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Operation of superconducting radio frequency (SRF) cavities with high loaded quality factors is
becoming increasingly preferred for applications which involve low beam loading including energy
recovery linacs (ERL). Vibration induced microphonics detuning poses a major operational bottleneck in
these low bandwidth systems, adversely affecting field stability. Besides passive measures of mitigating the
vibration sources, modern SRF cavities are also attached to fast tuners incorporating piezoelectric
actuators. We demonstrate the narrow band active noise control algorithm for realizing active resonance
control and propose a modification based on the least mean square approach to adaptively tune the control
parameters and study its stability and performance. We discuss our experience of using passive mitigation
techniques while commissioning the main linac cryomodule of the Cornell-BNL ERL test accelerator and
report a net reduction in peak detuning by more than a factor of 2 in its unstiffened cavities. Finally, we
demonstrate stable performance of our resonance control system with consistent reduction of peak
microphonics detuning by almost a factor of 2 on multiple cavities.
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I. INTRODUCTION

Modern particle accelerators are reaching the pinnacle of
efficiency using superconducting radio frequency (SRF)
cavities which are characterized by low loses arising from
high intrinsic quality factors (Q0 ≳ 1010) [1]. The micro-
wave power requirements of such SRF cavities depend on
the effective beam loading and the loaded quality factor
QL used in operation. In situations of high beam loading,
they are operated with a comparatively low QL in order to
couple the required power into the beam, such as in the
LHC [2], CESR [3], NSLS-II [4] and many others.
However, in new applications such as light source linacs
(e.g., LCLS-II [5], XFEL [6]) and in energy recovery linacs
(e.g., Cornell-BNL ERL test accelerator (CBETA) [7],
bERLinPro [8]), high QL is becoming common due to
the low or negligible beam loading involved. Low beam
loading implies the reduction of the rf power requirements
and allows the use of efficient solid state amplifiers.
However, the limited bandwidth arising from large QL

makes rf systems more sensitive to detuning when operating
at a fixed frequency, as during linac operation. Transient
changes in the resonant frequency of the cavity resulting
from mechanical deformations change its response to the

microwaves coming through the fundamental power coupler.
Due to enhanced reflection of the incoming waves from a
detuned cavity, more power is needed to maintain a stable
field. The interaction of the field with thewall currents is one
mechanism leading tomechanical deformation and is known
as Lorentz force detuning (LFD). This leads to transient
detuning as a function of the field inside the cavity and is
important for pulsed rf systems. Vibrations inside cryomod-
ules couple into the cavity walls causing transient deforma-
tions in its shape resulting in microphonics detuning. The
rf power P consumed by a detuned cavity to maintain a
voltage V with zero beam loading is given by [9]

P ¼ V2

8 R
QQL

β þ 1

β

�
1þ

�
2QLΔω

ω0

�
2
�
; ð1Þ

whereQL is the loaded quality factor, β is the coupling factor,
R=Q is the shunt impedance in circuit definition and Δω is
the detuning of the SRF cavity. Hence, themaximumvoltage
which can be stably sustained in a cavity depends on the
peak microphonics detuning and is constrained by the peak
forward power available from the amplifiers.
Suppression of peak detuning is important in machines

operating with high QL especially in multiturn ERLs such
as CBETA, where there are tight tolerances on field
stability (rms amplitude stability of 1 × 10−4 and phase
stability of 0.1°) to preserve the intrinsic energy spread of
the beam. Designing cavities mechanically less sensitive
to vibrations is one way of achieving this goal. Cavities
fabricated with metal rings welded onto them can be
designed to be less sensitive to vibrations. Depending on
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whether the machine will be pulsed or cw, the shape and
location of the stiffening rings may be optimized to reduce
the effect of LFD or increase its stiffness towards external
forces respectively [10]. In this paper, we discuss suppres-
sion of the vibration sources and describe active compen-
sation of microphonics detuning to reduce peak power
consumption.
In the next section, we describe the design and operation

of fast tuners while modeling them as a linear time invariant
system and further explore their nonlinear behavior. Using
the linear model, we develop a least mean square (LMS)
control system based on narrow band active noise control to
command the piezoelectric actuators and analyze its per-
formance and stability. Next, we catalog the microphonics
sources we found while commissioning the main linac
cryomodule (MLC) used in CBETA and the measures we
took to mitigate them.We then report on the results of using
the active control algorithm during rf operations. Finally,
we present a summary of our work and propose some
improvements to the resonance control system.

II. FAST TUNER

Mitigation of vibration sources is the preferred method
of suppressing microphonics, however an active resonance
control mechanism is equally important. By further reduc-
ing peak detuning, it improves the margin of power
consumption with respect to the maximum capability of
the microwave amplifier. It also provides an emergency
mitigation mechanism against new sources of microphon-
ics until they are found and suppressed. Active control of
microphonics requires the use of fast tuners with acoustic
response time scales such as the one used in CBETA [11].
While a stepper motor drives the slow movement of the
tuner over a large range, the piezoelectric actuators drive
fast movement with a range of 2 kHz [12] which is almost
100 times the operating bandwidth of the cavity. The
response of the cavity resonance frequency to voltages
applied to the actuator greatly influences the design of the
active resonance control system.

A. Linear response

A linear time invariant (LTI) response model can be used
to describe the dynamics of the tuner for small excitations
of the piezoelectric actuator. In the time domain, the change
in resonant frequency δftunerðtÞ of the cavity may be written
as a convolution of the actuator voltage upzðtÞ with an
impulse response function τðtÞ as follows:

δftunerðtÞ ¼
Z

t

0

τðt − t0Þupzðt0Þdt0: ð2Þ

Applying the Fourier transform on both sides of this
equation we obtain

δf̃tunerðωÞ ¼ τðωÞũpzðωÞ; ð3Þ

where δf̃tunerðωÞ and ũpzðωÞ are the Fourier transforms of
detuning and voltage respectively. τðωÞ is the frequency
domain tuner transfer function which encodes both the
amplitude of the response and the phase shift generated
by the tuner. We measured the transfer function at each
frequency by exciting the actuator using sine waves of
different amplitudes. By using the slope of the linear fit
of the response phasor as a function of amplitude we
effectively subtracted the background microphonics at the
frequency of measurement. Using this procedure, we
measured the response of the tuner for frequencies between
5 and 300 Hz which corresponds to most of the vibrations
in the main linac cryomodule used in CBETA.
The transfer functions measured on three cavities of the

main linac in CBETA are shown in Fig. 1. All the transfer
functions show a region of flat amplitude and linear phase
response in the range of low frequencies up to 30 Hz; this
makes the use of simple algorithms like proportional-
integral (PI) control feasible for attenuating low frequency
microphonics. The large peaks in amplitude correspond to
resonances and they are accompanied by large swings in
the phase response of the tuner; this limits feedback control
at these frequencies. The measurements also verify one of
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FIG. 1. Tuner response amplitude and phase as functions of excitation frequency for three cavities of the main linac in the CBETA
project. The plots show multiple strong resonances above 200 Hz for unstiffened cavities 1 and 3. Cavity 4 is fitted with stiffening rings
which suppress the low frequency eigenmodes of the structure.
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the design goals of stiffening cavities, shifting the lowest
mechanical eigenmode to a higher frequency. The transfer
function data can be used to construct a LTI model of the
tuner and is used to analyze the stability of the control
algorithm used for resonance control.

