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We analyze the wave field of a charged particle bunch moving in a circular waveguide consisting of two
parts: the first one has a corrugated wall and the other one has a smooth wall. It is assumed that the period
and the depth of the corrugation are much less than the waveguide radius and wavelengths under
consideration. The influence of corrugation on the electromagnetic field is analyzed using the method of
equivalent boundary conditions (EBC). The cases of the bunch moving in both directions inside of such a
waveguide are considered. We obtain analytical expressions for the main part of the field having discrete
spectrum. Figures of a typical mode distribution of radiation are presented. We also perform numerical
simulations in software package CST Particle Studio. Comparison of analytical and numerical results
confirms the validity of the EBC method.
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I. INTRODUCTION

Periodic waveguide structures have achieved widespread
use in many areas of physics and technology. Currently,
essential attention has been paid to the use of corrugated
waveguides as sources of terahertz radiation [1–5]. The
main attention has been focused on the study of Smith-
Purcell radiation when the wavelengths are comparable to
the structure period (e.g., [6]). However, it is also interest-
ing to study long wave radiation with wavelengths which
are much greater than the structure period [1,4,5,7,8]. The
generation of radiation in the terahertz frequency range via
ultrarelativistic electron bunch moving through a cylindri-
cal periodic structure with small corrugations is described
in [1,4]. The charge moving with arbitrary velocity is
considered in the paper [7]. Note, as well, that methods of
powerful nanosecond pulses generation in the millimeter
wavelength range using oversized corrugated waveguides
are currently studied [9,10]. The other field for application
of periodic structures is connected with new nondestructive
methods of bunches diagnostic. The bunch energy meas-
uring by means of circular waveguide having walls with
small rectangular cells is described in the paper [11].

This paper is devoted to the investigation of radiation
produced by charged particle bunch intersecting the boun-
dary between the corrugated waveguide area (corrugations
have rectangular forms) and the area with smooth wall.
Although problems with small rectangular corrugated
waveguides have been considered earlier (e.g., [1,7,12]),
the presence of a boundary between different waveguide
areas was not taken into account.
The work has the following structure. The first part is

devoted to formulation of eigenmodes of the periodical
corrugated circular waveguide with respect to the condition
that corrugation period and depth are small in comparison
with waveguide radius and wavelength. These restrictions
allow using the equivalent boundary conditions (EBC) [13]
instead of setting the boundary conditions on the compli-
cated corrugated surface. Further the analytical investiga-
tion of the wave field of the bunch is performed. The work
is focused on the analysis of the so called free field which
describes the influence of the boundary between corrugated
and smooth areas. We also perform the direct numerical
simulations in CST Particle Studio that allows testing the
correctness of EBC usage.
It should be noted that there is another approach to finely

corrugated structures which is equivalent to the method of
EBC. It consists in replacing a corrugated structure with the
conductive smooth surface covered with some thin material
layer [14,15]. This idea was developed and corresponding
surface impedance was calculated in work [12] where
the corrugated waveguide is replaced with some smooth
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waveguide with a dielectric-magnetic layer. In order to
demonstrate the two approaches equivalence, one can
obtain, for example, the frequency of the mode excited
by the relativistic bunch moving in the infinite corrugated
waveguide in two ways. The calculation shows that for the
structure considered in [12] (waveguide radius is equal
to 3 mm, corrugation period—1 mm, corrugation depth—
0.45 mm, corrugation width—0.75 mm) the frequency
given in [12] differs from the frequency calculated with the
use of EBC by 0.4% only. This small difference is easily
explained by the rounded value of the equivalent dielectric
constant given in [12]. Note that the results presented in the
book [13] were obtained by Vainshtein and Sivov much
earlier than all other analogues results in the area of finely
corrugated surfaces electrodynamics.

II. CORRUGATED WAVEGUIDE PROPER WAVES

Before investigating the charge field, it is advisable to
describe eigenmodes properties of a periodic perfectly
conducting cylindrical waveguide with small corrugations
(Fig. 1). We suppose that the following conditions are
satisfied:

d ≪ a; d3 ≪ a; d ≪ λ; d3 ≪ λ; ð1Þ

where a means the waveguide radius, d and d3 are
corrugation period and depth respectively, λ is a mode
wavelength. Note that the following analysis will be per-
formed for the electromagnetic field Fourier transforms
ðE⃗ω; H⃗ωÞ. In addition, for further purpose we may confine
ourselves with considering the transverse-magnetic (TM)
eigenmodes only.
Inequalities (1) allow using EBC on the waveguide

walls, i.e., impedance smooth surface [13], instead of
consideration of strict boundary condition for corrugated
surface. The EBC for TM-field has the form (hereinafter the
cylindrical coordinate system is used)

Ezωjr¼a ¼ ηmHφωjr¼a: ð2Þ

where ηm is the impedance. In the geometry under con-
sideration, it can be presented as [13]

ηm ¼ i
ω

c

�
d2d3
d

− δ
c2h2

ω2

�
; ð3Þ

where c is the speed of light in a vacuum, h is a longitudinal
wave number of the mode. The parameter δ is written in
the form

