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The measurement of the betatron tunes in a circular accelerator is of paramount importance due to their
impact on beam dynamics. The resolution of the these measurements, when using turn-by-turn (TBT) data
from beam position monitors, is greatly limited by the available number of turns in the signal. Because of
decoherence from finite chromaticity and/or amplitude detuning, the transverse betatron oscillations appear
to be damped in the TBT signal. On the other hand, an adequate number of samples is needed, if precise and
accurate tune measurements are desired. In this paper, a method is presented that allows for very precise
tune measurements within a very small number of turns. The theoretical foundation of this method is
presented with results from numerical and tracking simulations and experimental TBT data which are
recorded at electron and proton circular accelerators.
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I. INTRODUCTION

Betatron tune measurements [1] are used as a reliable
diagnostic of transverse beam dynamics. The measurement
of the working point of a circular accelerator is an essential
procedure in order to optimize performance and reduce
particle losses. In such an accelerator, each beam position
monitor (BPM) records the betatron oscillations of the
centroid in the transverse plane for many turns. In order to
measure the tunes, the beam needs to perform coherent
betatron oscillations after transverse excitation from its
closed orbit. The turn-by-turn (TBT) transverse oscillations
of the centroid are recorded at each BPM, yielding a
discrete signal which can be analyzed with algorithms that
perform Fourier analysis.
The figure of merit in tune measurements is the reso-

lution in the frequency space, i.e., the smallest difference of
adjacent harmonics that can be identified in the discrete
Fourier transform spectrum of a BPM signal. In the noise-
free regime, the resolution is defined from the error ϵðNÞ in
the betatron tune estimation from N turns, which follows a
power law of the form [2]

ϵðNÞ ¼ jQðNÞ −Qoj ∝
1

Nl ; ð1Þ

where QðNÞ is the estimated tune within a number of turns
N, Qo is the actual betatron tune, and l is an exponent
which determines the speed of convergence of the tune
measurement to the actual tune value.
As is suggested from Eq. (1), a large number of turns is

vital for precise betatron tune measurements. However, in
experimental and simulated TBT data, the useful number of
turns is greatly limited from decoherence due to finite
chromaticity and/or amplitude detuning [3,4]. Because of
this mechanism, the expectationvalue of the transverse beam
position, as recorded at the BPMs, is strongly damped with
respect to the number of turns. Consequently, a choice of a
largenumber of turns is followed froma substantial reduction
of the signal-to-noise ratio in the TBT signal. In addition,
decoherence induces a significant dependence of the betatron
tunes on the number of turns. Apart from nonlinearities, a
large number of turns is not always available, e.g., in the
case of accelerator commissioning or due to particular beam
dynamics measurements, e.g., placing the working point of
the accelerator close to a resonance that may lead to strong
particle losses.
For the case of a simple fast Fourier transform (FFT)

algorithm [5], the exponent l in Eq. (1) is l ¼ 1, which is
inadequate for a precise determination of the betatron
tunes in a circular accelerator. To overcome such limi-
tations, refined frequency analysis (RFA) methods have
been developed [2,6,7] which offer a substantially
improved resolution in tune estimations, with respect
to a plain FFT. The numerical analysis of fundamental
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frequencies (NAFF) [8] algorithm is an RFA method,
which has been widely used with success in beam
dynamics measurements [9–12]. This algorithm offers
an enhanced decrease of the error in Eq. (1) after applying
a Hann window [13] of the order of p on the data. The
resolution has been analytically calculated from Laskar to
have the asymptotic approximation for N → ∞ [14]:

ϵðNÞ ∝ 1

N2pþ2
; ð2Þ

which offers a substantial improvement in the tune
estimation, with respect to a simple FFT, for a given
number of turns N. Nevertheless, a further enhancement
of the resolution would be beneficial for the operation of
modern circular accelerators and for analyzing TBT data
from tracking simulations. The reason for this is that the
usage of a very small number of turns (N ≤ 50) results in a
weaker influence of decoherence on the tune determina-
tion. In addition, the identification of transient effects,
such as ripples from power converters or fast-pulsing
magnets, could be possible.
In this paper, it is shown that by analyzing the trajectory of

the beam from M BPMs and for N turns, while employing
the NAFF algorithm, the resolution of the tune measure-
ments is greatly improved, several orders of magnitude
compared to single-BPM analysis. The reconstruction can be
performed by vectorizing an N ×M array that contains TBT
data for N turns and from M BPMs, in a BPM-by-BPM
manner. This transformation results in the simultaneous
increase of the number of samples (MN from N) and of
the sampling rate, since after the vectorization, the sampling
rate is M samples per turn, instead of the initial one sample
per turn.
This technique is referred to as the mixed BPM method

and, when it is employed together with the NAFF algo-
rithm, the TBT error in the tune estimation scales as

ϵðNÞ ∝ 1

M2pþ1N2pþ2
; ð3Þ

where the gain in resolution with respect to the single-BPM
analysis Eq (2) is pronounced from the factor M2pþ1.
The complete form and derivation of Eq. (3) is presented in
the Appendix.
The mixed BPM method consists of flattening theM × N

array in a BPM-by-BPM manner, i.e., transforming it into a
vector of 1 ×MN dimension. However, the transformation
introduces two systematic errors: (i) an error in the sampling
period of the mixed BPM signal due to the fact that the
BPMs are not strictly equidistant, i.e., they are not distributed
homogeneously around the ring, and (ii) an error due to the
BPM-by-BPM modulation of the beta function. Fortunately,
the previous errors are periodic in nature, since they are
repeated for every revolution of the beam. This characteristic

allows for the aforementioned analysis of the trajectory of
the beam in a BPM-by-BPM manner.
An interesting application of evaluating the tunes from

multiple BPMs with a different approach through the
continuous Fourier transform [2] can be found in
Ref. [15]. The mixed BPM method, combined with the
NAFF algorithm, has been introduced and tested at proton
and electron rings [16,17] for precise tune measurements
with a very small number of turns. Here, the theoretical
foundations of this method are presented, along with
results from tracking simulations and experimental mea-
surements. The paper is organized as follows.
In Sec. II, the methodology of the mixed BPM scheme is

presented, together with analytical expressions for the
transformed Fourier spectra and the improved betatron
tune resolution. In Sec. III, a numerical simulation is
deployed in order to visualize qualitatively and quantita-
tively the theoretical results of the method. In Sec. IV,
tracking simulations are performed and the method is
applied for tune measurements with the CERN Proton
Synchrotron (PS) ideal lattice, under the influence of linear
and nonlinear dynamics. In Sec. V, some experimental
results are shown from the PS and the CERN Proton
Synchrotron Booster (PSB) and from the Karlsruhe
Research Accelerator (KARA) electron light source, where
the efficiency of the mixed BPM method is highlighted.

