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In particle accelerators, pumping holes in a vacuum chamber can be a source of unwanted broadband
coupling impedance, leading to beam instabilities. Analytical methods have been previously developed to
estimate the impedance of holes in circularlike chambers, e.g., the beam screen of the Large Hadron
Collider (LHC). More sophisticated chamber designs like that of the High Energy LHC and the Future
Circular Collider (the hadron-hadron option) call for a different way to calculate the impedance. We
propose using the decomposition of the wakefield into synchronous traveling waves and employing a
numerical solver to find the impedance of each wave. This method is compared to the direct time domain
wakefield calculation method, and its greater sensitivity to small impedances is shown.
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I. INTRODUCTION

In hadron colliders such as the Large Hadron Collider
(LHC), the proposed High Energy LHC (HE-LHC), and the
Future Circular Collider (the hadron-hadron option FCC-
hh), the beam screen separates the particle beam from the
magnet cold bore to avoid having the synchrotron radiation
heat load on the cold mass (Fig. 1). The pumping holes
connect the space inside the beam screen to the outer region
from where the air is pumped out. In this paper, we propose
a new method for the calculation of the geometrical beam
coupling impedance of the pumping holes. In particular,
we focus on the imaginary part of the longitudinal and
the transverse impedances Im½ZjjðfÞ� and Im½Z⊥ðfÞ�. In the
mentioned colliders, estimating these quantities at the
frequencies of the bunch spectrum (up to ∼1 GHz) is
critical to ensure single-bunch beam stability. Power dis-
sipation through the holes, related to Re½ZjjðfÞ�, is another
important aspect of the impedance of the holes but is
beyond the scope of this paper.
For a beam screen with a circular cross section, analyti-

cal models based on Bethe’s theory can be applied [1–4].
However, purely analytical models are not applicable if the
cross section of the beam screen is far from a circle, which
is the case for the FCC-hh and the HE-LHC beam screens
due to the additional shielding (Fig. 1). A semianalytical
approach suggested in Ref. [5] employs Bethe’s formalism

together with 2D simulations to estimate the fields at the
holes. However, even this method is not applicable to the
FCC-hh and the HE-LHC beam screens, because the holes
cannot be considered small and the fields inside a hole
vary by 2 orders of magnitude. More than that, even for a
circular beam screen cross section, theoretical models can
be wrong by a factor of a few as will be shown in Sec. III B.
This error comes from neglecting the interference between
consecutive holes and from not perfectly accounting for the
influence of the outer chamber.

FIG. 1. FCC-hh beam screen (green) inside a magnet cold bore
(gray). Only the features important to the study are shown, which
excludes the cooling channel and the surface coatings.
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Therefore, computational tools are needed. Often, time
domain wakefield simulations with codes like CST [6],
GdfidL [7], and ACE3P [8] are used to calculate impedance of
complex 3D structures. However, in the case of a beam
screen with pumping holes, the impedance per unit length
can be so low that time domain simulations become not
suitable due to the limited numerical accuracy.
The traveling wave method solves this problem by

relating the impedance of the holes to a sum over waves
traveling in the periodic structure. This technique by itself is
not new andwas applied before to estimate the impedance of
a periodically corrugated beam pipe [9,10]. However, to the
best knowledge of the authors, an impedance calculation
through decomposition into traveling waves was never
done for pumping holes (the method was briefly mentioned
without a proof in an earlier study by the authors [11]).
The method can be applied only to beam screens where the
positions of the holes follow a regular pattern. This is the
case for the FCC-hh and the HE-LHC beam screens,
where the positions of the holes are not randomized (like
in the LHC) in order to simplify the manufacturing and
reduce the cost. The pattern repeats uninterrupted for the
length of a cryodipole and part of the interconnect (15.3 m
in total) with about 900 periods, making the beam screen
well suited for the approximation of an infinite periodic
structure.
An important difference between the implementation

of the traveling wave method in Refs. [9,10] (for the
case of a corrugated pipe) and the implementation in this
paper is that the search for the synchronous waves
cannot be purely analytical but requires eigenmode
simulations. Nevertheless, as a simulation tool, such a
method offers a valuable advantage over time domain
simulations, as it allows one to calculate much smaller
impedances. This advantage is related to the fact that the
method requires only solving for eigenmodes in a single
period of the structure, making the computation much
lighter.