B. Nonlinear response

The assumption of linearity is dependent on the linearity
of the piezoelectric effect, the stress strain curves and
damping mechanisms in the materials involved. Although
the stress strain curve and the piezoelectric effect are
reasonably linear in the regime of use, slight hysteresis
is generally observed in resonant frequency as the applied
voltage is cycled from 0 V to high voltage back to 0 V
[12–14]. This implies that some nonlinearity is present in
the system and we should verify its magnitude. A nonlinear
response would excite multiple frequencies even if we
excite just one [15] and this provides a simple way of
diagnosing the nonlinear dynamics of the system by
exciting it with sine waves. We measure the power
spectrum of detuning for different frequencies of excitation
of the tuner and subtract the contribution from the ambient
microphonics present in the system to yield an approximate
spectral response function.1 Figure 2 illustrate some exam-
ples of spectral responses. The linear response shows up as
a line with slope of 1, i.e., the frequency of excitation equals
the major frequency component of detuning. However, the
plot also shows evidence of higher order responses in the
form of additional frequencies in the detuning spectrum.
We can use the straight lines observed in the plots to

estimate the order of nonlinearity present in the system and
gain some insight into its source. In general, the frequencies

present in nonlinear responses of a dynamical system to a
sinusoidal excitation can be written as

fdetuning ¼ mfpz þ
X
i

nifvib;i; ð4Þ

where fdetuning and fvib;i are the frequencies present in the
tuner response and ambient microphonics, while fpz is
the frequency of excitation. m and ni are integers, with jmj
representing the order of the nonlinear term and the
addition of vibration frequencies represent parametric
behavior of the tuner dependent on external microphonics.
Both the cavities show lines parallel to the linear response
line indicating the presence of modulation from ambient
microphonics. The unstiffened cavity further shows the
second harmonic with evidence of the m ¼ 2 line near
fpz ¼ 300 Hz. The strength of the nonlinear responses
appear to be a function of frequency with excitation
frequencies of above 250 Hz showing the most activity.
These observations suggest that we can ignore the non-
linearity as long as we excite the tuner below 250 Hz which
limits the bandwidth of the compensation system.

III. ACTIVE NOISE CONTROL

Microphonics compensation of SRF cavity detuning
using fast tuners has been demonstrated using a variety
of techniques. Resonance control of cw rf cavities typically
relies on feedback of microphonics detuning. In this control
topology, the detuning acts as an input to the controller
which generates a signal for the piezoelectric actuator
which in turn affects the net microphonics detuning thus
closing the loop. The transfer function of the tuner system
as discussed in the previous section plays an important role
in designing the controller. The traditional method of
proportional-integral feedback has been demonstrated in
various machines [16–18] and is very effective when the
phase response of the tuner is a monotonous function of
frequency which is typical at lower frequencies (≤ 10 Hz).

100 200 300
Actuation Frequency (Hz)

0

200

400

600

M
ic

ro
ph

on
ic

s 
F

re
qu

en
cy

 (
H

z)
0

2

4

6

100 200 300
Actuation Frequency (Hz)

0

200

400

600

M
ic

ro
ph

on
ic

s 
F

re
qu

en
cy

 (
H

z)

0

2

4

6

FIG. 2. Spectral response of tuners to single frequency sinusoidal excitations in two cavities of the main linac used in the CBETA
project. The plots show the logarithm of power spectra (in color) of tuner response as functions of actuation frequency fpz on the x axes
and frequency of detuning fdetuning on the y axes. The left and right panels show measurements from an unstiffened and stiffened cavity
respectively. The white line on the left panel at the actuation frequency of 30 Hz indicates an absence of valid detuning data due to a rf
trip during the measurement.

1We subtract the contributions from ambient microphonics
in Fig. 2 using a scaling relation, logðχ0ðfpz;fdetuningÞÞ¼
logðχðfpz;fdetuningÞÞ− 1

N

P
i logðχðfpz;i;fdetuningÞÞ. χðfpz; fdetuningÞ

is the spectral power at frequency fdetuning when the tuner is
excited with a sine wave of frequency fpz.
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At higher frequencies, the tuner cavity system typically has
mechanical eigenmodes which introduce steps in the phase
response which may possibly lead to positive feedback and
instability at even modest gains. Consequently, low pass
filters are used to ensure stability of the PI loop but at the
cost of reducing the bandwidth. Additional bandpass filters
may be used in parallel to attenuate certain frequency
bands, however manually adjusting them while ensuring
stability is inconvenient. In order to get past this limitation,
arbitrary digital control filters can be optimized specifically
to compensate for a given microphonics spectrum while
taking into account the exact phase response of the tuner.
This has been demonstrated on the new LCLS-II cryo-
modules being tested at FermiLab [19].
In the methods described above, the tuner transfer

function and the microphonics spectrum are first measured
and the data is processed external to the rf control system
and the optimal filter coefficients are then uploaded into the
control system. In contrast, adaptive tuning of digital
control filters inside the rf system during operations using
least mean squares algorithms have also been demon-
strated. In traditional LMS, an external reference signal
which correlates to microphonics detuning is used as an
input to a finite impulse response filter whose coefficients
are updated continuously to reduce the mean square of
detuning [18]. In a different technique [20,21] based on
active noise control (ANC) methods, amplitude and phase
of sine waves at different frequencies are adjusted to cancel
out microphonics. However, both these methods require
prior measurement of the tuner transfer function which may
be a function of tuner position [10] and may not stay
constant over long periods of time and over multiple
pressure or temperature cycles. In this paper, we derive
the narrow band ANC technique and propose a modifica-
tion so that it adapts to the tuner response phase in situ.
Microphonics detuning due to narrow band vibration

sources can be well approximated by a finite series of
sinusoids at different frequencies with slowly changing
amplitudes and phases. This motivates the use of an
algorithm which works by adjusting the amplitudes of a
series of sine and cosine functions in order to reduce the
mean square detuning. At a particular frequency ωm, the
ideal phase of the actuator signal θpzm is determined by not
only the relative phase of external detuning with respect to
the internal clock θmicro

m of the control system but also the
phase response ϕm of the actuator. The ideal actuator signal
phase given by θpzm ¼ θmicro

m þ ϕm − π in principle perfectly
cancels the sine wave produced by external vibrations. The
phase lag ϕm introduced by the tuner can be assumed to be
a constant when the frequency of vibrations is far from a
mechanical resonance, and used as a compensation param-
eter in the algorithm. Using the technique of stochastic
gradient descent, we derive a set of equations which
updates the amplitude and phase of individual sinusoids
along with online optimization of the phase parameter ϕm
at the frequencies of vibration.

