFhe−ikz;

hδn̂ðMÞ
k ∂zϕδfðMÞi ¼ 0: ðA11Þ

To begin with, we calculate the term proportional to
hΔηðhÞ∂zηδfðMÞi. We have

−QhΔηðhÞ∂zηδfðMÞi

→ ⊲Q⊳ rhc
2πγ

Z
∞

−∞
dkZðkÞeikz∂zηhδn̂ðMÞ

k δfðMÞi

¼ irhc
2πγ

n0hQ0η∂ηFh

Z
∞

−∞
dkkZðkÞ

¼ −w0ð0Þ rh
γ
n0hQ0η∂ηFh; ðA12Þ

wherewe have used Eq. (A8) to show that i
R
∞
−∞ dkkZðkÞ ¼

−2πw0ð0Þ=c andEq. (21) to obtain⊲Q⊳ ¼ −Q0η. The next
(action-related) term is
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−QhΔJ̄ðh;1Þ∂zJδfðMÞi

→ Q̂J
rhc
2πγ

ffiffiffiffiffi
2J
β2

s Z
∞

−∞
dkZðkÞeikz∂zJhδn̂ðMÞ

k δfðMÞi

¼ −Q̂J
irhc
2πγ

n0h

ffiffiffiffiffi
2J
β2

s
∂JFh

Z
∞

−∞
dkkZðkÞ

¼ Q̂J
rh
γ
n0hw0ð0Þ

ffiffiffiffiffi
2J
β2

s
∂JFh; ðA13Þ

where

Q̂J ¼ ⊲Qððβ2D0
2 þ α2D2Þ sinϕ −D2 cosϕÞ⊳

¼ ð
ffiffiffi
J

p
=2Þ½QBðβ2D0

2 þ α2D2Þ −QAD2�
¼ ð

ffiffiffiffiffiffiffiffiffiffi
2β2J

p
=2ÞðR36D0

2 − R46D2Þ: ðA14Þ

In the last step we have made use of Eq. (22). Combining the
above, we find

−QhΔJ̄ðh;1Þ∂zJδfðMÞi
→ ðR36D0

2 − R46D2Þ
rh
γ
n0hw0ð0ÞJ∂JFh: ðA15Þ

The phase-related cooling term is zero since

−QhΔϕðhÞ∂zϕδfðMÞi∝
Z

∞

−∞
dkZðkÞeikz∂zϕhδn̂ðMÞ

k δfðMÞi¼0:

ðA16Þ

Lastly, we turn to the last term in Eq. (33), which is given by

RðhÞ
56 hΔηðhÞ∂zδfðMÞi

¼ −RðhÞ
56

rhc
2πγ

Z
∞

−∞
dkZðkÞ∂zhδn̂ðMÞ

k δfðMÞieikz

¼ RðhÞ
56

rhc
2πγ

n0hiFh

Z
∞

−∞
dkkZðkÞ ¼ −RðhÞ

56

rh
γ
n0hw0ð0ÞFh:

ðA17Þ

Combining all of the terms derived above with Eqs. (32) and
(33), we obtain the relation

∂Fh

∂t ¼ Dη
∂2Fh

∂η2 þDϵ
∂
∂J
�
J
∂Fh

∂J
�

þ w0ð0Þ rh
Tγ

�
−SJ

∂Fh

∂J þ ðS− RðhÞ
56 Þη

∂Fh

∂η − RðhÞ
56 Fh

�
;

ðA18Þ

where the diffusion coefficients Dϵ and Dη are defined in
Eq. (35). After someminor rearrangement of terms,we arrive
at Eq. (34).

