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A plasma channel undulator/wiggler may be created through the plasma wakefield excited by the beating
of several Hermite-Gaussian laser modes propagating in a parabolic plasma channel. Control over both the
betatron and undulator forces is conveniently achieved by tuning the amplitude ratios, colors, and order
numbers of the modes. A special structure of the undulator/wiggler field without the focusing force near the
propagation axis is generated inside the plasma wakefield by matching the strengths of the fundamental and
first-order Hermite-Gaussian modes. The electron beam only experiences forced undulator oscillations in
such a field, which significantly improves the quality of the emitted radiation. Since the value of the
undulator strength parameter could be in a wide range, less or larger than unity, it is capable of generating
narrow bandwidth x-ray, as well as the synchrotronlike high-energy x=γ-ray, radiation by harmonics.
Additionally, controlling the relative phases between the laser modes allows for polarization control of the
plasma undulator. High-order harmonics produced from a circularly polarized plasma undulator clearly
show the vortex nature and carry well-defined orbital angular momentum.
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I. INTRODUCTION

Extreme ultraviolet (XUV) and x-ray pulses produced by
electrons traveling through magnetic undulators have
become an indispensable tool for experimental studies in
chemistry, biology, material science, warm dense matter,
etc. The wavelength of the on-axis radiation generated
by an electron with relativistic Lorentz factor γ traveling
through a linearly polarized undulator is equal to λ ¼
λuð1þ a2u=2Þ=ð2γ2Þ, where λu is the undulator period, au ¼
eBuλu=ð2πmecÞ is the undulator strength, Bu is the mag-
netic field amplitude, e and me are the absolute values of
electron charge and mass respectively, and c is the speed
of light in vacuum. For optimal operation of undulator
radiation or free-electron laser (FEL) facilities, it is impor-
tant to have both high undulator strength (on the order of

unity) and small undulator period. Currently, the techno-
logical limit for the magnetic undulators, capable of
achieving au ∼ 1, is on the order of several centimeters.
Decreasing the undulator period will lead to smaller and
cheaper synchrotron facilities and is therefore highly
desired. This is especially true in view of the recent
tremendous progress in laser plasma accelerators (LPAs),
where quasimonoenergetic electron beams with ∼1%
energy spread in the GeV range were experimentally
demonstrated [1–5]. Electron acceleration happens on
the scale of centimeters and hence the footprint of the
LPA is the driving laser system itself, which (for many
applications) can be as compact as 6 m2. The total size of
the facility using an LPA and magnetic undulator will be, in
a general case, dictated not by the size of the accelerator,
but by the size of the electron optics (conventionally several
meters for magnetic quadrupole lenses) and the undulator
(conventionally several tens of meters or more). It has
recently been experimentally demonstrated that electron
optics can, in principle, also be replaced by plasma
technology [6–8], leaving the undulator as the only major
factor defining the size of the facility. Several ideas for
undulators with periods on the order of millimeter or below

*B.Lei@gsi.de
†S.Rykovanov@gsi.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 22, 071302 (2019)

2469-9888=19=22(7)=071302(11) 071302-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.22.071302&domain=pdf&date_stamp=2019-07-29
https://doi.org/10.1103/PhysRevAccelBeams.22.071302
https://doi.org/10.1103/PhysRevAccelBeams.22.071302
https://doi.org/10.1103/PhysRevAccelBeams.22.071302
https://doi.org/10.1103/PhysRevAccelBeams.22.071302
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


(often referred to as microundulators) have been pro-
posed, including electrostatic [9,10], crystalline [11–13],
microwave [14], plasma [15], nano-wire [16] and laser-
based [17–25].
A twisted photon beam carrying orbital angular

momentum (OAM) can be obtained from a single free
electron in circular or spiral motion [26–29]. Such a beam
is capable of interacting with particular atomic orbitals
which are defined by the angular momentum associated
with the particles orbit in atoms [30], molecules [31],
solid state systems [32] and plasma [33]. Radiation
sources with known OAM enable the probing of specific
atomic structures. Applications of x-ray beams with
internal OAM include probing quantum optics [34],
optical spanners [35], and crystalline structures [36].
Recently, a novel plasma undulator concept for narrow-

bandwidth photon emission was proposed. The plasma
undulator or wiggler (PIGGLER) is based on wakefields
created by the laser pulse undergoing centroid oscillations
in a plasma channel [37–40]. Detailed linear theory for the
case of a Gaussian laser pulse injected with some initial
offset and/or with some initial angle relative to the plasma
channel symmetry axis has been developed [37,41]. It has
been shown, that an electron beam correctly injected in the
wakefield structure oscillates with the characteristic undu-
lator wavelength equal to λu ¼ 2πZR, where ZR is the
Rayleigh length of the laser pulse. The main contribution to
the broadening of the radiated photon spectrum was
identified to be the electron beam divergence, which is
rather large due to strong focusing inside the wakefields. It
was also proposed to extend the spectrum to the synchro-
tronlike γ-ray radiation by using the resonance between the
centroid oscillation of laser pulse and the betatron oscil-
lation of electrons [40]. The oscillation of the electron beam
is increased in the early resonant stage and then becomes
semi-stable after sufficient energy gain from the wakefield.
The resonant scheme is capable of enhancing the brightness
of the emitted photon beam due to the large field volume. It
was also mentioned that using the superposition of two
(odd and even) higher-order Hermite-Gaussian modes may
(1) lead to a better control over the strength of the focusing
forces, relaxing the conditions for the electron beam
emittance for generation of a narrow-bandwidth photon
spectrum; and (2) provide more control for the parameters
of the plasma undulator (its strength and wavelength).
It is the purpose of this paper to extend previous work
[37,39,41] and provide detailed analytical derivations for
the case where the plasma undulator is created by the
superposition of higher-order laser modes propagating
inside the parabolic plasma channel. It will also show that
our scheme is capable of generating harmonics carrying
OAM in the circularly polarized undulator.
The paper is organized as follows: In Sec. II, propagation

of a Hermite-Gaussian laser pulse in a plasma channel is
discussed. It is shown that the oscillation of the pulse is due

to the interference between different modes. In Sec. III,
the wakefield structure of a plasma undulator/wiggler is
derived by using linear laser-plasma theory. Polarization is
discussed and the initial condition given by the strength of
laser pulses is found to generate a special structure of
wakefield without the focusing force near the propagation
axis. In Sec. IV, the dynamics of a single relativistic
electron and an electron beam are studied. Radiation
calculation is presented in Sec. V.