δ ¼ d3 þ
td
2π

Z
1=σ

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − uÞð1 − σuÞp ð ffiffiffiffiffiffiffiffiffiffiffiffi
1 − tu

p þ 1Þ

þ d
2π

ln

�
σ − 1

σ

�
; ð4Þ

where t and σ are determined from the following system of
equations: Z

t

0

ffiffiffiffiffiffiffiffiffiffi
t − u

p
duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uð1 − uÞðσ − uÞp ¼ π
d1
d
;

Z
1

t

ffiffiffiffiffiffiffiffiffiffi
u − t

p
duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uð1 − uÞðσ − uÞp ¼ 2π
d3
d
: ð5Þ

The magnetic field Fourier transform must satisfy the
equation

∂2Hφω

∂z2 þ 1

r
∂
∂r

�
r
∂Hφω

∂r
�
þ
�
ω2

c2
−

1

r2

�
Hφω ¼ 0 ð6Þ

and the conditions

jHφωjjr¼0
< ∞;

Hφωjr¼a ¼ −
�
iηmω
c

þ 1

a

�
−1∂Hφω

∂r
����
r¼a

: ð7Þ

The first condition means that the source is absent in the
case of the problem for waveguide mode, and the second
one follows from the EBC (2) and Maxwell equations. An
arbitrary solution of the problem (6), (7) can be written as
an expansion in series of eigenfunctions of transversal
operator including differential operator

Lr ¼
1

r
∂
∂r

�
r
∂
∂r

�
−

1

r2
þ ω2

c2

and conditions (7). For each mode we have:

Hφωn ¼ J1ðχnrÞ exp ð�ihnðωÞzÞ; ð8Þ

where hn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=c2 − χ2n

p
is the mode longitudinal wave

number. We define the physical sheet of the Riemann
surface by condition ImðhnÞ ≥ 0 for ω ∈ R, therefore the
wave with the sign “þ” propagates in the positive direction
of the z-axis. The parameters χn are determined by the
dispersion equation

Fdisp ≡ J1ðχaÞ −
χc

ωjηmj J0ðχaÞ ¼ 0: ð9Þ
FIG. 1. Corrugated waveguide cross section.
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It should be noted that the functions J1ðχrÞ possess the
following orthogonality property (bar means the complex
conjugation):Z

a

0

J1ðχnrÞJ1ðχmrÞrdr ¼ Gmδmn; ð10Þ

where

Gm ¼ a2

2
½J21ðχmaÞ þ J20ðχmaÞ� −

a
χm

J0ðχmaÞJ1ðχmaÞ

for χm ∈ R and

Gm ¼ a2

2
½I21ðjχmjaÞ − I20ðjχmjaÞ� þ

a
jχmj

I0ðjχmjaÞI1ðjχmjaÞ

for χm ¼ ijχmj. Ultimately, the electromagnetic field as a set
of eigenmodes which can be written in the following form:

Ezω ¼ ic
ω

X∞
n¼1

BnðωÞχnJ0ðχnrÞ exp ð�ihnzÞ; ð11aÞ

Erω ¼ � c
ω

X∞
n¼1

BnðωÞhnJ1ðχnrÞ exp ð�ihnzÞ; ð11bÞ

Hφω ¼
X∞
n¼1

BnðωÞJ1ðχnrÞ exp ð�ihnzÞ; ð11cÞ

where BnðωÞ are coefficients of the mode expansion.

III. RADIATION OF A CHARGE MOVING
FROM THE CORRUGATED AREA

TO THE SMOOTH ONE

Consider the radiation of a charge moving in a composite
waveguide structure. The left semi-infinite area is a
periodic corrugated waveguide, the other is a smooth
waveguide (Fig. 2). The charge q moves with uniform
velocity v⃗ ¼ cβe⃗z along the waveguide axis from the
corrugated area into the smooth one and intersects the
transverse boundary z ¼ 0 at time t ¼ 0. The main goal
is to investigate the radiation generated in the smooth
waveguide area. The analytical treatment is based on the

representation of the total electromagnetic field as a sum
of so-called forced [with superscript (q)] and free [with
superscript (b)] fields in each waveguide area:

E⃗1;2 ¼ E⃗ðqÞ
1;2 þ E⃗ðbÞ

1;2; H⃗1;2 ¼ H⃗ðqÞ
1;2 þ H⃗ðbÞ

1;2: ð12Þ

The forced field describes the electromagnetic field of the
particle moving in an infinite, longitudinally homo-
geneous waveguide with properties of area (1) or (2).
The free field, in turn, is excited because of the influence
of the boundary between corrugated and smooth areas of
the waveguide.
Forced fields for both areas have been investigated

earlier [7,16]:

EðqÞ
1;2zω ¼ −

iqω
πv2

ð1 − β2ÞðK0ðkrÞ þ R1;2I0ðkrÞÞ

× exp

�
iωz
v

�
; ð13aÞ

EðqÞ
1;2rω ¼ qk

πv
½K1ðkrÞ − R1;2I1ðkrÞ� exp

�
iωz
v

�
; ð13bÞ

HðqÞ
1;2φω ¼ βEðqÞ

1;2rω: ð13cÞ

Here subscripts 1 and 2 mean the corrugated waveguide
and the smooth one respectively,

R1 ¼ −
K0ðkaÞ þ gkaK1ðkaÞ
I0ðkaÞ − gkaI1ðkaÞ

; R2 ¼ −
K0ðkaÞ
I0ðkaÞ

;

k ¼ jωj
v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
; g ¼ 1

að1 − β2Þ
�
β2

d2d3
d

− δ

�
;

I0;1ðxÞ are modified Bessel functions of the first kind,
K0;1ðxÞ are Macdonald functions.