A. Derivation

Microphonics from narrow band vibration sources may
be represented by a finite series of sinusoids at different
frequencies with slowly changing amplitudes and phases.
Hence, in the time domain, the actuator voltage upzðtÞ can
also be written as a sum of sinusoids umðtÞwith frequencies
ωm and whose amplitude and phase are determined by
slowly changing ImðtÞ and QmðtÞ,
upzðtÞ ¼

X
m

umðtÞ ¼
X
m

ImðtÞ cosðωmtÞ−QmðtÞ sinðωmtÞ:

ð5Þ
The piezoelectric actuator tunes the cavity in response to
this signal, the effect of the tuner being represented as a
linear transfer function τðωÞ. Using a phasor notation for
the individual frequencies ÃmðtÞ≡ IðtÞ þ iQðtÞ, we can
write the total actuator voltage in terms of these phasors
as upzðtÞ ¼

P
mumðtÞ≡P

mRefÃmðtÞeiωmtg. Using this
notation we write the detuning near a particular frequency
as a linear response integral,

fmðtÞ ¼ Re

�
1

2π

Z
∞

−∞
dω

Z
∞

−∞
dt0Ãmðt0Þeiðωm−ωÞt0τðωÞeiωt

�
;

ð6Þ
where we have Fourier transformed the actuator voltage,
used Eq. (3) which gives us fmðωÞ ¼ ÃmðωÞτðωÞ and finally
applied the inverse Fourier transform to calculate the detun-
ing fmðtÞ in the time domain. Since the spectral content of
microphonics detuning is assumed to be concentrated around
certain frequencies, only parts of the transfer function are
relevant in modeling the tuner movements.
Far from resonance, where the amplitude of the response

does not strongly depend on frequency, we approximate the
tuner transfer function around ωm as

τðωÞ ≃ τmod
m e−ifϕ

mod
m þdϕ

dωjωm ðω−ωmÞg; ð7Þ
where we expand the phase response up to first order. Since
this approximation only applies in the neighborhood of ωm,
we impose the restriction of narrow bandwidth on umðtÞ,
which implies j 1

Ãm

dÃm
dt j ≪ ωm. Using this model in Eq. (6)

and changing the order of integration, we get

fmðtÞ ≃ Re

�Z
∞

−∞
dt0Ãmðt0Þeiωmt0

×
1

2π

Z
∞

−∞
dωτmod

m eif−ϕ
mod
m þdϕ

dωjωmωmgeiωðt−t
0−dϕ

dωjωm Þ
�

¼ Re

�
τmod
m eif−ϕ

mod
m þdϕ

dωjωmωmg
Z

∞

−∞
dt0Ãmðt0Þeiωmt0

× δ

�
t − t0 −

dϕ
dω

����
ωm

��
; ð8Þ

NILANJAN BANERJEE et al. PHYS. REV. ACCEL. BEAMS 22, 052002 (2019)

052002-4



where the integral over ω becomes a delta function which
represents the approximate time domain impulse response
valid when the frequency of actuation is ωm. Using the
delta function to evaluate the convolution integral, we get

fmðtÞ ≃ Refτmod
m Ãmðt −Dmod

m Þeiðωmt−ϕmod
m Þg; ð9Þ

where we have introduced the group delay Dmod
m ≡ dϕ

dω jωm
.

The effective detuning δfcompðtÞ of the cavity in response to
the perturbation given in Eq. (5) is thus given by

δfcompðtÞ¼δfextðtÞþ
X
m

fmðtÞ

¼δfextðtÞþ
X
m

Refτmod
m Ãmðt−Dmod

m Þeiðωmt−ϕmod
m Þg;

ð10Þ
where we have combined the tuner response at different
frequencies and δfextðtÞ is the microphonics detuning
coming from external vibrations. Now we can use this
model to construct a suitable cost function which can be
minimized by the algorithm.
The objective of microphonics compensation is to reduce

the mean square detuning of the cavity:

CðtnÞ≡ 1

N

Xn
i¼n−Nþ1

½δfcompðtiÞ�2: ð11Þ

CðtnÞ is the cost function at time tn which is taken to be the
expectation value of the square of detuning, approximated
by a running average. The method of gradient descent relies
on the gradient vector being in the direction of steepest
descent on the cost surface. In parameter space, the gradient
represents the normal to the constant cost surface and can
be estimated using the model developed in Eq. (10).
Following standard LMS techniques [22], we use the
current sample to approximate the cost function and hence
use the stochastic gradient descent approach to the opti-
mization problem. Taking N ¼ 1, we calculate the partial
derivatives of the cost function with respect to the opti-
mization parameter Ãm which determines the actuator
voltage:

∂C
∂Ãm

¼ τmod
m δfcompðtnÞeiðωmt−ϕmod

m Þ; ð12Þ

where we have used Eq. (10) under the assumption that
group delay Dmod

m is negligible with respect to the time
scales with which ÃmðtÞ changes. The typical group delay
introduced by the modified Saclay-I tuners used in the
CBETA project is less than a millisecond far from resonant
frequencies while the bandwidth of the vibration sources
are typically less than 1 Hz. Each iteration of the stochastic

gradient descent algorithm changes the control parameter a
little in the direction opposite to the gradient.

Ãmðtnþ1Þ ¼ ÃmðtnÞ − μmδfcompðtnÞeiðωmt−ϕmod
m Þ; ð13Þ

where we have absorbed τmod
m into μm, which is the

adaptation rate for Ãm in the algorithm. Equation (5)
together with (13) form the active noise control (ANC)
algorithm.
The ANC algorithm derived above is mathematically

equivalent to applying a linear time invariant filter on the
tuning error defined as eðtÞ≡ δf0 − δfcomp in order to
generate the actuator signal umðtÞ, where we use δf0 ¼ 0 in
the presence of no beam loading. To derive the equivalent
filter transfer function, we start by assuming Ãmð0Þ ¼ 0,
and write the update rule using the phasor notation,

Ãmðtnþ1Þ ¼
Xn
k¼0

½−δfcompðtkÞ�e−iðωmtk−ϕmod
m Þ: ð14Þ

Combining this equation with the definition umðtÞ≡
RefÃmðtÞeiωmtg, we directly relate the actuator signal to
the tuning error:

umðtnþ1Þ ¼ Re
�
μmeiωmtnþ1

Xn
k¼0

½−δfcompðtkÞ�e−iðωmtk−ϕmod
m Þ

�

¼ μm
Xn
k¼0

eðtn−kÞ cos½ωmðkþ 1ÞΔtþϕmod
m �; ð15Þ

where Δt is the sample duration, and eðtÞ ¼ −δfcompðtÞ.
Equation (15) represents a discrete convolution of the input
signal with a sinusoid and is an impulse response filter. The
Z transform of the filter can be written as

HmðzÞ ¼ μm
X∞
k¼0

z−k cos½ωmðkþ 1ÞΔtþ ϕmod
m �

¼ μm
cosðωmΔtþ ϕmod

m Þ − z−1 cosϕmod
m

1 − 2 cosðωmΔtÞz−1 þ z−2
: ð16Þ

The frequency response is shown in Fig. 3.
The control filter shows a very narrow bandpass response

rising to∞ and a phase swing of 180° around the frequency
ωm. In the limit of ω → ωm, the filter response can be
approximated by

HmðeiωΔtÞ ≈
μmeið−

π
2
þϕmod

m þωmΔtÞ

2ðω − ωmÞΔt
: ð17Þ

μm serves as an overall scaling factor governing the span of
frequencies within which the controller-tuner system has
more than unity gain and μm can hence be used to adjust the
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bandwidth of the feedback loop around the microphonics
frequency. In the neighborhood of ωm, the phase swings
from π=2þ ϕm þ ωmΔt to −π=2þ ϕm þ ωmΔt from left
to right in a discrete jump.