II. DESCRIPTION OF THE METHOD

To employ the method, we first find the traveling waves
synchronous with the beam. For this, one period of a
structure is simulated using an eigenmode solver, with the
phase advance over the period ϕ given as a parameter
and the eigenmode frequencies ω read as the output.
The phase advance over one period is scanned over the
Brillouin zone to obtain dispersion curvesωnðϕÞ (blue lines
in Fig. 2). We then find intersections (ϕsyn

n ;ωsyn
n ) of these

curves with the synchronous line of the particle beam. In
this paper, the beam is assumed to be ultrarelativistic
(βrel ≈ 1) as is the case in FCC-hh and HE-LHC, although
this is not a necessary condition to apply the method.
For an ultrarelativistic beam, the synchronous line on the
dispersion diagram is ω ¼ ϕc=L, appearing as multiple
branches in the Brillouin zone (red lines in Fig. 2). Here c is

the speed of light, and L is the length of one period of the
structure.
Then, for all the synchronous waves (ϕsyn

n ;ωsyn
n ), the

electromagnetic fields are integrated along the beam path to
obtain the longitudinal and the transverse voltage kicks

V jj
syn and V⊥

syn, respectively:

V jj
synn ¼

1

e

Z
L

0

Fjj;nðs; t ¼ s=cÞds;

V⊥
synn ¼

1

e

Z
L

0

F⊥;nðs; t ¼ s=cÞds; ð1Þ

where s is the longitudinal coordinate, t is the time, and
Fjj;n and F⊥;n are the complex longitudinal and transverse
Lorentz forces, respectively, experienced by a test particle
of charge e. These voltages are then used to compute the
shunt impedances (R=Q) of the waves. In this paper, we use
the “circuit” definition for shunt impedances:

�
R
Q

�jj

synn

¼ jV jj
synnj2

2ωsyn
n Usyn

n
;

�
R
Q

�⊥

synn

¼ jV⊥
synnj2

2ωsyn
n Usyn

n
; ð2Þ

where Usyn
n is the energy stored in one period of the nth

synchronous traveling wave.
Finally, the computed (R=Q) are used to find the

longitudinal and the transverse beam coupling impedances
per period of the structure ZjjðωÞ=N and Z⊥ðωÞ=N:

FIG. 2. An example of the dispersion diagram of a periodic
structure with N periods. The blue lines represent the first three
bands propagating in the structure, and the red lines represent the
synchronous condition with the beam.
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ωsyn
n
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Q
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where N is the number of periods, factors α are the
corrections due to nonzero group velocities vg of the waves

αðvgÞ ¼
� ð1 − vg=cÞ−1; if ωsyn ≠ 0;

ð1 − v2g=c2Þ−1; if ωsyn ¼ 0;
ð4Þ

and the quantity ðR=QÞjjsynn=ωsyn
n should be interpreted as

limω0→0ðR=QÞjjnðω0Þ=ω0 in the case ωsyn
n ¼ 0. The case

ωsyn
n ¼ 0 appears when the structure allows the propagation

of TEM-like waves with a zero cutoff frequency (n ¼ 1
band in Fig. 2). It is crucial for a calculation of the
longitudinal impedance of the pumping holes, as will be
demonstrated in Sec. III B.
The relations (3) resemble those that can be obtained for

ordinary standing wave cavities [12], with the exception of
the additional factors αn. The factors αn are sometimes
ignored for similar problems (see, for example, [9]). In
many cases, this does not result in significant errors
because of a small group velocity vg ≪ c. However, in
the case of the pumping holes, a consistent disagreement in
simulations prompted a strict derivation of the factors (see
the Appendix). For the case of a nonzero synchronous
crossing (ωsyn

n ≠ 0), the factors were also experimentally
observed for Compact Linear Collider Power Extraction
and Transfer Structure structure [13] and later derived in
Refs. [10,14]. While taking a different path, the derivation
in the Appendix leads to the same result for ωsyn

n ≠ 0 and a
new result for the previously not considered case ωsyn

n ¼ 0.