II. LASER PULSE PROPAGATION INSIDE A
PARABOLIC PLASMA CHANNEL

Laser pulse guiding inside the parabolic plasma chan-
nels [42,43], for example as created by capillary dis-
charges, is routinely performed in LPA experiments
[3,44,45] in order to avoid laser pulse diffraction and,
thus, maintain a high acceleration gradient (∼1 GeV/cm)
for several centimeters.
The equation governing the dynamics of the slowly

varying envelope ã⊥ðτ; x; yÞ of the laser pulse inside the
parabolic plasma channel within the paraxial approxima-
tion is given by the Schrödinger-like equation for a
harmonic oscillator

i
∂ã⊥
∂τ ¼

�
p̂2

2Mp
þ VðρÞ

�
ã⊥ ¼ Ĥã⊥; ð1Þ

where p̂ ¼ −i∇⊥ is the momentum operator and VðρÞ ¼
ð1=M2

p þ Ω2
Hρ

2ÞMp=2 is the harmonic oscillator potential
with the eigenfrequencyΩH ¼ ðMpRÞ−1 and ρ2 ¼ x2 þ y2.
Equation (1) is written using normalized space-time coor-
dinates: τ ¼ ωpt0; x ¼ kpx0; y ¼ kpy0; z ¼ kpz0, with the
plasma wave number kp ¼ ωp=c ¼ ð4πrcln0Þ1=2, where
n0 is on-channel-axis plasma density and rcl ¼ e2=mec2

is the classical electron radius. The “effective mass” of
the oscillator is defined asMp ¼ kL=kp, and is equal to the
ratio of laser pulse and plasma wave numbers. The
normalized channel radius is defined as R ¼ r2m=2,
where rm ¼ kp=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πrclΔn

p
is the dimensionless, matched

laser spot size and Δn is the channel depth, so that the
channel density profile can be written as nðρÞ ¼
n0 þ ρ2Δn=R2. The dimensionless laser pulse vector
potential is then given by a⊥ðτ; ρ; ζÞ ¼ eA⊥=mec2 ¼
1=2ã⊥ðτ; ρÞgðζÞ expðiMpζÞ þ c:c:, where A⊥ is the trans-
verse laser pulse vector potential in Gaussian units, gðζÞ is
the laser pulse temporal envelope (normalized to 1) and
ζ ¼ kpðz0 − ct0Þ. In writing Eq. (1), it was also assumed
that laser pulse vector potential amplitude a0 < 1, and that
self-focusing is not important, which is valid if the power of
the laser pulse satisfies P < Pc, where Pc½GW� ≃ 17M2

p.
The general solutions of the Schrödinger equation (1) for

the 2-dimensional harmonic oscillator in Cartesian geom-
etry are well known [46]. A propagating, linearly polarized
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laser pulse can be written as a Hermite-Gaussian mode of
order m and n as follows

ã⊥ðτ; x; yÞ ¼
a0
2
ηχðx; yÞe−iθτþiφ; ð2Þ

where a0 is the normalized amplitude of the mode and φ is
its phase. η ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþnm!n!

p
is normalization coefficient,

where m and n are the numbers of modes in x̂ and ŷ
directions respectively. χðx; yÞ ¼ Hmðx=

ffiffiffiffi
R

p ÞHnðy=
ffiffiffiffi
R

p Þ
expf−ðx2 þ y2Þ=2Rg, θ¼ð1=2Mp;ðm;nÞ þðmþnþ1Þ=
Mp;ðm;nÞRÞ, where HnðxÞ is a Hermite polynomial of nth
order, and Mp;ðm;nÞ is introduced to take into account that
modes can have different wavelengths.
Modes given by Eq. (2) represent the stationary states

and propagate along the channel with constant centroid
position and with constant spot size. Dynamics of any laser
pulse, propagating along the channel, can be represented
as the superposition of different Hermite-Gaussian modes
given by Eq. (2), i.e., a⊥ðτ; x; y; ζÞ ¼

P
νa⊥;νðτ; x; y; ζÞ,

where a⊥;νðτ; x; y; ζÞ represents the νth pulse. As discussed
in [47], it is beneficial to use a superposition of different
Hermite-Gaussian modes for controlling the focusing
force of the plasma wakefields, which might help to
reduce electron beam divergence. In the case of the
superposition of various Hermite-Gaussian modes, due
to the difference in the phase velocity, the intensity profile
I ¼ a⊥ðτ; x; y; ζÞa⊥ðτ; x; y; ζÞ� will contain interference
terms and can lead to the oscillatory structure which is
dependent on the mode numbers. The oscillation frequency
induced by two pulses of different modes, denoted by ν
and λ, is Ων;λ ¼ Δθν;λ ¼ θν − θλ. With n laser pulses, the
oscillation amplitude is increased by n!=2 in the resonant
case if Ων;λ ¼ Ω is the same for every set of two differ-
ent modes.
Such oscillation can be seen on Fig. 1, where the

integrated transverse intensity profile of the superposition
of the mixture of modes with identical Mp propagating
along the plasma channel is demonstrated for three cases:
(1) superposition of two laser modes with fm ¼ 0; n ¼ 0;
a ¼ 0.4;φ ¼ 0g and fm ¼ 1; n ¼ 0; a ¼ 0.05;φ ¼ 0g
[subfigure (a)]; (2) superposition of two laser modes with
fm¼0;n¼0;a¼0.4;φ¼0g and fm¼3;n¼0;a¼0.05;
φ¼0g [subfigure (b)]; and (3) superposition of three laser
modes with fm¼0;n¼0;a¼0.4;φ¼0g, fm ¼ 1; n ¼ 0;
a ¼ 0.05;φ ¼ 0g and fm ¼ 0; n ¼ 1; a ¼ 0.05;φ ¼ π=2g
[subfigure (c)]. The third case can be also viewed as the
superposition of a Gaussian mode and a first order
Laguerre-Gaussian mode in the case of only two pulses
being required. In cases (1) and (2), the oscillation is linear
in the x̂ ẑ plane. In case (3), the oscillation is helical. One
can see a behavior that is very similar to the case of a
Gaussian laser pulse injected into the parabolic channel
with some initial centroid displacement or with some angle
with respect to the channel axis, which is discussed in detail

