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This paper addresses the generalization of the single-particle betatron resonance condition derived by
Courant and Snyder more than a half century ago. A two-dimensional resonance condition including the
effect of space-charge interaction was recently conjectured from one-dimensional Vlasov predictions
made by Sacherer, Okamoto, and Yokoya [K. Ito et al., Phys. Rev. Accel. Beams 20, 064201 (2017)]. The
condition is remarkably simple which only contains a few measurable quantities and indicates the
possibility that twice as many resonance stop bands as expected from the conventional incoherent picture
may exist at high beam density. Self-consistent multiparticle simulations are performed systematically to
locate low-order stop bands in the tune diagram. The proposed betatron resonance formula is shown to
explain the basic feature of numerical observations, which suggests that no serious incoherent resonance is
activated inside the phase-space core of a dense beam matched to the external linear focusing potential. It is
confirmed that the coherent tune-shift factor of any collective mode is less than unity and practically
considered as a constant over the whole tune space in a typical high-intensity storage ring. The procedure
for finding the optimum operating point of the ring is discussed on the basis of the coherent picture instead
of the commonly used picture relying on the concept of incoherent tune spread. Despite years of theoretical
efforts by many researchers, the coherent resonance concept is still not being employed for the construction
of a stability tune diagram. We here provide a simple prescription to draw the diagram quickly. The present
study also indicates the possibility of complete suppression of emittance exchange on particular difference
resonances by choosing a proper emittance ratio.
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I. INTRODUCTION

Resonance is inevitable in modern particle accelerators
composed of a periodic array of identical alternating-
gradient (AG) beam focusing lattices. The machine oper-
ating point has to be put sufficiently away from dangerous
low-order resonance lines along which serious emittance
growth and resultant beam loss may occur. Although the
linear (second-order) force is used to focus the beam,
resonances of higher orders can take place in reality due to
unavoidable error fields. Even if the external force is
perfectly linear, the nonlinear nature of the Coulomb
interaction excites a variety of nonlinear resonances at
high beam density.
The classical single-particle resonance condition given

by Courant and Snyder can be written as

kν0x þ lν0y ¼ n; ð1Þ

where ðν0x; ν0yÞ are the horizontal and vertical bare
betatron tunes per lattice period or around the ring, and
ðk;l; nÞ are integers [1]. The driving term of this resonance
is proportional to xjkjyjlj whose order is jkj þ jljð≡mÞ.
Equation (1) is one of the most important formulas in beam
dynamics and actually appears in most standard textbooks
[2–5]. When either k or l is zero, we have

mν0 ¼ n; ð2Þ

where ν0 denotes ν0x or ν0y. Under the condition (2), the
resonant instability develops in one of the two transverse
degrees of freedom.
The recent trend toward higher beam density and/or

power has made it indispensable to take the effect of space-
charge interaction correctly into account in the resonance
analysis. The interparticle Coulomb force plays a crucial
role even at low current when the beam is strongly
compressed in phase space by a state-of-the-art cooling
technique [6,7]. In any case, the natural repulsive force
weakens the artificial focusing force from quadrupole
magnets, leading to the reduction of effective betatron
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tunes down to νxð< ν0xÞ and νyð< ν0yÞ in both transverse
directions. The magnitudes of the tune reduction,
ν0x − νxð≡ΔνxÞ and ν0y − νyð≡ΔνyÞ, are referred to as
incoherent tune shifts. The so-called incoherent resonance
condition is obtained by simply replacing the bare tunes
in Eqs. (1) and (2) by the space-charge-depressed tunes,
namely,

kνx þ lνy ¼ n: ð3Þ

For noncoupling instability limited to one of the two
transverse degrees of freedom, we have

mðν0 − ΔνÞ ¼ n; ð4Þ

where Δν represents either Δνx or Δνy. This type of
resonance should not be confused with the single-particle
resonance that occurs under the condition (1) with no
space-charge-induced tune shift.
The incoherent tune shifts ðΔνx;ΔνyÞ cannot be deter-

mined uniquely. They may take different values depending
on which particle we observe. The effective tunes ðνx; νyÞ
of the particles forming a particular beam cover a finite area
in the tune diagram, which is called the incoherent tune
spread. As schematically illustrated in Fig. 1, the conven-
tional incoherent concept requires the designer to choose
the machine operating point P in the tune diagram such
that the tune-spread area does not cross nearby low-
order single-particle resonance lines predicted by Eq. (1).

This kind of stability chart has been often employed in the
community to explain space-charge-induced beam loss in
a high-intensity hadron machine or to decide the optimum
operating point [8], but we will show this picture to be
naive at best.
The incoherent tune spread depends on what particle

distribution the beam possesses in phase space. It becomes
different for different types of distribution functions even if
the beam current and average density are kept unchanged.
As an example, consider the Kapchinskij-Vladimirskij
(KV) distribution that has the uniform particle density in
real space [9]. Since the resultant space-charge potential is
quadratic, no tune spread exists in the KV beam. Any
choice of the operating point would then be permitted as
long as we follow the common rule based on the incoherent
concept. It is, however, well-known that even a completely
uniform distribution as the KV type does have many
instability bands of finite widths [10–12]. Besides, the
KV beam is intrinsically unstable against perturbation at
high density [11]. This indicates the crucial importance of
self-consistency in the stability analysis of space-charge-
dominated beams.
The incoherent resonance condition can be derived from

the frozen space-charge model (FSM) that assumes a rigid
beam core. The particle distribution of the whole beam is
never affected in the FSM even when the motion of the
reference particle loses its stability. This is nothing but a
simplifying assumption that allows a quick estimate of the
space-charge effect on intense beam resonances. Even
though the FSM may be a convenient means for judging
a possible operating condition of any machine, we should
keep it in mind that the model was originally introduced
because of the difficulty of treating the collective beam
behavior in a self-consistent manner. Considering the
reachable distance of the Coulomb interaction, the betatron
motions of individual particles in a dense beam core cannot
be independent but surely have some correlation. The
instability of the beam’s main body is expected to develop
collectively.
Note that the beam core must be defined in full phase

space rather than in real space [13,14]. It is generally
impossible to carry out accurate separation of halo (tail)
particles from the core simply by looking at the beam
profile in real space. At any moment, many halo particles
are hidden behind the real-space core of the beam.
One of the most trustable approaches to space-charge

issues is the use of the Vlasov-Poisson equations [15,16].
The Vlasov formalism is self-consistent and includes all
relevant physical processes except for interparticle
Coulomb collisions whose effect is negligible in the present
study [17,18]. It is thus definitely superior to the FSM.
Much effort has been devoted by many researchers to
establishing the concept of coherent resonances with self-
consistent techniques [10–12,19–29]; see an excellent
review by Baartman in Ref. [30]. The first pioneering

FIG. 1. Determination of a machine operating point on the basis
of the conventional incoherent concept. The operating bare tunes
ðν0x; ν0yÞ of a machine are chosen so that the incoherent tune
spread (shaded area) does not cross low-order single-particle
resonance lines. A certain plausible distribution function has to be
assumed to estimate the tune-spread area. See Appendix A for an
example of the tune spread in the Gaussian distribution.
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work was done by Sacherer who mathematically solved the
Vlasov-Poisson equations to explore the stability of an
intense one-dimensional (1D) beam [20]. Under the smooth
approximation, he derived the resonance condition

mðν0 − CmhΔνÞ ¼ n; ð5Þ

where Cmh is a constant factor with two indices represent-
ing the azimuthal (m) and radial (h) mode numbers. As
Sacherer assumed a spatially uniform beam, all particles
have an identical tune shift Δν, thus no tune spread.
Baartman pointed out that the modes with m ≠ h are
invisible in simulations and probably unimportant in
practice. Cmh in Eq. (5) may, therefore, be replaced simply
by Cm. Theoretically, Cm < 1 for all m numbers.
Strictly speaking, the coherent estimate should not

directly be compared with the incoherent estimate. The
Vlasov equation treats the distribution function of the
whole beam in phase space rather than the trajectories of
individual particles. Since the beam is regarded as a sort of
continuum, there is no room for the incoherent motion to
come in. The left-hand side of Eq. (5) corresponds not to
the incoherent tune but to the tune of the collective
oscillation mode of the mth order.
The Sacherer’s analytic theory was extended by

Gluckstern to a coasting round beam, i.e., the case where
ν0x ¼ ν0y [11]. Hofmann et al. later proposed a two-
dimensional (2D) coherent resonance condition, adding a
correction term to Eq. (3):

kνx þ lνy þ Δω ¼ n; ð6Þ

where Δω is the coherent tune shift away from the
incoherent resonance condition [29]. The incoherent tunes
in Eq. (6) have been defined assuming the uniform particle
density. The coherent shift Δω is a complicated function of
several parameters including the integers ðk;lÞ, the emit-
tance ratio, etc. A few different values of the coherent tune-
shift factor are theoretically possible in the 2D case even
for a specific order of mode with m ¼ h [25,30]. If all of
them are practically important, stop-band splitting may
be observed in self-consistent numerical simulations and
experiments. Additional indices are then certainly needed
for the factor Cm to distinguish these instabilities of the
same order m. The numerical results in the following
sections, however, show no such splitting effect clearly.
We here concentrate on the transverse betatron dynam-

ics, ignoring the synchrotron motion. The present discus-
sion is restricted basically to coasting beams. In Sec. II, we
introduce the 2D coherent resonance condition recently
conjectured in Ref. [31]. We then proceed to systematic
particle-in-cell (PIC) simulations. A simple linear focusing
force is considered first in Sec. III to figure out the
distribution of resonance stop bands induced solely by
the space-charge potential. Several different matching

conditions are taken initially to check if the proposed
coherent resonance formula can explain the parameter-
dependence of self-consistent numerical results. An inter-
esting finding on difference resonance is also given in this
section. External perturbing forces are switched on in
Sec. IV, which enables us to make a better estimate of
the coherent tune-shift factor. Three types of initial dis-
tribution functions, i.e., Gaussian, waterbag, and parabolic,
are used for the estimate. It is confirmed that the tune-shift
factor is smaller than unity for any collective oscillation
modes. In Sec. V, we apply the coherent formula to the
lattice of an existing high-intensity ring. Finally, conclud-
ing remarks are made in Sec. VI.

II. EMPIRICAL 2D COHERENT
RESONANCE CONDITION

The periodic nature of the external driving force is
essential to resonance excitation. No resonance takes place
under uniform external fields even at very high beam
density. Sacherer employed the smooth approximation in
his Vlasov theory, so all collective modes were stable.
Some periodic perturbation, therefore, has to be introduced
eventually in order to conclude the resonance condition as
in Eq. (5). Such a mathematical procedure corresponds to
adding weak imperfections to the ideal lattice. Okamoto
and Yokoya (OY) generalized Sacherer’s approach, solving
the 1D Vlasov-Poisson equations without the smooth
approximation [27]. By the help of the waterbag model,
they derived a purely analytic description of coherent
resonance that can be applied to arbitrary lattice structures.
The OY theory says that the beam becomes unstable when
two azimuthal modes m1 and m2 couple. These mode
numbers are not necessarily equal but need to satisfy m1 þ
m2 ¼ even and m1m2 < 0 for resonance excitation. The
instability is particularly severe when jm1j ¼ jm2j ¼ m.
The general resonance formula can then be simplified to

mðν0 − CmΔν̄Þ ¼
n0

2
ð7Þ

that includes Eq. (5) as a special case. Here, n0 is an integer,
and Δν̄ represents the root-mean-squared (rms) tune shift
that can be related to the rms tune depression η as
Δν̄ ¼ ð1 − ηÞν0. Δν̄ is much less than the maximum
incoherent tune shift of a Gaussian beam as demonstrated
in Appendix A. Equation (7) has been linearized with
respect to the rms tune shift for the sake of simplicity,
assuming relatively low beam density. The instability of a
smaller m is stronger in the absence of external driving
fields [27]. The linear-mode (m ¼ 2) resonance corre-
sponds to the so-called “envelope instability” explored
previously by many researchers [9,10,12,21,22,32].
No artificial driving perturbation is necessary to draw the

condition (7) from the Vlasov equation. Despite the perfect
linearity of the external potential, all kinds of nonlinear
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modes turn out to be excited by the nonlinear nature of the
Coulomb self-field potential. Of practical importance is
the factor 1=2 on the right-hand side of Eq. (7), which is
missing in Eq. (5) and other conventional resonance
formulas. This extra factor suggests the possibility that
there may exist twice as many resonance stop bands as
predicted by common resonance theories. The resonances
for n0 ¼ 2n are enhanced by artificial imperfection fields
and nonlinear magnets, no matter whether the beam density
is high or low. In contrast, the resonances for odd n0 are
weakened at lower beam intensity and eventually disappear
at zero current limit.
The coherent resonance condition in Eq. (7) is a