III. APPLICATION AND BENCHMARKING OF
THE METHOD

Below, we consider three different types of periodic
structures: (i) a simple bellows, (ii) pumping holes in a
circular pipe for which analytical models can be applied,
and (iii) the FCC-hh beam screen.
For each structure, the traveling wave analysis is done as

described in Sec. II. One period of a structure is inde-
pendently simulated using the eigenmode solvers of Ansys

Electronics Desktop [15] and the CST Microwave Studio
[16], making sure that the results agree. In both solvers, the
tetrahedral meshing method is used to better approximate
the curved geometries. Since we focus only on the
geometrical impedance, all metal walls are considered to
be made of a perfect conductor.
A MATLAB [17] script is used to externally launch the

eigenmode solver and to read out the results. The script
scans points along the synchronous line (red line in Fig. 2)
and finds all the intersections with the mode dispersion

curves (ϕsyn
n ; fsynn ) in the desired frequency range. Finding

the intersection points consumes most of the computational
time. Once the points are found, the longitudinal and the
transverse shunt impedances are calculated by integrating
the electromagnetic force along the beam path. Since all the
considered structures possess mirror symmetries in X and
Y, symmetry planes are applied: the magnetic symmetries
in both XZ and YZ for the longitudinal impedance, or the
magnetic symmetry in XZ and the electric symmetry in
YZ for the transverse impedance in the X direction. In all
considered structures, the transverse impedance in the Y
direction is lower than (or equal to) the transverse imped-
ance in the X direction and is not discussed.
The traveling wave method is compared to the wakefield

solver of CST [6]—a well-established time domain solver
for wake and impedance calculations. The impedance
computed in the CST wakefield solver is a result of a direct
Fourier transformation of the wake function, with both the
longitudinal and the transverse impedances measured in Ω.
We normalize the transverse impedance by the transverse
offset to convert the result to Ω=m, which allows for the
comparison. For the wakefield computation, a ten-period-
long structure is terminated with open boundary conditions
at the ends. Since the open boundary does not represent an
infinitely repeating structure, reflected waves from the ends
produce an unwanted contribution to the impedance. To
cancel out this contribution, a 20-period-long structure is
simulated and the difference between 10 and 20 periods
was considered for the impedance calculation. Care is taken
to make sure that this difference is reproduced when
30 periods are compared to 20 periods.

A. Bellows

The bellows structure shown in Fig. 3 is one of the
simplest geometries to simulate; hence, a good agreement

FIG. 3. The simulated bellows structure (three periods are
shown).
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between the different methods is expected. Dispersion
curves for the first five longitudinal and transverse modes
are shown in Fig. 4. Results of the traveling wave method
are shown in Tables I and II for the longitudinal and the
transverse cases, respectively. The corresponding total
impedances given by Eq. (3) agree within 5% with the
results of the CST wakefield solver (also shown in
Tables I and II). For this simple structure, the impedances
are dominated by the lowest-frequency traveling wave in
both the longitudinal and the transverse cases. Notice
also that, if the correction factors α were not taken into

account, the results would have been underestimated
by 40%.

B. Pumping holes in a circular pipe

We now consider a simple structure with pumping
holes, shown in Fig. 5. It consists of a circular pipe with
two circular holes per cross section, opening up to a
cylindrical outer region. This simple geometry allows
comparing calculated impedances to an analytical model
by Kurennoy [1]. According to this model (and confirmed
by the later study accounting for the outer coaxial region
[4]), for circular holes the imaginary parts of impedances
are given by

−
ImðZjjÞ

N
¼ Z0R3

hM
6π2cb2

ω; ð5Þ

− ImðZ⊥Þ
N ¼

8<
:

2Z0R3
hM

3π2b4 ; if M ¼ 1 or 2

Z0R3
hM

3π2b4 ; if M ≥ 3;
ð6Þ

FIG. 4. Dispersion diagram for the bellows structure depicted in
Fig. 3. The blue lines correspond to longitudinal modes, and the
green lines correspond to transverse modes. The synchronous
points are marked with black crosses.

TABLE II. Transverse traveling wave data for one period of the
bellows structure depicted in Fig. 3. The final result for ImðZxÞ is
the sum of the elements of the third column weighted with the
corresponding factors α. The result of the wakefield solver is also
shown for comparison.

Mode number fsyn [GHz] 2πfsyn
c ½RQ�xsyn½Ωm� α

1 5.51 2.85 × 102 1.38
2 8.04 5.18 × 100 0.58
3 8.20 1.31 × 10−5 0.99
4 9.87 9.12 × 100 0.79
5 9.89 1.82 × 10−3 0.69

ImðZxÞ (traveling wave) 403 Ω=m
ImðZxÞ (wakefield solver) 410 Ω=m

TABLE I. Longitudinal traveling wave data for one period of
the bellows structure depicted in Fig. 3. The final result for
ImðZjjÞ=f is the sum of the elements of the third column
weighted with the corresponding factors α. The result of the
wakefield solver is also shown for comparison.