The free field fE⃗ðbÞ; H⃗ðbÞg in areas (1) and (2) can be
presented as an expansion by corrugated waveguide
eigenmodes (11)-(2) and smooth waveguide eigenmodes
correspondingly (such method is widely used in various
problems [17–20]):

EðbÞ
1zω ¼ ic

ω

X∞
n¼1

Bð1Þ
n ðωÞχnJ0ðχnrÞ exp ð−ihð1Þn zÞ; ð14aÞ

EðbÞ
1rω ¼ −

c
ω

X∞
n¼1

Bð1Þ
n ðωÞhð1Þn J1ðχnrÞ exp ð−ihð1Þn zÞ; ð14bÞ

HðbÞ
1φω ¼

X∞
n¼1

Bð1Þ
n ðωÞJ1ðχnrÞ exp ð−ihð1Þn zÞ; ð14cÞ

EðbÞ
2zω ¼ ic

ωa

X∞
n¼1

Bð2Þ
n ðωÞηnJ0

�
ηn

r
a

�
exp ðihð2Þn zÞ; ð15aÞFIG. 2. Waveguide structure with corrugated (1) and smooth (2)

areas.
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EðbÞ
2rω ¼ c

ω

X∞
n¼1

Bð2Þ
n ðωÞhð2Þn J1

�
ηn

r
a

�
exp ðihð2Þn zÞ; ð15bÞ

HðbÞ
2φω ¼

X∞
n¼1

Bð2Þ
n ðωÞJ1

�
ηn

r
a

�
exp ðihð2Þn zÞ; ð15cÞ

where Bð1;2Þ
n ðωÞ are unknown mode excitation coefficients,

χn should be determined by dispersion equation (9), ηn is

the Bessel function zero ðJ0ðηnÞ ¼ 0Þ, hð1Þn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=c2−χ2n

p
and hð2Þn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=c2 − η2n=a2

p
are longitudinal wavenum-

bers ½Imðhð1;2Þn Þ ≥ 0 for ω ∈ R�.
In order to find coefficients Bð1;2Þ

n we use the continuity
conditions for tangential components of the total electro-
magnetic field (12) at z ¼ 0. Further the obtained relations
are multiplied by complex conjugate eigenfunction of
corrugated waveguide J1ðχmrÞ and integrated over the
radial variable r from 0 to a. After the series transformation
using the orthogonal property (10) the following infinite
system of equations can be formulated:

X∞
n¼1

MmnB
ð2Þ
n ðωÞ ¼ PmðωÞ; m ¼ 1; 2…; ð16Þ

Mmn ¼
J1ðηnÞ

η2n − χ̄2ma2
ðhð1Þm þ hð2Þn Þ; ð17Þ

PmðωÞ ¼
qgωk

πvcI0ðkaÞ
�
1þ hð1Þm

v
ω

�

×
Um

a3χ̄mJ0ðχ̄maÞ½I0ðkaÞ − gkaI1ðkaÞ�
: ð18Þ

Here

Um ¼
Z

a

0

I1ðkrÞJ1ðχ̄mrÞrdr;

Um ¼ ia2

2

�
I20ðkaÞ − I21ðkaÞ −

2

ka
I0ðkaÞI1ðkaÞ

�
if χm ¼ ik; ð19Þ

and

Um¼akI0ðkaÞJ1ðχ̄maÞ−aχ̄mI1ðkaÞJ0ðχ̄maÞ
k2þ χ̄2m

if χm≠ ik:

Mode coefficients Bð1Þ
n ðωÞ for corrugated waveguide

area are determined as follows

Bð1Þ
m ðωÞ ¼ a3χ̄mJ0ðχ̄maÞ

Gm

X∞
n¼1

Bð2Þ
n ðωÞ J1ðηnÞ

η2n − χ̄2ma2

−
qgkUm

πcGmI0ðkaÞ½I0ðkaÞ − gkaI1ðkaÞ�
; ð20Þ

where parameters GðωÞ are specified by Eq. (10).
Note that the forced field does not possess the wave part in

the smooth vacuum waveguide area. The wave field in this
area arises out of the free field only. Our analysis will be
focused on the investigation of the discrete spectrum of the
free field without consideration the continuous spectrum.
The free field discrete part is determined by singularities of
Fourier transforms (15a)–(15c), namely, by function poles.
Analysis of expressions (16)–(18) reveals that each function