consequence resulting from the eigenvalue problem of
the form M · u ¼ μu [27]. M is a real matrix depending
on fundamental parameters such as the betatron tune and
beam density. The eigenvalue can be expressed as μ ¼
exp ð−2πiΩmÞ with Ωm being the tune of a coherent
oscillation. The collective mode is stable provided jμj ¼ 1.
The stability condition ½ReðμÞ�2 þ ½ImðμÞ�2 ¼ 1 will even-
tually be broken if we keep increasing the beam density
or move the operating point toward a resonance band.
When the threshold is reached, we have ReðμÞ ¼ �1 and
ImðμÞ ¼ 0, which means that Ωm is either an integer or a
half integer. This is a mathematical reason for the appear-
ance of the parametric factor.
It is theoretically expected that the coherent oscillation of

mth order has two branches of tunes approximately given
by k1 þ Ωm and k2 −Ωm where k1 and k2 are integers [27].
The existence of these frequency components has been
confirmed experimentally for the dipole (m ¼ 1) and
quadrupole (m ¼ 2) modes [33,34]. The stability of the
mth-order mode will be affected when the two components
merge, namely, k1 þ Ωm ¼ k2 − Ωm that gives Ωm ¼
ðk2 − k1Þ=2. We again conclude the necessity of the factor
1=2 on the right-hand side.
We have emphasized the importance of the parametric

resonance condition (7) since its discovery [27,31,35–41],
presenting not only systematic numerical simulation data
but also various experimental observations from the novel
tabletop apparatus “S-POD” (Simulator of Particle Orbit
Dynamics) at Hiroshima University [42–44]. S-POD repro-
duces, within a very compact ion trap [45], the collective
behavior of an intense beam propagating through a wide
range of AG lattice configurations; see Appendix B for
some information about S-POD. The resonance formula in
Eq. (7) had, however, attracted only little attention until
recently. As a result, the common interpretations of severe
resonances that occur at high intensity sometimes conflicted
with ours. There still seem to be substantial differences in
the understanding of nonlinear resonances [46].
The extension of the 1D coherent formula to 2D beams

without the smooth approximation is of huge practical
importance. Such an attempt was once made by Hofmann
et al. for linear symmetric FODO and solenoidal channels

[12], but no 2D resonance formula beyond Eq. (6) had been
given explicitly. Since it is hopeless to solve the 2DVlasov-
Poisson equations mathematically for arbitrary AG lattices,
a plausible conjecture was made recently by the Hiroshima
group [31]. The proposed 2D resonance condition has a
remarkably simple form, in spite of the complex collective
process behind:

kðν0x − CmΔν̄xÞ þ lðν0y − CmΔν̄yÞ ¼
n0

2
; ð8Þ

where the horizontal and vertical rms tune shifts can be
evaluated from Δν̄xðyÞ ¼ ð1 − ηxðyÞÞν0xð0yÞ with ηxðyÞ being
the rms tune depressions. The linearization with respect to
Δν̄xðyÞ has again been done in Eq. (8), which should be no
problem in the beam-intensity range of a typical storage
ring. Equation (8) is reduced exactly to Eq. (7) in the case
of purely horizontal or vertical resonance where ðk;lÞ ¼
ðm; 0Þ or ð0; mÞ. At zero current limit ðηxðyÞ → 1Þ, it
becomes identical to the single-particle resonance condi-
tion in Eq. (1) when n0 ¼ even. This formula has a few
significant features compared with conventional resonance
conditions:

(i) There is the factor 1=2 on the right-hand side, unlike
other well-known resonance formulas in Eqs. (1)–(6).
This extra factor is of essential importance in practice
because it leads to a two-fold increase of the density
of resonances in the tune diagram.

(ii) The tune-shift factor Cm depends only on the
resonance order mð¼ jkj þ jljÞ. The coherent tune
shift discussed in previous works are much more
complex; it has a few indices and is even a function
of such parameters as the beam ellipticity and the
degree of the tune split, in other words, it depends on
machine operating conditions [25,29,30,47]. Here,
Cm is simply a constant.

(iii) No model-dependent unobservables are included.
The space-charge-induced tune shifts have not been
treated very carefully in previous coherent formulas
probably because most Vlasov theories rely on the
KV model where no incoherent tune spread exists.
Equation (8) is free from any incoherent quantities
that cannot uniquely be defined for realistic non-
uniform beams.

The generalization of the 1D condition (7) to 2D is not a
trivial issue at all. The resonance conjecture in Eq. (8)
was first reached in Ref. [31] through careful theoretical
considerations and systematic S-POD experiments [48,49].
Hofmann added the parametric factor 1=2 to the right-hand
side of Eq. (6) in his recent monograph [47], which results
in a resonance condition analogous to Eq. (8). The above-
listed points, however, still remain to be verified. This is a
primary motivation of the present work.
The integer n0 on the right-hand side of Eq. (8) is

replaced byNspn0 for an ideal storage ring composed ofNsp

lattice superperiods. The importance of the other driving
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harmonics depends on the strengths of random imperfec-
tion fields. Obviously, it is preferable to maintain the lattice
periodicity around the ring as high as possible. Any new
electromagnetic element that yields a non-negligible trans-
verse potential had better be inserted every superperiod, if
possible, to avoid breaking the original lattice symmetry.
External potential sources such as nonlinear errors and

correction magnets can enhance the resonances of the
corresponding orders only for even n0 [27,31]. In the
following, we call this type of resonance “external-field-
driven”. The coherent resonance originating purely from
the space-charge potential is referred to as “self-field-
driven” that occurs regardless of the parity of the driving
harmonic number n0. The strength of any resonance with
even n0 thus depends both on the beam density in phase
space and on the degree of artificial imperfections in the
machine lattice. At low beam density, all resonances with
odd n0 become negligible because their source is the space-
charge potential only. The growth rates of the self-field-
driven nonlinear resonances are generally low in a circular
machine where the acceptable range of tune depression is
limited. This type of collective resonance will, however,
cause a non-negligible effect when an intense hadron beam
stays in a ring for a long period at relatively low energy [31].
The resonance formula in Eq. (8) includes just a few

physical parameters, all of which are measurable in
principle. The bare tunes ðν0x; ν0yÞ are determined once
the machine operating point is chosen. Unlike the incoher-
ent tune shifts ðΔνx;ΔνyÞ, the rms tune shifts ðΔν̄x;Δν̄yÞ
or, in other words, the rms tune depressions ðηx; ηyÞ can
readily be calculated from the rms envelope equations as
outlined in Appendix A. Since the envelope equations are
insensitive to the phase-space distribution of particles [50],
we can uniquely define these rms quantities whenever the
beam perveance and emittances are known. The combina-
tions of three integers ðk;l; n0Þ that demand particular
attention in practice are associated with the lattice design,
the distribution and strengths of possible nonlinear external
fields, etc. The only natural parameter artificially uncon-
trollable is the tune-shift constant Cm. If the coherent
response to the AG lattice dominates the beam core after
any resonance process is initiated, we shall realize that the
Cm-factor below unity is indispensable to explain self-
consistent simulation data.
To avoid confusion, we stress the point that the purpose

of regular resonance analysis is to clarify the stability of a
matched beam core, i.e., the main body of a beam that has a
particular stationary distribution of particles in phase space.
The stability of a strongly mismatched beam, the dynamics
of a nonstationary tail surrounding the core, and so forth,
are different issues and thus of no primary interest to us
here. The behavior of tail particles can approximately be
studied, for example, with a sort of FSM called “particle-
core model” (PCM). PCM is not intended for explaining
the core resonance mechanism but aims at giving a rough

picture of halo formation outside the core. This model has
been used typically to estimate the maximum halo extent as
a function of initial beam-size mismatch. Taking the Debye
screening effect and mathematical simplicity into account,
the most standard PCM assumes a uniform beam core
executing the mismatch-induced breathing or quadrupole
oscillation [51–53]. On the other hand, Eqs. (5) and (7) are
obtained by solving the 1D Vlasov-Poisson equations in a
perturbative manner. We first define a distribution function
matched to the assumed lattice and then apply a small
disturbance to see how it evolves in time. The disturbance
grows under the coherent resonance conditions, instead of
oscillating about the stationary state. The collective motion
of a beam far from the stationary state or already collapsed
due to some instability is beyond the scope of perturbative
resonance theories.
Figure 2 shows an example of the time evolution of the

tailless waterbag core simulated with the PIC code “WARP”
[54]. The initial distribution has been well matched to the
lattice, including the Debye screening effect [55]. When the
operating point is inside the third-order stop band of
ðk;l; n0Þ ¼ ð3; 0; 1Þ predicted by the condition (8), a strong
core deformation into a trianglelike shape is observed
indicating the instability of the sextupole collective mode.
Note that the bare tune is far from 1=3 as opposed to the
common understanding about the third-order resonance. At
an operating point within the stop band of ðk;l; n0Þ ¼
ð4; 0; 1Þ, the core is distorted into a rectanglelike configu-
ration, followed by the development of four arms around it.
The bare tune is now near 1=8 instead of 1=4. Such core
dynamics cannot be described by any model based on a rigid
distribution function.
The incoherent picture as sketched in Fig. 1, rather than

the more accurate self-consistent picture, has been adopted
universally to look for an optimum machine operating
point. One reason why is that the FSM or the concept of
incoherent tune spread is easy-to-use. Another clear ad-
vantage is that the FSM-based computation is much faster
than self-consistent simulations. A question is how accu-
rately such an approximate model without self-consistency
reflects the realistic core resonance process. It is often said
that two essentially different resonance mechanisms,
“coherent” and “incoherent”, exist simultaneously in a
beam core. The incoherent mechanism is supposed to
survive even after the coherent motion is somehow damped
away. However, the core stability analysis based on the self-
consistent set of equations predicts no resonance under the
incoherent condition. Assuming that the Vlasov theory
covers the whole relevant physical processes, the most
reasonable conclusion should be that no serious resonance
occurs within the matched beam core at the incoherent
tunes ðνx; νyÞ of individual particles. Numerical examples
in Appendix A support this expectation. A similar con-
clusion has been reached previously in Ref. [30] and, for
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the linear mode, in Ref. [19]. If all collective resonances are
Landau-damped, then the core will be stable.
A sort of incoherent effect can be manifested once the

coherent resonance or some other instability mechanism
destroyed the initial distribution developing a complex core-
and-tail structure. Such resonance-induced halo formation
from an initially matched beam has been studied, e.g., by
Holmes et al. [56]. As briefly remarked above, the beam halo
is an issue that should be distinguished from the core
resonance. We need to be careful not to confuse the core
stability issue with tail resonance issues.
The PCM is a popular theoretical approach to halo

formation problems. For more accurate information about
what happens after the matched beam core is strongly
distorted, we need to solve the Vlasov equation non-
perturbatively or do self-consistent numerical simulations.
The particles contributing to the thin tail formation usually
circulate around the distorted core in phase space with large
amplitudes. Since the coupling with the dense core is weak
in the tail region, these halo particles will act more or less in
an incoherent way. They resonate with the lattice or with
the oscillating core space-charge potential near the inco-
herent tunes. We expect this type of quasi-single-particle
resonance to be enhanced especially when the external
driving force is present. If this happens, the widening of an
instability band toward the single-particle (η ¼ 1) reso-
nance line is observed as discussed later in Sec. IV.

III. STOP BANDS IN AN IDEAL AG LATTICE

We now try to examine whether the coherent resonance
conjecture in Eq. (8) can predict the approximate posi-
tions of low-order resonance lines in the tune diagram.
The WARP code is employed for this purpose. The precise
estimation of the tune-shift factor Cm is, however, not so
easy because of several reasons. First, all stop bands shift
gradually during the progress of resonant instability that
inevitably causes beam-density reduction. This makes it
difficult to spot the original stop-band locations. Second,
the beam tail (halo) starts to develop in some cases after the
core becomes unstable. This side effect gives rise to stop-
band broadening or even splitting that affects the numerical
procedure for estimating the central position of the reso-
nance. Once it happens, the coherent effect on the stop-
band shift is overestimated; namely, we may conclude an
inaccurate Cm-factor significantly smaller than the real
value because the tail particles have smaller incoherent tune
shifts than the core particles. Third, the mth-order reso-
nance band can overlap with higher-order resonance bands.
This also worsens the accuracy of the band-shift evaluation
for a particular mode. All these points complicate the
process of the numerical determination of the Cm-factor,
but physically most important here is to show that the
observed stop-band locations cannot be explained by the
incoherent resonance condition with a typical incoherent
tune spread.