APPENDIX B: KINETIC
EQUATION—GENERAL CASE

By revisiting Eq. (27), we see that, in general, the
cooling and self-interaction terms are contained in the sum

h∂zδfðMÞðz −Q0ηþ Q̄; η; J;ϕ − μÞRðhÞ
56 Δη

ðhÞi
− h∂2δfðMÞðz −Q0ηþ Q̄; η; J;ϕ − μÞΔηðhÞi
− h∂3δfðMÞðz −Q0ηþ Q̄; η; J;ϕ − μÞΔJ̄ðh;1Þi
− h∂ϕδfðMÞðz −Q0ηþ Q̄; η; J;ϕ − μÞΔϕðhÞi; ðB1Þ

where we have only assumed the smallness of ΔηðhÞ,
ΔJ̄ðh;1Þ, and ΔϕðhÞ but not of Q ¼ R46y − R36P − RðhÞ

56 η ¼
−Q0ηþ Q̄. Here, ∂2 denotes partial differentiation with
respect to the second of the arguments of the function under
question etc. Thus, the first term we need to calculate is

T1 ¼RðhÞ
56 hΔηðhÞ∂zδfðMÞðz−Q0ηþ Q̄;η;J;ϕ−μÞi; ðB2Þ

with the hadron energy variation being expressed by the
familiar expression of Eq. (28). In order to calculate
averages of this kind, we again make use of some relations
that follow directly from Eq. (A5), in this case

hδn̂ðMÞ
k ∂zδfðMÞðz −Q0ηþ Q̄; η; J;ϕ − μÞi
¼ −ikn0hFhe−ikzeikðQ0η−Q̄Þ;

hδn̂ðMÞ
k ∂2δfðMÞðz −Q0ηþ Q̄; η; J;ϕ − μÞi

¼ n0h
∂Fh

∂η e−ikzeikðQ0η−Q̄Þ;

hδn̂ðMÞ
k ∂3δfðMÞðz −Q0ηþ Q̄; η; J;ϕ − μÞi

¼ n0h
∂Fh

∂J e−ikzeikðQ0η−Q̄Þ;

hδn̂ðMÞ
k ∂ϕδfðMÞðz −Q0ηþ Q̄; η; J;ϕ − μÞi ¼ 0: ðB3Þ

Thus, we have

T1¼−RðhÞ
56

rhc
2πγ

Z
∞

−∞
dkZðkÞkð−in0hÞFheikQ0ηe−ik

ffiffi
J

p
Rsinðϕþε̄Þ

→ in0hFhR
ðhÞ
56

rhc
2πγ

Z
∞

−∞
dkZðkÞkeikQ0ηJ0ðkR

ffiffiffi
J

p Þ; ðB4Þ

where R ¼ ðQ2
A þQ2

BÞ1=2 and tan ε̄ ¼ QA=QB [so that
Q̄ ¼ ffiffiffi

J
p ðQA cosϕþQB sinϕÞ ¼

ffiffiffi
J

p
R sinðϕþ ε̄Þ]. In the

second line of the above result, we have averaged over
the betatron phase ϕ using the Jacobi-Anger identity,
namely

eiz sin θ ¼
X∞
n¼−∞

JnðzÞeinθ; ðB5Þ
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where JnðzÞ is a Bessel function of the first kind, so that

⊲eiz sin θ⊳ ¼ J0ðzÞ: ðB6Þ

Moreover, we can also show that

⊲ cos θeiða cos θþb sin θÞ⊳ ¼ iJ1ðζ0Þ sin θ0 ðB7Þ

and

⊲ sin θeiða cos θþb sin θÞ⊳ ¼ iJ1ðζ0Þ cos θ0; ðB8Þ

where ζ0 ¼ ða2 þ b2Þ1=2 and θ0 ¼ tan−1ða=bÞ. We will use
these properties in a subsequent calculation. Following a
procedure analogous to the one we outlined above, we can
deal with the second term of Eq. (B1), i.e.,

T2 ¼ −hΔηðhÞ∂2δfðMÞðz −Q0ηþ Q̄; η; J;ϕ − μÞi: ðB9Þ

Using the second result in Eq. (B3) (and recalling that
Q̄ ¼ ffiffiffi

J
p

R sinðϕþ ε̄Þ), we obtain

T2 ¼
rhc
2πγ

n0h
∂Fh

∂η
Z

∞

−∞
dkZðkÞkeikQ0ηJ0ðkR

ffiffiffi
J

p
Þ; ðB10Þ

after the betatron phase averaging. The third term of
Eq. (B1) is algebraically the most involved one. It is
given by