in previous works [37,40,41,47]. From Eq. (2), one can also
find that by choosing different mode numbers, amplitudes,
phases, and wavelengths, one can create oscillatory behav-
ior in the propagating laser pulse with different periods and
amplitudes. Ellipticity of the trajectory of the laser pulse
centroid can be controlled by the phase difference of the
laser modes, as can be seen on Fig. 1(c). This provides an
easy control of the polarization of the plasma channel
undulator based on higher-order laser modes. The plasma
wakefield structure excited by the beating of two propa-
gating laser modes will be discussed in Sec. III.

III. UNDULATOR FIELDS STRUCTURE

Undulator field structure, i.e., the structure of the excited
plasma wakefield, can be calculated from the propagation

(a)

(b)

(c)

FIG. 1. Integrated transverse intensity profile of laser pulse as a
function of propagation distance Z0=λL for (a) a fundamental
mode plus a first-order Hermite-Gaussian mode; (b) a funda-
mental mode plus a third-order Hermite-Gaussian mode; (c) a
fundamental mode plus two first-order Hermite-Gaussian modes.
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of the laser pulse (here and further, by the laser pulse, a
mixture of several higher-order Hermite-Gaussian modes
is to be understood). The equation for the dimensionless
scalar potential ϕ ¼ eΦ=mec2 is [43]:

∂2ϕ

∂ζ2 þ ϕ ¼ a⊥a�⊥
2

; ð3Þ

where Φ is the scalar potential in Gaussian units and the
following assumptions have been employed: (1) the laser
pulse intensity is nonrelativistic, i.e., a0 < 1 so that linear
plasma theory can be applied [43,48]; (2) the laser pulse
propagates near the speed of light in a vacuum; (3) the
plasma channel is broad, and the effect of channel curvature
on the wakefield is negligible. Equation (3) has the
following solution [43]:

ϕðτ;x;y;ζÞ¼
Z

ζ

−∞
dζ0 sinðζ−ζ0Þa⊥ðζ

0Þa�⊥ðζ0Þ
2

; ð4Þ

which depends on the intensity structure of the laser pulse
and a⊥ðζÞ ¼

P
νã⊥;νðτ; x; yÞgνðζÞ expðiMp;νζÞ, where ã⊥;ν

represents the vector potential of the νth mode with mode
numbers mν and nν and Mp;ν represents its “mass”.
Consider a laser pulse representing the beating of several

different modes. In this case, the right-hand side (r.h.s.) of
Eq. (3) can be written as

a⊥a�⊥
2

¼ 1

4

X
ν

jã⊥;νj2g2ν þ
1

2

X
ν≠λ

Refã⊥;νã�⊥;λggνgλ; ð5Þ

The second term, interference between every set of two
different modes, in r.h.s of Eq. (5) is nonzero if the modes
have parallel polarizations [47].
Assuming beating of N laser pulses with the different

modes and the same longitudinal size, wz;ν ¼ wz, and then
g2νðζÞ ¼ e−2ζ

2=w2
z , for the solution of ϕ, one can write

ϕðζ; x; yÞ ¼ Cβ sin ζ
XN
ν¼1

a2νη2νχ2ν

þ sin ζ
XN
ν≠λ

Cu;ν;λaνaληνηλχνχλ

· cosðΩν;λτ − Δφν:λÞ; ð6Þ

where Cβ ¼ 1
4

ffiffi
π
2

p
wze−w

2
z=8, Cu;ν;λ ¼ Cβe

−ΔM2
p;ν;λw

2
z=8

cosh ΔMp;ν;λw2
z

4
. ΔMp;ν;λ ¼ Mp;ν −Mp;λ describes the pos-

sible differences of modes’ wavelengths. Ων;λ ¼ θν − θλ is
the term describing the oscillation frequency of a beating
wave due to the interference of two different modes and
Δφν;λ ¼ φν − φλ describes the phase difference. The sec-
ond, interference term is responsible for the oscillatory
intensity profile (see Fig. 1). The amplitude of the

wakefield has a maximum at wz ¼ 2, and in this case
Cβ;max ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−1π=2

p
≈ 0.38. Note, that for the case of a

single mode, fm ¼ 0; n ¼ 0g, where the interference term
vanishes, one recovers the usual linear theory solution for
the plasma wakefield driven by a Gaussian laser pulse [43].
Magnetic fields, which are proportional to a40 [49], are

neglected in the linear case a0 < 1, and the electric fields
are given by E ¼ −∇ϕðζ; x; yÞ, where the gradient is taken
in ðζ; x; yÞ coordinates, and the electric field is normalized
to mc2kp=e. Assuming kp is constant, the transverse
wakefield given by:

Eðζ; r; τÞ ¼ 2Cβ sin ζ
X
ν

a2νη2νχνκν

þ sin ζ
X
ν≠λ

Cu;ν;λaνaληνηλðχνκλ þ χλκνÞ

· cosðΩν;λτ − Δφν:λÞ; ð7Þ

where κi ¼ ðκx;i; κy;iÞ with i ¼ ðν; λÞ, and:

κx;i ¼ −∂χi=∂x
¼ Hniðy=

ffiffiffiffi
R

p Þffiffiffiffi
R

p
�
Hmiþ1ðx=

ffiffiffiffi
R

p
Þ

−
xffiffiffiffi
R

p Hmi
ðx=

ffiffiffiffi
R

p
Þ
�
e−

x2þy2

2R ; ð8Þ

κy;i ¼ −∂χi=∂y
¼ Hmi

ðx= ffiffiffiffi
R

p Þffiffiffiffi
R

p
�
Hniþ1ðy=

ffiffiffiffi
R

p
Þ

−
yffiffiffiffi
R

p Hniðy=
ffiffiffiffi
R

p
Þ
�
e−

x2þy2

2R ; ð9Þ

The exponential terms in Eqs. (8) and (9) decrease the
amplitude of the field in transverse directions and can be
neglected near the ẑ axis or for a wide laser pulse. Then, the
field of Eq. (7) becomes approximately harmonic if the two
beating modes have different parity, e.g., even and odd
modes. The polarization of the oscillation of the wakefield
can be controlled by the laser pulse amplitude ratio and the
phase. As examples, the simple cases of linear and circular
polarization are discussed as following.