FIG. 2. Results of 2D WARP simulations. We have assumed a proton beam propagating through the symmetric sinusoidal focusing
channel at the kinetic energy of 1 MeV. The external force is perfectly linear (no error fields). The initial distribution is the waterbag-type
matched to the lattice. The tune depressions are adjusted to ηx ¼ ηy ¼ 0.8 at the beginning. The ordinate represents the horizontal kinetic
momentum normalized with the design value. The transverse bare tunes have been set equal ðν0x ¼ ν0yÞ and chosen to be (a) ν0 ¼ 0.192
and (b) ν0 ¼ 0.147. According to the coherent resonance condition in Eq. (7), the operating point is located within the sextupole (m ¼ 3)
stop band in the former case and within the octupole (m ¼ 4) stop band in the latter.
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We search for instability regions in the tune diagram with
the WARP code, starting from the Gaussian distribution.
The sinusoidal focusing force is assumed for simplicity.
As numerically and experimentally verified in our previous
work [31,35], the sinusoidal lattice has substantially the
same resonance characteristics as the most standard FODO
lattice. No imperfection fields are considered in this section,
which guarantees that all nonlinear resonances identified are
purely self-field-driven. Three different matching conditions
are imposed initially to clarify the η-dependence of stop
bands. While we mostly assume 1 MeV proton beams in the
present PIC simulations, neither the kinetic energy nor
particle species are essential; in fact, the coherent resonance
condition does not explicitly contain these parameters. The
rms emittance growth at a particular operating point depends
only on the rms tune depressions.
Throughout the paper, “emittance growth” is defined by

subtracting unity from the ratio of the rms emittance after a
certain AG periods to its initial value. It is given as a
percentage and calculated separately in the horizontal and
vertical directions rather than taking the average. That is not
only because the initial rms emittances are not always equal
in both directions but also due to the fact that the emittance
exchange occurs under coupling resonances. In the tune
diagrams and other color-coded pictures that appear in the
following sections, we have taken the horizontal or vertical
growth, whichever is greater, to choose the color.

A. Stop bands with fixed tune depression

Let us first study the case where the horizontal and
vertical tune depressions are equal and fixed over the
whole tune space. If the conjecture in Eq. (8) is valid, all
resonance lines become straight in the tune diagram.
Substitution of ηx ¼ ηyð≡ηÞ into Eq. (8) leads to

kν0x þ lν0y ¼
n0

2
·

1

1 − ð1 − ηÞCm
ð9Þ

that expresses a straight line on the ν0x-ν0y plane. Figure 3
summarizes the results of systematic WARP simulations
performed at five thousand different operating points with
the tune depression fixed to η ¼ 0.9. All visible instability
bands look straight. The linearity of stop bands has been
confirmed for several other choices of η. The three particu-
larly wide instability bands where serious emittance growth
is detected should be attributed to the lowest-order reso-
nance of the quadrupole mode with ðk;l; n0Þ ¼ ð2; 0; 1Þ,
(0, 2, 1), and (1, 1, 1) [48,57]. The dipole (m ¼ 1) resonance
cannot be excited under the lattice condition considered
here. Although the fourth (m ¼ 4) or higher-order coherent
instabilities can overlap, they are much weaker than the
linear instability according to the Vlasov theory.
Not surprisingly, the linear difference resonance with

ðk;l; n0Þ ¼ ð1;−1; 0Þ is almost invisible in Fig. 3 and even
in S-POD experiments [31]. This is because the horizontal

and vertical rms emittances ðεx; εyÞ are equal in a matched
beam along the line ν0x − ν0y ¼ 0. No emittance exchange
mechanism is activated in such an isotropic beam on the
symmetric difference resonance. This observation is con-
sistent with the typical operating condition of a high-
intensity hadron linac where the horizontal and vertical
betatron phase advances (bare cell tunes) are mostly set
equal or close to each other. It is possible to demonstrate
experimentally, by the use of initially anisotropic ion
plasmas in S-POD, that the coupling resonance does exist
on kν0x − kν0y ¼ 0. Typical measurement data are pre-
sented in Appendix B.
In addition to the three quadrupole resonance lines, we

find eight more instability bands in Fig. 3, all of which can
be explained as the lowest-order nonlinear (m ¼ 3) reso-
nance with ðk;l; n0Þ ¼ ð3; 0; 1Þ, (0, 3, 1), (3, 0, 2), (0, 3, 2),
ð2;−1; 0Þ, ð−1; 2; 0Þ, ð2;−1; 1Þ, and ð−1; 2; 1Þ [58]. These
nonlinear stop bands except for the last two have been
observed even experimentally as reported in Ref. [31]. It is
also possible, by improving the sensitivity to emittance
variation, to confirm the existence of very low but nonzero
emittance growth along the third-order sum resonance lines

FIG. 3. Tune diagram obtained from 2D WARP simulations
under the initial condition ηx ¼ ηy ¼ 0.9. The rates of rms
emittance growth evaluated at 5000 different operating points
after 100 AG cells are color-coded in the tune diagram. The
external beam-focusing force is completely linear, which varies
sinusoidally along the transport channel. The abscissa and
ordinate represent the horizontal and vertical bare tunes per
AG cell. The initial particle distribution is the Gaussian type well
matched the AG potential. The solid, dashed, and dash-dotted
lines in the picture are obtained from Eq. (10) with the incoherent
tune shifts ΔνxðyÞ ¼ 0, Δν̄xðyÞ, and maxðΔνGaussxðyÞ Þ, respectively.
We have assumed that all visible emittance-growth bands are due
to the linear (m ¼ 2) and first nonlinear (m ¼ 3) resonances. Two
of the four third-order coupling resonance lines are independent
of the Cm factor because they correspond to the n0 ¼ 0 case in
Eq. (9). A scalloped appearance of these coupling resonance
bands is due to the limited density of PIC data points.
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with ðk;l; n0Þ ¼ ð2; 1; 1Þ, (1, 2, 1), (2, 1, 2), and (1, 2, 2).
We can detect very weak coupling effect slightly above
and below the line ν0x − ν0y ¼ 0 as well. Under the initial
condition taken in this subsection, the horizontal and
vertical rms emittances are unequal except along this
symmetry line. The small emittance imbalance in the close
vicinity triggers the faint difference resonance. The
observed stop bands now cover all possible combinations
of the three integers ðk;l; n0Þ for the linear (m ¼ 2) and
first nonlinear (m ¼ 3) coherent resonances. If we ignore
the parametric factor 1=2 on the right-hand side of Eq. (9),
the origin of the stop bands with odd n0 has to be interpreted
as the nonlinear resonances of twice the orders, i.e., the
fourth (m ¼ 4) and sixth (m ¼ 6) orders. Then it seems
difficult to provide a rational explanation for many missing
fourth-order and sixth-order resonance lines. Moreover, no
fifth-order resonance bands have been detected so far in the
absence of external error fields.
As is clear from the numerical data in Appendix A (see

Fig. 20), the rms tune shift Δν̄ is much smaller than the
maximum size of the incoherent tune shift Δν in the
Gaussian beam. For reference, in Fig. 3 we have drawn
the resonance lines defined with the incoherent tune shifts
ðΔνx;ΔνyÞ by

ΓklðΔνx;ΔνyÞ≡kðν0x−ΔνxÞþlðν0y−ΔνyÞ¼
n0

2
: ð10Þ

Solid lines correspond to the case where both tune shifts
are zero, i.e., Γklð0; 0Þ ¼ n0=2. This is identical to the
single-particle resonance condition in Eq. (1) except
for the 1=2 factor on the right-hand side. Dashed lines
represent ΓklðΔν̄x;Δν̄yÞ ¼ n0=2 indicating where the
coherent resonance bands should be if Cm ¼ 1. Dash-
dotted lines are obtained by taking the maximum in-
coherent tune shifts in the Gaussian distribution, i.e.,
ΓklðmaxðΔνGaussx Þ;maxðΔνGaussy ÞÞ¼ n0=2. These Gaussian
tune shifts can be estimated roughly from Eq. (A3) in the
Appendix A. According to the common understanding
based on the incoherent picture as in Fig. 1, we are not
allowed to put the machine operating point inside the area
between the solid and dash-dotted lines. It is, however,
evident from Fig. 3 that such a stability criterion is too
conservative. Furthermore, all observed stop bands lie in-
between the corresponding solid and dashed lines. This
implies that the effective shift of each band is somewhat
smaller than the rms tune shift. It is also worth noting that
the band widths depend on the resonance orders, which
cannot be explained by the incoherent picture in Fig. 1.
These facts can be regarded as evidence that the core
resonance is described not by the incoherent condition in
Eq. (3) with a large tune spread but by the coherent
condition in Eq. (9) with the tune-shift factor of the range
0 < Cm < 1. More discussion on the ambiguity of the
incoherent picture has been made in Appendix A. We shall

try to estimate the Cm-factors of low-order modes in
Sec. IV by introducing external driving perturbations.

B. Stop bands with fixed beam intensity
and emittance

The beam current and emittances are usually given at
injection, depending on the performance of an ion source,
pre-accelerators, etc. When these parameters are kept con-
stant regardless of the machine operating point, the initial
tune depressions ηxðyÞ become a function of the bare tunes.
The resonance lines defined by Eq. (8) are then no longer
straight. We conducted WARP simulations taking this prac-
tical situation into account. The emittance growth after 100
AG periods are color-coded in the tune diagram of Fig. 4
where the initial current and rms emittances have been both
fixed to specific values over the whole tune space. The
horizontal and vertical emittances are set equal ðεx ¼ εyÞ,
assuming a round beam from an ion source. The beam
intensity is chosen so that ηx and ηy take a given value
ð≡η1=6Þ at the operating point ðν0x; ν0yÞ ¼ ð1=6; 1=6Þ. The
tune diagram in Fig. 4 is the case where η1=6 ¼ 0.9. This
corresponds, for example, to about 30 mA of a 10 MeV
proton beam with the normalized rms emittance of
0.1 πmm · mrad when the unit AG cell is 1 m long. All
major resonances discovered in Fig. 3 have been excited in
Fig. 4. In addition to them, we notice the existence of very
weak fourth-order resonance lines with ðk;l; n0Þ ¼ ð4; 0; 3Þ
and (0, 4, 3). Each stop band still looks straight because
the tune-dependent variation of ηxðyÞ is not so significant at
this intensity.

FIG. 4. Tune diagram obtained from 2DWARP simulations with
a fixed beam intensity and fixed rms emittances at injection. The
initial intensity and emittances are maintained everywhere on the
diagram at the values that give ηx ¼ ηy ¼ 0.9 at the operating
point ðν0x; ν0yÞ ¼ ð1=6; 1=6Þ. The tune depressions are no longer
constant but vary depending on the cell tunes. Other numerical
conditions and the definitions of the red lines are the same as
in Fig. 3.
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The effect of varying tune depression can be made
clear by increasing the initial beam current. The most
severe stop band above ν0x ¼ 1=4 is plotted in Fig. 5 at
three different currents corresponding to η1=6 ¼ 0.9, 0.8,
and 0.7. A slight bending of the stop band is now
recognizable at higher beam density. The dotted lines in
each panel are derived from the 2D resonance conjecture
for the linear (m ¼ 2) modes with ðk;l; n0Þ ¼ ð2; 0; 1Þ.
C2 has been adjusted to 0.75 (red) and 0.5 (black). These
numbers come from the rms envelope equations that
describe possible collective oscillations with elliptical
symmetry [50]. The former number corresponds to the
quadrupole mode and the latter to the so-called breathing
mode. Although both curves are inside the emittance-
growth band, we observe no clear signature of the two
different types of instabilities overlapping. It is possible
to show, by numerically integrating the rms envelope
equations, that this linear stop band actually has a single
peak of emittance-growth rate along a line above
ν0xð0yÞ ¼ 1=4. The peak position can be best fitted with
C2 slightly below 0.75 (cf. Table I in Sec. IV). Even
experimentally (see, e.g., Fig. 24 in Appendix B and
Ref. [31]), no second peak has been found in a linear stop
band, except for the one generated by the coherent dipole
(m ¼ 1) mode [39]. The breathing mode does not appear
to be excited seriously in a quadrupole channel. From a
practical point of view, therefore, it is allowed to assign a
single value to C2.