Mode number fsyn [GHz] 1
fsyn

½RQ�jjsyn½ Ω
GHz� α

1 5.03 2.37 × 100 1.37
2 6.79 <10−5 1.04
3 8.71 9.15 × 10−2 0.68
4 8.86 <10−5 0.63
5 9.77 <10−5 1.00

ImðZjjÞ=f
(traveling wave)

3.31 Ω=GHz

ImðZjjÞ=f
(wakefield solver)

3.50 Ω=GHz
FIG. 5. Pumping holes in a circular pipe for the case M ¼ 2
(two periods are shown).
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where N is the number of periods, Z0 ¼ 377 Ω is the
impedance of the vacuum, Rh is the hole radius, b is the
inner radius of the pipe, and M is the number of holes
per cross section (M ¼ 2 in the considered structure).
For the considered geometry, the effect of the wall
thickness on the polarizabilities can be neglected (see
Fig. 5 in Ref. [18]).
An important complication relative to the case of the

bellows arises from the fact that the outer region allows the
propagation of a TEM-like mode, similar to a coaxial line.
This mode is represented by the lowest blue line in the
corresponding dispersion diagram (Fig. 6), almost match-
ing the synchronous line. The exact intersection with the
synchronous line appears at the point ϕ ¼ 0; f ¼ 0 and is
treated as a zero synchronous crossing as described in
Sec. II.
Results of the traveling wave method are shown in

Tables III and IV for the longitudinal and the transverse
cases, respectively. In the case of the longitudinal imped-
ance, the contribution of the first synchronous wave is
much greater than that of all the other modes combined.
This is due to the very high factor α caused by the
dispersion curve of the first band almost matching the
synchronous line. This shows the importance of treating
the case ωsyn ¼ 0 separately. Indeed, if we had mistakenly
used the nonzero crossing expression for α [Eq. (4), top],
the final answer would have been a factor of 2 off.
In the case of the transverse impedance, the contributions

are spread over a large number of travelingwaves.Modes up

to the frequency of 20 GHz were taken into account, with
143 modes in total. To check that the number of modes is
sufficient, the evolution of the impedance is plotted as a
function of the number of modes in Fig. 7. After summing
more than 50 traveling waves (f > 15 GHz), the impedance
converges to a value which is taken as the total impedance.
In Tables III and IV, the results of the traveling wave

calculation are also compared to those obtained by the

FIG. 6. Dispersion diagram for the circular pipe structure
depicted in Fig. 5. The blue lines correspond to longitudinal
modes, and the green lines correspond to transverse modes (X
direction). The synchronous points are marked with black
crosses.

TABLE III. Longitudinal traveling wave data for one period of
the circular pipe structure depicted in Fig. 5. The final result for
ImðZjjÞ=f is the sum of the elements of the third column
weighted with the corresponding factors α. The results of the
wakefield solver and the analytical formula are also shown for
comparison.

Mode number fsyn [GHz] 1
fsyn

½RQ�jjsyn½ Ω
GHz� α

1 0.00 5.77 × 10−3 88.1
2 2.54 <10−5 3.50
3 3.79 <10−5 2.44
4 5.05 <10−5 1.94
5 5.69 1.31 × 10−5 2.09

..

.

150 19.96 <10−5 0.88
151 19.97 <10−5 0.61
152 19.98 <10−5 0.72

ImðZjjÞ=f
(traveling wave)

0.508 Ω=GHz

ImðZjjÞ=f
(wakefield solver)

0.52 Ω=GHz

ImðZjjÞ=f
(analytical)

0.538 Ω=GHz

TABLE IV. Transverse traveling wave data for one period of the
circular pipe structure depicted in Fig. 5. The final result for
ImðZxÞ is the sum of the elements of the third column weighted
with the corresponding factors α. The results of the wakefield
solver and the analytical formula are also shown for comparison.

Mode number fsyn [GHz] 2πfsyn
c ½RQ�xsyn½Ωm� α

1 2.80 3.21 × 101 0.58
2 4.71 4.18 × 100 0.96
3 5.08 3.91 × 101 0.70
4 5.23 4.90 × 100 1.08
5 6.05 2.57 × 101 0.86

..

.