B. Stability

The compensated detuning δf̃compðωÞ is the net effect of
the tuner δf̃mðωÞ≡ τðωÞuðωÞ and the external contribution
δf̃extðωÞ. The tuner excitation uðωÞ≡ −HðωÞδf̃compðωÞ is
obtained as an output of the linear controller whose
frequency response is given by HðωÞ. From these defi-
nitions we obtain the closed loop transfer function of the
system which provides a linear relation between the
external detuning δf̃extðωÞ and the compensated detuning
δf̃compðωÞ in frequency space:

CðωÞ≡ δf̃compðωÞ
δf̃extðωÞ

¼ 1

1þP
mHmðωÞτðωÞ

¼
Y
m

1

1þHmðωÞτðωÞ
; ð18Þ

where the sum of all the filtersHðωÞ≡P
mHmðωÞ acts as a

comb with its frequency response amplitude remaining
small except for the neighborhood of ωm. This lets us
write the transfer function as a product, since
jHmðωÞHnðωÞτ2ðωÞj ≈ 0 ∀ m ≠ n. In a theoretical situa-
tion, when all the microphonics detuning is generated by
pure sine waves whose frequencies are exactly ωm, the
controller works perfectly to compensate for all micro-
phonics. Figure 4 demonstrates this by showing that

jCðωÞj equals 0 at ωm, where δfextðωÞ only consists of a
sine wave at exactly ωm. However real microphonics
signals have finite bandwidth spectral modes and the
performance of feedback control is determined by the
combined response of the controller and the tuner over all
of frequency space. In the limit of the response of each filter
being much greater near its passband than its nearest
neighbors, we can approximate the complete tuner transfer
function τðωÞ with tuner transfer function models τmðωÞ≡
limω→ωm

τðωÞ at each compensation frequency ωm:

CðωÞ ∼
Y
m

1

1þHmðωÞτmðωÞ
: ð19Þ

Figure 4 shows the shape of one such isolated function and
illustrates how adjusting ϕm can lead to an asymmetric
response, attenuating vibrations on one side and amplifying
the other. Further, the closed loop stability all of the
individual contributions with index m can be a sufficient
condition for the stability of the entire system.
In practice, we estimate the values of μm and ϕmod

m
based on the measured tuner transfer function in order to
configure the controller. If these guesses are close to
the actual behavior of the tuner near ωm, then the controller
yields good performance and is stable. Approximating
the actual tuner transfer function by limω→ωm

τðωÞ ¼
τme−ifϕmþDmðω−ωmÞg, we can determine the range of values
of μm and ϕmod

m , which leads to stable performance of the
narrow band ANC algorithm.
We can analyze the stability of the feedback loop using

the open loop transfer function UmðωÞ≡HmðωÞτðωÞ. The
phase response ϕOL of UmðωÞ around the frequency ωm is
given by

ϕOL ¼
(

π
2
þ ϕmod

m þ ωmΔt − ϕm − ðω − ωmÞDm; for ω ≤ ωm

− π
2
þ ϕmod

m þ ωmΔt − ϕm − ðω − ωmÞDm; for ω > ωm;
ð20Þ
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FIG. 4. Magnitude of closed loop transfer function in frequency
domain with fm ¼ 40 Hz, μm ¼ 10−4, Δt ¼ 0.1 ms for different
choices of ϕm when τðωÞ ¼ 1. Regardless of the value of ϕm,
microphonics at the frequency fm is perfectly compensated.
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where ϕmod
m is the compensation parameter used in the

control algorithm. The ANC response function [Eq. (16)]
does not have any poles in the positive half of the complex
plane. Using this information, the Nyquist stability criterion
dictates that instability can only happen if UmðωÞ encircles
the point −1 in the complex plane. This occurs when
UmðωÞ crosses the negative real axis while jUmðωÞj ≥ 1.
The band of frequencies within which instability may occur
is given by

ωm −
μmτm
2Δt

< ω < ωm þ μmτm
2Δt

: ð21Þ

The control loop is stable when we avoid positive feedback
inside the above domain, i.e., ϕOLðωm − 0.5μmτm=ΔtÞ < π
and ϕOLðωm þ 0.5μmτm=ΔtÞ > −π. This gives us a range
of possible values for ϕmod

m :

−
π

2
þ μmτmDm

2Δt
− ωmΔtþ ϕm < ϕmod

m

<
π

2
−
μmτmDm

2Δt
− ωmΔtþ ϕm ð22Þ

The center of the above range, ϕcenter
m ¼ ϕm − ωmΔt com-

pensates for the phase lag from the tuner at frequency ωm

and gives us the maximum margin on ϕmod
m . The span of

acceptable values of ϕmod
m depends on not only the tuner

behavior but also the adaptation rate μm. To ensure that the
range given by Eq. (22) is not a null set, we put an upper
bound on μm:

μm <
πΔt
Dmτm

: ð23Þ

These calculations assume that neighboring frequencies
of the comb are far away so that their response amplitudes
are much less than unity at the next frequency, i.e.,
jUm−1ðωmÞj ¼ jτðωmÞHm−1ðωmÞj ≪ 1. This gives us a
crude limit on the distance between nearest neighbors as

jωm − ωm−1j ≫
μm−1τm
2Δt

; ð24Þ

hence constraining the spacing of the different frequencies
we can compensate. Detailed calculations involving the
complete tuner transfer function and the array of bandpass
filters are required to fully analyze the stability of the
control system.
The complete stability analysis of the ANC system

involves assessing the open loop transfer function
UmðωÞ over all frequencies using a Bode plot. Figure 5
shows an example of using the compensation system on an
unstiffened cavity used in the main linac of the CBETA
project. We apply the algorithm on two frequencies 8 and
40 Hz illustrated by the notches in amplitude and expected
phase swings of 180° at these frequencies. The open loop

phase stays between the −180° and 180° lines for gains
above 0 dB showing that the system is stable near these
frequencies. The phase margins, i.e., the distances from the
−180° line when the amplitude crosses unity gain (0 dB),
are 80° and 90° at 8 and 40 Hz respectively as seen from the
plot of ϕOL ¼ argfHðωÞτðωÞg in Fig. 5. However, the gain
seems to be close to 0 dB near the tuner resonances at
frequencies around 250 Hz, when ϕOL crosses the −180o
mark with a gain margin ≲2 dB. This prompts the use of a
low pass filter with frequency response FðωÞ to attenuate
the transfer function at these frequencies as shown by the
dotted lines of Fig. 5. The analysis illustrates the effect of
tuner resonances far from the compensation frequencies ωm
signalling the need for additional filtering to ensure
stability of the system.