Bð2Þ
n ðωÞ possesses the poles determined by the equation

FwðωÞ≡ I0ðkaÞ − gkaI1ðkaÞ ¼ 0; ð21Þ
This equation has been considered in the paper [7]. Note that
real roots �ω1 of Eq. (21) determine the wave field
frequency for infinite corrugated waveguide. Comparison
of Eq. (21) with dispersion equation (9) at frequency ω1

reveals that χ1ðω1Þ ¼ ikðω1Þ.
In accordance with (15b) the free field radial component

can be written as a sum of modes:

EðbÞ
2r ¼

X∞
n¼1

EðbÞ
2rn;

EðbÞ
2rn ¼ cJ1

�
ηn

r
a

�Z
∞

−∞

Bð2Þ
n ðωÞ
ω

hð2Þn ðωÞ exp ½ΦnðωÞ�dω;

ð22Þ

where ΦnðωÞ ¼ ihð2Þn z − iωt. In order to approximately
calculate the free field with separation of the discrete
spectrum, we use the steepest descent method (SDM)
for integral in Eq. (22). The integral behavior investigation
by SDM includes saddle points determination, steepest
descent path (SDP) building and transformation of the
initial integration path toward the SDP.

The equation for saddle points ωðsÞ
n can be easily

obtained in accordance with the equation

dΦnðωÞ
dω

����
ω¼ωðsÞ

n

¼ 0

and it has the following form:

z − vðgrÞ2n ðωÞt ¼ 0; ð23Þ

where vðgrÞ2n ðωÞ means the group velocity of the nth
mode (22):

vðgrÞ2n ðωÞ ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

η2nc2

a2ω2

s
: ð24Þ
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The integrand of each free field mode (22) possesses two
saddle points

�ωðsÞ
n ¼ � ηnc2t

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 − z2

p : ð25Þ

Figure 3(a) shows the location of the initial integration

path Γ, the saddle points �ωðsÞ
n , the poles �ω1, the branch

points �ωðχÞ
n determined by condition hð1Þn ðωÞ ¼ 0 and

the branch points �ωn ¼ �ηnc=a determined by condition

hð2Þn ðωÞ ¼ 0. The branch cuts are made along the lines

Reðhð1Þn Þ ¼ 0 and Reðhð2Þn Þ ¼ 0 correspondingly. The
change of variable ω ¼ ωn coshðαÞ results in the following:
the branch cut between −ωn and ωn vanishes, the branch

points �ωðχÞ
n turn into αðχÞn1;2, the saddle points turn into

αðsÞn1 ¼ arcoshðct=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 − z2

p
Þ and αðsÞn2 ¼ αðsÞn1 þ iπ, the

poles turn into αðpÞ1;2 . Also we obtain on the complex plane
α the SDP ΓSPD [see Fig. 3(b)] consisting of two branch:

through the saddle point αðsÞn1

α00 ¼ −sgnðα0 − αðsÞn1 Þ arccos
�

1

cosh ðα0 − αðsÞn1 Þ

�

and through the saddle point αðsÞn2

α00 ¼ π þ sgnðα0 − αðsÞn1 Þ arccos
�

1

cosh ðα0 − αðsÞn1 Þ

�
:

As one can see on Fig. 3, the poles �ω1 are crossed during
transformation of the initial integration path toward the

SDP under the condition jωðsÞ
n j < jω1j. Taking into account

expressions (23) and (24) it can be shown that the poles
crossing condition is the inequality

z < vðgrÞ2n ðjω1jÞt: ð26Þ

Hence we obtain that the edge of the pole contribution
existence moves in time with the group velocity of the
“free” field mode.
The pole contributions to the integral (22) can be

calculated using the residue theorem. After a series of
mathematical transformations, we obtain the following
expressions for components of the free field discrete part:

EðbwÞ
2z ¼ 4πc

aω1

XN2

n¼1

Θ
h
vðgrÞ2n ðω1Þt − z

i
ηnJ0

�
ηn

r
a

�

× Re
n
Res
ω¼ω1

h
Bð2Þ
n ðωÞ

i
exp

h
−iω1tþ ihð2Þn ðω1Þz

io
;

ð27aÞ

EðbwÞ
2r ¼ 4πc

ω1

XN2

n¼1

Θ
h
vðgrÞ2n ðω1Þt − z

i
hð2Þn ðω1ÞJ1

�
ηn

r
a

�

× Im
n
Res
ω¼ω1

h
Bð2Þ
n ðωÞ

i
exp

h
−iω1tþ ihð2Þn ðω1Þz

io
;

ð27bÞ

HðbwÞ
2φ ¼ 4π

XN2

n¼1

Θ
h
vðgrÞ2n ðω1Þt − z

i
J1

�
ηn

r
a

�

× Im
n
Res
ω¼ω1

h
Bð2Þ
n ðωÞ

i
exp

h
−iω1tþ ihð2Þn ðω1Þz

io
:

ð27cÞ

Here function ΘðvðgrÞ2n ðω1Þt − zÞ is conditioned by inequal-
ity (26) and determines the existence domain of the free

field discrete part, Res
ω¼ω1

ðBð2Þ
n ðωÞÞ is the function Bð2Þ

n ðωÞ

(a)
(b)