141 19.89 1.54 × 10−1 1.44
142 19.92 2.65 × 10−2 0.73
143 19.96 1.34 × 10−1 1.13

ImðZxÞ (traveling wave) 247 Ω=m
ImðZxÞ (wakefield solver) 275 Ω=m
ImðZxÞ (analytical) 285 Ω=m
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wakefield solver and by the analytical model of Eq. (6). All
three methods agree within 15%. However, while the
agreement between the traveling wave method and the
wakefield solver is always to be expected, the agreement
with the analytical model is achieved only thanks to the
careful choice of the geometry parameters. In particular, a
large distance between the holes L and a large radius of the
outer wall Rout are necessary for Eq. (5) to correctly
estimate the impedance.
To prove this statement, we consider an example of a

geometry that better reflects the features of a real beam
screen and call it “geometry B” (as opposed to the already
analyzed “geometry A”). In particular, we reduce the period
length L to 20 mm to make the holes more tightly packed
and reduce the outer chamber radius Rout to 22 mm to
reflect the fact that the beam screen occupies most of the
cold bore space. As far as the analytical approach is
concerned, the changes in L and Rout have no impact on
the impedance. This, however, is not the case, as is shown
in Table V, where the results of the two computational
methods are compared to the analytical model for both
geometries. One can see that the analytical approach works
well only for geometry A but significantly overestimates

the impedance for geometry B. Thus, even if the FCC-hh
beam screen had a circularlike cross section, the theory
could have been used only to get a rough (within a factor of
a few) estimate.

C. FCC-hh beam screen

We consider the 2018 version of the FCC-hh beam
screen design (Fig. 1), which is different from the previous
designs considered, for example, in Ref. [11]. An important
difference from the case of the circular pipe (Sec. III B)
comes from the addition of the hole shielding. Because of
the shielding, the holes are not directly visible to the beam
and instead are coupled to the beam region through a slit.
The narrower the slit, the stronger the shielding of the
holes, and, consecutively, the lower the hole impedance.
The low impedance per period of the structure, however,
still needs an exact estimate, as with 4.8 million periods in
the FCC-hh it can reach a critical level. When estimating
low impedances, the traveling wave method is expected to
have a significant advantage over the wakefield solver. This
is due to the fact that only one period of the structure needs
to be simulated and due to the more accurate conformal
tetrahedral mesh available in eigenmode solvers.
In order to calculate very low impedances with the

traveling wave method, special care is taken to reduce the
numerical noise floor of the eigenmode simulations. For
that, the mesh nodes are forced to lie on the voltage
integration line, and the mesh steps along the line are made
much smaller than in the rest of the volume (Fig. 8). The
synchronicity condition is strictly enforced, as the phase
advance is adjusted until the frequencies of the traveling
waves to lie within 10 kHz from the synchronous line.

FIG. 7. Convergence check for the circular pipe structure
depicted in Fig. 5.

TABLE V. Comparison between the analytical model and the
computational methods for two different geometries. The values
for ImðZjjÞ=f are in Ω=GHz, and the values for ImðZxÞ are in
Ω=m.

Geometry A Geometry B

Method ImðZjjÞ=f ImðZxÞ ImðZjjÞ=f ImðZxÞ
Trav. waves 0.508 247 0.163 77
Wake. solver 0.52 275 0.165 87
Analytical 0.538 285 0.538 285

FIG. 8. Meshing of the vacuum volume in the FCC-hh beam
screen used in the CST eigenmode simulations. To calculate very
low impedances of the structure with the slit width of 7.5 mm, we
used 88 860 noncurved tetrahedral mesh cells, a 1.1 mesh
equilibrate ratio, the third-order solver, and two adaptive mesh
refinement passes.
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To measure the noise level, we simulate a modified
geometry for which the impedance is known to be strictly
zero. For that, the consecutive holes are connected together
creating an infinitely long continuous hole. The cross
section of such a structure is a constant of the longitudinal
coordinate, leading to the zero geometrical impedance.
Therefore, for each traveling wave, a small numerically
obtained impedance gives the noise floor. The mesh and
eigenmode solver parameters were chosen to minimize this
noise floor.
For the actual FCC-hh beam screen design, the wakefield

solver fails to give an impedance estimate, as the imped-
ance is far below the computational noise. Nevertheless, the
wakefield solver can be compared to the traveling wave
method for geometries with wider slits, where the imped-
ance is not low. Such a comparison is shown in Fig. 9 for the
slit width w ranging from 7.5 (the actual design) to
24.44 mm (the screen is completely removed). For the case
of w ¼ 24.44 mm, the two methods agree within 20%, but
the corresponding lines start diverging for narrower slits due
to the wakefield results affected by the computational noise.
In the range w < 15 mm, the wakefield solver becomes
unusable, while the traveling wave solver gives converging
results even for w ¼ 7.5 mm. Thus, the sensitivity of the
traveling wave method to low impedances exceeds the one
of the wakefield solver by 3 orders of magnitude.
For narrow slits w < 15 mm, the curves for ImðZjjÞðwÞ

and ImðZxÞðwÞ approach straight lines on the log-log
scale (Fig. 9). These lines correspond to a very steep
dependence on the slit width that can be approximated by
ImðZÞ ∝ w9.5, confirming that the shielding is very effec-
tive at reducing the impedance of the holes. For the actual
design (w ¼ 7.5 mm), the traveling wave method gives