C. Stop bands of the initially
equipartitioned beam

Another initial condition physically interesting to us
is the equipartitioned case where the beam at injection
satisfies [10,53,59]

εx
εy

¼ ηyν0y
ηxν0x

: ð11Þ

The tune diagram in Fig. 6 is obtained with the initial
particle distribution constructed under this condition. The
beam perveance has been fixed to the same value as
adopted in Fig. 4. The linear resonance bands are slightly
curved toward the direction opposite to the previous case of
fixed intensity and emittance. At higher beam density, the
curvature is more enhanced as displayed in Fig. 7. The 2D
resonance conjecture in Eq. (8) has again succeeded in
reproducing the basic feature of the low-order stop band
distribution.
Interestingly, two of the third-order difference resonance

bands identified in Figs. 3 and 4 have almost disappeared
in Fig. 6. They do not manifest themselves even if a third-
order external potential is added to the lattice. Figure 8(a)
shows an example when the sextupole error field propor-
tional to x3 − 3xy2 is switched on. The difference reso-
nance line is still invisible. The contour plot in Fig. 8(b)
suggests an underlying physical factor behind this reso-
nance suppression. We recognize that the emittance-based
quantity

FIG. 5. Beam-intensity dependence of the stop band near
ν0x ¼ 1=4 obtained from 2D WARP simulations. The initial
beam parameters are determined in the same way as in Fig. 4.
The same color has been used in the region where the emittance
growth exceeds 30%. The tune depressions at the operating
point ðν0x; ν0yÞ ¼ ð1=6; 1=6Þ are adjusted to (a) η1=6 ¼ 0.9,
(b) η1=6 ¼ 0.8, and (c) η1=6 ¼ 0.7. The dotted lines are the
theoretical prediction from Eq. (8) for the linear (m ¼ 2)
resonances associated with the quadrupole mode (red) and
breathing mode (black). The tune-shift factors have been assumed
to be C2 ¼ 0.75 for the former mode and C2 ¼ 0.5 for the latter.
There seem to be no resonances exactly along those lines. The
dash-dotted line in each panel represents Γ20 ¼ 1=2 with the
maximum incoherent tune shift of the Gaussian distribution.

FIG. 6. Tune diagram obtained from 2DWARP simulations with
the initially equipartitioned beam. The beam intensity has been
fixed to the value that gives ηx ¼ ηy ¼ 0.9 at the operating point
ðν0x; ν0yÞ ¼ ð1=6; 1=6Þ. The initial rms emittances εxðyÞ at each
operating point are determined such that the requirement in
Eq. (11) is met. Other numerical conditions and the definitions of
the red lines are the same as in Fig. 3. Note that the third-order
difference resonances with ðk; l; n0Þ ¼ ð2;−1; 0Þ and ð1;−2; 0Þ
have been extremely weakened.
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Ikl ≡ εx
k
þ εy

l
ð12Þ

has become exactly zero along the missing third-order
difference ðkl < 0Þ resonance line corresponding to
ðk;l; n0Þ ¼ ð1;−2; 0Þ. Ikl is very similar to the well-known
invariant Ĩkl ≡ εx=k − εy=l on the incoherent sum and
difference resonances driven by the coupling term xjkjyjlj
[2,3,60]. The condition Ikl ¼ 0 has been fulfilled along the
other missing third-order line with ðk;l; n0Þ ¼ ð2;−1; 0Þ
and also along the difference resonance ν0x − ν0y ¼ 0

hardly detectable in all three cases studied in Sec. III.
Another piece of evidence is given in Appendix C where
the emittance exchange along the difference resonance
lines with ðk;l; n0Þ ¼ ð2;−1; 0Þ and ð2;−1; 1Þ has been
eliminated successfully by imposing the condition εx ¼ 2εy
on the initial emittances. The present findings about
difference resonances should apply to the beam of any
density ð0 < η < 1Þ as Eq. (12) is free from intensity-
dependent parameters.

IV. STOP BANDS IN THE PRESENCE OF
EXTERNAL PERIODIC PERTURBATION

In the 1D case, the external-field-driven and self-field-
driven resonance conditions take the same form except for
the parametric factor 1=2, provided that external non-
linearity can be treated as weak perturbation [27]. The
tune-shift constant Cm is independent of the origin of the
driving force. We have conjectured in Eq. (8) that this
theoretical prediction for a 1D beam holds in the 2D case as
well. The numerical estimation of Cm can then be achieved
by introducing an artificial driving potential. In this section,
we switch on a low-order external perturbing field in
addition to the sinusoidal focusing field. Since we do
not rely on the natural Coulomb potential any more, the
resonance strength of a specific order is controllable
independently of the tune depression. Furthermore, in
computer simulations any periodicity is available for the
perturbing field, unlike in a real storage ring where external
imperfections normally repeat every turn. The right-hand
side of the external-field-driven resonance condition is,
therefore, not necessarily an integer n but allowed to take
an arbitrary number [see Eq. (13)]. It has been demon-
strated experimentally that random noise on the AG
focusing field in a circular accelerator may induce this
type of resonance and possibly affects the long-term
stability of intense hadron beams [34,61].
We expect the resonance condition (8) to hold for any

matched beam distributions with the same values of Cm ’s.
Equation (8) actually depends only on the rms tune shifts
that are insensitive to the distribution function of particles
in phase space [50]. In addition to the Gaussian model, we
here consider the waterbag and parabolic models to check
whether the choice of a different distribution function may
cause significant change in the size of the estimated Cm.

FIG. 7. Beam-intensity dependence of the stop band near ν0x ¼
1=4 obtained from 2DWARP simulations under the equipartition-
ing condition. Similarly to the examples in Fig. 5, we have
considered the three different beam intensities corresponding to
(a) η1=6 ¼ 0.9, (b) η1=6 ¼ 0.8, and (c) η1=6 ¼ 0.7. The definitions
of the red and black dotted lines are the same as in Fig. 5.

FIG. 8. PIC results on the suppression of a third-order differ-
ence resonance line. (a) Tune diagram based on WARP simu-
lations with the initially equipartitioned Gaussian beam. The
simulation parameters are the same as employed in Fig. 6 except
that we have now switched a third-order error field ð∝ x3 − 3xy2Þ
on. The amplitude of the nonlinear external field is one percent of
the linear focusing field’s. (b) Contour plot of the quantity Ikl
defined by Eq. (12) under the equipartitioning condition. The
numbers on the picture indicate the values of Ikl in units of
mm · mrad. The red dotted line is the position of the coherent
resonance band predicted by Eq. (8) with ðk; l; n0Þ ¼ ð1;−2; 0Þ.
If we assume that C3 ¼ 0.875 [20], the coherent resonance band
predicted by Eq. (8) is positioned along the red dotted line that
almost perfectly agrees with the line of Ikl ¼ 0. This supports the
theoretical expectation that the coherent tune-shift factor is
smaller than unity.
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A. Noncoupling resonances

The OY theory suggests that the use of the mth-order
perturbing field of the frequency fm makes it possible to
excite the coherent resonance of a particular transverse
direction (x or y) under the condition

mðν0 − CmΔν̄Þ ¼ jn� κmj; ð13Þ
where κm is the ratio of the driving frequency fm to the
linear focusing-field frequency f0; namely, κm ¼ fm=f0.
The existence of this type of resonance has been confirmed
experimentally with S-POD [34]. A nonlinear driving
perturbation can yield even more stop bands other than
those under the condition in Eq. (13), but in the following,
we focus on the most severe stop band at

mν0 ¼
κm

1 − ð1 − ηÞCm
ð14Þ

corresponding to the n ¼ 0 case. A major advantage of
using this external-field-driven stop band is the absence of
overlapping resonances of different orders. We can locate
the mth-order resonance band by varying the perturbation
frequency rather than the operating tune. Given ν0 and η,
the coherent mode of a higher m number resonates at a
higher κm. For example, the octupole resonance occurs at
the perturbation frequency twice higher than the value at
which the quadrupole resonance is excited. The two stop
bands plotted as a function of κm are thus well separated. In
this subsection, we keep the operating point at ðν0x; ν0yÞ ¼
ð0.15; 0.15Þ while scanning the perturbation frequency.
The horizontal and vertical tune depressions are set equal,
i.e., ηx ¼ ηyð≡ηÞ.
Before proceeding to the Cm estimation, we take a brief

look at the role of the Gaussian tail that may obscure
the position of a core resonance band. Figure 9(a) shows
the emittance behavior of Gaussian beams driven by the
second-order perturbation. The emittance growth is calcu-
lated at the exit of the 200th sinusoidal focusing cell. The
tune depression is adjusted initially to η ¼ 0.9 (black) and

0.8 (red). The external-field-driven linear stop bands of
waterbag and parabolic beams are exhibited in Figs. 9(b)
and 9(c) for comparison. The sawtooth-like configuration
of the emittance-growth curves in the waterbag and para-
bolic cases are well known and has been observed
repeatedly in S-POD experiment [31,35–41]. It is formed
because the beam stays in a resonance band for a longer
period at a larger κ2, thus experiencing more emittance
growth. The emittance growth results in the reduction of the
beam’s phase-space density, which makes the tune depres-
sion approach unity. The resonant value of κ2 in Eq. (14)
then becomes larger when ν0 is fixed; in other words, the
stop-band’s center moves toward the higher-κ2 side in
Fig. 9 during the emittance growth process.
The Gaussian stop band in Fig. 9(a) has a unique feature

obviously different from the other two. Specifically, it
is much wider and extended toward the upper threshold
ðκ2 ¼ 0.3Þ given by the single-particle resonance condition
2ν0 ¼ κ2. We even observe a double-peak configuration
when η ¼ 0.9. No such extra peak has appeared in the
η ¼ 0.8 case, but we see the growth rate gently decreasing
on the higher-κ2 side, which considerably broadens the
instability region. The double-peak profile in Fig. 9(a) is
not the consequence of the theoretically predicted complex-
ity of the coherent tune-shift factor [25,30,47]. It also has
nothing to do with the double stop-band structure reported
in Ref. [39], which is formed near every half-integer tune
by the overlapping of two coherent resonances associated
with the dipole (m ¼ 1) and quadrupole (m ¼ 2) oscillation
modes. We have no such overlapping with the strong dipole
mode here.
The peculiarity of the Gaussian distribution originates

largely from the existence of the long tail where the
Coulomb coupling with the beam core is weak. The motions
of individual particles far from the core are no longer
strongly correlated and, therefore, could be affected under
the condition (3) with relatively small tune shifts. As these
tail particles gain larger amplitudes in the progress of
instability, their tune shifts come closer to zero. The

FIG. 9. Stop-band configurations after beam transport over 200 sinusoidal focusing cells. The bare tunes have been fixed to 0.15 in
both transverse directions ðν0 ¼ 0.15Þ. The external linear perturbation of the driving tune κ2 is applied to excite the coherent
quadrupole mode. The perturbation amplitude is set at 0.4% of the focusing field’s. The ordinate represents the average transverse rms
emittance growth at the 200th cell, plotted as a function of κ2. Three different types of initially matched distributions with η ¼ 0.8 and
0.9 are considered: (a) Gaussian, (b) waterbag, and (c) parabolic.
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emittance growth of tail origin then arises near the single-
particle resonance line. Even though the particles in the tail
are only a small portion of the whole beam, they give rise to
non-negligible emittance growth because of their large
oscillation amplitudes in phase space. The emittance-growth
curves in Fig. 10 illustrate this fact. The solid line of the full
Gaussian beam is altered to the dashed line by removing halo
particles from the original distribution. Only five percent
removal of outermost particles in four-dimensional phase
space almost completely eliminates the second peak in the
η ¼ 0.9 case. The halo scraping has also significantly
lowered the emittance growth on the high-κ2 side of the
broad instability band in the η ¼ 0.8 case. In both cases, the
highest peak is only weakly affected by the halo scraping
procedure, which implies that it is created mainly by the core
instability.

The η-dependence of emittance growth for the full
Gaussian distribution is shown in Fig. 11. There are two
peaks in the low-η range. The halo-induced peak on the
upper side is less sensitive to the change in η. We have found
that a small number of particles are lost near the single-
particle resonance line at κ2 ¼ 2ν0 ¼ 0.3 though it is not
noticeable from the picture. As the oscillation amplitude of a

FIG. 10. Stop-band configurations of a Gaussian beam before
and after halo scraping. The stop band at the 200th sinusoidal cell
in Fig. 9 is replotted with a solid line for comparison. The dashed
line indicates the band profile after 5% of tail particles with large
oscillation amplitudes in phase space are scraped off. The final
cross-sectional views of the beam at κ2 ¼ 0.292 (η ¼ 0.9) before
and after the scraping are shown in the right panels.

FIG. 11. Density dependence of the linear resonance band of
the full Gaussian distribution without the tail truncation. The rms
emittance growth after 200 AG focusing periods are evaluated
with the WARP code at different tune depressions and linear
perturbation frequencies. Other numerical conditions (the oper-
ating tunes, perturbation strength, etc.) are the same as those
assumed in Fig. 9. The dotted line is based on the coherent
resonance condition in Eq. (14) with C2 ¼ 0.75. The solid and
dashed lines indicate, respectively, the single-particle resonance
condition in Eq. (2) and the incoherent resonance condition in
Eq. (4) with Δν replaced by Δν̄.