FIG. 3. The location of the integration path, the poles, the saddle points and the branch points on the complex plane ω (a) and α (b).
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residue, N2 is the number of propagation modes in the
smooth area generated at the frequency ω1.
The same analysis can be performed for the free field

in the corrugated area z < 0. The continuity conditions in
this case

ðHðqÞ
1φω þHðbÞ

1φωÞjz¼0
¼ ðHðqÞ

2φω þHðbÞ
2φωÞjz¼0

;

ðEðqÞ
1rω þ EðbÞ

1rωÞjz¼0 ¼ ðEðqÞ
2rω þ EðbÞ

2rωÞjz¼0;

are multiplied by a function J1ðηmr=aÞ and integrated over
the radial variable r from 0 to a with the use of orthogon-
ality property

Z
a

0

J1

�
ηm

r
a

�
J1

�
ηn

r
a

�
rdr ¼ a2

2
J21ðηmÞδmn:

After some mathematical transformation we obtain the
following system of equations for the mode coefficients in
the corrugated area

X∞
n¼1

M̃mnB
ð1Þ
n ðωÞ ¼ P̃m; m ¼ 1; 2… ð28Þ

M̃mn ¼
χnJ0ðχnaÞ
η2m − χ2na2

ðhð1Þn þ hð2Þm Þ; ð29Þ

P̃m ¼ qgωk2

πcvFwðωÞ
1

η2m þ k2a2

�
1 − hð2Þm

v
ω

�
; ð30Þ

where FwðωÞ is equal to (21).
We are interested in calculation of the free field discrete

part which is determined by contributions of the functions

Bð1Þ
n ðωÞ poles. These poles, as before, are located at

frequencies �ω1. Poles contributions can be obtained a
similar to the analysis of the integral (22) way. Thus, we
give only the final expressions for the free field discrete
part in the corrugated area

EðbwÞ
1z ¼ 4πc

ω1

XN1

n¼1

Θ½vðgrÞ1n ðω1Þt − jzj�

× Refχnðω1ÞJ0½χnðω1Þr�Res
ω¼ω1

½Bð1Þ
n ðωÞ�

× exp ½−iω1t − ihð1Þn ðω1Þz�g; ð31aÞ

EðbwÞ
1r ¼ −

4πc
ω1

XN1

n¼1

Θ½vðgrÞ1n ðω1Þt − jzj�Imfhð1Þn ðω1Þ

× J1½χnðω1Þr�Res
ω¼ω1

½Bð1Þ
n ðωÞ�

× exp ½−iω1t − ihð1Þn ðω1Þz�g; ð31bÞ

HðbwÞ
1φ ¼ 4π

XN1

n¼1

Θ½vðgrÞ1n ðω1Þt − jzj�ImfJ1½χnðω1�rÞ

× Res
ω¼ω1

½Bð1Þ
n ðωÞ� exp ½−iω1t − ihð1Þn ðω1Þz�g; ð31cÞ

where function ΘðvðgrÞ1n ðω1Þt − jzjÞ is determined by the
requirement of crossing the pole ω1 due to the trans-
formation of the initial integration path toward the SDP,

vðgrÞ1n ðωÞ ¼ ∂ω=∂hð1Þn is the group velocity of the free field
mode, N1 is the number of propagation modes in the
corrugated area.
Expressions (27a)-(27c), (31a)-(31c) allow calculating

the averaged power hΠ1;2zi of radiation (averaging is
performed over time which is much greater than periods
of all modes):

hΠ1;2zi ¼ lim
τ→∞

1

τ

Z
tþτ

t
Π1;2zdt;

Π1;2z ¼
c
4π

Z
2π

0

Z
a

0

EðbwÞ
1;2r H

ðbwÞ
1;2φrdrdφ: ð32Þ

Here subscript 1 denotes the corrugated area and subscript
2 denotes the smooth one. Thus, we obtain the following
expression for averaged power of radiation:

hΠ1;2zi ¼
XN1;2

n¼1

hΠ1;2zni;

hΠ1zni ¼ −
4π2c2

ω1

hð1Þn ðω1ÞGnðω1ÞjRes
ω¼ω1

½Bð1Þ
n ðωÞ�j2; ð33Þ

hΠ2zni ¼
2π2c2a2

ω1

J21ðηnÞhð2Þn ðω1ÞjRes
ω¼ω1

½Bð2Þ
n ðωÞ�j2; ð34Þ

where GnðωÞ is specified by Eq. (10), N1;2 means the
number of propagating modes in the corrugated and smooth
area correspondingly.
An example of the distribution of the averaged power

hΠ1;2zni of the free field propagating modes is shown in
Fig. 4 for different charge velocities. As one can see, in
case the charge velocity is not very close to c (β ¼ 0.85 and
β ¼ 0.9) several modes make a significant contribution
to the averaged power in the smooth area. In the ultra-
relativistic cases (β ¼ 0.95 and β ¼ 0.99999), however, the
vast majority of the radiation power is transferred by the
first mode only. Thus, it is possible to generate both single-
mode and multi-mode radiation in the smooth area depend-
ing on the charge velocity. As for the averaged radiation
power in the corrugated area, its value is less by two orders
in comparison with the one in the smooth area. Thus,
almost all the radiation generated in the corrugated struc-
ture penetrates into the smooth waveguide area.
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IV. RADIATION OF A CHARGE MOVING
FROM THE SMOOTH AREA INTO THE