II. METHODOLOGY

A. Nonuniform periodic sampling

The transformation of the TBT data from M BPMs and
for N turns results in a vector of samples, where N groups
each with M samples are created with a periodicity of one
turn. However, for the samples of the aforementioned
vector, the NAFF algorithm, as with any of the usual
Fourier analysis methods, assumes a constant sampling
period; i.e., the samples are produced from equidistant
BPMs. In general, the sampling intervals τk, which are
defined as the time interval that the beam needs to transport
from BPM k − 1 to BPM k, are not equal, and they can be
expressed as

τk ¼ tk − tk−1; ð4Þ
where tk and tk−1 are the time instants that the beam passes
from BPMs k and k − 1, respectively. The boundary
condition t0 can be chosen to be t0 ¼ 0. The periodicity
conditions, due to the circular geometry of the ring, suggest
that

τk ¼ τkþM: ð5Þ
According to Eq. (4), the time instances tk can be

expressed for any k as

tk ¼
Xk
n¼1

τn; ð6Þ
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and, when the centroid of the beam passes from the BPM k
to the BPM kþM, it has circulated the ring once, i.e.,

tkþM − tk ¼ To; ð7Þ

where To is the revolution period of the beam. Combining
Eqs. (6) and (7) yields

XkþM

n¼kþ1

τn ¼ To;

1

M

XkþM

n¼kþ1

τn ¼
To

M
;

hτki ¼
To

M
; ð8Þ

which means that, independently of the nonuniform posi-
tioning of the BPMs in the ring, the average sampling
period is bounded. Because of the periodicity condition
Eq. (5), the expectation value hτki is constant as k → ∞.
The previous expression can be used to construct a
relationship for the time instances tk. By introducing an
error δk, which quantifies the deviation of the BPM k from
a longitudinally uniform position, the time instances for
k > 0 are simply

tk ¼ khτki þ δk

¼ k
To

M
þ δk; ð9Þ

where the errors δk are considered to be random indepen-
dent variables, given in units of seconds. In the case
of single-BPM analysis for M ¼ 1, δ1 ¼ 0. The positions
of the BPMs must not overlap; thus, the error values are
bounded in

−
1

2M
< δk <

1

2M
: ð10Þ

As a consequence, the expectation value of the δk errors as
k → ∞ is

hδki ¼ 0: ð11Þ

Because of the periodicity of the ring, the errors are
one-turn periodic, i.e., δk ¼ δkþM, which implies that the
variance of δk, σ2δk , is also bounded, for all k. The previous
conditions highlight the fact the nonuniform sampling of
the beam around the ring is stationary, which allows the
reconstruction of the trajectory of the beam simultaneously
from all the BPMs. Therefore, the acquired signal, after
the transformation of the TBT data with the mixed BPM
method, can be considered as a band-limited signal with a
nonuniform but recurrent sampling scheme [18].

The nonuniformity of the sampling process can be
visualized in the fictitious ring of Fig. 1, where eight
BPMs (blue circles) are placed at locations where they
divide the circumference of the hypothetical ring in eight
equal parts. The injection point is assumed to be at the
position of BPM 1 (black marker), and the beam follows
the clockwise direction. As the centroid of the beam rotates
around the ring during one turn, the eight fictitious and
longitudinally symmetric BPMs (blue circles) sample the
transverse coordinates with a constant sampling period of
To
M . The actual BPMs (red circles) are situated in longi-
tudinal positions that deviate from the symmetric positions
by an offset δk (red arc). This error is assumed to be positive
for a real BPM which is downstream from the symmetric
position and negative for a BPM which is upstream from
the symmetric position.

B. Frequency spectra

The TBT data from multiple BPMs can be represented
with an array. Let the array A contain the spatial and
temporal histories of the centroid of the beam:

A ¼

2
64
z11 … z1M
… … …

zN1 … zNM

3
75; ð12Þ

where z can be either x or y transverse planes, N is the
number of turns, and M is the number of BPMs. Each
column represents the signal from one BPM, with a

FIG. 1. A hypothetical ring with eight BPMs at longitudinal
positions which are marked with red circles. When the mixed
BPM method is employed, a sampling error δk is introduced, due
to the deviation of the BPM positions from hypothetical locations
that divide the circumference of the ring in exactly eight equal
parts, marked with blue circles. BPM 1 is set as the reference
point.
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sampling period of τs ¼ 1 turn per sample. The traditional
frequency analysis performs the tune measurements for
each column of the array in Eq. (12) and then provides an
average tune estimation from the M individual observa-
tions. Because of the correlations between the data in A,
an increase of the sampling rate of the system is possible
by vectorizing the array (12) as

Ã ¼ ½z11z12…zNM−1zNM�: ð13Þ

An example of the transformation is shown in Fig. 2,
where 2000 turns from 42 BPMs (top left) are transformed
to a single vector of 84 000 samples (top right). Indeed,
the information of the first five turns (bottom left) is
transformed to a signal of 210 samples.
The vector Ã contains NM samples of the TBT data, and

the new sampling period becomes τ̃s ¼ 1
M, i.e., 1 turn perM

samples.
Although the sampling process of TBT BPM data is

usually described in terms of time, the same procedure can
be equally described in space. The mixed BPM signal of
Eq. (13) can be acquired by sampling the pseudoharmonic
oscillation

zðsÞ ¼ Re
h ffiffiffiffiffiffiffiffiffiffiffi

ϵβðsÞ
p

ei½2πΨðsÞþϕ0�
i

ð14Þ

along the ring, where s is the longitudinal variable, ϕ0 and ϵ
are constants of the motion, βðsÞ is the beta function, and

ΨðsÞ ¼
Z

s

0

ds
βðsÞ ð15Þ

is the cumulative phase function with the constraint

ΨðCÞ ¼ Qz; ð16Þ
where C is the circumference of the ring and Qz is the
transverse betatron tune. The methodology consists of
sampling Eq. (14) with M BPMs, which are distributed
at different longitudinal positions fs1; s2;…; sMg. Since
the new signal consists of discrete samples, the continuous
variable s is dropped in favor of a discrete variable m. The
generating function Eq. (14) becomes

zðmÞ ¼ Re½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵβðmÞ

p
ei½2πΨðmÞþϕ0�� ð17Þ

and the constraint ΨðM þ 1Þ ¼ Qz.
The integral ΨðM þ 1Þ can be divided into M equal

parts, and each part will advance the phase by a constant
value of

Ψ0 ¼
Qz

M
: ð18Þ

By introducing the aforementioned sampling errors δm
in units of 2π, for each m sample, the cumulative phase
ΨðmÞ is

ΨðmÞ ¼ mΨ0 þ δm

¼ m
Qz

M
þ δm: ð19Þ

With Eq. (19), Eq. (17) is written as

zðmÞ ¼ Re
h ffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵβðmÞ
p

eif2π½mðQz=MÞþδm�þϕ0g
i
: ð20Þ

The periodicity of the beta function and of the error δm
suggests that βðmþMÞ ¼ βðmÞ and δmþM ¼ δm; i.e., the
signal Eq. (20) is modulated in amplitude and phase with a
period of M.
In order to highlight the modulation of the signal,

Eq. (20) is expressed as

zðmÞ ¼ Re½ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵβðmÞ

p
eið2πδmþϕ0ÞÞei2πmðQz=MÞ�

¼ Re½HðmÞei2πmðQz=MÞ�: ð21Þ
The function HðmÞ is M periodic, and it can be expanded
in discrete Fourier series [19]

HðmÞ ¼
XM=2

k¼−M=2

Ckeikð2π=MÞm; ð22Þ

with the weight functions for each harmonic defined as

Ck ¼
1

M

XM=2

−M=2

HðmÞe−ikð2π=MÞm: ð23Þ

FIG. 2. Synthesis of a one-dimensional signal of 84 000
samples (top right), from an initial two-dimensional signal of
N ¼ 2000 and M ¼ 42 (top left). The first turn from five BPMs
are shown (bottom left). The signals from each BPM are
represented with different colors. The transformation of the five
turns results in 210 samples (bottom right) which increases the
sampling rate. Each period is now populated by 42 samples of
the original signal, and the periods are shown between the red
dashed lines.
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Substitution of Eq. (22) in Eq. (21) results in

zðmÞ ¼ Re

" XM=2

k¼−M=2

Ckei2π½ðkþQzÞ=M�m
#
: ð24Þ

Inspecting Eq. (24), the following observations can be
made.
(i) Since the signal is modulated periodically in ampli-

tude from the optics and in phase from the sampling error,
sidebands appear in the spectrum. The carrier frequency
is the betatron tune which is found at the k ¼ 0 harmonic.
The distance from the rest of the harmonics in the
frequency spectra is 1

M, which is the transformed sampling
frequency. After transformation to the original frequency
space by multiplying the frequencies with M, this distance
becomes 1. Therefore, the fractional betatron tune can
always be recovered, since the uncertainty between the
harmonics is exactly one integer tune unit.
(ii) The bandwidth of the signal in Eq. (22) is bounded

by the Nyquist frequency. In the case of M BPMs and
according to Shannon’s sampling theorem [20], the follow-
ing relationship holds for the betatron tune:

Qz ≤
M
2
; ð25Þ

from where it can be deduced that, if the number of BPMs
M is at least twice the tune, then the integer part of the tune
can be also recovered. Moreover, since the bandwidth of
the signal has now become M times larger, the usual
discrepancy in the modulo of the fractional tune from
single-BPM analysis is no longer present. This implies that
tunes with fractional parts above 0.5 can be recovered.