C. Performance on a single resonance

The performance of the controller in suppressing micro-
phonics detuning depends on the vibrating components.
Assuming that the microphonics is generated by resonant
processes for example through thermoacoustic instabilities
or through white noise excitations, the ensemble averaged
power spectrum hjδf̃extðωÞj2iE of mechanical eigenmodes
is given by

hjδf̃extðωÞj2iE ≡
X
v

Γ2
v

f1 − ð ωωv
Þ2g2 þ ð ω

Qvωv
Þ2 ; ð25Þ
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FIG. 5. Bode plot for the mechanical open loop transfer
function UðωÞ≡HðωÞτðωÞ of an unstiffened cavity inside the
main linac used for the CBETA project, showing both the
amplitude and phase in blue and orange respectively. The solid
lines represent the effect of the active noise control algorithm
applied to frequencies 8 and 40 Hz, while the dotted lines
represent the effect of incorporating a low pass finite impulse
response filter with frequency response FðωÞ inside the con-
troller. The blue dashed line represents unity gain (0 dB) and the
orange dashed lines at −540°;−180° and 180° represents the
boundaries of stability in phase.
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where ωv, Qv and Γv are the frequencies, quality factors
and strengths of microphonics detuning. Using this pre-
scription, we simulate the performance of the controller on
vibrations generated by exciting a simple harmonic oscil-
lator with frequency 40 Hz and quality factor 50 with
Gaussian white noise from a random number generator
with an arbitrary seed. The first panel of Fig. 6 shows the
frequency content of detuning used to test the ANC
controller. Assuming that the tuner transfer function,
jτðωÞj ¼ 1 over all frequencies, we calculate the compen-
sated detuning in each iteration as δfcompðtnÞ ¼ δfextðtnÞþ
upzðtn−1Þ. We simulate the mechanical performance of the
controller-tuner system by iterating through Eqs. (13) and
(5) to calculate the control signal upzðtnÞ to the actuator,
while the sampling and iteration process generates a group
delay D ¼ 2Δt. The performance of the system is calcu-

lated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδf2compit=hδf2extit

q
which represents attenuation

of the microphonics detuning δfext excited by vibrations.
To account for the randomness of the vibration signal, we
perform the ensemble average of attenuation over 100
simulations using different random number seeds, each
lasting for a duration of 10 seconds. We compare the results
of the time domain simulations with the expected perfor-
mance of the algorithm calculated semianalytically using
the closed loop transfer function [Eq. (19)] along with the
filter response in Eq. (16).
Figure 6 shows the simulated performance of the ANC

algorithm under varying compensation parameters. The
results show that the controller performs its best on average
when ωm ¼ ωv, with attenuation progressively getting
worse as we go farther away from ωv. The attenuation
shows an asymmetric dependence on ϕmod

m about 0o reach-
ing a minimum at some nonzero value. Finally, μm
represents the gain in the system and compensation is
expected to get better with larger gain up to the limit given
by Eq. (23) beyond which the system becomes unstable.
The expected attenuation estimated from the semianalytical
calculation clearly diverges at μm ≳ π=2, however the
results from the numerical simulations do not agree. In
practice the maximum gain of the system will depend on

the exact response of the tuner, especially the group delay.
These simulations guide us on how to choose parameters of
the ANC during operations.

D. Phase adaptation

The compensation performance of a controller with fixed
parameters is dependent on variations in the response of the
tuner and fluctuations of the microphonics spectrum. The
tuner response may vary from day to day due to pressure
variation in the helium bath while the vibration mechanism
may also change frequency as a function of time. The
controller as described in the previous section will not be
able to adapt to such changes, which might limit perfor-
mance in a dynamic environment. The simulation results in
Fig. 6 suggest that attenuation is a monotonously decreas-
ing function of gain μm, with the system becoming unstable
beyond a threshold. An adaptive algorithm to optimize for
the value of μm might tend to drive the system towards
instability. However, the controller frequency ωm and
phase ϕmod

m have positions where attenuation is minimum
within the range of values which satisfy the stability
conditions. Consequently, adapting ωm and ϕmod

m to a
changing excitation could potentially make the algorithm
more robust, while making it easier to operate in practice
since it would optimize itself.
The optimization of the ANC system translates to finding

the minimum of the mean square of detuning hδf2compi with
respect to the phases ϕmod

m and the frequencies ωm. We can
implement this optimization in the frequency domain using
Parseval’s theorem and Eq. (18) to establish a relation with
HmðωÞ:

hδf2compit ∝
Z

∞

−∞
jδf̃compðωÞj2dω

¼
Z

∞

−∞

���� δf̃extðωÞ
1þP

mHmðωÞτðωÞ
����2dω: ð26Þ

We can use this expression with any numerical optimizer to
calculate the best values for the ANC parameters provided
that the detuning spectrum f̃extðωÞ and the tuner transfer
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FIG. 6. Simulation results of using ANC with an ideal tuner. From the left, the first panel shows the spectrogram of simulated
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function τðωÞ are known. We simulate the performance of
this approach by exciting vibrations at 40 Hz in δfext with
varying quality factors Qv and different μm in Hm. We use
the measured τðωÞ from unstiffened cavity 3 whose transfer
function was shown in Fig. 1. Figure 7 shows the results
from a simplex optimizer as dashed lines, with panels (b)
and (d) showing the optimum values of phase ϕopt

m as a
function of quality factor Qv and adaptation rate μm
respectively. Panels (a) and (c) show the minimum attenu-
ation achieved by the optimizer.
In order to implement this optimization as a LMS

scheme, we will need to adapt to changing characteristics
of microphonics detuning in δfext and also measure tuner
response τðωÞ over the relevant frequencies at the same
time. We derive an alternative algorithm which achieves
this by solely adapting the controller phase ϕmod

m in order to
minimize the cost function through gradient descent, and at
the same time, make the controller more robust to changes
in the tuner. The partial derivative of the cost function given
in Eq. (11) with respect to ϕmod

m is given by

∂C
∂ϕmod

m
¼2τmδfcompðtnÞRefÃmðtnÞeiðωmtn−ϕmðtnÞ−π=2Þg: ð27Þ

This gives us the update rule

ϕmod
m ðtnþ1Þ ¼ ϕmod

m ðtnÞ − ηmδfcompðtnÞ
× RefÃmðtnÞeiðωmtn−ϕmod

m ðtnÞ−π=2Þg; ð28Þ

where ηm is the adaptation rate for ϕmod
m . Figure 7 also

shows the results from simulations of this algorithm with
microphonics at frequency fv ¼ 40 Hz, with a tuner
response modeled on the same measured τðωÞ for MLC
cavity 3. We initialized the simulations with the known

microphonics frequency fm ¼ fv ¼ 40 Hz, an initial guess
for the tuner phase ϕmod

m ¼ 0 and phase adaptation rate
ηm ¼ −0.0001. We set the controller gain to μm ¼ 0.0006
for the simulations with varying Qv, and set the quality
factor of vibration source to Qv ¼ 50 for simulations with
different μm. The thin blue lines representing the ensemble
average over 80 simulations clearly show the LMS adapted
phase deviates from the simplex optimization outlined in
the previous paragraph. This deviation arises from the
approximate model [Eq. (10)] of compensated detuning
which we used to construct the partial derivative as we have
neglected group delay and higher order terms in Eq. (7).
However, the attenuation obtained from gradient descent
closely matches the ideal result, thus demonstrating the
efficacy of this method.

IV. RESULTS

The Cornell-BNL ERL test accelerator (CBETA)
[7,23,24] project will be the first high-current multiturn
ERL employing SRF Linacs. It uses two SRF cryomodules,
one for the injection system and the other used to execute
energy recovery. The injector cryomodule [25,26] consists
of five two-cell SRF cavities [27] and is configured to
provide 6 MeV of energy gain to the electron beam for
injection into the CBETA loop and is operated with a low
external quality factor due to high beam loading. The main
linac [11,28] on the other hand incorporates six seven-cell
SRF cavities [29] with a design energy gain of 36 MeVand
will be used to execute energy recovery. Operated at QL ≈
6 × 107 with solid state amplifiers, the peak detuning which
can be tolerated by the main linac cavities is limited to
54 Hz with a 5 kW rf source, consequently microphonics
detuning presents a significant operational bottleneck and
needs to be mitigated.