T3 ¼−hΔJ̄ðh;1Þ∂3δfðMÞðz−Q0ηþ Q̄;η;J;ϕ−μÞi ðB11Þ

and the result we obtain for it after phase averaging is

T3 ¼
rhc
2πγ

in0h
ffiffiffi
J

p ∂Fh

∂J S
Z

∞

−∞
dkZðkÞeikQ0η

2J1ðkR
ffiffiffi
J

p Þ
R

;

ðB12Þ

where we recall that S ¼ R46D2 − R36D0
2. To arrive at this,

we have used the previously-mentioned corollaries of the
Jacobi-Anger identity [Eqs. (B7) and (B8)], the third result
of Eq. (B3) and the definition of ΔJ̄ðh;1Þ contained in
Eq. (26). Finally, the fourth term in the sum of Eq. (B1) is
zero, as we can see by combining the final result of
Eq. (B3) with the fact that ΔϕðhÞ ∝ ΔηðhÞ [according to
Eq. (24)]. Combining the results of this derivation with the
previous expressions for the diffusion terms leads to the
following form of the kinetic equation:

∂Fh

∂t ¼ Dη
∂2Fh

∂η2 þDϵ
∂
∂J
�
J
∂Fh

∂J
�

þ rhc
2πγT

Fh

Z
∞

−∞
dkZðkÞikRðhÞ

56 e
ikQ0ηJ0ðkR

ffiffiffi
J

p
Þ

þ rhc
2πγT

∂Fh

∂η
Z

∞

−∞
dkZðkÞfeikQ0ηJ0ðkR

ffiffiffi
J

p
Þ − 1g

þ rhc
2πγT

iS
ffiffiffi
J

p ∂Fh

∂J
Z

∞

−∞
dkZðkÞeikQ0η

2J1ðkR
ffiffiffi
J

p Þ
R

;

ðB13Þ

where the wake-at-the-origin contribution of Eq. (A7)
has been subtracted. To transform the above result into
Eq. (41) of the main text, we use the Bessel function
identity J1ðξÞ þ ξJ01ðξÞ ¼ ξJ0ðξÞ in the form of the
property

2

R
d
dJ

ð
ffiffiffi
J

p
J1ðkR

ffiffiffi
J

p
ÞÞ ¼ kJ0ðkR

ffiffiffi
J

p
Þ: ðB14Þ

APPENDIX C: 1D SPACE CHARGE FORCE
FOR BEAMS WITH AN ELLIPTICAL

CROSS SECTION

Forour analysis, the effect of space charge—encompassing
both the electromagnetic interaction between the hadron and
electron beams in the modulator/kicker sections and the self-
interaction in a possible plasma amplification module—is of
crucial importance. In our simplified model, space charge is
described in a one-dimensional framework by subdividing
each beam longitudinally into a collection of infinitely thin
segments (slices), which are characterized by a common
charge and a prescribed transverse profile for the charge
density. A similar approach was followed in [10], assuming
an axially symmetric, Gaussian profile. Since the beams we
are dealing with are—generally speaking—not round, we
instead choose a Gaussian profile with an elliptical cross
section. In the rest frame of the beam (or in the rest frame
of two beams copropagating with the same velocity), the
interaction between two slices is essentially an electrostatics
problem. Thus, we start our analysis by considering the force
between two slices with charges Q and Q0—belonging, in
general, to different beams—that remain at rest, separated by
a longitudinal distance z. We note that, in this Appendix, the
symbolsQ and Q0 are unrelated to the quantities introduced
in Eq. (21). The surface charge densities for the two slices
are given by