A. Linear oscillation of wakefield

Considering two modes, fm ¼ 0; n ¼ 0; a ¼ a0g and
fm¼ 1;n¼ 0;a¼ a1g with the same initial phase Δφ ¼ 0
and wavelength ΔMp;0;1 ¼ 0 which gives Cβ ¼ Cu;0;1, the
near-axis wakefield is given by:
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Exðζ; x; τÞ ≃
2Cβ

R
ða20 − 2a21Þ sin ζ · x

− Cβ

ffiffiffiffi
2

R

r
a0a1 sin ζ · cosðΩτÞ;

Eyðζ; y; τÞ ≃
2Cβ

R
a20 sin ζ · y;

Ezðζ; y; τÞ ≃ −Cβ

�
a20 þ

2x2

R
a21

�
cos ζ

− Cβ

ffiffiffiffi
2

R

r
a0a1 cos ζ · x · cosðΩτÞ ð10Þ

where the exponential and higher-order of x=
ffiffiffiffi
R

p
are

neglected by the assumption of a wide laser pulse,
x2 þ y2 ≪ R, and Ω ¼ Ω0;1 ¼ ΩH. One can see that the
wakefield in Eq. (10) linearly oscillates in the x̂ ẑ plane
which provides an additional driving force for an injected
electron. As a result, the oscillation of the electron is
linearly polarized in the same plane as shown later
in Sec. IV.

B. Circular oscillation of wakefield

Considering three modes, fm¼0;n¼0;a¼a0;φ¼0g,
fm ¼ 1; n ¼ 0; a ¼ a1;φ ¼ 0g, and fm ¼ 0; p ¼ 1;
a ¼ a2;φ ¼ π=2g, the near-axis wakefield is then given
with the same assumptions above as:

Exðζ; x; τÞ ≃
2Cβ

R
ða20 − 2a21Þ sin ζ · x

− Cβ

ffiffiffiffi
2

R

r
a0a1 sin ζ · cosðΩτÞ;

Eyðζ; y; τÞ ≃
2Cβ

R
ða20 − 2a22Þ sin ζ · y

− Cβ

ffiffiffiffi
2

R

r
a0a2 sin ζ · sinðΩτÞ;

Ezðζ; y; τÞ ≃ −Cβ

�
a20 þ

2

R
ða21x2 þ a22y

2Þ
�
cos ζ

− Cβ

� ffiffiffiffi
2

R

r
a0a1 · x · cosΩτ

þ
�
2

R
a1a2 · xyþ

ffiffiffiffi
2

R

r
a0a2 · y

�

· sinΩτ
�
cos ζ: ð11Þ

One can see that the oscillation of wakefield is circularly
polarized in the transverse plane if a1 ¼ a2 near the axis of
a plasma channel, and the ellipticity of oscillation can be
controlled by the difference of the laser strength, a1 and a2.

As seen from Eq. (10) and (11), if the condition:

a20 − 2a21 ¼ 0 or a20 − 2a22 ¼ 0; ð12Þ

is satisfied, the electric field is independent of the spatial
coordinates near the propagation axis ẑ. Note that, in such a
case, the oscillation is only circularly polarized in the
transverse plane for the case of three beating modes. As
shown in Fig. 2(a), the projection of the transverse wake-
field on the x̂ ẑ plane, Ex, is generated by two different
modes without the condition (12). The electron in such a
wakefield undergoes both betatron and undulator oscilla-
tions and can be treated in the same way as in our previous
work [37,40,41], where the electron beam principally
undergoes an envelope oscillation due to the betatron
focusing force. Such oscillation will give rise to the spread
of momentum and energy of the electron beam, and
subsequently broaden the radiation spectrum as discussed
later. In order to alleviate this limit, matching demands are
made on the injection conditions of the electron beam.
Unfortunately, such injection conditions are currently
difficult to realize. Through application of the matching

(a)

(c) (d) (e) (f)

(g) (h) (i) (j)

(b)

FIG. 2. (a), (b) Projection of the transverse wakefield Ex,
generated by two different modes without and with the condition
(12), as a function of time τ on x̂ ẑ plane. The dashed white lines
show the trajectories of an electron in the wakefield; (c), (d), (e),
(f) Slices of the transverse wakefield Er, generated by two
different modes with the condition (12), on x̂ ŷ plane at four
different propagation positions, τ ¼ 2269, 2432, 2512, 2592,
respectively; (g), (h), (i), (j) Slices of transverse wakefield Er,
generated by three different modes with the condition (12), at four
different propagation positions, τ ¼ 2045, 2432, 2816, 3200,
respectively.