A. Passive suppression

The initial microphonics measurements of the main linac
cavities showed strong vibrations at frequencies 8, 41 and
82 Hz as illustrated in the plots of rms detuning in Fig. 8.
Apart from steady vibrations at these frequencies, sudden
events resulting in large peak detuning of over 100 Hz were
seen in the unstiffened cavities 3 and 5 as evident from the
histograms. Vibrations can mechanically couple into the
cavities from sources both inside and outside the cryo-
module. In an attempt to find them, we cross-correlated the
microphonics detuning signal with vibration signatures
from various machinery. We started with the rotary and
turbomolecular pumps maintaining the insulation vacuum
in the cryomodule, looking at the effect of power cycling
them for brief periods and eventually calculating the cross-
correlation functions. Though the rotary pump did not have
any effect, the turbomolecular pump does induce weak
vibrations around 820 Hz, consistent with a rotation speed
of 50000 rpm. There are large variable frequency induction
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FIG. 7. Comparison of controller phase optimization for differ-
ent gains and quality factors of vibration. (a) and (c) show the best
attenuation reached while (b) and (d) show the optimum phase as
functions of μm and Qv respectively. Results from off-line
optimization are shown as dashed lines while simulations of
stochastic gradient descent are shown as the thin blue lines with
2σ confidence bounds shaded light blue.
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motor water pumps on the experimental floor in the vicinity
of the cryomodule, these were also shown to be of no effect
to the microphonics detuning. Further we also measured
vibrations from the large room temperature vacuum pumps
controlling the vapor pressure of helium inside the cry-
omodule, showing that these too do not contribute to peak
detuning of the cavities directly. Besides direct mechanical
coupling of vibrations through the cavity supports, pressure
fluctuations in the liquid helium surrounding the cavity
also give rise to microphonics detuning. Table I shows a
summary of the different vibration sources and their

relative contribution to the total rms detuning in the main
linac cavities. In the original configuration, the pressure
variations in liquid helium accounted for most of the
microphonics in the main linac cavities.
The cryogenic system of the main linac cryomodule is a

modified version of the TESLA design [30]. Separate
vessels house the six cavities and are supplied with liquid
helium through chimneys by the 2K-2 phase pipe and
through the precool line connected to the bottom of the
vessels. The pressure exerted by liquid helium on the cavity
walls influences the resonant frequency of the cavities and
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FIG. 8. Microphonics measurements on all cavities of the main linac before and after the modifications of the cryogenic system. The
dashed lines represent data from the default configuration for cavities 2, 3, 5 and 6; while the data for cavities 1 and 4 were taken after
making the Joule-Thomson (JT) and precool valves static. The solid lines indicate data after the JT and precool valves were made static
and the 5 K adjust valve was fitted with sleeves.

TABLE I. Contribution from various microphonics sources, listed as percent of total mean square microphonics detuning.
Thermoacoustic oscillations from the 5 K adjust valve are responsible for vibrations at 41 and 82 Hz, forming the major source
of microphonics in the original configuration measured in 2017. In contrast, vibrations coupled in through the new waveguides installed
in 2018 are the major contributor to detuning in unstiffened cavities after valve modification.

Cavity 1 Cavity 2 Cavity 3 Cavity 4 Cavity 5 Cavity 6

Source 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018

Low frequency 0.1 0.1 1.2 0 0 0 0 0 1.3 0 2.2 0
Gas flow 8 Hz 17 1.7 0.8 0.1 2.9 0.1 0 0.1 0.2 0.1 32.4 1.9
Valve 41 Hz 42.1 0.4 44.3 0.1 5.3 0.1 39.4 0.1 16.8 0.6 20.8 0.7
Waveguide 59 Hz 2.4 46.3 0.6 3.4 7.5 78.5 0.7 4.4 0.4 46.9 0.3 7.2
Valve 82 Hz 11.1 2.9 20 1.2 43.7 0.8 16.8 0.7 66 6.9 34.1 4.5
Miscellaneous 27.4 48.7 33.1 95 40.5 20.5 43.1 94.7 15.3 45.5 10.2 85.6
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needs to be regulated. Slow trends in this pressure give rise
to very low frequency microphonics detuning (≲1 Hz) and
tight pressure regulation requires the interplay of two
control mechanisms. A Joule-Thomson (JT) valve main-
tains the liquid level in the 2K—2 phase pipe and an
external pump maintains the vapor pressure near 12.5 Torr
corresponding to 1.8 K. Two separate proportional integral
feedback loops actuate the JT valve and control the pump to
maintain the liquid level and vapor pressure at their set
points respectively. The system also opens the precool
valve when the liquid level goes below a threshold.
Consequently, transients or instabilities in any of these
components may give rise to vibrations in the cryomodule.
Measurements of microphonics detuning and various

cryogenic control parameters showed that movement of the
JT and movement of the precool valve both coincided with
the large peak detuning events. The occasional actuation of
the precool valve in response to the helium liquid level
going below a threshold correlated with spikes in a signal
from a piezoelectric sensor. However the occurrence of
peak detuning is more frequent, consequently we made
both the precool and the JT valves static and the results of
this test are shown in Fig. 9. In the default configuration,
the microphonics histogram shows large peak events which
are ≳200 Hz,2 while the peak microphonics detuning
becomes ∼50 Hz with both valves static verifying the
proposed mechanism. However, this configuration does not
allow us to have active control on the liquid helium level
and if the boil off generated due to the thermal load from
the cavities does not equal the rate of in-flow from the
supply line, then the liquid level in the 2K—2 phase pipe
would steadily run away. To avoid this, a heater attached to
the 2K—2 phase pipe is put on a control loop to provide a
minimum dynamic thermal load to substitute for when the
cavities are not generating enough heat and thus boiling off
suitable amounts of helium while stabilizing the liquid

level. This results in stable operation while limiting the
peak detuning to ∼100 Hz a definite improvement from the
original configuration. Despite the additional detuning
introduced due to the operation of the heater, this is still
better than controlling the helium level using the valves.
Peak detuning was greatly improved when the valves

were made static, however we observed a strong enhance-
ment of the steady state oscillations at 41 Hz which do not
contribute much to the peak detuning but increase the rms
by a factor of 2. The liquid helium level control using the
heater enhances the narrow band 8 Hz vibration line. This
points to gas flow in the helium gas return pipe as a possible
source for the generation of the 8 Hz vibrations. Previous
operations data further corroborated this fact by showing
that the vibration amplitude at 8 Hz is an increasing
function of the vapor flow through the helium gas return
pipe possibly exciting a mechanical eigenmode of the
structure. Pending further investigation into the source,
the active compensation system has been successful in
attenuating these vibrations.
Accelerometer measurements of vibration on the 5 K

adjust cryogenic valve stalk yielded significant cross-
correlation with the microphonics detuning measurement
at 41 and 82 Hz. Figure 10 is a schematic of the valve
showing the cold region near the valve orifice which comes
in contact with cold helium and the warm region which
extends outside the cold mass of the cryomodule and is at
room temperature. Delayed heat transfer between the hot
and the cold regions through convection of the helium gas
and conduction through the valve stalk leads to thermoa-
coustic oscillations [31] and the resulting pressure waves
resonate inside the closed space between the valve stem and
the valve stalk. This mechanism of vibrations was first
observed in the LCLS-II cryomodules while testing at
Fermilab [32]. Following discussions with the Fermilab
team, we inserted sleeves made of a cryogenic compatible
PEEK plastic material on the stem to restrict the gas flow
and suppress vibrations [33].
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FIG. 9. Influence of valve actuation on microphonics detuning
of cavity 3 (unstiffened) showing the detuning histogram on the
left panel and the rms detuning on the right from measurements of
duration 800 seconds.