CORRUGATED ONE

Now we perform a similar analysis for the case of the
reverse motion of the charge from the smooth waveguide
area into the corrugated one. The application of the
methods described above leads to the following system
of equations:

X∞
n¼1

AmnB
ð2Þ
n ðωÞ ¼ Um; m ¼ 1; 2;… ð35Þ

where

Amn ¼
χnJ0ðχnaÞ
η2m − a2χ2n

ðhð1Þm þ hð2Þn Þ; ð36Þ

Um ¼ −
qωk2g

πcvFwðωÞ
�
1þ hð1Þm

v
ω

�
1

η2m þ k2a2
; ð37Þ

Bð2Þ
n ðωÞ is the free field mode expansion coefficient for

the corrugated waveguide area, function FwðωÞ is deter-

mined by Eq. (21), hð1Þm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=c2 − η2m=a2

p
and hð2Þn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2=c2 − χ2n
p

ðImðhð1;2ÞÞ ≥ 0 forω ∈ RÞ are the free field
longitudinal wave numbers (now indexes 1 and 2 denote to
the smooth area and the corrugated one correspondingly).
Coefficients for the free field in the smooth area can be
calculated as follows

Bð1Þ
m ðωÞ ¼ 2a

J1ðηmÞ
�X∞
n¼1

Bð2Þ
n ðωÞ χnJ0ðχnaÞ

η2m − a2χ2n

þ qgk2

πcFwðωÞðη2m þ k2a2Þ
�
: ð38Þ

The main goal now is to analyze the wave field in
the corrugated waveguide area. As follows from (12), it
consists of two terms: the forced field [7] and the free field.
Just as in the previous case, we will consider only the free
field discrete part.

FIG. 4. Distribution of averaged power jhΠ1znij (top) and hΠ2zni (bottom) of free field discrete part on a logarithmic scale for
a ¼ 1 cm, d1 ¼ 0.03 cm, d2 ¼ 0.04 cm, d3 ¼ 0.1 cm. Different bars correspond to different charge velocities, n means the number of
propagating mode.
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Here we make a brief analysis of the free field discrete
part by the example of radial component

EðbÞ
2r ¼

X∞
n¼1

EðbÞ
2rn;

EðbÞ
2rn ¼ c

Z þ∞

−∞

Bð2Þ
n ðωÞ
ω

hð2Þn ðωÞJ1½χnðωÞr�

× exp ½ΦnðωÞ�dω; ð39Þ

where ΦnðωÞ ¼ ihð2Þn ðωÞz − iωt. The asymptotic behavior
of the integral (39) can be considered by means of the
SDM, in much the same way as the integral (22). Since
integrals (22) and (39) have a similar form, the equation
for saddle points is identical to Eq. (23). Now, the group
velocity of the free field eigenmode in the corrugated
waveguide is written in the following form:

vðgrÞ2n ðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=c2 − χ2nðωÞ

p
ω=c2 − χn∂χn=∂ω : ð40Þ

Free field discrete part is conditioned by singularities of the
integrand (39) which are crossed at transformation of the
initial integration path toward the SDP namely by poles

of functions Bð2Þ
n ðωÞ. Poles contributions, in turn, are

determined by the residue theorem.

As one can see from (35)–(37) the coefficients Bð2Þ
n ðωÞ

and right part of the system U⃗ has two pole type
singularities �ω1 determined by the equation (21). For
the purpose of further analysis convenience, we present the
function UmðωÞ (37) as follows

UmðωÞ ¼
PmðωÞ
FwðωÞ

; ð41Þ

where

PmðωÞ ¼ −
qgωk2

πcvðη2m þ k2a2Þ
�
1þ hð1Þm ðωÞ v

ω

�
; ð42Þ

Functions Bð2Þ
n ðωÞ can be also presented in the form

Bð2Þ
n ðωÞ ¼ B̃ð2Þ

n ðωÞ
FwðωÞ

: ð43Þ

Thus, substitutions (41), (43) allow us to move from the
system (35) to a more convenient system

X∞
n¼1

AmnB̃
ð2Þ
n ðωÞ ¼ PmðωÞ; m ¼ 1; 2… ð44Þ

It can be shown that the first column of the matrix Â is
proportional to the vector P⃗ at the frequency ω1

Am1ðω1Þ ¼ −
iπca
q

I1½kðω1Þa�Pmðω1Þ: ð45Þ

To derive the Eq. (45) we used the equality χ1ðω1Þ ¼
ikðω1Þ which results from coincidence between dispersion
equation (9) and Eq. (21) at frequency ω1. Hence, the usage
of the Cramers rule for solving the system (44) leads to the
following result:

B̃ð2Þ
1 ðω1Þ ¼

iq
πcaI1ðk1aÞ

; B̃ð2Þ
n ðω1Þ ¼ 0 ðn ≥ 2Þ;

