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An amplitude dependent closest tune approach (ADeCTA) was first observed in the LHC in 2012. This
potentially harmful effect can be generated by linear coupling in conjunction with octupoles. In this article
we demonstrate experimentally and in simulations a configuration of the octupoles to suppress this recently
observed effect. Furthermore, ADeCTA is investigated for the first time with driven oscillations. We show
analytically that skew quadrupoles and normal octupoles do not generate ADeCTA for forced oscillations
in the same way as for free oscillations. This adds an additional constraint to measure it since the forced
oscillations, generated by an ac dipole, are the preferred option for optics measurements in the LHC. The
analytical result is confirmed by both measurements and simulations.
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I. INTRODUCTION

Experimental observations in 2012 [1] suggested the
existence of an amplitude dependent closest tune approach
(ADeCTA). This is a nonlinear correspondence to the linear
jC−j ¼ ΔQmin, but where particles of different amplitude
have different jC−j. The effect is potentially harmful since it
modifies the beam spectral distribution. Simulations in [1]
confirmed the existence of ADeCTA with further inves-
tigations in [2]. The key ingredients to reproduce the
observations were found to be linear coupling and normal
octupolar fields. Strong octupolar fields are introduced in
the LHC to create Landau damping which is critical to
ensure beam stability [3]. It it was also shown in [2] that
normal octupoles in a coupled lattice could allow the
particle tunes to penetrate the linear coupling stop band.
On the theoretical side, a mechanism leading to ADeCTA
has been presented in [4]. It was found that the cross
amplitude detuning term h1111 together with linear coupling
generate ADeCTA, leaving open the possibility for other
normal octupolar terms to contribute as well. The following
equation describes the amplitude dependent jC−j:

jC−j ≈ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ h1111κ

ffiffiffiffiffiffiffiffiffi
JxJy

p
−
h21111
32

ðJy − JxÞ2
r

; ð1Þ

where 2jκj is the linear jC−j, Jx;y are the action coordinates
and h1111 is given by

h1111 ¼
1

2π

Z
2π

0

K3βxβydθ; ð2Þ

where βx;y are the horizontal and vertical β-functions and
K3 is the octupole strength. The LHC is equipped with two
families of octupoles used for Landau damping: magnet
octupoles focusing (MOF) and magnet octupoles defocus-
ing (MOD) [5]. The naming of the focusing and defocusing
octupoles is based on whether they are placed close to
a horizontal focusing or defocusing quadrupole. In Sec. II a
configuration to almost cancel the h1111, while keeping a
similar level of Landau damping is described. This is
achieved by having opposite polarities in the MOF and
the MOD.
An ac dipole can drive the motion of the beam for

thousands of turns without any emittance increase [6]. That
makes it suitable for measurements in accelerators, such as
the LHC, where the time to inject a new bunch and reach
the configuration of interest is long. This has made the ac
dipole the primary beam exciter for optics measurements
[7,8]. It is well known that the particle motion in the
presence of forced oscillations differs from the free motion
following a single kick. This has led to methods which
account for this difference in the motion when reconstruct-
ing the optics parameters [9–12]. However, these studies
stay at linear order in the strength of perturbing components
and can therefore not be used to predict the ADeCTA.
In Sec. III we investigate the possibility to use forced
oscillations to measure ADeCTA.
Transverse coupling has been shown to modify the

impact of nonlinearities and linked to instabilities
[13–15]. This has led to improve the control of the coupling
in the LHC [16–20]. This might be even more important in
the future since dynamic aperture studies for the LHC have
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shown that the best lifetime is obtained for tunes close
to the difference coupling resonance [21]. This tighter
tune split could possibly enhance unwanted effects from
ADeCTA, further motivating the understanding and control
of ADeCTA.
Simulations in [4,22] showed that skew octupoles placed

in an uncoupled lattice would not generate ADeCTA, while
a combination of normal and skew octupoles in a linearly
uncoupled lattice could still generate ADeCTA [22].
However, for the LHC configuration at injection, which
is used throughout this article, skew octupolar components
are too small to have a significant impact.