C. Frequency resolution

The frequency resolution, i.e., the TBT error in the
estimation of the betatron tunes, is correlated to the total
observation time of a signal. For the mixed BPM method,
the derived relationship of the time instances tk, in the case
of nonequidistant M BPMs with a sampling error δk, is
(see Sec. II A)

tk ¼ k
To

M
þ δk; ð26Þ

with To the revolution period. If the total number of
samples is m ¼ MN, the error δm ¼ δM, since the last
sample is sampled from the last BPM M. Moreover,
Eq. (26) can be rewritten for k ¼ m as

tm ¼ m
To

M
gðmÞ; ð27Þ

where δ̃M is the sampling error for the BPMM, normalized
to the revolution period, and the function gðmÞ is defined as

gðmÞ ¼
�
1þMδ̃M

m

�
: ð28Þ

The expression in Eq. (27) corresponds to the total
observation time of the mixed BPM signal for m ¼ MN
samples. This total time is now used for the cases of FFT
and NAFF algorithms in order to estimate the error in the
frequency analysis of each algorithm.

1. FFT

In the case of a simple FFT, the TBT error of the betatron
frequency estimation for m number of samples is

ΔνðmÞ ¼ jνðmÞ − νoj ¼
1

tm
; ð29Þ

with νðmÞ the time-dependent frequency estimation and νo
the true frequency of the TBT data. The error ϵðmÞ in the
betatron tune Qo estimation within m samples is defined as

ϵðmÞ ¼ ΔνðmÞTo ¼
To

tm
; ð30Þ

and substitution of Eq. (27) in the previous expression, with
m ¼ MN, yields

ϵðNÞ ¼ 1

N þ δ̃M
: ð31Þ

Since the error jδ̃Mj < 1
2M ≪ N, Eq. (31) can be expanded

around δ̃M ≈ 0 to give

ϵðNÞ ¼ 1

N
−
δ̃M
N2

þOðδ̃2MÞ: ð32Þ

Note that this result is consistent with Eq. (1), for l ¼ 1 and
for single-BPM analysis, i.e., δ̃M ¼ 0. Clearly, the mixed
BPM method when used with the FFT does not result in
any gain in convergence with respect to the single-BPM
analysis, M ¼ 1. Moreover, the sampling error has been
introduced in the estimation of the tunes, although it
converges faster to zero than 1

N. It should be noted that
the mixed BPM method still allows the estimation of the
integer part of the tune with a simple FFT, provided that the
condition in Eq. (25) is fulfilled.

2. NAFF

In the case of the NAFF algorithm, the signal under study
is treated as quasiperiodic [21]. The resolution of the tune

measurements scales as t−ð2pþ2Þ
m for the total observation

time tm in Eq. (26). For the limiting case of δ̃M → 0 and for
m ¼ MN number of samples and by using the theory
behind NAFF [14], the analytical relationship of the error
in the estimation the tunes ϵðNÞ is found to be (see the
Appendix)
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ϵðNÞ ¼ CL

M2pþ1

�
1

N2pþ2
− ð2pþ 2Þ δ̃M

N2pþ3

�
; ð33Þ

where the factor CL depends on the number of samples m,
the error δ̃M, the order of the Hann window p, and the
betatron frequencies and amplitudes of the signal under
study. In fact, in the case of rational frequencies and/or the
presence of multiple harmonics in the signal, the factor CL
can diverge rapidly. It is important to mention that the gain
in resolution by a factor of M2pþ1 is followed by a blowup
of the factor CL, as it can be confirmed from the full
derivation of Eq. (33) in the Appendix. Moreover, due to
the dependence of CL on the order of the Hann window, the
blowup is expected to increase for an increasing p.
The transformation of the signal with the mixed BPM

method creates a spectrum with multiple harmonics around
the main frequency line, as has been shown in Sec. II B.
This behavior can also interfere with the convergence of the
betatron tune determination for a small number of turns N,
due to the dependence of the CL on the number of
harmonics. As a result, collections of BPMs with the least
variation of the optics and the sampling period are expected
to produce more precise betatron tune measurements for a
very low number of turns N.
The contribution of the sampling error δ̃M is negligible,

since it is very small by construction and it rapidly
approaches zero. Thus, for the mixed BPM method, the
two previous effects that can make the factor CL diverge
can potentially reduce the improvement in the estimation
error of the betatron tunes.

III. NUMERICAL SIMULATIONS

Numerical simulations are performed with PyNAFF [22],
in order to qualitatively investigate the theoretical deriva-
tions of the mixed BPM method. Since, in a real machine,
the TBT data from a BPM resemble pseudoharmonic
oscillations, the numerically simulated signal is chosen
to be a superposition of four harmonic terms:

zðmÞ ¼
X4
k¼1

ei2πQk½ðm=MÞþδm�; ð34Þ

where m is the index of each sample with the constraint
1 ≤ m ≤ MN, M is the number of BPMs, N is the number
of turns,Qk is the tune of the harmonic k in 2π units, and δm
is the sampling error of sample m. The complex signal in
Eq. (34) contains information on the positions (real part)
and the momenta (imaginary part) of the oscillations. In
these numerical simulations, the real part of Eq. (34) is
used, so as to simulate the types of signals that are acquired
normally in an actual accelerator. The projection of the
simulated TBT oscillations on the complex plane is
presented in Fig. 3. The values of the frequencies are

chosen to be Qk ¼ 1
2π þ ðk − 1ÞΔQ, and the frequency

separation between the harmonics is ΔQ ¼ 0.05.
The goal of the simulation is to use the mixed BPM

method with NAFF, in order to measure the frequencies of
the signal in Eq. (34). The uncertainty ϵk in the estimation
of the Qk harmonic is defined as

ϵkðN;MÞ ¼ jQko −QkðN;MÞj; ð35Þ
where Qko are the actual tunes of the numerical signal
Eq. (34) and QkðN;MÞ is the frequency estimated over N
turns and M BPMs. In this analysis, only the results of
the k ¼ 1 harmonic will be presented, i.e., of the main
frequency. The N variable is constrained to low values
(N ≤ 50) in order to highlight the contribution of the
parameter M in Eq. (33). Mixing the BPM data together
results in the increase of the sampling rate from one sample
per turn to M samples per turn. Therefore, the frequencies
Qk are transformed to Qk=M which will be referred to as
the reduced frequencies.
For some M, the Qk=M ratio could yield a figure equal

or almost equal to a rational number, which would result in
the inability to reconstruct the original frequency with the
convergence of Eq. (33). For example, for M ¼ 20,
Q1=20 ≈ 1=2, which is an even resonance. Indeed, this
behavior is shown in Fig. 4, where the mixed BPM method
is applied and the error in the tune estimation ϵ1 is
measured for an increasing number of BPMs M and for
three cases of N. Although the general trend shows a
decreasing error with respect to M for all cases of N, the
convergence curves are contaminated due to the appearance
of resonance peaks at specific numbers of BPMs M. The
even resonances are indicated with full lines, while the odd
resonances with dashed lines. The comparison of the trends
of the curves suggest a decrease of the error for an
increasing N as expected; however, the gain in convergence
would be more evident in a “nonresonant” case.
In order to bypass these constraints and to demonstrate

the convergence of the tune estimation with respect to the

FIG. 3. The projection of the signal used in the numerical
simulations, on the complex plane. The oscillations consist of the
superposition of four frequencies, with a frequency-to-frequency
shift of ΔQ ¼ 0.05.
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number of BPMs M, a varying frequency is introduced,
where, for each case of M, the Qk values in Eq. (34) are
multiplied withM, in order to keep theQ=M ratio constant.
In this way, the generated TBT data do not lock on to the
aforementioned resonances and no systematic errors are
introduced in the analysis.