ð46Þ

where k1 ¼ kðω1Þ. As follows from the expression (43),

the non-nil Bð2Þ
n ðωÞ function residue at the pole ω1 is

equal to

Res
ω¼ω1

ðBð2Þ
1 ðωÞÞ ¼ iq

πcaI1ðk1aÞ
�
dFw

dω

����
ω1

�
−1
: ð47Þ

The result is that the free field discrete part contains only
one mode

EðbwÞ
2r ¼ −

4q
a2

I1ðk1rÞ
I21ðk1aÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p 1

1 − g2k21a
2

× sin

�
ω1ζ

v

�
ΘðzÞΘ½vðgrÞ2;1 ðω1Þt − z�: ð48Þ

Here ζ ¼ z − vt, vðgrÞ2;1 ðω1Þ means the group velocity of

the first “free" field mode. Function Θ½vðgrÞ2;1 ðω1Þt − z� in
expression (48) points out that the pole ω1 is crossed at
transformation of the initial integration path toward the

SDP under condition z < vðgrÞ2;1 ðω1Þt.
There is no difficulty to show that the free field discrete

part EðbwÞ
2r has the equal amplitude but the opposite sign

compared to the forced field wave part [7] generated in the
corrugated waveguide area behind the charge. So these
fields compensate each other and the wave field under

consideration is equal to zero in the area z < vðgrÞ2;1 ðω1Þt.
Note that the same effect is observed in the case of vacuum-
dielectric junction in a waveguide [17] and in the case of
vacuum-bilayer area junction [18].

GRIGOREVA, TYUKHTIN, VOROBEV, and ANTIPOV PHYS. REV. ACCEL. BEAMS 22, 071303 (2019)

071303-8



In accordance with aforesaid the wave field in the
corrugated waveguide area can be written in the following
form:

EðwÞ
2z ¼ 4q

a2
I0ðk1rÞ
I21ðk1aÞ

1

1 − g2k21a
2
cos

�
ω1ζ

v

�
ΘðzÞΘð−ζÞ

× Θ½z − vðgrÞ2;1 ðω1Þt�; ð49aÞ

EðwÞ
2r ¼ 4q

a2
I1ðk1rÞ
I21ðk1aÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p 1

1 − g2k21a
2
sin

�
ω1ζ

v

�
ΘðzÞ

× Θð−ζÞΘ½z − vðgrÞ2;1 ðω1Þt�; ð49bÞ

HðwÞ
2φ ¼ 4qβ

a2
I1ðk1rÞ
I21ðk1aÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p 1

1 − g2k21a
2
sin

�
ω1ζ

v

�
ΘðzÞ

× Θð−ζÞΘ½z − vðgrÞ2;1 ðω1Þt�: ð49cÞ

Here the product of the two theta-functions means that the

wave field exists only in a bounded region vðgrÞ2;1 ðω1Þt <
z < vt and its amplitude is equal to forced field amplitude.

V. FIELD STRUCTURE

Obtained results (27a)–(27c) and (49a)–(49c) can be
generalized to the case of bunch possessing Gaussian
longitudinal profile with volume charge density

ρðgÞ ¼ q
2π

δðrÞ
r

exp ½−ðz − vtÞ2=ð2σ2Þ�ffiffiffiffiffiffi
2π

p
σ

: ð50Þ

For this case, the field components of the discrete part are
written in the form

n
EðgÞðwÞ
2z ; EðgÞðwÞ

2r ; HðgÞðwÞ
2φ

o
¼

n
EðwÞ
2z ; E

ðwÞ
2r ; H

ðwÞ
2φ

o
× exp

�
−
ω2
1σ

2

2v2

�
: ð51Þ

Figure 5 (top) shows the dependence of the wave field

component EðgÞðwÞ
2r on z-coordinate calculated via analytical

approach (51) at the observation moment t ¼ 0.5 ns and
at the point r ¼ 0.5 cm in the case of bunch flying into
the smooth waveguide area. The bunch is at the point
zq ¼ vt ≈ 14.99 cm at the observation moment. The point
z ¼ 0 cm corresponds to the transverse boundary location.
The free field discrete part contains two propagating modes
at frequency ν1 ¼ ω1=ð2πÞ ≈ 31.5 GHz at given parame-
ters of the problem. As follows from the analytical
investigation, the first free field mode exists in the area

z < z1 (z1 ¼ vðgrÞ2;1 ðω1Þt ≈ 13.96 cm). The second mode

end point is located at z2 ¼ vðgrÞ2;2 ðω1Þt ≈ 8.24 cm. The
superposition of these two modes causes the beats in
the area z < z2. The case of the bunch flying into the

FIG. 5. The dependence of the wave field component EðgÞðwÞ
2r on the z-coordinate in the case of the bunch flying into the smooth

area (top) and in the case of the bunch flying into the corrugated area (bottom). Waveguide and bunch parameters: a ¼ 1 cm,
d1 ¼ d2 ¼ 0.05 cm, d3 ¼ 0.1 cm, q ¼ 1 nC, σ ¼ 0.25 cm, v ¼ 0.9999c, r ¼ 0.5 cm, t ¼ 0.5 ns (top) and t ¼ 2 ns (bottom).
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corrugated waveguide area is presented in Fig. 5(bottom).
The point zq ≡ vt denotes the bunch location at the
observation moment t ¼ 2 ns. A distinctive feature of this
case is that the wave field part with the discrete spectrum

EðgÞðwÞ
2r exists in a restrictive area behind the bunch.