ImðZjjÞper period=f ¼ 4.49 × 10−7 Ω=GHz;

ImðZxÞper period ¼ 4.48 × 10−4 Ω=m: ð7Þ

The corresponding dispersion diagram and the convergence
check are plotted in Figs. 10 and 11, and the eigenmode
data are presented in Tables VI and VII for the first 40
modes. The total impedance of 4.8 million periods of the
holes is

FIG. 9. Impedance of the holes in the FCC-hh beam screen as a
function of the slit width. FIG. 10. Dispersion diagram for the FCC-hh beam screen with

the slit width of 7.5 mm. The green lines correspond to
longitudinal modes, and the blue lines correspond to transverse
modes (X direction). The synchronous points are marked with
black crosses.

FIG. 11. Convergence check for the FCC-hh beam screen with
the slit width 7.5 mm.
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ImðZjjÞtotal=n ¼ 6.7 × 10−6 Ω;

ImðZxÞtotal ¼ 2.2 × 103 Ω=m; ð8Þ

where, as often used for stability studies, the longitudinal
impedance is normalized over n ¼ f=frev and the revolu-
tion frequency frev ¼ 3.067 kHz. In the FCC-hh, the
instability threshold for ImðZjjÞ=n is in the mΩ range
[19], and the instability threshold for ImðZxÞ is in the
MΩ=m range [20]. Therefore, as far as the beam stability is
concerned, the impedance of the holes in the FCC-hh beam
screen is completely negligible.

IV. CONCLUSIONS

We have shown that the traveling wave method is well
suited for the calculation of the longitudinal and transverse
impedances of pumping holes. The method was bench-
marked against the CST time domain wakefield solver and

the analytical formulas for three different types of geom-
etries. The method agrees well with both approaches in the
cases when they are applicable. More than that, the method
gives converging results even in the cases when one or both
of the compared approaches cannot be applied. In particu-
lar, the analytical approach works only for simple geom-
etries and only for some sets of parameters (Sec. III B). The
wakefield solver, on the other hand, fails to calculate very
low impedances due to the numerical noise (Sec. III C). As
a consequence, the traveling wave method is the only
option for the FCC-hh beam screen, where the geometry is
complex and the impedance per unit length is very low. In
this case, the method provides a 3 orders of magnitude
better sensitivity than the wakefield solver.
The transverse impedance of the pumping holes in the

FCC-hh beam screen is found to be negligible for single
bunch instabilities. This is a consequence of the hole
shielding that reduces the impedance by more than a factor
of 30 000.
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APPENDIX: CORRECTION FACTORS
DUE TO THE GROUP VELOCITY

Below, we will show the validity of Eq. (3) and,
specifically, derive the correction factors αðvgÞ listed in
Eq. (4). To do that, we represent an infinite structure as a
limiting case of an N-periods-long structure, with N → ∞.
In a finite structure, instead of a continuous dispersion
curve, only discrete points ϕp ¼ pπ=N exist (the circles in
Fig. 2). Each point corresponds to a standing wave, and for
each standing wave, the resonator impedance model [12]
can be applied:

ZjjðωÞ ¼
Rjj

1þ iQð ω
ωres

− ωres
ω Þ ;

Z⊥ðωÞ ¼
ωres

ω

ðωres=cÞR⊥
1þ iQð ω

ωres
− ωres

ω Þ ; ðA1Þ

where ωres is the resonant frequency,Q is the quality factor,
and Rjj and R⊥ are defined according to Eq. (2). In order to
make the transverse resonator formula consistent with the
adopted definition for R⊥ (in Ω), the R⊥ (measured in Ω=m
in Ref. [12]) was multiplied by the additional factor
ðωres=cÞ. By decomposing Eq. (A1) into the powers of
ω and summing over all standing waves (without any
correction factors αn), we get

TABLE VI. Longitudinal traveling wave data for one period of
the FCC-hh beam screen depicted in Fig. 1. The final result for
ImðZjjÞ=f is the sum of the elements of the third column
weighted with the corresponding factors α.