A. Tune convergence for increasing M

During the simulations, the sampling rate is kept con-
stant and δ̃m ¼ 0; i.e., the M BPMs are homogeneously
distributed around the fictitious ring, and the optics
functions (betatron amplitude and phase advance) are equal
at each BPM position. The order of the Hann window is set
to be p ¼ 1. The results of the mixed BPM measurements
are shown in Fig. 5, where the error ϵ defined in Eq. (35) is
plotted in the logarithmic scale with respect to the number
of BPMs. The same values of N as in Fig. 4 are considered.
Obviously, the dependence of the error ϵ on the number of

BPMsM follows a power law, and a comparison with Fig. 4
confirms the absence of the resonance lines and the smooth
convergence of the error ϵ. For N ¼ 10 and M ¼ 50, the
error is at the order of 10−5, while for N ¼ 30 and N ¼ 50,
the error is around 10−7 and 10−8, respectively. These low
errors are expected due to the use of a smooth quasiperiodic
signal, Eq. (34), the absence of additive noise in the signals,
and the constant sampling rate and optics. A fit of the
convergence ϵ with a model of the form

yðMÞ ¼ c1 þ c2 log10ðMÞ; ð36Þ

where yðMÞ ¼ log10ðϵ1Þ, c1 is a constant term, and c2 is the
exponent of M in the error ϵ, yields c2 ¼ −3, confirming
the theoretical dependence of the convergence ϵ on M for
p ¼ 1, as is shown in Eq. (33) for δ̃m ¼ 0.
The role of the number of BPMs M and turns N in the

error of the frequency estimation with NAFF is explored,
by scanning over a range of (M,N) values. The resulting
surface can be inspected in Fig. 6, where the color bar
represents the error ϵ in the logarithmic scale and up to 50
turns are taken into account. The distribution of the
convergence on the (M,N) surface appears to take hyper-
bolic shapes as a result of the power law that it obeys.
At first glance, it is obvious that by increasing the number
of BPMs, for a constant number of turns, the achieved error
is gradually decreased. For example, below 10 turns, the
error reaches 10−4 for M ¼ 50, and it decreases further at
around 10−7 forM ¼ 100. The same order of magnitude for
the error can be achieved for M ¼ 50 and N ¼ 40 turns.

B. Results for a varying window order

The analytical relationship of the tune estimation error in
Eq. (33) suggests a strong dependence on the Hann window
order p. In frequency analysis, a window is always used in
order to reduce the impact of the finite sampling rate and

FIG. 4. Appearance of resonances in the mixed BPM analysis
of the numerical simulations, due to a rational Q=M. The
measurement error ϵ is shown in the logarithmic scale, for three
cases of N, against the number of BPMsM. The even resonances
are indicated with thick lines, while the odd resonances with
dashed lines.

FIG. 5. Convergence of the mixed BPM method in the
numerical simulations, for three cases of turns, with respect to
the number of turns. After introducing the varying frequency
scheme, the resonances disappear.

FIG. 6. Color map of the tune estimation error with the mixed
BPM method for a numerical simulation with PyNAFF. Accurate
values of the tune, at the order of 10−5, can be achieved with
either a small number of turns (N ≤ 10) or a larger number of
BPMs (M ≥ 50). The same conclusions can be made for N ≥ 40
and M ≤ 30.
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finite duration of the signal, i.e., to compensate the leakage
effect. For the case of a Hann window, the efficiency of the
compensation depends strongly on the order of the window.
Although a higher-order window leads to a faster damping
of the error ϵ, studies have been performed [23] on the
effect of different orders, and the conclusions suggest that
in the presence of noise in the BPM signal, e.g., from
electronics, larger orders of the window lead to a greater
loss of precision. Analytical estimations of the impact of
white noise in tune estimations can be found in Ref. [15].
For the numerical simulations presented in this section,

frequency analysis is performed again for different values
of (M,N) and for different values of the Hann window order
p. The estimated convergence ϵ is fitted on the surface:

yðM;NÞ ¼ c1log10ðMÞ þ c2log10ðNÞ þ c3; ð37Þ

where yðM;NÞ ¼ log10ðϵ1Þ, c1 ¼ 2pþ 1, c2 ¼ 2pþ 2,
and c3 ¼ log10ðCLÞ. The estimated values of the fit coef-
ficients are presented in Fig. 7, where each coefficient is
shown for different orders of p, along with the theoretical
expectations. Indeed, it is evident that the numerical results
agree with the theoretical findings. The reconstruction of the
TBT signal in Eq. (34) with M BPMs results in a reduction
of the error by a factor ofM2pþ1, as is predicted by Eq. (33).
At the same time, the CL coefficient is increasing with
respect to the window order p, as is also expected from
theory.

IV. TRACKING SIMULATIONS

The efficiency of the mixed BPM scheme is also tested
with simulations using MADX-PTC [24] and an optics model
of the PS [25]. The parameters of the simulation can be
found in Table I. No collective effects are considered in

the simulations. The TBT data are recorded at 42 BPMs
arranged around the PS lattice. The goal is to use the mixed
BPM method for tune measurements with a very small
number of turns N ≤ 50, make comparisons with the tradi-
tional single-BPM measurement, and explore the influence
of the sampling rate error and of the optics variation on the
resolution of the tune measurement.
The beam is initially excited, horizontally and vertically,

with deflections that correspond to initial amplitudes of
2σ to 12σ with a step of 2σ. The centroid oscillations are
measured from the average orbit of the particles. The
evolution of the centroid of the beam is shown in Fig. 8
with respect to the number of turns N, for all the BPMs,
and for the different initial conditions. The damping of the
oscillations is faster for larger kicks, due to amplitude
detuning coming from the nonlinear magnetic elements.
The beam exhibits maximum horizontal and vertical ampli-
tude-dependent tune shifts of ðΔQx;ΔQyÞ ¼ ð1.5 × 10−3;
2.5 × 10−3Þ for excitations of 2σ–12σ.

A. Sampling of different BPM configurations

The PS ring has a mean radius of R ¼ 100 m and
consists of ten superperiods, each made of ten combined
function magnets. The optics used in these simulations
corresponds to the so-called bare machine optics, where
the low-energy quadrupoles which are used to correct the
betatron tunes are not activated and there are no skew
elements in the lattice. Comparisons can be made for the
efficiency of the mixed BPM method by using different
BPM configurations, i.e., groups of BPMs with different
levels of variation of the optics and of the longitudinal
distance Δs between the BPMs. As a consequence, the
configurations also have a different sample size, i.e., a
different number of BPMsM. The beta functions and phase
advances for both planes, at the location of the M ¼ 42
BPMs (configuration A), are presented in Fig. 9, where
the periodicity of the optics, for every four BPMs, is visible.
This periodicity is, however, broken in the range of
BPMs from 23 to 32. Since the periodicity of the optics
is a factor that can potentially interfere with the efficiency
of the mixed BPM method, two BPMs which are located at

FIG. 7. The coefficients estimated from the fit of the tune error
ϵ1 to the surface of Eq. (37), along with their uncertainty. The c1
coefficient is marked with blue circles, c2 with blue squares, and
c3 with red diamonds. The error bars represent the 1σ standard
error of the fit. The theoretical predictions for the coefficients are
shown with a blue dashed and thick line for c1 and c2,
respectively. The theoretical estimation of CL is shown with a
red line.