FIG. 12. Emittance-growth chart obtained from WARP simulations with the quadrupole driving perturbation on. Three different types
of initial particle distributions, i.e., (a) Gaussian, (b) waterbag, and (c) parabolic, are considered, all of which are well matched to the
sinusoidal focusing potential. The Gaussian tail has been truncated by one percent in four-dimensional phase space. The bare betatron
tunes are fixed at ν0x ¼ ν0y ¼ 0.15. The linear perturbation is applied to excite the quadrupole (m ¼ 2) resonance. The perturbation
amplitude is set at 0.2% of the focusing field’s. The solid and dashed lines correspond to the cases where C2 ¼ 0 (single-particle
resonance) and C2 ¼ 1. The dotted line is the location of the stop-band peak fitted by Eq. (14) with C2 ¼ 0.78 for Gaussian, C2 ¼ 0.71
for waterbag, and C2 ¼ 0.73 for parabolic. The dash-dotted line in the left panel indicates the incoherent resonance line for a particle
with the maximum tune shift.
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halo particle grows, its incoherent tune approaches the bare
tune ν0. The halo particle then becomes increasingly unstable
andwill eventually be lostwhen there exists any driving force
that can excite the single-particle resonance under the
condition mν0 ≈ κm. An analogous beam-loss phenomenon
in the vicinity of a single-particle resonance line has been
observed experimentally at the CERN Proton Synchrotron
[62]. The primary core resonance forms another peak on the
lower side of the instability area in Fig. 11. It is located above
the theoretically expected position indicated by the dotted
line. The band shift is caused by the emittance growth that
increases the tune depression toward unity.
For a better estimate of the Cm factor, it is necessary to

minimize the effect from halo formation as well as the stop-
band shift due to emittance growth. We here define the
center of the mth-order stop band as the point at which the
peak of the emittance-growth curve plotted as a function of
the perturbation tune κm first exceeds the one-percent level.
Since the emittance growth is still low, the band shift should
be ignorable. We also expect no significant halo to be

developed at this early stage of instability. In the Gaussian
case, however, even a very small number of particles in the
long tail may be a source of low-level emittance growth
before the core becomes unstable. To mitigate such
ambiguity, we truncate the Gaussian tail by one percent
at the beginning.
The rms emittance growth evaluated with the WARP code

are color-coded in Fig. 12 on η-κ2 plane. These numerical
observations under the quadrupole perturbation cannot
be explained without the C2-factor smaller than unity.
The dash-dotted line in the left panel indicates the inco-
herent resonance line corresponding to the maximum
Gaussian tune shift; namely, it is obtained from Eq. (13)
by replacing the coherent tune-shift term CmΔν̄ by
maxðΔν̄GaussÞ ≈ ð1 − η2Þν0. The coherent tune-shift factor
of the quadrupole mode estimated from these PIC simu-
lations is C2 ¼ 0.78� 0.05 for the Gaussian distribution,
C2 ¼ 0.71� 0.04 for the waterbag distribution, and C2 ¼
0.73� 0.05 for the parabolic distribution. For reference,
the coherent resonance condition in Eq. (14) is drawn with

FIG. 13. Emittance-growth chart obtained from WARP simulations with the sextupole driving perturbation on. Except for the order of
the external perturbing field, all numerical conditions are the same as employed in Fig. 12. The perturbation amplitude is set at 0.4% of
the focusing field’s. The dotted line is the location of the stop-band peak fitted by Eq. (14) with C3 ¼ 0.77 for Gaussian, C3 ¼ 0.87 for
waterbag, and C3 ¼ 0.85 for parabolic.

FIG. 14. Emittance-growth chart obtained from WARP simulations with the octupole driving perturbation on. Except for the order of
the external perturbing field, all numerical conditions are the same as employed in Fig. 12. The perturbation amplitude is set at 0.6% of
the focusing field’s. The dotted line is the location of the stop-band peak fitted by Eq. (14) with C4 ¼ 0.71 for Gaussian, C4 ¼ 0.92 for
waterbag, and C4 ¼ 0.87 for parabolic.
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a dotted line, assuming C2 ¼ 0.78 in Fig. 12(a), C2 ¼ 0.71
in Fig. 12(b), and C2 ¼ 0.73 in Fig. 12(c).
We did similar WARP simulations with a nonlinear

driving perturbation on. Figures 13 shows the emittance-
growth chart when the weak normal sextupole (m ¼ 3)
field is activated. The peak position of the instability band
can be fitted very well with the coherent resonance
condition in Eq. (14). The tune-shift factor C3 has to be
less than unity for the best fitting in all three types of
distributions. The stop band generated by the normal
octupole (m ¼ 4) perturbation is depicted in Fig. 14 from
which we conclude C4 < 1 as in the previous cases of the
lower-order instabilities. No clear indication of incoherent
resonance can be seen in Figs. 12, 13, and 14. The single-
peaked band profile in these figures suggests that, from a
practical point of view, we only need a single tune-shift
factor for each coherent mode of a specific order.
The fitting results of noncoupling coherent resonances

driven by the external term proportional to xm (m ¼ 2, 3,
and 4) are summarized in Table I. Cm tends to be greater for
a higher-order mode in the waterbag and parabolic cases as
predicted by the 1D Vlasov theories [20,27]. The estimated
central values of Cm ’s for the waterbag distribution are
in excellent agreement with the Vlasov prediction; the
Sacherer’s analysis based on the uniform distribution says
that C2 ¼ 0.750, C3 ¼ 0.875, and C4 ¼ 0.922.
The Cm-factor of the Gaussian beam is less than unity for

any modes, but its dependence on the resonance order looks
opposite to the other two cases. This must be due to
remaining tail particles that expand the stop band toward
the single-particle resonance line (cf. Fig. 9) and thus
reduce the estimated value of Cm. In fact, we can make it
larger by scraping more tail particles off initially. Too much
initial scraping is, however, not preferable because it can
enhance a mismatch to the lattice. The initial distribution
generator of the WARP code has been designed on the basis
of the theory in Ref. [55] assuming the full Gaussian
distribution function.

B. Coupling resonances

According to the coherent resonance conjecture, sum
and difference resonances are excited by the external
driving term xjkjyjlj of the frequency fm under the condition

kν0x þ lν0y ¼
κm

1 − ð1 − ηÞCm
; ð15Þ

where we have again assumed ηx ¼ ηyð≡ηÞ for simplicity.
Equation (15) agrees with Eq. (14) for positive k and l
when ν0x ¼ ν0yð≡ν0Þ, which means that the noncoupling
resonances studied in the last subsection have overlapped
with the sum resonances of the same orders. Nevertheless,
we observed no signature of stop-band splitting in PIC
simulations and in S-POD experiment [34]. This supports
our assumption that the magnitude of a coherent band shift
depends simply on the order number m, no matter whether
the instability occurs only in a particular direction or in both
transverse directions simultaneously.
Compared with the instability in one direction, the Cm

estimation of coupling resonance is much more trouble-
some because the emittance growth is very sensitive to the
initial emittance condition. Symmetric difference resonan-
ces may not always be detectable, for example. The PIC
results in Sec. III C and Appendix C have also pointed out
the disappearance of a part of the third-order difference
resonance bands under the initial condition Ikl ¼ 0. Even
if we succeeded in activating a difference resonance, the
emittance exchange naturally begins leading to the hori-
zontal and vertical density oscillations that can be a serious
error source in the evaluation of Cm. We here focus on
sum resonances, expecting that such unwanted effects are
hopefully less problematic.
The operating point has to be taken carefully within a

region free from the natural resonances under the condition
in Eq. (8). As already revealed in Sec. III, many self-field-
driven resonance bands of the second and third orders are
running on the ν0x-ν0y plane. It is necessary to avoid them
and preferably evenveryweak fourth-order bands, so that we
can guarantee that the emittance growth observed comes
solely from the external-field-driven resonance under the
condition (15). After careful test simulations, we decided to
put the operating point at ðν0x; ν0yÞ ¼ ð0.142; 0.211Þ.
Although this point is close to the possible third-order
sum and fourth-order difference resonance lines, the actual
instability bands slightly shift to the higher tune side, which
ensures a sufficient distance from these weak natural reso-
nances.Aswedid in the last subsection, the tune depression η
and driving perturbation frequency κm are scanned to search
for the stop band predicted by Eq. (15).
The coupling resonance of the second order (m ¼ 2) is

strong and thus easy to find out with relatively weak driving
perturbation. Figure 15 clarifies the parameter-dependence
of the linear sum resonance excited by the skew quadrupole
perturbation ð∝ xyÞ. Since k ¼ l ¼ 1 and the operating
bare tunes are known, the left-hand side of Eq. (15) takes a
certain constant value. We can, therefore, estimate C2 from
the numerical data in Fig. 15 by fitting Eq. (15) to the peak
position of the emittance-growth band. The fitting results
were similar in all three types of initial distribution
functions as summarized in Table II.
The sextupole (m ¼ 3) driving term proportional to x2y

was switched on to get the emittance growth chart in

TABLE I. Coherent tune-shift factors estimated from noncou-
pling resonance bands.

C2 C3 C4

Gaussian 0.78� 0.05 0.77� 0.06 0.71� 0.06
Waterbag 0.71� 0.04 0.87� 0.03 0.92� 0.01
Parabolic 0.73� 0.05 0.85� 0.04 0.87� 0.02
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Fig. 16. Since the third-order effect is weaker than the
second order’s, the perturbation amplitude relative to the
linear focusing amplitude has been increased from 0.1% in
Fig. 15 to 0.4% here. The fitting procedure based on the
resonance formula in Eq. (15) with k ¼ 2 and l ¼ 1
leads to C3 ¼ 0.72� 0.08 for the Gaussian distribution,
C3 ¼ 0.82� 0.03 for the waterbag distribution, and
C3 ¼ 0.80� 0.05 for the parabolic distribution.
The fourth-order effect is even much weaker than the

third order’s as is evident from the WARP simulation results
in Sec. III, which forced us to further raise the perturbation

amplitude to 1% while such a strong external driving force
may expedite the growth of the beam tail. The skew
octupole field ð∝ x3yÞ is applied in Fig. 17 to excite the
sum resonance with k ¼ 3 and l ¼ 1. The tune-shift factor
evaluated from the PIC data is C4 ¼ 0.84� 0.01 for the
waterbag distribution and C4 ¼ 0.79� 0.01 for the para-
bolic distribution.
In the Gaussian case, we found it difficult to make a

reasonable estimate of C4. The emittance-growth mountain
of the Gaussian beam plotted as a function of κ4 was
not only much wider than the other two cases but also
asymmetrically distorted especially when the initial beam
density was high. Furthermore, the peak position gradually
moves to the higher-κ4 side as the emittance grows. These
effects reduce the estimated value of C4 significantly. A
similar tendency had been noticed also in the C3 evaluation
for the Gaussian distribution. We suspect that it is basically
the same effect as seen in Fig. 10; namely, the Gaussian tail,
even after the 1% initial truncation, is still working to push

TABLE II. Coherent tune-shift factors estimated from sum
resonance bands excited by skew multipole fields.

C2 C3 C4

Gaussian 0.71� 0.05 0.72� 0.08 � � �
Waterbag 0.72� 0.05 0.82� 0.03 0.84� 0.01
Parabolic 0.71� 0.05 0.80� 0.05 0.79� 0.01

FIG. 15. Emittance growth chart of the sum resonance with ðk;lÞ ¼ ð1; 1Þ excited by the linear driving perturbation. The perturbation
amplitude is set at 0.1% of the focusing field’s in these WARP simulations. The solid and dashed lines correspond to the cases where
C2 ¼ 0 (single-particle resonance) and C2 ¼ 1. The dotted line is the location of the stop-band peak fitted by Eq. (15) with C2 ¼ 0.71
for Gaussian and parabolic, and C2 ¼ 0.72 for waterbag. The dash-dotted line in the left panel indicates the incoherent resonance line
for a particle with the maximum tune shift.

FIG. 16. Emittance growth chart of the sum resonance with ðk; lÞ ¼ ð2; 1Þ excited by the sextupole driving perturbation. The
perturbation amplitude is set at 0.4% of the focusing field’s in these WARP simulations. The dotted line is the location of the stop-band
peak fitted by Eq. (15) with C3 ¼ 0.72 for Gaussian, C3 ¼ 0.82 for waterbag, and C3 ¼ 0.80 for parabolic.
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down the estimated Cm away from its real value in the
beam core.