FLEXIBLE X-RAY SOURCE WITH TUNABLE … PHYS. REV. ACCEL. BEAMS 22, 071302 (2019)

071302-5



conditions (12), the transverse wakefield becomes har-
monic near the ẑ axis, jxj < ffiffiffiffiffiffiffiffi

R=2
p

as shown in Fig. 2(b),
which releases the requirements of the initial injection
conditions since there is no focusing force anymore. As a
result, the electron beam maintains good quality during
propagation inside such a wakefield. This is very beneficial
for the generation of a narrowband radiation spectrum for
electron beam experiments.
We indicate that significant inaccuracy in the real exper-

imental conditions, such as errors on the laser strength and
plasma density channel, may cause the condition (12) to be
unfulfilled. Therefore, as seen from Eqs. (10) and (11), the
matching condition given by Eq. (12) required for restriction
in this regime demands very small variation of the laser field
strength parameters and plasma density. For example, a
variation of the first mode is given by a01 ¼ a1 þ δa1, where
a1 satisfies the condition in Eq. (12) with a0. This variation
will lead to the betatron oscillation of an injected electron of
a gamma factor γ0 with the frequency

Ωδβ ¼ Ωβ;1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δa1
a1

�
2þ δa1

a1

�s
; ð13Þ

where the injection phase is at ζ ¼ −3π=2 and Ωβ;1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Cβa21=ðγ0RÞ

q
is the single mode-introduced betatron

oscillation frequency. The frequency is scaled as a function
of δa1=a1 in Fig. 3. This oscillation gives an additional low-
frequency peak in the radiation spectrum same as discussed
in our previous work [37,41]. With an uncertainty in plasma
density channel δn=Δn significantly high, Δn0 ¼ Δnþ δn,
the high-order term may appear in the equation of the
transverse field in Eqs. (10) and (11). For example, in the
linearly polarized case, the additional high-order term is

Exðζ; x; τÞδn ≃
4Cβa21
R2

�
1þ δn

Δn

�
2

sin ζ · x3: ð14Þ

This turns the dynamics of an injected electron into a
Duffing oscillator [50] and then destroys the oscillation.
Here, an analytic solution is not available and the super-
position principle is also no longer valid. To avoid this
situation, the uncertainty in plasma density channel is
required as δn ≪ Δn, and, at the same time, the wide laser
pulse is assumed by

x2

R

�
1þ δn

Δn

�
≪ 1: ð15Þ

As a result, the term in Eq. (14) is negligible in the transverse
wakefield near the channel axis.

The slices of the transverse wakefield Er ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
x þ E2

y

q
generated by two and three modes at four different
propagation positions with the matching condition (12)
are shown in Fig. 2(c)–(f) and (g)-(j) respectively. For the
case of two modes, the wakefield linearly oscillates only in
the x̂ direction and is guided in ŷ direction. For the case of
three modes, the wakefield rotates around the propagation ẑ
axis. As a result, an electron injected into such a wakefield
undergoes an oscillation with the same polarization of the
oscillation of the wakefield.

IV. DYNAMICS OF THE ELECTRONS

For simplicity, the wakefield with linear oscillation in the
x̂ ẑ plane is considered and the circular case can be treated
in the same way. With the condition Eq. (12), the transverse
electric field for the phase ζ ¼ −3π=2, is given by:

Exðx; τÞ ¼ E0 cosðΩτÞ; ð16Þ

where Ez ¼ 0 and E0 ¼ Cua0a1
ffiffiffiffiffiffiffiffi
2=R

p
is the amplitude of

the wakefield. For a relativistic electron injected on-axis
with Lorentz factor γ0 ≫ 1, the motion is described by a
linear harmonically driven oscillator equation:

dux
dτ

¼ −E0 cosðΩτÞ: ð17Þ

By assuming uxðτ ¼ 0Þ ¼ 0 where the electron is injected
without angle, the solution is given by:

ux ¼ −au sinðΩτÞ; ð18Þ

where ux ¼ px=mec is the normalized transverse momen-
tum in the x̂ direction and au ¼ E0=Ω is the oscillation
strength. Notice that the electron does not oscillate in the
ŷ ẑ-plane if it is initially injected on-axis yðτ ¼ 0Þ ¼ 0 and
without an angle in the ŷ-direction, i.e., uyðτ ¼ 0Þ ¼ 0.
Equation (18) is the exact solution for electrons propagat-
ing on the ẑ axis and is capable of describing a tightly
focused electron beam propagating near the axis of the
plasma channel because there is no betatron oscillation in

FIG. 3. Betatron oscillation frequency of an injected electron in
Eq. (13), introduced by the inaccuracy of laser strength, a1.
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such a wakefield. In Fig. 4, the red dashed line is the
analytical result of a single on-axis electron from Eq. (18),
and the blue solid lines are numerical results obtained for a
cylindrically symmetric electron beam with a spot size of
σb ¼ 4.0 by solving the transverse momentum equation
with the electric field in Eq. (7). The normalized emittance
of the electron beam is 0.0047. The energy spread is
neglected and the beam is assumed to be infinitely small in
the longitudinal direction purely for an illustrative purpose.
The wakefield is generated by beating two linearly polar-
ized laser pulses, fm¼0;n¼0;a¼0.56;rm¼6;φ¼0g and
fm ¼ 1; n ¼ 0; a ¼ 0.4; rm ¼ 6;φ ¼ 0g. The on-axis
numerical result of ux agrees exactly with the analytical
result in Eq. (18). The attenuation of off-axis results is
caused by the exponential term in Eq. (7). For a wide laser
pulse, this decrement is slight.
With a small inaccuracy δa1 in the laser pulse strength as

discussed in Sec. III, the undulator strength is perturbed by

δau
au

¼ 1

Ω2=Ω2
δβ − 1

; ð19Þ

where Ωβ;1 is given in Eq. (13). As shown in Fig. 5, the
variation of the undulator strength increases with a larger
δa1=a1. It is also seen that high laser pulse strength a1 gives
faster growth rate of the variation δau=au for the same
δa1=a1. This indicates that the more accurate control is
required for the experiments with higher laser pulse
strength. The uncertainty of plasma density channel can
also introduce the variation of undulator strength, scaled
as δau=au ∝ ð1þ δn=ΔnÞ2.

V. UNDULATOR RADIATION

Radiation emitted by a single relativistic electron
oscillating in a plasma-based undulator field with constant
oscillation strength, au, has been extensively studied [41].
In our current scheme, the oscillation strength au can be
tuned over a broad range, 0 < au < γ0Ω

ffiffiffiffiffiffi
2R

p
. As a result, it

is capable of generating a narrow x-ray radiation spectrum
for au < 1 as well as synchrotronlike x=γ-ray radiation
for au > 1.