II. MEASURING AND MITIGATING ADECTA
WITH BEAM UNDER FREE OSCILLATIONS

The experiment was done in the LHC during dedicated
machine development time in 2016. The optics used was
the nominal for injection and the beam energy was
450 GeV. The beam was excited with a pulsed kicker
magnet [23]. The turn-by-turn data was recorded with all
the ∼500 available Beam Position Monitors (BPMs). After
the kick the beam decohered within 200–400 turns depend-
ing on the amplitude of the kick. The measurement was
truncated at the point where no more oscillations were
visible and then cleaned using singular value decomposi-
tion (SVD) in order to reduce the noise and remove faulty
BPMs [24]. The horizontal and vertical tunes were obtained
from SUSSIX [25] and an average and standard deviation
was calculated. The action was calculated from the peak
amplitude divided by the β-function at the location of the
BPM [1].
A key parameter to control, in order to later compare the

results with simulations, is the linear coupling. The jC−j
was increased intentionally and measured through moving
the two tunes as close as possible together.
The beam is fully coupled when it is no longer possible

to separate the horizontal from the vertical motion. This
occurs when the two eigentunes have the smallest possible
distance. In this case it is no longer possible to associate the
tune of a specific plane with the corresponding eigentune.
However, by measuring the distance between the two peaks
it is possible to conclude on the jC−j. In this case it was
determined to be 0.0155� 0.001 [26]. The uncertainty
of the measurement is less than 10−4 but a decay of the
coupling has been observed at injection and this puts the
error bar of 0.001 on the jC−j [18].
The unit used to describe the settings of the octupoles is

a normalized strength, which is obtained by multiplying
the magnetic field with the charge and dividing by the
reference momentum [27]. The strength of a given family is
written as the name of the family equal to the strength.
Initially the Landau octupoles were powered to −5 m−4

which is stronger than the 2012 setting of −3 m−4 but
weaker and opposite polarity to the 2016 setting of 9 m−4.
The amplitude for the horizontal plane kicks was kept low

and constant while the amplitudes of the vertical kicks were
increased. The fractional tunes for the scan were kept at
Qy ¼ 0.285, Qx ¼ 0.31 and the powering of the octupoles
was MOF ¼ −5 m−4, MOD ¼ −5 m−4. The second scan
kept the same tunes but changed the powering of the
octupoles to: MOF ¼ 5 m−4, MOD ¼ −5 m−4.
The settings of the LHC were reproduced in MAD-X [28].

The coupling amplitude was generated using the arc skew
quadrupoles and the strengths of the octupoles were incor-
porated as in the machine. No additional errors were
introduced in the model. Single particles with different
horizontal amplitudes and a small initial vertical amplitude
(0.5 mm at IP3) were tracked for 1024 turns and the same
procedure, as for the measured data, was used to obtain
the tunes and actions. The linear jC−j was obtained using
the same method as for the experiment, i.e. pushing the
horizontal and the vertical tunes as close as possible together.
The value of the jh1111j was 4.2 × 104 m−1 for the equal

polarity and jh1111j was 4.0 × 103 m−1 for the setting with
opposite polarity of the two families. The value of the
Hamiltonian term was obtained from the polymorphic
tracking code (PTC) [29].
Figure 1 shows the tune split as a function of the vertical

action for the two different configurations of the Landau
octupoles described in the previous section. We observe
that the fractional tune split saturates far away from the
linear jC−j. When the polarity of the MOF was changed the
behavior is altered and a much more linear approach
towards the jC−j is observed. The amplitude dependent

FIG. 1. The difference between the fractional horizontal and
vertical tune as a function of the vertical action for free
oscillations. The excitation was done using a kicker magnet
and the settings of the octupoles were: MOF ¼ −5 m−4, MOD ¼
−5 m−4 and MOF ¼ 5 m−4, MOD ¼ −5 m−4. The fractional
tunes wereQx ¼ 0.285 andQy ¼ 0.31. The dark gray area shows
the linear jC−j and the light gray area shows the uncertainty of the
measured coupling.
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jC−j is about 40% larger for the case with the same polarity
of the two families. The dotted lines show simulations
which agree well with the measured values. The exper-
imental results are also in qualitative agreement with
Eq. (1) derived in [4], given that the jh1111j is expected
to have been a factor 10 lower for the case with opposite
polarity.