FIG. 10. Cryogenic needle valve used to regulate helium flow
in the cryomodule and the electro-pneumatically actuated valve
stem showing attached plastic sleeves filling the space between
the stem and the inner surface of the stalk.

2A slight offset in the phase calibration of the field probe signal
might have led to this uncharacteristically large value of peak
detuning. However all data shown in Fig. 9 were taken with the
same calibration settings and so this is a valid verification of the
valve actuation effect.
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Table II shows a summary of the microphonics mea-
surements on all cavities in different configurations of the
cryogenic system. The peak detuning on all unstiffened
cavities (Fig. 8) showed a significant reduction after the 5 K
adjust valve was modified. Table I also demonstrates a
significant reduction in the fractional contribution to the net
mean square detuning from this instability at 41 and 82 Hz.
However, we measured a new vibration line at 59 Hz which
was not seen during our previous tests. The results from
cross-correlation measurements of the microphonics detun-
ing and accelerometer signals indicate that 59 Hz vibrations
from an external source are being mechanically coupled
into the cryomodule through the newly installed wave-
guides. The new source significantly contributes to mean
square detuning on all the unstiffened cavities as shown in
Table I. Cavity 3 is affected the most with the highest peak
detuning (∼50 Hz) among all others and this was an
excellent candidate for testing the active compensation
system.
Stiffened cavities did not show a significant reduction in

peak microphonics detuning, with an increase being shown
by cavities 2 and 4 even when the rms diminished for cavity
4. Figure 8 shows results from microphonics measurements
on these cavities. The histogram of detuning for cavity 2
and cavity 4 shows a flat top, indicating deviations from
Gaussian white noise. The spectrum plot shows substantial
vibration energy localized around 41 Hz and the 82 Hz
corroborating this observation and the thermoacoustic
oscillations are indeed the reason as discussed earlier.
The spectrum plots further indicate a reduction of the
energy after valve modification in the same frequency
bands, along with a net decrease in rms detuning up to a
vibration frequency of 200 Hz which is the limit of the
dataset. However, the width of the histograms also related
to the rms seems unchanged for cavity 4 and shows an
increase in cavity 2 after valve modification seemingly
contradicting the frequency domain observations. This
apparent disagreement of the rms detuning obtained from
the histogram and the spectrum plots are listed in Table II.
While the estimates agree for unstiffened cavities, there is a

significant difference for the stiffened cavities. The missing
vibration energy could be accounted for by the excitation
of high frequencies (≳200 Hz), possibly the mechanical
eigenmodes of the cavity along with measurement noise.
Unfortunately the raw signals were not recorded during this
experiment rendering us unable to analyze this in more
detail.

B. Active compensation

Passive measures of mitigating the vibration sources is
the preferred method of reducing microphonics detuning.
However active control is also necessary to temporarily
restore operating gradient until the source is mitigated and
to improve the margin of rf power consumption in the
presence of existing microphonics detuning. We imple-
mented the narrow band ANC algorithm in the Cornell
digital low level rf control system [34,35] for this purpose.
Figure 11 presents a simplified diagram of the rf system
showing the relevant signal paths. We mix the rf signals
from the cavity with an internal frequency reference to
generate a baseband signal at 12.5 MHz. The field control
loop runs at this frequency in a field programmable gate
array (FPGA) which measures the amplitudes and phases of
the field and the forward power, while the difference of the
phases is used to determine the net microphonics detuning
δfcomp. The processed detuning and field data are then
transferred to a digital signal processor (DSP) which we use
to execute resonance control. Besides LFD compensation
and proportional integral control on low frequency micro-
phonics, the DSP also incorporates the modified narrow
band ANC algorithm we have proposed in this paper.
The implemented ANC algorithm requires prior knowl-

edge of the frequency content of external vibrations but
does not require any measurement of the tuner transfer
function at the frequencies of interest. We first measure the
spectrum of microphonics detuning and determine which
frequencies we want to compensate. The algorithm is then
applied separately on each of these known excitations at
ωm. It requires two additional parameters, the gain μm and
phase adaptation rate ηm as described in Eqs. (13) and (28)

TABLE II. Microphonics measurements before and after cryogenic system modifications for both stiffened and unstiffened cavities.
The third column shows the pressure to detuning coefficient df=dp. Root mean square detuning is calculated from the detuning
histograms except for the values in brackets which are obtained from the spectrum plots and are band limited to 200 Hz.

df=dp Peak detuning (Hz) rms detuning (Hz)

Cavity Stiffened (Hz/Torr) Original
JT and precool

static 5 K adjust modified Original
JT and precool

static
5 K adjust
modified

1 No 38 N=A 78 30 N=A 13.6 5.0 (4.7)
2 Yes 15 18 N=A 25 4.4 N=A 4.6 (2.4)
3 No 46 2801 100 50 11.2 20.8 10.7 (10.3)
4 Yes 17 N=A 17 20 N=A 4.4 3.7 (2.4)
5 No 33 1631 N=A 41 12.7 N=A 6.9 (6.3)
6 Yes 19 30 N=A 18 5.0 N=A 3.2 (2.5)
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respectively for each of these excitations. To determine an
optimum setting, we start with small numbers for μm and ηm
until we start observing some effects on the net micro-
phonics detuning, increasing μm until the feedback loop
becomes unstable. At the same time, we minimize the peak
detuning by optimizing the value of ωm which strongly
determines the performance. We set μm to half of the
maximum stable value to give us a suitable gain margin,
and observe the controller phase ϕm as a function of time.
We set ηm so that the phase settles to the optimum value on
average within a few minutes at the same time showing a
noise level within �10°. This process is repeated for each
frequency we want to compensate, while the overall
performance of resonance control depends on the quality
factors of vibrations as illustrated in Fig. 7.
We have used the ANC algorithm during various stages

of rf commissioning to attenuate microphonics and the

results from unstiffened cavities of the main linac are
shown in Fig. 12. Before we modified the 5 K adjust valve,
compensation was applied to 41 and 8 Hz on unstiffened
cavities 1 and 3. The algorithm was successful in attenuat-
ing 41 Hz in both cavities 1 and 3 but was not effective on
8 Hz vibrations in cavity 3 as illustrated by the spectrum
plots probably because the compensation frequency was
not set precisely. These narrow band vibrations were a
major contribution to microphonics detuning and their
decrease also reduced the peak detuning. After we modified
the 5 K adjust valve, we found the major source of
microphonics detuning to be at 59 Hz. The ANC algorithm
was successful in suppressing these vibrations in cavity 3.
The attenuation of spectral lines are further validated by
the rms detuning as listed in Table III. The success of the
algorithm indicates that those vibration lines were not in the
vicinity of mechanical eigenmodes of the tuner-cavity
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FIG. 12. Effect of active microphonics compensation on two unstiffened cavities of the main linac. The dashed lines represent data
without active suppression while the bold lines show the performance with ANC turned on. The first two sets of data were taken before
valve modification while the last dataset was taken after.