TABLE I. Parameters of the MADX-PTC tracking simulations
with the PS model.

Parameter Value

Energy 2.3 [GeV]
M 42 BPMs
Qx, Qy 6.24, 6.27 [2π]
Q0

x, Q0
y −5.78, −7.66 [2π]

Emittance ϵx, ϵy 1.0; 0.8 ½μm rad�
Beam size σx, σy 4.6, 3.0 [mm]
Dimensionality 4D
Distribution Gaussian
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positions that perturb the periodicity are removed, yielding
a new configuration (configuration B) with M ¼ 40.
Moreover, two interesting collections can be further

sampled from configuration B: a total of M ¼ 30 BPMs
that have almost equal optics, i.e., almost the same values
for the beta function and phase advance (configuration C),
and a total of M ¼ 10 BPMs that have almost equal optics
and that are located at equal distances Δs from each other
(configuration D).
A convenient metric of estimating the variation of the

optics and of the longitudinal distance Δs for every BPM
collection is the standard deviation, which is presented
in Table II. From all the configurations, the one which
exhibits the least BPM-by-BPM variation in the optics and
the longitudinal position is expected to produce the best
precision and accuracy in the mixed BPM method.

The Fourier spectra of the horizontal betatron function in
one turn are shown in Fig. 10, for all the aforementioned
BPM collections. The average value of the beta function
has been subtracted from the samples, in order to suppress
low-frequency modes. For the 42 BPMs (configuration A),
two main peaks arise in the spectrum signifying the almost
periodic lattice of the PS. Reducing the number of BPMs
to 40 (configuration B) results in a cleaner spectrum with a
very well-defined oscillation frequency which corresponds
to the tenth harmonic.
The spectra from configuration C are shown in the

bottom left figure, where only high-frequency components
are present. These components appear due to the fact that
the beta functions are almost, but not entirely, equal at
the positions of these 30 BPMs. Finally, for the case of
configuration D, the spectrum is flat, signifying equal
values for the optics at each BPM of this collection. The
vertical beta function exhibits similar periodicities.
Because of the one-turn modulations of the optics and of

the error in sampling the sampling rate between the BPMs,

FIG. 8. The turn-by-turn response of the centroid of the beam, for different kick strengths. The top row depicts the horizontal
oscillation and the bottom row the vertical. The left column shows the TBT data for an initial amplitude of 4σ, the middle column for 8σ,
and the right column for 12σ.

FIG. 9. Beta function (top) and phase advance (bottom) with
respect to the index of the 42 BPMs of the PS. The horizontal
optics are shown in blue and the vertical in orange.

TABLE II. The standard deviation of the optics (σβx;y for the
horizontal and vertical beta functions and σμx;y for the horizontal
and vertical phases advance) and of the longitudinal distances
between the BPMs σΔs, for the BPM configurations A–D.

Configuration M
σβx
[m]

σβy
[m]

σμx
½2π�

σμy
½2π�

σΔs
[m]

A 42 4.64 4.64 0.044 0.042 4.30
B 40 4.53 4.49 0.030 0.030 4.27
C 30 0.24 0.40 0.11 0.11 7.19
D 10 0.052 0.013 0.000 61 0.0012 0.45
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sidebands are expected to appear in the Fourier spectra of
the mixed BPM signal. For the current chosen BPM
configurations, the Fourier spectra for 24 turns are shown
in Fig. 11. In the top plot, the appearance of sidebands is
shown around the main peak of betatron tune, with an
exponentially decreasing amplitude.
By using configuration B, only one sideband appears,

and the amplitude of the main peak increases due to the
absence of any other spectral components, leading to a
much cleaner signal. Furthermore, by using configuration
C, the spectral quantity is almost identical. In the case of
configuration D, the signal exhibits only one frequency.
This component is the betatron frequency; however, due to
aliasing which arises from the small number of BPMs, the
integer part of the tune is found to be 3 instead of 6.
Nevertheless, an important result is that the fractional part
of the tune can always be determined, regardless of the
number of the BPMs.

B. Tune measurements

1. Precision

A straightforward method for estimating the precision
is to measure the difference in betatron tune between
consecutive TBT measurements. The results can be
visualized in Fig. 12, where the TBT convergence of
the measured horizontal (top row) and vertical (bottom
row) tune values is shown for the first 50 turns. The results
from two different sets of initial conditions are shown:
the 4σ excitation (left column) and the 12σ excitation
(right column). The different colors correspond to three
BPM configurations. The case for a single BPM is shown
in blue, the case for configuration A, with all the available
42 BPMs, is shown in green, and the case for configu-
ration D, with ten BPMs which are equidistant and have
similar optics values, is shown in orange.
For the horizontal plane, the NAFF algorithm estimates

the tunes correctly from the first six turns for all BPM
configurations and for both initial excitations. For the 4σ
excitation, the single BPM precision is around 10−2 after
six turns, while the mixed BPMmethod exhibits a precision
of 10−3 for the 42 BPMs of configuration A and even lower
for the ten BPMs of configuration D. At 50 turns, the
precision is below 10−7, whereas for the single-BPM case
it is at around 10−4. Regarding the 12σ excitation, the
mixed BPM method is found to be more precise than the
single-BPM analysis. However, for all configurations,
the convergence of the measured betatron tunes is heavily
modulated by the strong decoherence.
The same conclusions can be also drawn for the vertical

tunes. Indeed, for the first 50 turns, mixing the BPM data
together results in improved precision. For the 4σ case,
results from configuration D exhibit the highest precision,

FIG. 10. Fourier spectra of the horizontal beta functions
signifying the periodicities of the optics for each BPM configu-
ration. The name of each configuration is shown in the legend.

FIG. 11. The Fourier spectra of the mixed BPM signal for the
different configurations of BPMs that are used in the analysis.
The name of each configuration is shown in the legend.

FIG. 12. The precision of the tune measurements for the
horizontal (top row) and vertical (bottom row) planes. The results
for the single-BPM analysis are shown in blue circles, the mixed
BPM scheme with configuration A in green squares, and with
configuration D in orange. The initial excitation of the beam
corresponds to 4σ (left column) and 12σ (right column).
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while for the 12σ case, both mixed BPM collections present
the same level of precision, almost 2 orders of magnitude
better than the single-BPM case.
Similar improvements in precision of the transverse

tunes estimation are also found for the rest of the cases
of initial excitations.