III. IMPOSSIBILITY OF MEASURING
ADECTA WITH BEAM UNDER

FORCED OSCILLATIONS

In this section we investigate the possibility to measure
ADeCTA using forced oscillations. This would be ideal to
use for measurements at top energies since there would
be no emittance increase and hence no need to reinject.
The section starts with the analytical derivations and then
continues with measurement and simulations.

A. Theory

In [4] ADeCTA is studied for free motion arising from
a cross term between coupling and an octupolar term. In
this part we investigate if ADeCTA can be generated in
the same way under forced oscillations. Amplitude
detuning for forced oscillations is studied in [11,12]
up to first order in the strengths of sources of amplitude
detuning, while ADeCTA requires higher order approx-
imations. In the following we combine the approaches in
[4] and [11,12,30] to study the possible ADeCTA with
forced oscillations.
The unperturbed Hamiltonian of a particle in an

uncoupled lattice with a horizontal ac dipole is given by

H0 ¼
1

2
½K1x2 þ K2y2 þ p2

x þ p2
y þ 2δðs; tÞx�; ð3Þ

where x; y; px; py are the canonical variables, K1;2 are the
normal focusing components and δðs; tÞ is the time
dependent kick from the ac dipole given by

δðs; tÞ ¼ qBL
p

δdiracðs − sDÞ cosð2πQDtþ ψDÞ; ð4Þ

where BL is the integrated field amplitude, q is the charge
of the particle, p its momentum, sD the location, QD is the
driven tune, and ψD is the initial phase of the ac dipole. The
general equations of motion are given by [30,31]

x¼ a1uðθÞeiQHθþ ā1ūðθÞe−iQHθþ
ffiffiffiffiffiffiffiffiffiffiffiffi
2β0uA1

p
cosðϕ0

uÞ;
y¼ a2vðθÞeiQVθþ ā2v̄ðθÞe−iQVθþ

ffiffiffiffiffiffiffiffiffiffiffiffi
2β0vA2

p
cosðϕ0

vÞ; ð5Þ

where u, v and ū; v̄ are the Floquet functions and their
complex conjugates, respectively. β0u;v and ϕ0

u;v are the
forced beta functions and phase advances as presented in
[31]. a1;2, ā1;2 and A1;2 are constants of motion. A1;2 are

determined by ac dipole parameters. When the ac dipole
excitation tune is sufficiently close to the natural tune A1;2

are approximated by [32]

ffiffiffiffiffiffiffiffiffiffi
2A1;2

p ¼
ffiffiffiffiffiffi
βD

p ���� BL1;2

ðB0ρÞ
e−iðπQ−−ψDÞ

4 sinðπQ−Þ
����; ð6Þ

where βD is the beta function at the ac dipole, BL1;2 is the
integrated ac dipole field amplitude, ðB0ρÞ is the magnetic
rigidity, Q− is the distance between the natural and ac
dipole tunes, Q− ¼ QD −QH;V , and ψD is the initial phase
of the ac dipole.
The perturbations considered here are linear transverse

coupling Kxy and the octupole cross term K3x2y2, leaving
the perturbing Hamiltonian as

U ¼ Kxyþ K3x2y2: ð7Þ

These are the same terms that were shown to generate
ADeCTA in [4].
Following [30] the equations of motion in presence of

the perturbed Hamiltonian are derived using the former
constants of motion as new variables as follows:

da1
dθ

¼ i
∂U
∂ā1

dā1
dθ

¼ −i
∂U
∂a1

da2
dθ

¼ i
∂U
∂ā2

dā2
dθ

¼ −i
∂U
∂a2 : ð8Þ

Expressing U as function of the new variables and
neglecting the rapid oscillating terms yields