V. CONSTRUCTION OF A STABILITY
TUNE DIAGRAM

The operating betatron tunes ðν0x; ν0yÞ of a high-
intensity ring are decided commonly on the basis of the
incoherent picture as illustrated in Fig. 1. We here employ
the coherent resonance conjecture in Eq. (8), numerically
verified in previous sections, to provide a simple and
practically useful guideline for the determination of the
optimum machine operating condition. Figure 18 outlines
how to find a good operating point P on the basis of the
coherent picture. We no longer rely on the incoherent tune
spread and any other model-dependent unobservables. The
basic information required for the construction of a stability
chart as in Fig. 18 are the rms tune depressions and the
lattice design including the distribution of possible low-
order nonlinearities. No more information is necessary.
Since the beam intensity and emittances at injection are

known in any machine, it is straightforward to calculate
the tune depressions from the rms envelope equations in
Appendix A. The lattice design tells us which driving
harmonic numbers can be dangerous. If there exist any
known nonlinear potential sources such as sextupole
magnets for chromaticity correction, they will enhance
the relevant stop bands predicted by Eq. (8) with even n0.
An important question is what orders of resonances must

be taken care of in practice. None of the past Vlasov theories
can answer this question, but naturally, we should pay more
attention to lower-order resonances rather than higher
orders’. Highly nonlinear modes are very weak and thus
likely suppressed by the Landau damping mechanism unless
strong nonlinear driving forces due to lattice imperfections
are present in the machine. As for the self-field-driven
resonance, the answer depends on the beam density and on
how long the beam stays in the machine.
Our past experience in S-POD experiment indicates that

careful consideration to noncoupling coherent resonances of
up to the third order (m ≤ 3) is always demanded. If the
beam goes through a huge number of lattice periods before
extraction or only very little emittance growth can be
tolerated, we probably need to take care of the next order
as well (m ≤ 4) [31]. On the other hand, it is uncertain
whether we must worry about all coupling resonance lines
up to the third order. The importance of each coupling

FIG. 17. Emittance growth chart of the sum resonance with
ðk; lÞ ¼ ð3; 1Þ excited by the octupole driving perturbation. The
perturbation amplitude assumed in these WARP simulations is 1%
of the focusing field’s. The dotted line is the location of the stop-
band peak fitted by Eq. (15) with C4 ¼ 0.84 for waterbag, and
C4 ¼ 0.79 for parabolic. The color bar omitted here is the same as
employed in Figs. 15 and 16.

FIG. 18. Determination of a machine operating point on the
basis of the coherent concept. The shaded areas represent the
coherent core resonance bands whose central positions are
predicted by Eq. (8). The width of each instability band generally
depends on the resonance strength. We have a possibility of non-
negligible emittance growth also in the areas of a lighter shade
where quasi-single-particle resonances can be excited in the beam
tail. The horizontal and vertical tail resonance regions adjacent to
the half-integer lines may contain a narrow band of the severe
dipole (m ¼ 1) resonance [39]. The machine operating point P
must be placed within a resonancefree region.
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resonance band may change depending on initial beam
conditions. As demonstrated in S-POD experiment
(Appendix B) and PIC simulations (Sec. III), the symmetric
coupling potential proportional to ðxyÞjkj has no effect on a
well-conditioned beam with εx ¼ εy even if the operating
point is exactly on the difference resonance line kν0x−
kν0y ¼ 0. The tune diagram in Fig. 6 also shows that a part
of the third-order coupling resonancebands areveryweakened
when the beam is initially in the equipartitioned state. We can
even deactivate the emittance exchange mechanism on par-
ticular difference resonance lines by imposing the condition
Ikl ¼ 0 at injection (Appendix C). The situation could be
more complex in a real storage ring where the momentum
dispersion exists, but in any case, it is recommended to give
careful consideration to all second-order and third-order self-
field-driven resonances associated with dangerous harmonic
numbers. This automatically covers many external-field-
driven resonances of the fourth and sixth orders.
The Fourier analysis of the matched beam envelope will

provide us with useful information to judge which har-
monic numbers are of practical importance. According to the
OY theory, the growth rate and band width of a specific
coherent resonance are both proportional to the amplitude
of the driving harmonic obtained by Fourier expanding the
three-halves power of the space-charge-modified betatron
function. If we expand it around the ring, only every Nsp
harmonics appear as long as random imperfection fields are
negligible. The right-hand side of Eq. (8) is then replaced by
Nspn0=2. The lattice design determines which n0 needs
attention. The CERN Proton Synchrotron, for instance,
has a ten-fold symmetric structure ðNsp ¼ 10Þ. The matched
beam envelope beats fifty times around the ring because each
superperiod consists of five identical FDDF blocks. We thus
have to be careful especially about the harmonic number
n0 ¼ 5 with Nsp ¼ 10 [31].
It is extremely difficult to make a general quantitative

argument on the band widths of coherent resonances. They
depend not only on the lattice design but also on the particle
distribution in phase space. Systematic self-consistent sim-
ulations will be required for precise estimation of each band
width. Instead of doing time-consuming simulations, we
here introduce a simple criterion that enables quick con-
struction of a tune diagram as a starting point for beam
stability consideration. In a circular machine, the tune
depressions of both transverse directions are not very far
from unity. We can put ηx ≈ ηyð≡ηÞ in many cases, which
permits us to employ the simplified formula in Eq. (9) to
determine the central positions of coherent stop bands. The
PIC results in Sec. III suggest that any stop bands except
for the severe second-orders’ are narrower than Δν̄=η
that roughly corresponds to the spacing between the two
theoretical lines under the conditionsCm ¼ 0 andCm ¼ 1 in
Eq. (9). We, therefore, assume the widths of all stop bands to
be equal to Δν̄=η. Since the nonlinear bands’ widths are
probably overestimated, this criterion gives us a sufficient

safety margin. When εx ≈ εyð≡ε⊥Þ and Δν̄=ν0 ≪ 1, Δν̄=η
can be evaluated from

Δν̄
η

≈
λRrp

4ε⊥β2γ3
; ð16Þ

where β and γ are the Lorentz factors, λ is the line density of
the beam, R is the average radius of the ring, and rp is the
classical particle radius. The size of Δν̄=η is much smaller
than the incoherent tune spread of a Gaussian beam (see
Appendix A).
There is a narrow gap in-between a coherent instability

band of the width Δν̄=η and the adjacent zero-intensity
(η ¼ 1) resonance line. The gap area, i.e., the tail resonance
region indicated with a lighter shade in Fig. 18, is potentially
dangerous because of the following reasons. First, theoreti-
cally, the emittance growth is more severe near the low-tune
boundary of a coherent stop band (see the sawtooth profile of
the waterbag and parabolic stop bands in Fig. 9). Each stop
band moves toward the zero-intensity line whenever the
beam density is lower than the design value or lowered by
any unexpected instability. Second, the betatron amplitudes
of the tail particles that have small incoherent tune shifts
can grow resulting in beam loss. The tail resonance region
becomes less troublesome if we somehow form and inject a
well-matched beam with a sharp edge. The waterbag and
parabolic beams actually have a resonance-free gap above
the zero-intensity resonance line as can be seen from the
examples in Fig. 9. In reality, however, any beam will more
or less have a tail around the core. We thus better avoid the
region in-between a single-particle resonance line and its
neighboring coherent band to prevent tail particles from
resonating at their incoherent tunes.
The horizontal and vertical quadrupole resonances

(m ¼ 2) at every half-integer tune per lattice period are
accompanied by a strong dipole (m ¼ 1) resonance [39].
Since the dipole stop band is very narrow and ideally has no
space-charge-induced shift ðC1 ¼ 0Þ, it is always located
close to half-integer lines, ν0xð0yÞ ¼ Nsp=2; Nsp; 3Nsp=2;….
The seed of the coherent dipole resonance is a finite deviation
of the beam centroid from the design closed orbit. Unlike
other collective modes (m ≥ 2), the dipole mode can be
stabilized in principle by properly correcting the position of
the beam centroid.
Let us try to draw a stability tune diagram for a particular

machine, applying the general rule described above. As an
example, we consider the lattice of the rapid cycling
synchrotron (RCS) at the Japan Proton Accelerator
Research Complex (J-PARC) [63]. So far, the space-
charge-induced resonance in the RCS has been discussed
on the basis of the incoherent tune spread as in Fig. 1 [64].
The RCS, whose circumference is 348.333 m, has a three-
fold symmetric structure ðNsp ¼ 3Þ. The injection painting
scheme has been employed to control the density profile of
a high-power proton beam for space-charge mitigation
(while forming an approximately uniform particle density
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to reduce the incoherent tune spread is not necessarily
beneficial because what really matters is the resultant band
widths of coherent resonances rather than the size of the
tune spread). After the ideal painting at the kinetic energy
of 400 MeV to form an approximately uniform bunch, the
unnormalized edge emittance reaches 200π mm · mrad
in both transverse directions. This corresponds to ε⊥ ≈
50 mm · mrad. The number of protons contained in a single
bunch of 92 m long is about 4.165 × 1013. Substituting
these numbers into Eq. (16), we obtain Δν̄=η ≈ 0.13.
The rms tune depression is 0.98 in the operating region
around ν0 ≈ 6.5.
We here take all possible self-field-driven resonance

bands of the second and third orders into account. The
numerical study in the last section has concluded that the
coherent tune-shift factor is in the range 0.7≲ Cm ≲ 0.9 for
low-order collective modes. Recalling the fitting results in
Tables I and II, we assume that C2 ¼ 0.75 and C3 ¼ 0.80.
The essential feature of the stability diagram does not change
much even if slightly different Cm factors are adopted. The
resultant distribution of the core resonance bands plus the
neighboring tail resonance regions are sketched in Fig. 19.
The width of the difference resonance band along ν0x −
ν0y ¼ 0 has been disregarded because εx ≈ εy (I1;−1 ≈ 0) in
the RCS. It is, however, not recommended to put the
operating point too close to this line unless the emittance
equality is guaranteed. The coupling resonance is only
deactivated under the condition I1;−1 ≈ 0 but still there.
The emittance exchange mechanism will immediately
become active once the above condition is broken somehow.
It turns out from the diagram that the resonance-free area

is quite limited in the RCS due to the low lattice symmetry.
The coherent instability in a few stop bands indicated with
the darkest shade can be enhanced by quadrupole and
sextupole magnets. Three families of sextupole magnets
have actually been installed in the RCS for chromaticity
correction. These external-field-driven stop bands have
overlapped with the self-field-driven stop bands of the same
orders. The self-field-driven instabilities above ν0xð0yÞ ¼
6.75 are caused by the linear mode (m ¼ 2) and thus
particularly dangerous at high beam density. Figure 19
reveals several operating regions free from low-order
resonances. The widest one is located just below the bare
tunes of 6.5. After a careful tune survey, the operating
point of the RCS has been chosen at around ðν0x; ν0yÞ ¼
ð6.45; 6.42Þ [63], which is consistent with the theoretical
prediction in Fig. 19.
If we add the fourth-order bands, the resonance-free

regions shrink even more. The above operating point is then
covered by the possible octupole instability bands corre-
sponding to ðk;l; n0Þ ¼ ð4; 0; 3 × 17Þ and ð0; 4; 3 × 17Þ in
Eq. (9). The RCS performance may, therefore, be improved
somewhat by moving the current operating point slightly
below the lines ν0xð0yÞ ¼ 6.375. The present discussion has
focused on especially important resonances associated with

the harmonic numbers of integral multiples of the lattice
superperiodicity Nsp. If the machine contains any sources
of strong imperfections that significantly affect the original
lattice symmetry, we have to take more resonance bands
into account. As emphasized repeatedly, the error fields
only excite the resonances with even n0 in Eq. (9).

VI. CONCLUDING REMARKS

Self-consistent PIC simulations have been performed
systematically to corroborate a conjecture on the 2D
betatron resonance in high-intensity rings where the
space-charge potential plays an important role. The pro-
posed resonance formula in Eq. (8) is model-independent,
free from any incoherent quantities and based only on a few
observable parameters. We have confirmed that Eq. (8),
despite its remarkable simplicity, works to reproduce the
basic features of numerically observed resonance stop bands
in the tune diagram. At high beam density, the factor 1=2 on