2. Accuracy

A common problem for estimating the accuracy of
betatron tune measurements is that the real value of the
tune is not known a priori. In principle, the reference value
of the tune could be extracted from the transfer matrices of
the particle tracking program; however, this would intro-
duce many systematic errors due to decoherence.
An intermediate solution to this problem could be to

estimate the betatron tunes of a single particle. These values
could then be used as a reference for accuracy measure-
ments. The choice of the particle can be done in the
following way: The particle is initially assigned to have a
vanishing transverse amplitude; i.e., it is situated at the
point ðx; yÞ ¼ ð0; 0Þ, where x and y are the horizontal and
vertical phase space coordinates, respectively. At N ¼ 0, a
finite transverse impulse is given to the particle so as to
generate betatron oscillations. Then the particle is tracked
for many turns (around 1000), and the betatron tunes are
estimated for each transverse plane. These values can then
be used as the reference tunes. The reason for placing the
particle at ðx; yÞ ¼ ð0; 0Þ is that, in this way, nonlinear
amplitude detuning is minimized. Furthermore, using a
large number of turns minimizes the uncertainty in the
estimation of the tunes due to Fourier analysis, which is not
affected by decoherence since a single particle is used.
By referring to the single-particle tune estimations asQ0,

the TBT accuracy ϵðNÞ can be evaluated as

ϵðNÞ ¼ jQðNÞ −Q0j; ð38Þ
where QðNÞ is the TBT tune estimations of the centroid of
the beam. The results for the 4σ case are plotted in Fig. 13.
In the top plot, the error in the horizontal tune estimation
is shown with respect to the number of turns, where the
improvement of accuracy for the mixed BPM cases is
obvious. For the case of configuration A (42 BPMs), the
accuracy is at the order of 10−3 already after 12 turns, one
order of magnitude better than the single-BPM case, while
for configuration D (ten BPMs) the accuracy is improved
by 2 orders of magnitude. The effect of sampling rate error
and modulation of the optics for configuration A is reduced
at the very first turns, as predicted from Eq. (33). In this
case, there is no obvious gain between configuration C (30
BPMs) and configuration D (ten BPMs). In fact, there is
only a marginal increase in accuracy after the very first
turns for the latter configuration.
In the bottom picture, the same estimations of the vertical

tunes are shown, with similar improvement in the accuracy
when the mixed BPM scheme is used. The fact that the

single-BPM case for the vertical tune measurements exhib-
its faster convergence than the horizontal ones can be
attributed to the optics. Indeed, by inspecting the working
point, the horizontal tune is very close to the fourth-order
resonance, which can be excited by strong sextupoles or
octupoles.
Similar observations can be made for the case of a larger

initial excitation. The accuracy plots are shown for the case
of 12σ in Fig. 14, for the same configurations as in the
previous case of initial excitation. In this case, the impact of
decoherence is larger; however, the horizontal tunes (top
plot) can be resolved at N ¼ 6 turns at the order of 10−4, 2
orders of magnitude better than the single-BPM case, when
configuration B is used. The rest of the BPM configurations
perform better than the single-BPM case. For the vertical
tunes (bottom plot), the mixed BPM method exhibits more

FIG. 13. Comparison of the accuracy for the tune measure-
ments with single-BPM (blue curve) and mixed BPM configu-
rations for configuration A (green curve), configuration B (red
curve), configuration C (purple curve), and configuration D
(orange curve). The excitation corresponds to 4σ for the hori-
zontal (top) and vertical (bottom) tunes.

FIG. 14. Comparison of the accuracy for the tune measure-
ments with single-BPM (blue curve) and mixed BPM configu-
rations for configuration A (green curve), configuration B (red
curve), configuration C (purple curve), and configuration D
(orange curve). The excitation corresponds to 12σ for the
horizontal (top) and vertical (bottom) tunes.
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accurate results as well. The estimation of the vertical tune
when using a single BPM cannot converge before N ¼ 50
turns, whereas all the BPM configurations for the mixed
BPMmethod converge at around N ¼ 25 turns. The loss of
accuracy in the vertical tune determination from a single
BPM after N ¼ 6 turns is indeed attributed to the inability
in this case to converge to the expected value. The increased
effect of decoherence is expected to contribute to this effect as
well. As a matter of fact, due to decoherence, a loss in
accuracy is observed for configuration C at N ¼ 6 turns.
The interpretation of the previous results is that the

number of BPMs and the periodicity of the optics are
important factors in the performance of the mixed BPM
method, especially for the very first turns (N < 20). The
use of configuration B (40 BPMs), which exhibits a well-
defined periodicity in the optics with respect to configu-
ration A (42 BPMs), allows for the most accurate tune
estimations at six turns and for all initial excitations. The
level of the optics variation is also found to be important;
for example, configuration D (ten BPMs) performs better
than configuration A (42 nonequidistant BPMs) in all cases
of excitation. However, configuration B outperforms con-
figuration D, especially for the estimation of the vertical
tune, due to the larger number of BPMs (40 versus ten). For
all BPM collections, the contribution of the sampling rate
error is found to be less important than the optics, as is also
expected from Eq. (33). From the same equation comes a
fast TBT reduction of all the error contributions (optics and
sampling rate variation). Indeed, the present results exhibit
a similar behavior for N > 20, for all mixed BPM collec-
tion, reaching an accuracy level 2–3 orders of magnitude
better than the single-BPM results.

C. Equidistant BPMs

The periodic variation of the sampling period can
result in the loss of convergence for a very small number
of turns. In order to analyze this effect, a new collection of
ten BPMs which are not equidistant with each other is
sampled from configuration A (42 BPMs). This collection
is intentionally chosen to have a large sampling rate error in
order to perform comparisons with configuration D (ten
BPMs which are equidistant). The BPMs that belong to
configuration D are referred to as regular, and the BPMs
with large sampling rate error as irregular. The normalized
error δ̃k in the sampling instance of the BPM k can be
estimated by using information of the longitudinal position
of the BPMs, sk. Indeed, from Eq. (9), the normalized error
can be rewritten as

δ̃k ¼
tk
To

−
k
M

; ð39Þ

where tk is the time that the beam needs to reach BPM k, To
is the revolution period, and M is the number of BPMs in
one turn. The following expressions can be used to express
δ̃k in terms of the azimuthal position sk of each BPM:

C ¼ βcTo; ð40Þ

sk ¼ βctk; ð41Þ

where c is the speed of light, β is the Lorentz factor, and C
is the circumference of the ring. Combining the previous
expressions with Eq. (39) results in

δ̃k ¼
sk
C
−

k
M

: ð42Þ

The normalized error δ̃k for the aforementioned BPM
collections is shown in Fig. 15 (top), together with the
model horizontal beta function (bottom) for the irregular
(orange line) and the regular (blue line) BPM collections.
The oscillation of the error is negligible for the regular case,
whereas for the irregular collection the oscillation of the
error is obvious. In addition, the horizontal beta function of
the regular case seems almost constant, while the irregular
case exhibits larger deviations from a constant value. For
the irregular case, both the root-mean-square (rms) values
of the error δ̃k and of the horizontal beta function βx are
almost 50 times larger than the respective rms values of the
regular case.
The difference in the tune measurements of the two

collections, relative to the tune measurements of the regular
BPMs, are shown in Fig. 16, for the horizontal plane (blue)
and the vertical plane (green) of the 4σ excitation. The trend
of the curves exhibit a reduction of the relative difference,
and, atN ¼ 30 turns, it is around 10−6 for the horizontal and
one order of magnitude larger for the vertical. The relative
error converges at around N ¼ 50 turns. As a result, precise
tune measurements are possible even for a collection of
BPMs with large asymmetry in the longitudinal position.

V. EXPERIMENTAL APPLICATION OF TBT

Over the past years, various measurements in proton and
electron storage rings have been undertaken, where the

FIG. 15. The normalized error δ̃k (top) and the horizontal beta
function βx (bottom) for ten irregular BPMs (blue circles) and ten
regular BPMs (orange squares). The average value of δ̃k has been
extracted.
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mixed BPM method has been used with success for precise
tune determination over a small number of turns [16,17,
26,27]. Because of the unavoidable noise of the exper-
imental TBT, collections of BPMs that exhibit small or
no variation in the optics and/or the sampling rate do not
offer any substantial improvement in the convergence. This
observation agrees with the detailed measurements that
were performed at the European Synchrotron Radiation
Facility by using the mixed BPM method [16]. Some
distinct cases of experimental measurements are presented
in this section.