According to [7], the forced field wave part exists at
z < zq. The free field discrete part according to (48)

appears at point z1 ≡ vðgrÞ2;1 ðω1Þt. So it turns out that the
wave field under consideration is identical to the forced
field in the area z1 < z < zq and is equal to zero at z < z1
because of compensation for the forced field wave part with
a free field discrete part.

It should be noted that fields EðgÞðwÞ
2r presented in Fig. 5

have breakpoints at z1;2 (top graph) and z1;q (bottom graph).
Breakpoints are connected with the fact that analytical
results (27a)–(27c) and (49a)–(49c) contain only the part
of the wave field with the discrete spectrum. We used only
the poles contributions in SDM for the free field discrete
part. A comparison with numerical simulations however
shows that the field part under consideration is the most
significant (see Fig. 6).
Figure 6 shows the comparison between results calcu-

lated via analytical approach (51) and via numerical
simulations in CST Particle Studio for the case of a
Gaussian bunch. We used the waveguide model with the

length of the smooth part 50 cm and the corrugated one is
100 cm. The waveguide and bunch parameters are the same
as in Fig. 5, the observation point is located at r ¼ 0.5 cm,
z ¼ 10 cm (top) and z ¼ 80 cm (bottom). The open
boundary conditions are set at the waveguide ends that
ensures the absence of reflection from the ends. Note that
EBC are not used in modeling. Instead, we consider the
perfectly metallic waveguide with one part being corru-
gated. It should be noted that the first peak of the total
field in Fig. 6 (for both cases) corresponds to the quasi-
Coulomb field of the bunch. Table I demonstrates fre-
quency and amplitude of the radial field component of the

total field EðCSTÞ
2r obtained using simulations and the wave

field component EðgÞðwÞ
2r obtained analytically. The 1st and

2nd table rows refer to the cases of the bunch flying into the
smooth area and into the corrugated one correspondingly.
As can be seen, the discrepancy between analytical results
and simulations does not exceed 4% for the frequencies
and 6% for the amplitudes. These results confirm the
validity of the EBC method, especially considering that
the small parameters of the problem

d=λ ¼ d3=λ ≈ d=a ¼ d3=a ¼ 0.1

are greater than obtained discrepancies.

FIG. 6. Time dependence of the component EðCSTÞ
2r of the total electromagnetic field calculated via CST simulation (blue line) and the

wave field EðgÞðwÞ
2r calculated via analytical approach (red marked line) in the case of the bunch flying into the smooth area (top) and in

the case of the bunch flying into the corrugated area (bottom). Waveguide and bunch parameters are the same as in Fig. 5, observation
point r ¼ 0.5 cm, z ¼ 10 cm (top) and z ¼ 80 cm (bottom).
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As shown in [14], the slightly corrugated waveguide can
act like a smooth one covered with a thin dielectric layer. It
would be interesting to make a similar comparison for our
problem with the transverse boundary. In this connection,
we compare the wave field generated by the Gaussian
bunch flying from the smooth area to the corrugated one
and the wave field generated by the bunch flying into the
area having cylindrical dielectric layer and vacuum channel
[18]. Table II shows wave field frequencies and amplitudes
in these cases. Bunch parameters and the corrugated area
characteristics are the same as in Fig. 5. For the case of
waveguide having bilayer area, the permittivity of the
dielectric layer and the channel radius are chosen so that
the radiation frequency is close to the frequency of the wave
field presented in Fig. 5. As can be seen from the Table II,
the bunch generates almost equal wave fields in the
corrugated area and in the bilayer one.

VI. CONCLUSION

We have considered the electromagnetic field generation
by the charged particle bunch passing through the two-part
waveguide with the corrugated and smooth areas. The
analytical solution has been obtained using EBC for
corrugated wall. The work was mainly focused on the
analysis of the discrete part of the field. It has been shown
that frequencies of the forced field wave part and the free
field discrete part are the same. Typical diagrams of the
mode distribution of the averaged radiation power have
been given.

In the case of the bunch flying from the corrugated
waveguide area, it has been shown that averaged radiation
power penetrating in the smooth area is much greater than
the reflected radiation power. It has been also demonstrated
that the decrease in bunch velocity leads to the more
multifarious radiation structure. In the case of the bunch
flying into the corrugated waveguide area we have shown
that the discrete part of the wave field exists only in some
bounded domain behind the bunch. The back front of the
formed train moves with the group velocity of the mode.
Numerical simulations of the problem performed using
CST software package have confirmed the validity of the
used method.
It was shown that the waveguide under consideration can

behave in the same way as the smooth waveguide having
the semi-infinite part with dielectric layer. However, in
contrast with the smooth partially dielectric waveguide,
the radiation in the partially corrugated waveguide is
monochromatic (in the considered range of relatively
low frequencies). Thus, one of the perspective applications
of corrugated waveguides can be generation of mono-
chromatic radiation.
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