FIG. 11. Simplified diagram of the setup used during routine linac operations for CBETA. The Cornell low level radio frequency
control system incorporates a FPGA responsible for field control and a digital signal processor (ADSP TS201) for executing
comparatively slow tasks. The modified ANC algorithm [Eqs. (13), (28) and (5)] is executed inside the DSP for each microphonic
spectral line at ωm. The output of all the individual controllers um are summed and sent to the piezoelectric actuator. The diagram also
shows proportional-integral control for low frequency microphonics along with a Lorentz force detuning compensation system.

ACTIVE SUPPRESSION OF MICROPHONICS … PHYS. REV. ACCEL. BEAMS 22, 052002 (2019)

052002-13



system which would have limited the effectiveness of the
system as explained in Sec. III.
The results of using the system on stiffened cavities is

shown in Fig. 13. The algorithm was applied to cavities 4
and 6 for the frequencies 8 and 41 Hz with additional
attenuation of 82 Hz on cavity 6. While the ANC
successfully reduced peak detuning from 30 to 15 Hz in
cavity 6, the measurements on cavity 4 indicate no
reduction of peak detuning even though the rms detuning
is attenuated as seen from both the histogram and the
spectrum plot. To understand which frequencies actually
contribute to peak detuning, we Fourier transform the raw
signal and zero all components beyond a certain vibration
frequency and then find the peak detuning of the inverse
transformed signal. Figure 14 shows the cumulative peak
detuning as a function of the vibration frequency threshold.
When the ANC is off, 41 and 82 Hz contribute most to the
peak detuning as indicated by the large steps when we
include these frequencies in the peak calculation. When we
turn on compensation, the contribution from both these
frequencies are reduced but a new mode at 102 Hz appears
which accounts for almost half of the peak detuning but
appears as a shallow step in the spectrum plot, illustrating
its transient nature. These additional spectral lines gener-
ated by the ANC controller point to transients possibly

generated by the nonlinear phase adaptation process.
Nevertheless, the ANC algorithm is well suited for com-
pensating narrow band vibrations in both stiffened and
unstiffened cavities as evidenced from the performance
listed in Table III.
The stability and robustness of the algorithm is demon-

strated by comparatively long periods of stable operation
with the same settings on different days. The observations
shown in Table III are taken from datasets of at least
800 seconds measured for cavities inside a cryomodule
connected to a production level cryogenic system unlike
previous work primarily focused on test facilities. We
achieved stable operations of over a few hours without
spontaneous trips on all cavities with the ANC system
active. We also successfully used it on cavity 3 during beam
operations for the CBETA fractional arc test which helped
us achieve an energy gain of 8 MeV using a forward
power below 5 kW which would not be possible without it.
Once the settings were determined using the procedure
explained earlier, resonance control was turn key with no
tweaking required on subsequent days of operation which
highlights the robustness of the system.
Lorentz force detuning (LFD) and mechanical coupling

between different cavities in the cryomodule can be further
sources of detuning which affect the operation of a
resonance control system. The field dependence of LFD
leads to decrease in the resonant frequency when the cavity

TABLE III. Results of using the active noise control system on various cavities during different stages of
commissioning.

Peak detuning (Hz) rms detuning (Hz)

Run description ANC Off ANC On ANC Off ANC On

Cavity 1 with JT and precool static 78 45 13.6 9.1
Cavity 3 with JT and precool static 100 57 20.8 11.7
Cavity 3 with JT and precool static and 5 K adjust valve modified 50 22 10.7 4.6
Cavity 4 with JT and precool static 17 19 4.4 2.4
Cavity 6 in original configuration 30 15 6.4 3.4
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FIG. 13. Effect of active microphonics compensation on two
stiffened cavities of the main linac. The dashed lines represent
data without active suppression while the bold lines show the
performance with ANC turned on.
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field is ramped up. Large microphonics events generating a
sudden increase in the resonance frequency of the cavity
can lead to reduction in fields, LFD can in turn detune the
cavity further in the positive direction amplifying the effect
of the microphonics. Such an instability will lead to a
catastrophic fall in cavity field and subsequent beam loss in
an accelerator. However, in high Q machines the filling
time of narrow bandwidth cavities can be sufficiently large,
of the order of tens of milliseconds, slowing down the field
decrease. This along with the presence of a high gain
feedback loop on the field can be enough to avoid such an
instability from developing. In all our operations until now,
we have not used any feed-forward control of detuning and
simple integral control of detuning has been enough to
compensate for LFD when the field is ramped slowly.
Further, the resonance control system of neighboring
cavities did not interact with each other during the course
of normal operation since we have bellows mechanically
isolating the cavities. This eliminates the need to account
for such effects. The resonance control system described in
this paper is thus a stable way of reducing peak detuning
when mitigation of vibration sources is not an option.

V. CONCLUSION

The operation of SRF cavities with high QL using solid
state amplifiers of limited power present a significant
constraint on the peak microphonics detuning which we
can tolerate in order to maintain a stable field. As a result,
mitigation of vibration sources has become important for
operations for a growing number of particle accelerators.
Apart from passive measures, most cryomodules also
incorporate fast tuners based on piezoelectric actuators
which can be used for active resonance control such as in
LCLS-II and XFEL. Assuming that the mechanics is
adequately described by linear partial differential equa-
tions, we can model the tuner’s response as a slowly
changing linear time invariant system. This lets us encode
the dynamics of the tuner in a transfer function τðωÞ, which
expresses the amplitude and phase response of the cavity
resonance frequency to sinusoidal excitations applied to the
actuator at different frequencies. Measurements from
seven-cell SRF cavities used in the main linac of the
CBETA project indicate that the bandwidth of an active
control system must be limited to below microphonics
frequencies of 200 Hz beyond which mechanical eigenm-
odes dominate the dynamics. The transfer function data is
used in the design of the active microphonics control
system.
We derived the narrow band active noise control (ANC)

algorithm starting from the assumption that microphonics
detuning can be decomposed into a finite sum of sine
waves. A sine wave of the same frequency applied to the
actuator at the correct amplitude and phase should perfectly
compensate for the vibrations. Using stochastic gradient
descent, we derived an update relation which slowly

changes phasors with components Im and Qm depending
on the net microphonics detuning. These in turn modulate
carrier signals at the microphonics frequencies ωm applied
to the actuator thus completing the ANC feedback con-
troller. We further derived the frequency response of the
ANC algorithm and established constraints on the adapta-
tion rates μm and the controller phases ϕm to operate in the
stable region, giving one concrete example from CBETA.
Finally we propose a modification which automatically
minimizes the mean square of compensated detuning by
adapting the value of the controller phase in response to
changing tuner responses or changing vibration excitations.
Using numerical simulations, we demonstrated the effec-
tiveness of the modified ANC algorithm before it was
implemented on the main linac used in CBETA.
We applied various mitigation techniques on the main

linac cryomodule of the CBETA project to reduce micro-
phonics detuning. Passive measures included several mod-
ifications to the cryogenic system to damp thermoacoustic
oscillations and transients related to helium flow and we
achieved a reduction of peak detuning by at least a factor of
2. We further demonstrate the use of the active control
system to achieve a stable reduction of microphonics
typically by a factor of 2 without the need of detailed
measurement of the transfer function. Future work will
involve finding the remaining sources of vibrations and
eliminating them, incorporating automatic frequency
tracking in the ANC algorithm in order to make it more
robust, and devising an algorithm to automatically con-
figure the ANC on multiple frequencies during operation.
In addition, we also plan to measure energy and time of
arrival jitter in the beam and correlate these measurements
with microphonics detuning.
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