ρ0ðx; yÞ ¼
Q0

2πΣx0Σy0
exp

�
−

x20
2Σ2

x0

�
exp

�
−

y20
2Σ2

y0

�
; ðC1Þ

ρðx; yÞ ¼ Q
2πΣxΣy

exp

�
−

x2

2Σ2
x

�
exp

�
−

y2

2Σ2
y

�
; ðC2Þ
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where ðx0; y0Þ and ðx; yÞ denote the transverse positions
for the two slices while Σx0;Σy0 and Σx, Σy are the
corresponding rms beam sizes. The two charge
density functions satisfy

R
∞
−∞ dx

R
∞
−∞ dyρðx; yÞ ¼ Q andR

∞
−∞ dx0

R
∞
−∞ dy0ρ0ðx0; y0Þ ¼ Q0. The longitudinal electric

field at point ðx; y; zÞ due to the charge Q0 is

Ez¼−
∂V
∂z

¼−
∂
∂z
Z

∞

−∞
dx0

Z
∞

−∞
dy0

ρ0ðx0;y0Þ
½ðx−x0Þ2þðy−y0Þ2þz2�1=2

¼
Z

∞

−∞
dx0

Z
∞

−∞
dy0

zρ0ðx0;y0Þ
½ðx−x0Þ2þðy−y0Þ2þz2�3=2 ; ðC3Þ

where V is the electrostatic potential. As a result, the
longitudinal force between the two slices is given by

Fz ¼
Z

∞

−∞
dx
Z

∞

−∞
dyρðx; yÞEzðx; y; zÞ

¼ z
Z

∞

−∞
dx
Z

∞

−∞
dyρðx; yÞ

Z
∞

−∞
dx0

Z
∞

−∞
dy0ρ0ðx0; y0Þ

× ½ðx − x0Þ2 þ ðy − y0Þ2 þ z2�−3=2: ðC4Þ
To facilitate further analysis, we use the identity

1

R3
0

¼ 4ffiffiffi
π

p
Z

∞

0

dλλ2 expð−λ2R2
0Þ ðC5Þ

with R0 → ½ðx − x0Þ2 þ ðy − y0Þ2 þ z2�1=2 in order to trans-
form Eq. (C4) into

Fz ¼
4zffiffiffi
π

p
Z

∞

0

dλλ2 expð−λ2z2Þ
Z

∞

−∞
dx
Z

∞

−∞
dyρðx; yÞ

×
Z

∞

−∞
dx0

Z
∞

−∞
dy0ρ0ðx0; y0Þ

× expð−λ2½ðx − x0Þ2 þ ðy − y0Þ2�Þ: ðC6Þ

Substituting Eqs. (C1) and (C2) into Eq. (C6) yields an
expression for the force after some straightforward Gaussian
integration. The end result is

Fz ¼
4QQ0zffiffiffi

π
p

Z
∞

0

dλλ2

×
expð−λ2z2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2λ2Σ2
xð1þ r2xÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2λ2Σ2

yð1þ r2yÞ
q ; ðC7Þ

where rx ¼ Σx0=Σx and ry ¼ Σy0=Σy. For simplification, in
what follows, we will assume full overlap between the two
slices, so Σx ¼ Σx0, Σy ¼ Σy0 and rx ¼ ry ¼ 1. This
assumption is also adopted in the main text. The new
expression for the force can be written as

Fz ¼
QQ0

Σ2
x

Φ
�

z
Σx

; r

�
; ðC8Þ

where r ¼ Σy=Σx is the aspect ratio of the slices and the
scaled interaction function Φ is given by

Φðẑ; rÞ ¼ 4ẑffiffiffi
π

p
Z

∞

0

dλ̂λ̂2
expð−λ̂2ẑ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4λ̂2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4r2λ̂2
p : ðC9Þ