A. PSB

At the PSB, TBT data are analyzed from beams that are
excited by a single kick, horizontally and vertically, at
160 MeV. Recently, the PSB has been undergoing many
upgrades in view of the LHC injectors upgrade (LIU) project
[28]. The ability for precise tune measurements is very
important for such a low-energy machine, where collective
effects and instabilities can drive the betatron tunes on
resonances. The interesting feature of the PSB lattice is that
it has a 16-fold symmetry and 16 BPMs; i.e., one BPM is
located at each superperiod, and the optics exhibit no
modulations. In addition, the BPMs are equidistant, with
an almost equal longitudinal distance of about Δs ¼ 10 m.
As a result, precise measurements could be performed with
the mixed BPM method, in a few turns. The results of
horizontal and vertical tune measurements, from the afore-
mentioned TBT data, are presented in Figs. 17 and 18.
Remarkably, the betatron tunes can be extracted with only
ten turns, and the convergence at 20 turns is about 10−5.
Noise had been filtered from the experimental TBT by using
singular value decomposition (SVD) [29], which helps as
well in the fast and precise measurement of the tunes.

B. KARA

The KARA ring (previously named ANKA) is a very
flexible electron light source, operating at 2.5 GeV. The ring

has a fourfold symmetry, and it is equipped with 39 BPMs.
Recently, the prototype of the superconducting wiggler for
the Compact Linear Collider (CLIC) damping rings [30,31]
was installed at KARA in order to perform tests. In parallel,
optics measurements have been performed with the wiggler
at the maximum field (2.9 T). The measurements of the
horizontal tune with the mixed BPM method are shown in
Fig. 19, along with the statistical uncertainty. The method
proved to be very efficient also in this case, since the
horizontal tunes can be evaluated at around 20 turns, with a
convergence of below 10−3. This measurement is important
in order to quantify any quadrupolar effects of the wiggler
on the horizontal tune. Indeed, the results show that a slight
horizontal tune shift is present when the field of the wiggler
changes from 0 to 2.9 T. The tune shift is at the order of
about ΔQ ¼ 4 × 10−3.

C. PS

The PS is one of the most indispensable parts of the LHC
injector complex. At injection, the PS receives bunches
from the PSB at a kinetic energy of 1.4 GeV, and then it

FIG. 16. The absolute difference between the tune measure-
ments by mixing ten regular and ten irregular BPMs, normalized
to the tunes for the ten mixed regular BPMs, with respect to the
first 50 turns. The horizontal tune is shown in blue and the vertical
in green. The vertical axis is in the logarithmic scale.

FIG. 17. Tune measurements with respect to the number of
turns N at the PSB ring 1 by using horizontal (top) and vertical
(bottom) data.

FIG. 18. Convergence of the tune measurements at the PSB
ring 1 for the horizontal (top) and vertical (bottom) planes.
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accelerates them up to 14–26 GeV. During injection, TBT
data are gathered from 43 BPMs around the ring for the
mixed BPM method. In order to investigate the injection
process, which involves a very fast injection bump [32] that
lasts for about 500 turns, a scanning window of 40 turns
is applied to the data. In this way, any variations of the
instantaneous betatron tunes can be measured. The gating
functionality of the BPM system at the PS is used, in order
to perform the analysis bunch by bunch. A preanalysis is
also performed to characterize the mixed BPM method at
the PS. With only 40 turns, the convergence of the tunes is
of the order of 10−4, which makes the method very precise.
It should be noted that similar rates of convergence cannot
be reached with the traditional PS frequency analysis tools
for such a short time window.
The results of the scanning window analysis can be seen

in Fig. 20, where the estimations of the horizontal (thick
lines) and vertical (dashed lines) tunes for four bunches
(bunch 1 in magenta, bunch 2 in red, bunch 3 in green, and
bunch 4 in blue) coming from the PSB are shown. The
observation of the periodic modulation of the tunes is
evident. The depth of the modulation is such as to have a
maximum tune shift at the order of 10−2 for both planes.
Because of the simultaneous presence of the effect in both
planes and the large horizontal amplitude of the beam in
the injection area, the effect is attributed to feed-down
effects. More specifically, persistent sextupolar fields are
created on the surface of the vacuum chamber of the
injection bumpers and during injection; they modulate
the quadrupolar component of the machine, resulting in
the visible TBT tune shift. This observation is significant
for the LIU project [33], because such large tune shifts can
result in particle losses and reduction of the machine’s
efficiency as an injector. This effect could have not been
evaluated without the possibility to estimate the tune and
its evolution in a small number of turns, as provided by the
mixed BPM method.

VI. CONCLUSIONS

The efficiency of the mixed BPM scheme, when com-
bined with NAFF, has been demonstrated for numerical,
tracking, and experimental data. For all cases, the method
has been proven to be extremely efficient for precise tune
measurements with a very small number of turns (below 50).
Because of amplitude and phase modulations, which

are caused from the periodicity of the optics and of the
sampling error at the locations of the BPMs, the estima-
tion of the betatron tunes can be affected, but results show
that, as the number of turns increases, this contribution is
reduced.
The mixed BPM method, which combines the TBT data

fromM BPMs simultaneously, cannot be used with a simple
FFT due to the linear dependence of the frequency resolution
to the number of samples. When a refined Fourier analysis
method is used, e.g., NAFF with a Hann window of the order
of p, an improvement ofM−ð2pþ1Þ is derived in the analytical
expressions. Because of the periodic change of the sampling
period at each BPM, an error is introduced in the tune
estimations which is negligible, and it is rapidly reduced.
Numerical simulations confirm the efficiency of the mixed

BPM method for precise measurements of the tuneQ within
a small number of turns. The change of the sampling rate in
the mixed BPM method results in the reduced tunes Q=M,
and, when this fraction is close to a rational number, the
error in the tune measurement is significantly increased.
By implementing a varying frequency scheme, the expected
dependence M−ð2pþ1Þ is recovered in these simulations.
The mixed BPM technique is also used for tracking data

from the lattice of the PS machine. Comparisons with
single-BPM analysis validate the improvement in accuracy
and precision, even for BPMs with asymmetries in the
optics and/or the longitudinal position. Depending on

FIG. 19. Horizontal betatron tune measurements at the KARA
light source under the operation of the CLIC superconducting
wiggler. The case for the field of the wiggler at 2.9 T is shown in
red, while the zero field case is shown in blue. The error bars are
one standard deviation from the mean value of the measurements.