Mode number fsyn [GHz] 1
fsyn

½RQ�jjsyn½ Ω
GHz� α

1 0.00 1.66 × 10−8 20.3
2 9.00 1.36 × 10−8 0.85
3 9.30 3.82 × 10−9 1.35
4 9.50 3.41 × 10−8 0.68
5 10.70 7.36 × 10−10 0.61

..

.

38 27.31 1.18 × 10−10 0.53
39 27.33 1.07 × 10−11 0.77
40 27.45 3.28 × 10−11 0.75

ImðZjjÞ=f (traveling wave) 4.49×10−7Ω=GHz

TABLE VII. Transverse traveling wave data for one period of
the FCC-hh beam screen depicted in Fig. 1. The final result for
ImðZxÞ is the sum of the elements of the third column weighted
with the corresponding factors α.

Mode number fsyn [GHz] 2πfsyn
c ½RQ�xsyn½Ωm� α

1 6.81 5.13 × 10−5 5.84
2 9.32 5.16 × 10−5 0.71
3 9.43 1.20 × 10−5 1.15
4 10.06 1.03 × 10−6 0.58
5 10.45 7.07 × 10−6 2.16

..

.

38 26.97 1.28 × 10−7 0.68
39 27.36 2.01 × 10−7 0.54
40 27.87 3.99 × 10−7 0.53

ImðZxÞ (traveling wave) 4.48×10−4Ω=m
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ZjjðωÞ ¼ iω
X
n;p

1

ωn;p

�
R
Q

�
Σ;jj

n;p
þOðω2Þ;

Z⊥ðωÞ ¼ i
X
n;p

ωn;p

c

�
R
Q

�
Σ;⊥

n;p
þOðωÞ: ðA2Þ

Here the symbol Σmeans that the shunt impedances are not
per period, but the total impedances of the structure. We
will show that the sum over the indexes n × p of the
standing waves can be reduced to the sum over indexes n of
the synchronous traveling waves with the correction factors
αnðvgÞ, as in Eq. (3).
Let us consider only one mode n and omit the index n

below. To calculate the shunt impedances ðR=QÞΣp, we first
write down the total voltage kick VΣ

p (either longitudinal or
transverse). The electromagnetic force F of a standing
wave can be expressed as a sum of the forward and the
backward waves:

VΣ
p ¼ 1

e

Z
NL

0

ðFþ þ F−Þjs;t¼s=cds

¼ 1

e

Z
NL

0

F0ðsÞeiωps=cðe−iϕps=L þ eiϕps=LÞds; ðA3Þ

where e is the elementary charge and F0ðsÞ ¼ F0ðsþ LÞ is
the periodic envelope function for both the forward and the
backward waves, and the index p can be any integer in the
range 0 ≤ p ≤ N − 1. Using the periodicity, we write

VΣ
p ¼

�Z
L

0

F0ðsÞ
e

eiωps=c−iϕps=Lds

�

× ð1þ eiðLωp=c−ϕpÞ þ e2iðLωn=c−ϕpÞ þ � � �Þ

þ
�Z

L

0

F0ðsÞ
e

eiωps=cþiϕps=Lds

�

× ð1þ eiðLωp=cþϕpÞ þ e2iðLωp=cþϕpÞ þ � � �Þ; ðA4Þ
where the first summand corresponds to theþp branch and
the second summand corresponds to the −p branch in
Fig. 2. Furthermore, we can assume that, for each p, only
one of the branches matters. Indeed, if the considered wave
ðϕp;ωpÞ lies close to the synchronous line ω ¼ ϕc=L on
the dispersion diagram, its counterpart ð−ϕp;ωpÞ will be
far from synchronous and will not amount to a significant
impedance. Therefore, we can simplify Eq. (A4) by leaving
only the first summand and extending the range of p
to −ðN − 1Þ ≤ p ≤ N − 1.
The integral in the first square brackets in Eq. (A4) is

equal to Vp—the voltage of the pth traveling wave in a
structure consisting of only one period. Therefore,