To obtain the force in the laboratory frame, it is only
necessary to set z → γz, where γ is the relativistic factor
of the beam. This is so because a Lorentz transformation in
the z-direction (the direction of the beam velocity) does
not alter Fz or the transverse sizes of the two slices.
It does, however, result in a length contraction given by
ΔlðlabÞ ¼ ΔlðbeamÞ=γ. Thus the longitudinal force in the lab
frame is

Fz ¼
QQ0

Σ2
x

Φ
�
γz
Σx

; r

�
: ðC10Þ

Setting Q ¼ Ze and Q0 ¼ −e, we recover Eq. (50) of the
main text.
The interaction function Φ, as defined by Eq. (C9), is

antisymmetric with respect to ẑ (see left panel of Fig. 2), so
that

Φð−ẑ; rÞ ¼ −Φðẑ; rÞ: ðC11Þ
As a direct result of this we have Φðẑ ¼ 0; rÞ ¼ 0.
Moreover, Φ satisfies the relation

Φðẑ; 1=rÞ ¼ r2Φðrẑ; rÞ: ðC12Þ
The latter property can also be deduced fromEq. (C10) in the
following way: selecting which of the transverse dimensions
to label x and which y is, in fact, arbitrary and should not
affect the actual value of the force between the two slices.
As a result, the RHS of Eq. (C10) should remain invariant
under the transformation Σx → Σy and Σy → Σx, so
that Φðγz=Σx;Σy=ΣxÞ=Σ2

x ¼ Φðγz=Σy;Σx=ΣyÞ=Σ2
y. Setting

γz=Σx → ẑ andΣx=Σy → r̂, we can see that this is essentially
identical to the relationwe seek to prove. In the limit ẑ → ∞,
Φðẑ; rÞ → 1=ẑ2 so the force is Fz ¼ QQ0=ðγ2z2Þ. This
corresponds to the case where the slices are so far apart that
they can be treated as point charges. On the other hand, when
ẑ ≈ 0þ, we have Φðẑ; rÞ ≈ 1=ð2rÞ.
From a detailed numerical analysis of Eq. (C9), we can

also obtain a very useful fitting formula for the interaction
function Φ, namely

Φðẑ; rÞ ≈ b̄ðrÞ 1þ expð−āðrÞẑÞ
2þ c̄ðrÞẑþ b̄ðrÞẑ2 ; ðC13Þ

where
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āðrÞ ¼ 1.628r−0.526;

b̄ðrÞ ¼ 0.499r−0.998;

c̄ðrÞ ¼ 0.0919=r1.794 þ 0.0583r1.297: ðC14Þ

This formula is meant to be used for ẑ > 0 (and has been
verified for 0.25 ≤ r ≤ 2.5). For ẑ < 0, we can reconstruct
the functionΦ by means of Eq. (C11). Furthermore, we can
readily verify that Eq. (C13) reproduces the expected
behavior of Φ for ẑ → 0þ and ẑ → ∞. It also—to a good
approximation—satisfies Eq. (C12).
Lastly, we note that, for the case of slices with a circular

cross section (r ¼ 1), Eq. (C9) reduces to

Φðẑ; r ¼ 1Þ ¼ −
2ffiffiffi
π

p d
dẑ

Z
∞

0

dλ̂
expð−λ̂2ẑ2Þ
1þ 4λ̂2

≡ −
2ffiffiffi
π

p dĨ
dẑ

:

ðC15Þ

The integral Ĩ can be shown to be equal to ðπ=4Þ expðẑ2=4Þ×
erfcðjẑj=2Þ, where erfcðxÞ ¼ ð2= ffiffiffi

π
p Þ R∞x dt expð−t2Þ is the

complementary error function. Substituting this result back
into Eq. (C15), we obtain

Φðẑ; r ¼ 1Þ ¼ ẑ
2jẑj −

ffiffiffi
π

p
ẑ

4
expðẑ2=4Þerfcðjẑj=2Þ; ðC16Þ

which is the analytical expression that we used in our
earlier, one-dimensional treatment of MBEC (Refs. [5,6]).
Furthermore, the same relation has been discussed in [11].
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