FIG. 19. Stability tune diagram based on the fundamental
parameters of the RCS at J-PARC. The three different types of
instability bands, produced by the self-field-driven, external-
field-driven, and tail-induced resonances, are plotted up to
the third order. The coherent resonance condition in Eq. (9)
has been used together with the tune-shift factors C2 ¼ 0.75 and
C3 ¼ 0.80. The rms tune depression is fixed at 0.98, considering
the beam parameters after the transverse injection painting at the
RCS. For the sake of simplicity, all stop bands are assumed to
have an identical width except for the symmetric difference
resonance along ν0x − ν0y ¼ 0 (thick solid line) where the
coupling effect should be less dangerous under the operating
condition of the RCS. The thin solid lines show the positions of
the resonances at zero-intensity limit (η → 1). A red dot on the
picture indicates the typical operating point of the RCS, i.e.,
ðν0x; ν0yÞ ¼ ð6.45; 6.42Þ [63].
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the right-hand side can give rise to a lot of extra instability
bands overlooked or underestimated in previous resonance
studies. No clear indication of simultaneous existence of the
coherent and incoherent resonance mechanisms has been
identified in a beam core (while the quasi-single-particle
resonance in the beam tail around the core can cause rms
emittance growth and resultant particle losses).
Any circular machine intended to store an intense hadron

beam for a long period should be designed to have as high
lattice symmetry as possible, so that the number of self-
field-driven instability bands is minimized. The coherent
tune-shift factor is found to be always smaller than unity
for any low-order collective oscillation modes. The present
study suggests that the locations of practically important
stop bands can be estimated with the tune-shift factor that
depends only on the resonance order m; we can assume Cm
to be constant over the whole tune space independently of
initial beam conditions, at least, in the beam-density range
achievable in storage rings.
On the basis of the coherent resonance concept well-

established through extensive theoretical effort in the past
[10–12,19–30], we have proposed a new prescription for
constructing the stability tune diagram without the use of
the incoherent tune spread. Although any real machines
contain diverse artificial sources of transverse perturbing
fields which complicate the stop-band distribution on the
diagram, the simple rule described in Sec. V is helpful to
spot preferable operating regions very quickly as the first
step toward the best machine performance. Considering
long CPU time necessary for high-precision PIC simula-
tions of long-term beam stability, it is certainly meaningful
to know the locations of possible intrinsic stop bands in
advance. The accurate information of external fields
(e.g., the arrangement of nonlinear magnets, possible
sources of strong error fields, etc.) peculiar to an individual
machine will improve the reliability of the stability chart.
Many recent numerical studies on space-charge issues

have assumed Gaussian beams. Taking the Gaussian model
sounds reasonable but there is no guarantee that any real
beams in high-intensity circular machines have the exact
Gaussian distribution in phase space. The details of an
initial beam configuration strongly depend on how the
beam was injected and accumulated in a ring. The high-
power proton beam provided by the injection painting
scheme at the RCS actually has a phase-space profile rather
different from the Gaussian configuration. The long
Gaussian tail also brings about the side effects that obscure
the core dynamics. It is thus dangerous to look only at
Gaussian-based predictions. To be on the safe side, we
should care about what is expected in other types of
reasonably realistic beam core as well. Furthermore, even
after very careful injection, the initial beam distribution is
not so close to the perfect stationary state precisely matched
to the lattice and, as a result, includes a complex distortion
pattern in phase space. Such imperfection can be an

unfavorable seed of coherent instability as shown in
Appendix D. The core of a real beam is probably more
susceptible to coherent nonlinear resonances than the well-
matched core employed in computer simulations.
The conventional resonance conditions in Sec. I, com-

monly used to plot the tune diagram, have not taken the
synchrotron motion explicitly into account. Similarly, the
possibility of synchro-betatron coupling has been disre-
garded here. The present empirical rule is restricted to the
transverse dynamics. Much further investigation is required
to establish an analogous rule for intense bunched beams.
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APPENDIX A: THE RMS TUNE SHIFT AND
INCOHERENT TUNE SPREAD

The horizontal and vertical rms beam sizes ða; bÞ satisfy

d2a
ds2

þ KxðsÞa −
ε2x
a3

−
Ksc

2ðaþ bÞ ¼ 0;

d2b
ds2

þ KyðsÞb −
ε2y
b3

−
Ksc

2ðaþ bÞ ¼ 0; ðA1Þ

where εxðyÞ is the horizontal(vertical) rms emittance, KxðyÞ
is the horizontal(vertical) focusing function determined by
the AG lattice structure, Ksc is the perveance proportional
to the beam’s line density, and s is the path length along the
reference orbit [50]. Sacherer proved that Eqs. (A1) hold
for any distribution function with elliptical symmetry in the
transverse real space. The rms tune shifts in the horizontal
and vertical directions are evaluated by substituting the
stationary solutions of Eqs. (A1) into

Δν̄x¼ν0x−
εx
2π

Z
sþL

s

ds
a2

; Δν̄y¼ν0y−
εy
2π

Z
sþL

s

ds
b2

; ðA2Þ

where L is the ring circumference (or the length of single
lattice period). a and b in Eq. (A2) represent the matched
beam envelopes with space charge, both of which have the
periodicity of L. The rms tune depressions are defined by
ηx ¼ ðν0x − Δν̄xÞ=ν0x and ηy ¼ ðν0y − Δν̄yÞ=ν0y.
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For comparison, let us consider the incoherent tune
shift in the Gaussian model that has been frequently
employed in past simulation studies and to plot an
incoherent tune spread area in the tune diagram.
Assuming the exact Gaussian density profile to be main-
tained (no Debye screening), we can make a crude estimate
of the maximum incoherent tune shifts in the horizontal and
vertical directions from

maxðΔνGaussx Þ ≈ λrpR2

ν0xβ
2γ3

1

āðāþ b̄Þ ;

maxðΔνGaussy Þ ≈ λrpR2

ν0yβ
2γ3

1

b̄ðāþ b̄Þ ; ðA3Þ

where ā and b̄ denote the average rms beam sizes [65]. These
formulas are not self-consistent but could be used as an
approximate measure that helps us to see the size of a typical
incoherent tune spread. It is possible to show, by using the
smooth approximation, that maxðΔνGaussxðyÞ Þ≈ð1−η2xðyÞÞν0xð0yÞ.
Since Δν̄xðyÞ ¼ ð1 − ηxðyÞÞν0xð0yÞ, the maximum incoherent
tune shift in a Gaussian beam is roughly twice as large as the
model-independent rms tune shift at low density.
The left panel in Fig. 20 is the tune diagram near the

operating region where the severe horizontal and vertical
resonance bands of the quadrupole mode intersect. The
emittance growth after beam transport over 200 sinusoidal
focusing cells is evaluated at many different operating
points through WARP simulations starting from initially
matched Gaussian beams. The tune depressions are fixed
to 0.9 in both transverse directions everywhere. Gray dots
on the picture indicate the average positions of individual
macroparticles when the operating point is set at ðν0x; ν0yÞ ¼
ð0.298; 0.298Þ where no emittance growth was detected, at

least, over 5000 AG periods. The area of the incoherent
tune spread is obviously wider than the value of Δν̄¼
ð1−ηÞν0¼0.0298 as well as the observed instability bands.
Particularly noteworthy is the fact that a lot of particles

deep inside the core (thus with large incoherent tune
shifts) have satisfied the incoherent resonance conditions
4νxðyÞ ≈ 1. Nevertheless, the beam is completely stable,
which supports our conclusion that no serious resonance
is activated in the matched core under the incoherent
condition in Eq. (3). If we trust the conventional rule in
Fig. 1, the operating point P has to be put further away from
the single-particle resonance lines 4ν0xð0yÞ ¼ 1 to prevent
possible beam loss, but that is totally unnecessary. We
found no instability at this operating point even when a
rather strong fourth-order error field (1% of the focusing
strength) was added to the external potential.
It is instructive to refer to the case of higher beam

density. The tune depression is lowered from 0.9 to 0.8 in
Fig. 21. The operating point has been moved to ðν0x; ν0yÞ ¼
ð0.353; 0.353Þ to avoid the coherent quadrupole resonance
bands wider than those in Fig. 20. Although this operating
point is above the third-order single-particle resonance
lines ν0xð0yÞ ¼ 1=3, it has not reached the edge of the
coherent sextupole resonance bands shifted to the higher
tune side. The beam should, therefore, be free from serious
core instability. The incoherent tunes (gray dots) in Fig. 21
are evaluated by Fourier-analyzing the single-particle
trajectories near the end of a long transport channel. The
tune-spread area has become much wider than the η ¼ 0.9
case in Fig. 20. Many core particles with large incoherent
tune shifts are found again around the quarter-integer lines
ν0xð0yÞ ¼ 1=4, but the beam core was stable even after
the inclusion of a fourth-order imperfection field. On the
other hand, we notice that a small number of particles are

FIG. 20. Example of the incoherent tune spread of a Gaussian beam with η ¼ 0.9. The emittance growth is evaluated from WARP

simulations that have assumed the same numerical conditions as in Fig. 3 except for the transport distance extended to 200 AG periods
here. Gray dots represent the approximate incoherent tunes of individual particles when the operating point is set at ðν0x; ν0yÞ ¼
ð0.298; 0.298Þ where the matched Gaussian beam is completely stable. The right panels show the particle-number histograms plotted as
a function of the incoherent tunes νx and νy. The ordinate (the number of particles) has been normalized with the total number of
macroparticles used for the PIC simulation. The arrow in the upper right panel indicates the size of the rms tune shift.
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distributed along ν0xð0yÞ ¼ 1=3. They are the tail particles
captured by the quasi-single-particle resonance with the
oscillating core potential. The time evolution of the rms
emittance growth is plotted in Fig. 22 together with the
beam profile in real space. An initial emittance jump by
about 2% is attributed to a weak mismatch and has nothing
to do with any core instability. The gradual increase of the
100% emittance is caused largely by the tail particles near
ν0xð0yÞ ¼ 1=3 in Fig. 21. The emittance growth (except for

the initial jump) can be made much smaller by disregarding
the contribution from just one percent of particles in the tail.
The right panels in Fig. 22 show the real-space profiles of
the beam before and after the one-percent removal of the
tail at the exit of the 1000th cell.

APPENDIX B: EXPERIMENTAL DATA
FROM S-POD

The collective motion of an ion plasma confined in a
linear Paul trap (LPT) is almost equivalent to that of a
charged particle beam in an AG transport channel. The
S-POD, designed on the basis of this fact, offers systematic
experimental data to support numerical and theoretical
studies of beam dynamics. Figure 23 is an experimentally
obtained tune diagram consisting of over four thousand
data points from ion-loss measurements performed inde-
pendently with different combinations of ðν0x; ν0yÞ [31].
Similarly to the PIC simulations in Secs. III and IV, the
sinusoidal focusing potential is used for transverse ion
confinement. The picture reveals the existence of six clear
instability bands running horizontally and vertically. In
addition to these resonance lines, a few weak coupling
resonance bands are recognizable. Figure 24 clarifies
the dependence of ion losses on initial plasma density.
The measurements have been done along the line ν0x ¼
ν0yð≡ν0Þ on which the three horizontal and three vertical
instability bands in Fig. 23 intersect near ν0 ¼ 1=6, 1=4,
and 1=3. In each measurement, the ion plasma is stored in
the LPT for 10 ms corresponding to the transport distance
over 104 AG periods.
When the initial plasma density is low, ion losses are

detected only at ν0 ≈ 1=3 (see the bottom panel in Fig. 24).
Considering the weakness of the self-field potential in
the low-density regime, the external-field-driven resonance
with even n0 must be playing a dominant role there.
Theoretically, the lowest-order mode that can be unstable
at ν0 ≈ 1=3 is the sextupole (m ¼ 3). The primary cause

FIG. 21. Example of the incoherent tune spread of a Gaussian
beam with η ¼ 0.8 (2D WARP result). The beam transport
distance is extended to 1000 AG periods (see Fig. 22). The
operating point is set at ðν0x; ν0yÞ ¼ ð0.353; 0.353Þ. The single-
particle trajectories near the end of the transport channel are
Fourier analyzed to figure out the incoherent tune spread. The
single-particle resonance lines of the third and fourth orders, i.e.,
ν0xð0yÞ ¼ 1=3 and ν0xð0yÞ ¼ 1=4, are drawn for reference.

FIG. 22. Time evolution of the emittance growth of the Gaussian beam assumed in Fig. 21. The black solid line is the growth
calculated from the whole beam (100% rms emittance). The red line is based on the truncated distribution in which one percent of tail
particles are disregarded (99% rms emittance). A sudden jump of the emittance growth ð∼2%Þ, which occurs within the first few AG
cells, is due to the self-organization of the phase-space distribution triggered by a weak initial mismatch to the lattice. The final cross-
sectional views of the beam before and after the 1% tail scraping are exhibited in the right panels.
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of the narrow instability band observed in Fig. 24(c) is,
therefore, the third-order imperfection field due to
mechanical errors in the LPT structure. Note that higher-
order error fields have no discernible effect at low density
within the present timescale.
The other two instabilities at ν0 ≈ 1=6 and 1=4 are

manifested gradually as we increase the initial number of
ions in the LPT. Ion losses at ν0 ≈ 1=4 are particularly severe
which eventually surpass those at the third-order stop band
above ν0 ¼ 1=3 (see the top panel in Fig. 24). The instability
at ν0 ≈ 1=6 is also more enhanced with increasing plasma
intensity. These observations lead us to a conclusion that the
resonances at ν0 ≈ 1=6 and 1=4 are driven mainly by the
natural self-field potential. The shifts of the three instability
regions toward the higher tune side are due to the effect of
Δν̄ in the resonance condition. A question is what order of
resonance has caused these ion losses.
It is most natural to seek the origin of observed ion losses

in the resonance of as low an order as possible. Accepting
the conjecture in Eq. (8), we realize that only the linear
(m ¼ 2) and first nonlinear (m ¼ 3) resonances are suffi-
cient to explain the results in Figs. 23 and 24. Let us
temporarily assume that the resonance at ν0 ≈ 1=6 is driven
by the sixth-order error field. Then we find it difficult to
explain why it completely disappears at low density. The
resonances of the lower (fourth and fifth) orders are also
nearly invisible in Fig. 24(c). Even if we suppose that this
resonance is the six-order self-field-driven instead of
external-field-driven, we still have trouble explaining the
absence of other lower-order resonance bands in Fig. 23
at high density. The most straightforward answer to the
question above is thus as follows: the instability of the

linear (m ¼ 2) mode is responsible for the most serious ion
losses at ν0 ≈ 1=4 while the sextupole (m ¼ 3) mode for
other two resonance bands at ν0 ≈ 1=6 and 1=3. A similar
argument applies to another self-field-driven resonance
band that appears at ν0 ≈ 1=8 when the plasma storage
period is considerably extended [31]. The instability of the
octupole (m ¼ 4) mode should be the main cause, rather
than of the eighth (m ¼ 8) or higher orders’.
The possible coupling resonance band along ν0x−ν0y¼0

is undetectable in Fig. 23 just like the PIC simulation
results in Sec. III. The ion-loss measurements in Fig. 24
have been conducted along this line, but no noticeable
instability can be found except in the regions of the three
noncoupling resonances discussed above. In these experi-
ments, we used isotropic ion plasmas produced under the

FIG. 23. Tune diagram experimentally obtained with S-POD
[31]. The number of ions remaining in the LPT after 104 AG
periods is measured at 4450 different operating points. The initial
ion number Nion is fixed at about 107 in this example. The
shading of gray scale represents the rate of surviving ions. The
ion-loss rate is higher in the area of a darker shade.