A. Radiation spectrum with narrow bandwidth

The radiation spectrum of an single electron can be
calculated from Lienard-Wiechert potentials [51]
by using the transverse Eq. (18) and longitudinal
trajectories uz ≈ uz0 − δðτÞ sinðζ þ ΔζÞ where δðτÞ ¼
Cua0a1x

ffiffiffiffiffiffiffiffi
2=R

p
sinðΩτÞ=Ω. The phase slippage could

be approximately given as Δζ ≈ ðβe − βpÞτ with βp ≈
1 − 1=Mp being the phase velocity of plasma wave
and βe ≈ 1 being the longitudinal speed of electron. It is
seen that there is no acceleration on axis in the condition
of Eq. (12), which will relieve the stress from dephasing
and, thus, benefit the generation of a narrow spectrum. The
depletion of the laser pulse occurs after approximately a
dephasing length. Therefore, in the case of a low plasma
density and tightly focused electron beam, effects of
dephasing of the electron and laser pulse depletion could
be neglected for a short propagation distance relative to the
dephasing length Ld ≈ 2πM2

p [43] and uz ≈ uz0 for the
injection phase ζ ¼ −3π=2. The near-axis photon energy-
angular spectrum of the fundamental emission for a linear
polarized oscillation and small undulator strength au < 1
has been calculated in [41] with such a trajectory. The
central frequency is ωce¼2γ20Ω=ð1þa2u=2Þ and the natu-
ral bandwidth is given by Δω=ω ¼ 1=Nu, where Nu is the
number of oscillation periods.
Consider a plasma channel of on-axis density n0 ¼

1018 cm−3 and a Gaussian electron beam with parameters
such as ζ ¼ −3π=2, total charge Q ¼ 1 pC, transverse
radius in x̂ direction xb ¼ 0.1, temporal length Δτb ¼ 0.2,
energy γ0 ¼ 1000 and energy spread σγ=γ0 ¼ 1%. The
normalized transverse emittance of the elctron beam

FIG. 4. The normalized momentum ux in x̂ direction. Red
dashed line: analytical result from Eq. (18); Blue solid lines:
numerical results obtained for an electron beam by solving the
transverse momentum equation with the electric field in Eq. (7).

FIG. 5. Variation of the undulator strength with different
laser pulse strength: read solid line with a1 ¼ 0.6; blue solid
line with a1 ¼ 0.3. The parameters are chosen as: plasma
density 1018 cm−3, wavelength of the laser pulse λL ¼ 1 μm
and laser spot size rm ¼ 1.14, gamma factor of the injected
electron γ0 ¼ 1000.
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is 0.0047. Such an electron beam can be obtained from a
laser wakefield accelerator [5]. The radiation is calculated
by Virtual Detector for Synchrotron Radiation [52] simu-
lation. Figure 6(a) shows the narrow
x-ray radiation spectrum d2Nph=½Neðγ0θÞdðγ0θÞdκ� gen-
erated by two beating laser pulses fm ¼ 0; n ¼ 0; a ¼
0.21; rm ¼ 1.14;φ ¼ 0g and fm ¼ 1; p ¼ 0; a ¼ 0.15;
rm ¼ 1.14;φ ¼ 0g after nu ¼ 30 periods of oscillations,
where the total oscillation length is much smaller than the
dephasing length Ld ≈ 7000. Nph is the number of emitted
photons and Ne is the number of electrons inside the beam.
The azimuthal angle is normalized as γ0θ and the frequency
is κ ¼ ω=ð2γ20ΩÞ. The oscillation strength is au ≃ 0.62. The
solid cyan line shows the numerical on-axis radiation
spectrum of the electron beam at γ0θ ¼ 0. The central
frequency is κ¼0.83ðℏωce¼2.93 keVÞ with a full-width-
half-maximum (FWHM) bandwidth of Δω=ω ¼ 4%. It
mainly benefits from the matching condition in Eq. (12)
which eliminates the betatron focusing force near the axis
of the plasma channel as seen in our previous work [41].
The spectrum of the electron beam is broadened with

respect to the theoretical natural bandwidth of an single
electron due to the spread of energy and undulator strength
which could be estimated as [53],

�
Δω
ω

�
FWHM

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

Nu

�
2

þ
�
2Δγ
γ0

�
2

þ
�
Δau
4γ0

�
2

s
; ð20Þ

where Δγ is from the initial energy spread as well as the
energy chirp caused by the finite duration of the electron
beam and contributes an extra 0.5% broadening in our
case. Δau mainly comes from the phase slippage of
electrons and the finite duration of the electron beam, and
contributes an additional 0.2% broadening. The exper-
imental inaccuracy of laser strength and plasma density
channel can also introduce the additional broadening
of the spectrum due to the variation of au as given in
Eq. (19), but is neglected here.

B. Synchrotronlike broad radiation spectrum

For large au > 1, this scheme is also capable of generating
a synchrotronlike spectrum with the critical frequency of
ωcr¼ð3=2Þγ20E0¼ð3=2Þγ20cua0a1=rm. Figure 6(b) shows
the synchrotron-like hard x-ray radiation spectrum generated
by two beating laser pulses fm ¼ 0; n ¼ 0; a ¼ 0.84; rm ¼
1.14;φ ¼ 0g and fm¼1;n¼0;a¼0.6;rm¼1.14;φ¼0g.
The oscillation strength is au ≃ 16. The critical frequency
is κ ¼ 5.45ðℏωp ¼ 19 keVÞ.