FIG. 20. Instantaneous betatron tune measurements with the
mixed BPM method, during the injection process at the PS. The
estimation of the horizontal tunes is shown in thick lines and of
the vertical tunes in dashed lines. The analysis is performed for
four bunches (bunch 1 in magenta, bunch 2 in red, bunch 3 in
green, and bunch 4 in blue) by using a sliding window of 40 turns.
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magnitude of the modulation of the optics and the sampling
rate of the M BPMs, a decrease of the precision in the tune
measurements is observed for a very small number of turns;
however, this discrepancy is reduced quite fast, as the
number of turns increases.
In the case of experimental data, maximization of the

number of BPMs is often preferred, rather than using fewer
BPMs with symmetries in the optics and/or to the longi-
tudinal position. The reason for this preference is the
existence of noise in the TBT data, which reduces signifi-
cantly the efficiency of both the single and mixed BPM
methods. However, studies show that, by keeping the order
of the Hann window as low as possible, the impact of noise
in the tune estimations of the NAFF algorithm is reduced.
Although noisy experimental TBT data can be sometimes
impossible to be Fourier analyzed, the application of
appropriate filtering algorithms (e.g., SVD) can reduce
the impact of noise on frequency analysis. In such cases,
the mixed BPM method has always proved to be very
precise in the estimation of the betatron tunes.
Useful applications of the mixed BPMmethod have been

demonstrated with data obtained from the PSB and PS
proton rings, where the method has been proven capable of
performing precise tune measurements with a very small
number of turns. As a matter of fact, a large periodic tune
shift has been discovered recently at the PS, during the
injection process, which could not have been observed with
the single-BPM analysis. The scheme of the mixed BPMs
is also applied to data from the KARA light source, where
betatron tune measurements were used for modeling the
beam’s response during operation of the CLIC super-
conducting wiggler.
The mixed BPM method has the potential to be a very

useful tool, because it offers a substantial improvement in
tune estimations for a very small number of turns. In addi-
tion, future studies could investigate improvements on the
method, such as the interpolation of nonuniformly sampled
signals [34], in order to minimize the contribution of the
various periodic modulations at the position of the BPMs.
Finally, it should be noted that, in cases of tracking

simulations, the mixed BPM method can be employed
for many applications that require small number of turns,
e.g., for the construction of fast frequency maps or sliding
windows in the TBT data for measuring the instantaneous
tunes. In cases of the absence of noise from the data,
schemes with BPMs that are equidistant and/or periodic in
the optics should be preferred, because they can provide
even faster convergence after the first few turns.
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APPENDIX: FREQUENCY RESOLUTION OF
THE MIXED BPM METHOD WITH NAFF

The main success of NAFF is the ability to provide
an approximation of a Kolmogorov-Arnold-Moser [35]
quasiperiodic function fðtÞ, which can be a solution
of a Hamiltonian system. The function fðtÞ can be
approximated as

fðtÞ ≈
Xn
k¼1

αkeiωkt ðA1Þ

with n the number of terms and αk and ωk the complex
amplitude and real angular frequency of the kth harmonic,
respectively.
Physically, the function fðtÞ can be a trajectory of a

nonlinear quasiperiodic system, similar to the oscillation of
the beam’s centroid, along the lattice of an accelerator. The
NAFF algorithm can recover the fundamental eigenfunc-
tions of fðtÞ in a very short time. For instance, the error in
the estimation of the main frequency ν1 ¼ ω1

2π of Eq. (A1)
has been mathematically proven by Laskar to be [36]

jνðTÞ − ν1j ¼
CL

T2pþ2
þO

�
1

T2pþ2

�
; ðA2Þ

for T → ∞, where T is the total observation time, νðTÞ is
the time-dependent frequency estimation of NAFF for the
main harmonic, p is the order of the Hann window, and the
constant CL given by

CL ¼ c0
Xn

k⃗−ð1;0…0Þ

Refαkg
Ω2pþ1

k

cosðΩkTÞ; ðA3Þ

in units of s−ð2pþ1Þ, with Ωk¼hk⃗;ν⃗i−ν1, k⃗¼fk1;k2;…;kng
the basis vector and ν⃗ ¼ fν1; ν2;…; νng the frequency
vector. Their inner product hk⃗; ν⃗i ¼ k1ν1 þ k2ν2 þ � � � þ
knνn forms the resonance space of the quasiperiodic
solution. The symbol k⃗ − ð1; 0…0Þ means that, from the
summation of the harmonics, the first-order resonance
fk1;k2;…;kng¼f1;0;…;0g is excluded. The term Refαkg
the real part of the complex Fourier amplitude αk of
Eq. (A1), in units of amplitude, and the dimensionless
constant

c0 ¼
ð−1Þpþ1π2pðp!Þ2

jα1jϕ00ð0Þ ; ðA4Þ

with jα1j the absolute value of the complex amplitude of the
first harmonic for k ¼ 1, and the constant

ϕ00ð0Þ ¼ −
2

π2

�
π2

6
−
Xp
k¼1

1

k2

�
: ðA5Þ
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In the original derivation of Eqs. (A2) and (A3) in Ref. [36],
the normalization to the amplitude of the first harmonic jα1j
is implied. Note that, in the case of rational frequencies ν⃗,
the quasiperiodic orbits cannot be defined and Ωk → 0,
which makes Eq. (A3) diverge rapidly. In addition, the
existence of multiple harmonics in the signal Eq. (A1) can
reduce the rate of convergence to the actual frequencies
as well. On the contrary, if the signal fðtÞ is composed of
only one periodic term, i.e., only one harmonic, the error
jνðTÞ − ν1j vanishes, since the summation term of Eq. (A3)
goes to zero.
In the practical case of frequency analysis of a quasi-

periodic signal, where m samples are gathered with a
uniform sampling period τs, the total observation time is
T ¼ mτs. As a result, Eq. (A2) is modified as

jνðmÞ − νj ¼ CL

τsm2pþ2
; ðA6Þ

and Eq. (A3) becomes dimensionless, with the form

CL ¼ c0
Xn

k−ð1;0…0Þ

Refαkg
ðτsΩkÞ2pþ1

cosðΩkmτsÞ: ðA7Þ

Next, the mixed BPM scheme is explored with the NAFF
algorithm. Under this transformation, in the case of M
BPMs that record N turns of the betatron oscillation of the
beam, the total observation time is (see Sec. II A)

T ¼ m
To

M
þ δM; ðA8Þ

for m number of samples. The term To is the revolution
period of the beam, and δM is the deviation of the position
of the last BPM from a fictitious position, which would be
symmetric for all the M BPMs. The previous expression
can be used for estimating the error in the betatron tune
measurement with NAFF.
The error in the betatron tune estimation ϵðmÞ, with

respect to the error in the frequencies ΔνðmÞ ¼ jνðmÞ − νj,
for a total of m samples is defined as

ϵðmÞ ¼ ΔνðmÞTo: ðA9Þ
The total time in Eq. (A8) can be used to define a varying
sampling period. Since the total observation time is T ¼
mτs and from Eq. (A8)

T ¼ m
To

M
gðmÞ; ðA10Þ

where gðmÞ ¼ 1þ Mδ̃M
m and δ̃M is the error of the last BPM

normalized to the revolution period, the sampling period τs
can be expressed as

τs ¼
To

M
gðmÞ: ðA11Þ

Substitution of the previous expression to Eq. (A6) and
combining the result with Eq. (A9), the error ϵðmÞ in the
betatron tune estimation for the mixed BPM method is
written as

ϵðmÞ ¼ M
m2pþ2gðmÞ2pþ2

CLðmÞ; ðA12Þ

where the CLðmÞ factor is

CLðmÞ ¼ c0
Xn

k−ð1;0…0Þ

1

Ωk
2pþ1

ReðαkÞ cos½mgðmÞΩk�

ðA13Þ

and the term Ωk is

Ωk ¼
ToΩk

M
: ðA14Þ

In the case of m ¼ MN samples, the error gðMNÞ is

gðMNÞ ¼ 1þ δ̃M
N

; ðA15Þ

and Eq. (A12) becomes

ϵðMNÞ ¼ CLðMNÞ
M2pþ1N2pþ2

�
1þ δ̃M

N

�
−ð2pþ2Þ

: ðA16Þ

Since the error term δ̃M ≪ N, the previous expression is
expanded around δ̃M ≈ 0, which yields

ϵðMNÞ ¼ CLðMNÞ
M2pþ1

�
1

N2pþ2
− ð2pþ 2Þ δ̃M

N2pþ3

�
: ðA17Þ

The expression in Eq. (A17) testifies that the convergence
is improved by a factor of M2pþ1 with the mixed BPM
method. The contribution of the small error δ̃M converges to
zero rapidly enough, so as to be negligible in the frequency
analysis with NAFF and the mixed BPM method.
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