FIG. 24. Dependence of the three major stop bands on plasma
intensity. The number of ions remaining in the LPT after 104 AG
periods is measured in S-POD at over 200 different operating
points. The horizontal and vertical bare tunes are always
equalized, i.e., ν0x ¼ ν0yð≡ν0Þ, which means that the experiment
has been performed along the straight line ν0x − ν0y ¼ 0 in the
tune diagram. The initial ion number Nion in the LPT is decreased
from the top panel to the lower: (a) Nion ≈ 107, (b) Nion ≈ 105,
and (c) Nion ≈ 104.
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condition ν0x ¼ ν0y. Any driving potential symmetric with
respect to x and y is then unable to activate the difference
resonance on ν0x − ν0y ¼ 0. An anisotropic plasma with
unequal emittances ðεx ≠ εyÞ is necessary to verify the
existence of this coupling resonance.
There are several ways to provide an anisotropic plasma

in the LPT. We employed the dipole electric field generated
by applying low pulse voltages of opposite signs to the
horizontal pair of the quadrupole rods. An ion bunch is
kicked several times by the pulsed dipole field and partially
scraped with the electrodes, which develops an imbalance
between the horizontal and vertical initial emittances. The
timing and strengths of the dipole kicks are designed such
that the centroid of the plasma comes back to the LPT axis
after the horizontal scraping. This procedure is equivalent
to inserting a local orbital bump in a beam transport channel
by bending magnets.
Figure 25(a) is the S-POD data obtained with an initially

anisotropic plasma under the condition ν0x ¼ ν0y. The
transverse rms extent of the plasma was measured with
a phosphor screen. The result in the right panel clearly
shows a symmetric emittance exchange pattern that sug-
gests the excitation of the expected difference resonance.
No ion losses occur during the emittance exchange process
as indicated in the left panel. The observed oscillations of
the horizontal and vertical plasma sizes are thus caused
solely by the emittance exchange. When the LPT operating

point is set sufficiently away from the line ν0x − ν0y ¼ 0, no
emittance exchange takes place as depicted in Fig. 25(b).
Theoretically, many resonances of different orders over-

lap along the line kν0x − kν0y ¼ 0. The one driven by the
fourth-order (k ¼ 2) space-charge potential is known as the
Montague resonance [66,67]. The separation of these
overlapping difference resonances is a complicated issue.
A similar complication is encountered even in noncoupling
resonances. For instance, the severe instability observed at
ν0 ¼ 1=4 in the GSI UNILAC was interpreted in Ref. [68]
as a result from the fourth-order space-charge-driven
resonance dominating over the second-order’s. It, however,
seems uncertain if the effect from the linear resonance, two
orders lower than the octupole, is really so weak against the
Vlasov prediction about the core stability. In the present
paper and other past publications on S-POD experiments,
we have consistently taken the simplest standpoint that a
lower-order resonance is generally more severe in the beam
core than higher-orders’.
As for the resonance overlapping along kν0x − kν0y ¼ 0,

Métral et al. have reported on the evidence of the linear
mechanism that leads to a complete emittance exchange
between the horizontal and vertical directions [69]. A
second-moment analysis in Ref. [57] has also pointed
out that the space-charge potential can be a source of
linear sum resonance. The signature of such an intensity-
dependent sum resonance was observed experimentally in
the S-POD system [31]. We believe that more investigation

FIG. 25. Time evolution of the ion number (left) and transverse plasma extent (right) measured in S-POD. The ion plasma used
for this experiment is initially anisotropic. The operating point of the LPT is adjusted to: (a) ðν0x; ν0yÞ ¼ ð0.202; 0.202Þ, and
(b) ðν0x; ν0yÞ ¼ ð0.226; 0.109Þ.
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is necessary to clarify the role of the linear coupling term
along the Montague-resonance line. (See the discussion in
Appendix C.)

APPENDIX C: SUPPRESSION OF EMITTANCE
EXCHANGE ON THIRD-ORDER
DIFFERENCE RESONANCES

We have discovered that the difference resonances with
ðk;l; n0Þ ¼ ð1;−2; 0Þ and ð2;−1; 0Þ are no longer active in
the initially equipartitioned beam. Other third-order differ-
ence resonance bands with ðk;l; n0Þ ¼ ð−1; 2; 1Þ and
ð2;−1; 1Þ are visible in Fig. 6. The PIC data in Fig. 8
strongly suggests that the emittance exchange on a par-
ticular difference resonance can be suppressed when the
initial transverse emittances meet the condition Ikl ¼ 0. It
is interesting to check if the latter two resonance bands
above vanish under this simple condition. Let us look into
the case where ðk;lÞ ¼ ð2;−1Þ. The condition I2;−1 ¼ 0

requires that the horizontal emittance is twice as large as the
vertical, i.e., εx ¼ 2εy. The tune diagram in Fig. 26 is based
on the WARP simulations performed with this initial
emittance ratio. The right and left panels show the results
with and without an external nonlinear driving field. As
expected, the third-order resonances with ðk;l; n0Þ ¼
ð2;−1; 0Þ and ð2;−1; 1Þ are both eliminated, no matter
whether the external driving potential is present. In the case
(b), we have introduced the sextupole error ð∝ y3 − 3x2yÞ
to enhance the third-order difference resonances with
ðk;lÞ ¼ ð2;−1Þ. While the error field considerably

increases the emittance growth along the external-
field-driven resonance lines with ðk;l; n0Þ ¼ ð0; 3; 2Þ and
(2, 1, 2), it has no effect on the difference resonances that
satisfy the condition I2;−1 ¼ 0.
This interesting finding could be tested experimentally

in existing rings. As shown in Fig. 19, a clear third-order
difference resonance band is lying near the regular operat-
ing point of the RCS [63,70]. Since the sophisticated
injection painting scheme is available in this high-power
machine, the ratio of the initial transverse emittances can be
controlled over a wide range. After accumulating a proton
beam with the emittance ratio εx=εy ¼ 1=2 in a resonance-
free area, we move the operating point onto the line
ν0x − 2ν0y ¼ −6. If the present understanding is correct,
no instability will occur even with the sextupole correction
magnets on.
We also recognize another striking disparity between

Fig. 26 and other tune diagrams in Sec. III. The resonance
bands along ν0x − ν0y ¼ 0 has appeared very clearly in
Fig. 26 due to the initial emittance imbalance imposed. The
coupling instability along this line is usually referred to as
the Montague resonance as discussed in Appendix B. It is
thought to be driven by the fourth-order space-charge
term [66]. The difference and sum resonance lines along
kν0x � kν0y ¼ 0 are, however, much clearer than any other
nonlinear resonance lines in the absence of the error field.
This observation suggests the possibility that the primary
source of the difference resonance along kν0x − kν0y ¼ 0

observed in Fig. 26 is the linear (k ¼ 1) skew space-charge

FIG. 26. Tune diagrams obtained from 2DWARP simulations under the initial emittance ratio εx=εy ¼ 2. Similarly to Fig. 8, we have
used the matched Gaussian beam propagating through the sinusoidal focusing channel of 100 AG periods long. The ratio of the
horizontal rms emittance to the vertical is fixed at 2.0 everywhere on the diagram. The beam current is maintained at the same value as
assumed in Figs. 4 and 6. The red dotted lines represent the positions of the third-order coherent resonance bands defined by Eq. (8) with
ðk; l; n0Þ ¼ ð2;−1; 0Þ, ð2;−1; 1Þ and C3 ¼ 0.875, both of which are invisible here. The left panel (a) shows the case where the external
force is completely linear. In the right panel (b), the external imperfection potential proportional to y3 − 3x2y has been switched on. The
perturbation amplitude is set at 1% of the quadrupole focusing field’s. In this case, some particle losses occur near the low-tune
boundaries (i.e., in the tail resonance region) of the third-order external-field-driven resonance bands.
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term rather than the fourth-order’s (k ¼ 2). The existence
of such linear parametric resonances driven by the skew
potential can be concluded from the 2D Vlasov analysis
without the smooth approximation [48].

APPENDIX D: EFFECT OF INITIAL
DENSITY DISTORTION

We here comment on the seed of the self-field-driven
parametric instability, specifically, the effect of a finite
deviation of an initial particle distribution from the ideal
stationary state. Theoretically, nothing serious happens in a
perfect matched state even when the operating point is
exactly on the parametric resonance. Unlike in real
machines, we can easily produce a very well-matched

particle distribution in computer simulations, which almost
eliminates the seed of nonlinear coherent resonances.
For instance, the lowest-order dipole (m ¼ 1) resonance,
stronger than the quadrupole instability, usually needs a
very long transport distance to get excited in simulations. It
is simply because the beam’s centroid has been placed
precisely on the design orbit at the beginning [39].
A similar argument applies to the excitation of nonlinear

modes. Figure 27 is an example demonstrating the effect of
weak artificial perturbation to an initial density profile. The
upper panels show the cross sections of two waterbag-type
beams at the operating point ν0 ¼ 0.192. The left one is the
initial distribution employed for the WARP simulation in
Fig. 2(a). A few hundred AG periods were necessary for
this well-matched beam to start exhibiting emittance
growth due to the coherent sextupole resonance. The
distribution in the right panel (b) looks analogous to the
left, but we have intentionally introduced a slight distortion
of sextupole symmetry. Starting a WARP simulation from
this perturbed beam, we see a clear signature of the
sextupole core resonance within just a few tens of AG
periods as shown in Fig. 27(c).
The tune diagram in Fig. 28 is obtained using the initially

distorted waterbag beam. We can identify all possible self-
field-driven resonance bands of the second and third orders
(though some of them are not very apparent from the
picture). As expected, the band widths are narrower than
the Gaussian case in Fig. 3. Unlike the Gaussian beam with
a long tail, the waterbag beam exhibits a clear core
deformation pattern, which makes it a lot easier for us
to understand which collective mode is unstable. For

FIG. 27. WARP results on the effect of weak initial distortion to
a matched waterbag beam. The tune depression and operating
tune are adjusted to the same values as in the case of Fig. 2(a); i.e.,
η ¼ 0.8 and ν0 ¼ 0.192. Other numerical conditions are also
identical to those assumed in Fig. 2. (a) Initial real-space profile
of the waterbag beam well-matched to the lattice. (b) Initial real-
space profile of a waterbag beam slightly distorted from the
matched state in the left panel. The perturbed distribution was
provided through a separate short simulation over a single AG
cell with strong normal and skew sextupole potentials. (c) Time
evolution of the average emittance growth simulated with the
WARP code. The solid line is obtained with the weakly distorted
initial distribution while the dashed line with the well-matched
distribution. The two insets show the horizontal phase-space
configurations of the distorted beam at the 50th cell and at the
150th cell.

FIG. 28. Tune diagram obtained from 2D WARP simulations
with a weakly distorted waterbag distribution. The initial dis-
tortion of the sextupole symmetry is developed in the same way
as in Fig. 27. The original tune depression before the application
of the sextupole distortion is adjusted to ηx ¼ ηy ¼ 0.9 over the
whole tune space. Other numerical conditions are identical to
those assumed for the Gaussian-based simulations in Fig. 3.
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instance, we always observe the triangular core configu-
ration as in Fig. 2(a) and Fig. 27(c) along the instability
bands above ν0xð0yÞ ¼ 1=6 where the coherent resonance
condition in Eq. (8) predicts the instability of the sextupole
(m ¼ 3) mode.
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