C. Harmonics with OAM

The circular motion of an electron in the circularly
polarized wakefield Eq. (11) with the condition Eq. (12) is
given as

ux ¼ −au sinðΩτÞ;
uy ¼ au cosðΩτÞ;
uz ¼ uz0; ð21Þ

where on-axis injection is assumed, ux;yðτ ¼ 0Þ ¼ 0.
The radiated field is given by the Lienard-Wiechert
potentials and then the radiation intensity in an interaction
duration T can be directly derived from Jackson’s formula
[51] as

d2I
dΩsadω

¼ M

���� Xþ∞

n¼−∞
Jnðα sin θÞe−inπ=2

uz0T
2

I⃗n

����2; ð22Þ

where Ωsa is the solid angle, M ¼ e2ω2=ð4πcγ20Þ and
α ¼ auω=ðγ0ΩÞ are defined variables, and I⃗n describes
the flux field of the emitted photon beam. The exponential
term e−inπ=2 is due to the initial conditions of motion.
Please see more details of the derivation in supplemental
material [54]. In the case where all the electrons inside a
beam are in the same initial phase as described by Eq. (21),
the radiation intensity reaches its maximum. With the
trajectory in Eq. (21) and the unit vector to the observer
n̂ ¼ sin θ cosϕ · êx þ sin θ sinϕ · êy þ cos θ · êz, the flux
field for nth harmonic is given as

I⃗n ¼ Inþêþ þ In−ê− þ Inzêz; ð23Þ

(a)

(b)

FIG. 6. Radiation spectrum from plasma-based undulator/wig-
gler with (a) au ≃ 0.62 and (b) au ≃ 16. Dashed white line is the
theoretical on-axis solution and solid cyan lines in both plots are
for the numerical on-axis radiation with γ0θ ¼ 0.
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where ê� ¼ ðêx � iêyÞ=
ffiffiffi
2

p
are the vertex direction view

from z-axis and the transverse components are given as

Inþ ¼ 1ffiffiffi
2

p ½iKSnþ1einϕð2 − sin2θÞ

þ iKSn−1eiðn−2Þϕsin2θ þ Sne−iϕ sin 2θ�; ð24Þ

and

In− ¼ 1ffiffiffi
2

p ½−iKSn−1einϕð2 − sin2θÞ

− iKSnþ1eiðnþ2Þϕsin2θ þ Sne−iϕ sin 2θ�; ð25Þ

where Sn ¼ sin cððν − nΩÞT=2Þ, ν ¼ ωð1 − βz0 cos θÞ, and
K ¼ au=uz0 is the pitch angle of electron motion. The first
two terms in the right-hand side (RHS) of Eq. (24) and (25)
contribute to field vortex and the last terms to the
polarization. As shown in Fig. 7, the fundamental har-
monic, in (a) and (d), does not show any vortex and
therefore does not carry any OAM. However, the vortex
nature is clearly shown in the higher-order harmonics, for
example, in (b), (c), (e), and (f), which then could carry the
OAM. It is noticed that the field does not rotate in the even
harmonics due to the compensation of the last terms in the
RHS of Eq. (24) and (25), as shown in Figs. 7(a) and 7(c).

VI. CONCLUSIONS AND DISCUSSION

In this paper, a scheme of plasma undulator/wiggler
produced by the beating of several Hermite-Gaussian laser
pulses with different modes in a parabolic plasma channel
is further discussed. The oscillation of the excited plasma
wakefield is caused by the interference between each set of
two pulses. The oscillation frequency is then determined by

the difference of the parameters of modes, Ων;λ ¼ θν − θλ,
including mode number ðm; nÞ and wavelength Mp;ðm;nÞ.
From the nonparaxial wave equation of the laser pulse and
linear laser-plasma wakefield theory, the undulator field is
derived for the beating of several Hermite-Gaussian laser
pulses in the Cartesian geometry. The polarization of the
field is also discussed for a special case. An initial matching
condition of pulse strength is given to produce a harmonic
field without a focusing force near the propagation axis. As
a result, there is no betatron oscillation for an electron beam
injected into such a field and therefore the quality of the
emitted photon beam is improved. The dynamics as well as
the radiation of an injected electron are studied in the linear
case. The oscillation strength au ¼ E0=Ω ∝ a0a1rm is in a
wide range and is capable of producing a plasma-based
undulator field for a narrow x-ray source or a wiggler field
for a broad synchrotronlike x=γ-ray source with higher-
order emitted harmonics containing OAM. In comparison
to [40,41] where the oscillation strength is determined by
the off-set of initial injection position of laser pulse, the
current scheme is much easier to experimentally imple-
ment. The most important feature of the current scheme is
its ability to overcome previous limitations on the gen-
eration of higher-energy radiation in the linear plasma
wakefield [40].
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(white arrows, I⃗⊥ ¼ Inþêþ þ In−ê−) of radiation for the funda-
mental (n ¼ 0), second (n ¼ 1), and third (n ¼ 2) harmonics,
respectively in Eq. (24) and (25), viewed along z-axis; (d)-(f)
show the corresponding rotation components.

FLEXIBLE X-RAY SOURCE WITH TUNABLE … PHYS. REV. ACCEL. BEAMS 22, 071302 (2019)

071302-9

https://doi.org/10.1038/nature02939
https://doi.org/10.1038/nature02939
https://doi.org/10.1038/nature02900
https://doi.org/10.1038/nature02900


and S. M. Hooker, GeV electron beams from a centimetre-
scale accelerator, Nat. Phys. 2, 696 (2006).

[4] E. Kallos, T. Katsouleas, W. D. Kimura, K. Kusche, P.
Muggli, I. Pavlishin, I. Pogorelsky, D. Stolyarov, and V.
Yakimenko, High-Gradient Plasma-Wakefield Accelera-
tion with Two Subpicosecond Electron Bunches, Phys.
Rev. Lett. 100, 074802 (2008).

[5] W. T. Wang, W. T. Li, J. S. Liu, Z. J. Zhang, R. Qi, C. H.
Yu, J. Q. Liu, M. Fang, Z. Y. Qin, C. Wang, Y. Xu, F. X.
Wu, Y. X. Leng, R. X. Li, and Z. Z. Xu, High-Brightness
High-Energy Electron Beams from a Laser Wakefield
Accelerator via Energy Chirp Control, Phys. Rev. Lett.
117, 124801 (2016).

[6] J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis,
B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J.
Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S.
Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans,
Active Plasma Lensing for Relativistic Laser-Plasma-
Accelerated Electron Beams, Phys. Rev. Lett. 115,
184802 (2015).