VΣ
p ≈ Vpð1þ eiθp þ e2iθp þ � � � þ e2iðN−1ÞθpÞ; ðA5Þ

where θp ¼ Lωp=c − ϕp is the phase slippage per period. A
geometrical representation of Eq. (A5) is depicted in Fig. 12.
The farther away the pointp is from the synchronous point (a

cross in Fig. 2), the lower is its total voltage.Mathematically,
it can be expressed as jVΣ

pj¼NjVpjgNðθpÞ, where the func-
tion gNðθÞ describes the attenuation of the voltage sum due
to asynchronicity. From Eq. (A5), it can be shown that

gNðθÞ ¼
sinðNθ=2Þ
N sinðθ=2Þ : ðA6Þ

This compact result for jVΣ
pj is possible only thanks to the

assumption that only one of the forward and the backward
waves matters. If both waves were considered, jVΣ

pj would
have to depend on the two voltages as jVþ þ V−j, whereVþ
and V− correspond to the terms in Eq. (A4).
In one period of the structure, the energy stored in a

standing wave is twice that stored in the corresponding
traveling wave. Over N periods, the energy of the standing
wave becomes UΣ

p ¼ 2NUp. Given jVΣ
pj and UΣ

p, the
standing wave shunt impedance can be related to the
per-period impedance of the pth traveling wave:

�
R
Q

�
Σ

p
¼ jVΣ

pj2
2ωpUΣ

p
¼ N

2

�
R
Q

�
p
g2NðθpÞ: ðA7Þ

We then plug this expression into Eq. (A2) and take the
limit N → ∞ to obtain the contribution of the nth reso-
nance to the total impedances:

ZjjðωÞ
N

¼ iω lim
N→∞

X
p

1

ωp

�
R
Q

�jj

p

g2NðθpÞ
2

þOðω2Þ;

Z⊥ðωÞ
N

¼ i lim
N→∞

X
p

ωp

c

�
R
Q

�⊥

p

g2NðθpÞ
2

þOðωÞ: ðA8Þ

FIG. 12. Geometrical representation of the voltage summation
N ¼ 4 periods of the structure. The perfectly synchronous case is
shown in red, and an asynchronous case is shown in blue.
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As N increases, the function gNðθÞ becomes a sharper
and sharper peak around θ ¼ 0. Using this fact, the

quantities ðR=QÞjjpω−1
p and ðR=QÞ⊥pωp can be taken out

of the summation and replaced with ðR=QÞjjsynω−1
syn and

ðR=QÞ⊥synωsyn, respectively. In the important case when
ωsyn ¼ 0, a limit has to be taken while approaching the
synchronous point: limω0→0ðR=QÞjjðω0Þ=ω0.
After bringing back the summation over the bands n,

Eq. (A8) transforms into the sought-after Eq. (3), with

αðvgÞ≡ lim
N→∞

XN−1

p¼−ðN−1Þ

g2NðθpÞ
2

: ðA9Þ

The only remaining part is to prove that the coefficient
αðvgÞ can be written as a function of the group velocity in
the form of Eq. (4). To do that, the cases ωsyn ≠ 0 and
ωsyn ¼ 0 are treated separately.
Let us first treat the case ωsyn ≠ 0. In the vicinity of the

synchronous point, the dispersion curve can be approxi-
mated by a straight line ωp ¼ ωsyn þ ðϕp − ϕsynÞ∂ω=∂ϕ ¼
ϕsync=Lþ ðϕp − ϕsynÞvg=L. The phase slippage per period
becomes

θp ¼
�
1 −

vg
c

�
ðϕsyn − ϕpÞ: ðA10Þ

The coefficient αðvgÞ can be expanded as

α ¼ lim
N→∞

1

2

XN−1

p¼−ðN−1Þ

�
sin½ξðp� − pÞ�

N sin½ ξN ðp� − pÞ�

�
2

; ðA11Þ

where we have defined ξ¼ π
2
ð1−vg=cÞ and p� ¼ ϕsynN=π.

As N increases, the terms in the denominator approach
ξðp� − pÞ, and α approaches

α ¼ 1

2

X∞
p¼−∞

sinc2½ξðp� − pÞ�: ðA12Þ

We can then use a remarkable property of the sinc functionP∞
k¼−∞sinc2ðak−bÞ¼P∞

k¼−∞sinc2ðakÞ¼π=a and rewrite
α in a more compact way:

α ¼ π

2ξ
¼ 1

1 − vg=c
: ðA13Þ

Now, let us consider the remaining case ωsyn ¼ 0.
The sum in Eq. (A9) has to be split in two parts, because
for negative p the group velocity has the opposite sign
vgð−ϕpÞ ¼ −vgðϕpÞ, as shown in Fig. 2. By following the
same steps as for the case ωsyn ≠ 0, we arrive to

α ¼ 1

2ð1 − vg=cÞ
þ 1

2ð1þ vg=cÞ
¼ 1

1 − v2g=c2
; ðA14Þ

which proves Eq. (4).
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