[7] S. Kuschel, D. Hollatz, T. Heinemann, O. Karger, M. B.
Schwab, D. Ullmann, A. Knetsch, A. Seidel, C. Rödel, M.
Yeung, M. Leier, A. Blinne, H. Ding, T. Kurz, D. J.
Corvan, A. Sävert, S. Karsch, M. C. Kaluza, B. Hidding,
and M. Zepf, Demonstration of passive plasma lensing of a
laser wakefield accelerated electron bunch, Phys. Rev.
Accel. Beams 19, 071301 (2016).

[8] C. Thaury, E. Guillaume, A. Dpp, R. Lehe, A. Lifschitz,
K. T. Phuoc, J. Gautier, J.-P. Goddet, A. Tafzi, A. Flacco, F.
Tissandier, S. Sebban, A. Rousse, and V. Malka, Demon-
stration of relativistic electron beam focusing by a laser-
plasma lens, Nat. Commun. 6, 6860 (2015).

[9] R. Tatchyn, Variable‐period electrostatic and magnetostatic
undulator designs for generating polarized soft x rays at
PEP, Rev. Sci. Instrum. 60, 2571 (1989).

[10] V. Papadichev, An electrostatic undulator with single-
polarity feed, Nucl. Instrum. Methods Phys. Res., Sect.
A 429, 377 (1999).

[11] S. Bellucci, S. Bini, V. M. Biryukov, Y. A. Chesnokov, S.
Dabagov, G. Giannini, V. Guidi, Y. M. Ivanov, V. I. Kotov,
V. A. Maisheev, C. Malagù, G. Martinelli, A. A. Petrunin,
V. V. Skorobogatov, M. Stefancich, and D. Vincenzi,
Experimental Study for the Feasibility of a Crystalline
Undulator, Phys. Rev. Lett. 90, 034801 (2003).

[12] U. I. Uggerhøj, The interaction of relativistic particles with
strong crystalline fields, Rev. Mod. Phys. 77, 1131
(2005).

[13] T. N. Wistisen, K. K. Andersen, S. Yilmaz, R. Mikkelsen,
J. L. Hansen, U. I. Uggerhøj, W. Lauth, and H. Backe,
Experimental Realization of a New Type of Crystalline
Undulator, Phys. Rev. Lett. 112, 254801 (2014).

[14] S. Tantawi, M. Shumail, J. Neilson, G. Bowden, C. Chang,
E. Hemsing, and M. Dunning, Experimental Demonstra-
tion of a Tunable Microwave Undulator, Phys. Rev. Lett.
112, 164802 (2014).

[15] C. Joshi, T. Katsouleas, J. Dawson, Y. Yan, and J. Slater,
Plasma wave wigglers for free-electron lasers, IEEE J.
Quantum Electron. 23, 1571 (1987).

[16] I. Andriyash, R. Lehe, A. Lifschitz, C. Thaury, J.-M. Rax,
K. Krushelnick, and V. Malka, An ultracompact X-ray

source based on a laser-plasma undulator, Nat. Commun. 5,
4736 (2014).

[17] M. Zolotorev, Laser driven attosecond SASE X-ray FEL,
Nucl. Instrum. Methods Phys. Res., Sect. A 483, 445
(2002).

[18] P. Sprangle, B. Hafizi, and J. Peñano, Laser-pumped
coherent x-ray free-electron laser, Phys. Rev. Accel. Beams
12, 050702 (2009).

[19] A. Bacci, M. Ferrario, C. Maroli, V. Petrillo, and L.
Serafini, Transverse effects in the production of x rays
with a free-electron laser based on an optical undulator,
Phys. Rev. Accel. Beams 9, 060704 (2006).

[20] P. Balcou, Proposal for a Raman X-ray free electron laser,
Eur. Phys. J. D 59, 525 (2010).

[21] I. a. Andriyash, P. Balcou, and V. T. Tikhonchuk, Collective
properties of a relativistic electron beam injected into a high
intensity optical lattice, Eur. Phys. J. D 65, 533 (2011).

[22] I. a. Andriyash, E. D’Humières, V. T. Tikhonchuk, and P.
Balcou, Betatron emission from relativistic electrons in a
high intensity optical lattice, Phys. Rev. Accel. Beams 16,
100703 (2013).

[23] A. D. Debus, M. Bussmann, M. Siebold, A. Jochmann, U.
Schramm, T. E. Cowan, and R. Sauerbrey, Traveling-wave
Thomson scattering and optical undulators for high-yield
EUV and X-ray sources, Appl. Phys. B 100, 61 (2010).

[24] J. E. Lawler, J. Bisognano, R. A. Bosch, T. C. Chiang, M.
A. Green, K. Jacobs, T. Miller, R. Wehlitz, D. Yavuz, and
R. C. York, Nearly copropagating sheared laser pulse FEL
undulator for soft x-rays, J. Phys. D 46, 325501 (2013).

[25] C. Chang, C. Tang, and J. Wu, High-Gain Thompson-
Scattering X-Ray Free-Electron Laser by Time-Synchronic
Laterally Tilted Optical Wave, Phys. Rev. Lett. 110,
064802 (2013).

[26] E. Hemsing, A. Marinelli, and J. B. Rosenzweig, Generat-
ing Optical Orbital Angular Momentum in a High-Gain
Free-Electron Laser at the First Harmonic, Phys. Rev. Lett.
106, 164803 (2011).

[27] E. Hemsing, A. Knyazik, M. Dunning, D. Xiang, A.
Marinelli, C. Hast, and J. B. Rosenzweig, Coherent optical
vortices from relativistic electron beams, Nat. Phys. 9, 549
(2013).

[28] M. Katoh, M. Fujimoto, H. Kawaguchi, K. Tsuchiya, K.
Ohmi, T. Kaneyasu, Y. Taira, M. Hosaka, A. Mochihashi,
and Y. Takashima, Angular Momentum of Twisted Radi-
ation from an Electron in Spiral Motion, Phys. Rev. Lett.
118, 094801 (2017).

[29] J. Vieira, J. T. Mendonça, and F. Quéré, Optical Control of
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