U¼ κ̄a2a1e−iΔθþκa1a2eiΔθþhua1a1A2þhva2a2A1; ð9Þ

where

κ ¼ 1

4πr

Z
2π

0

Ks

ffiffiffiffiffiffiffiffiffiffi
βuβv

p
ei½ðϕu−ϕvÞ−ΔΘ�dΘ; ð10Þ

where r is the radius of the machine, Ks is the skew
quadrupolar strength, βu;v are the β functions, ϕu;v are the
phases, Θ ¼ s

r and s is the position along the accelerator,
Δ ¼ QH −QV − p and κ̄ is the complex conjugate [30].
Δ is the distance to the difference resonance, which we
assume to be small so the U above contains only slow
varying terms. hu;v are defined as

hu ¼
1

2π

Z
2π

0

K3βuβ
0
vdθ; ð11Þ
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hv ¼
1

2π

Z
2π

0

K3βvβ
0
udθ; ð12Þ

where, actually, hu;v are almost identical to Eq. (2) with the
difference that h1111 does not depend on the forced β0
functions. Feeding Eq. (8) with the perturbing Hamiltonian
in Eq. (9) gives

da1
dθ

¼ iκ̄a2e−iΔθ þ ihua1A2;

da2
dθ

¼ iκa1eiΔθ þ ihva2A1: ð13Þ

Defining new variables â1;2 as

a1 ¼ eihuA2θâ1;

a2 ¼ eihvA1θâ2; ð14Þ

Eq. (13) becomes

dâ1
dθ

¼ iκ̄â2e−iΔ̂θ;

dâ2
dθ

¼ iκâ1eiΔ̂θ; ð15Þ

where Δ̂ has been defined as

Δ̂ ¼ QH þ huA2 −QV − hvA1 − p

and represents the new effective distance to the difference
coupling resonance after including the amplitude detuning
induced by the forced oscillations. The general solution of
these coupled differential equations follows as in [30],

â1 ¼ κ̄

�
Aþ
wþ

eiwþθ þ A−

w−
eiw−θ

�
;

â2 ¼ ðAþeiwþθ þ A−eiw−θÞeiθΔ̂; ð16Þ

where A� are complex constants of motion and w� are the
frequencies given by

w� ¼ −
Δ̂
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Δ̂
2

�2

þ jκj2
s

: ð17Þ

2jκj is therefore the minimum separation between the two
frequencies and it is independent of the amplitude of the
forced motion. Therefore, contrary to free motion, forced
motion with coupling (Kxy) and octupole terms (K3x2y2)
does not feature an ADeCTA.

B. Measurements and simulations

In order to validate the theoretical results both meas-
urement and simulations were done. The ac dipole

excitations were applied for the two configurations of
octupoles, described in Sec. II. The natural horizontal
and vertical tunes were kept at Qx ¼ 0.28, Qy ¼ 0.31
and the driven tunes were Qx;D ¼ 0.268, Qy;D ¼ 0.32. The
available BPMs recorded 6600 turns of turn-by-turn data
which corresponds to the period the beam is excited at a
constant amplitude. The natural tune was obtained from the
turn-by-turn spectra using SUSSIX. The simulation aimed to
reproduce the setup and an ac dipole with the same setting
as for the experiment was used in the MAD-X tracking. The
action was calculated based on the amplitude of the main
driven tune and the β functions at the BPM [33]. The
amplitude of the horizontal excitation was increased in both
simulation and during the measurement while the vertical
excitation amplitude was kept small and constant. The
results for the tune splits are shown in Fig. 2. The direct
term for amplitude detuning from octupoles measured with
ac dipole has been demonstrated to be a factor 2 larger than
with free kicks, while the cross terms are only modified by
the difference between the normal and driven β functions,
as seen in Eq. (2) [11]. It is therefore according to the
expectation to see a larger detuning for the same action
compared to the free kicks. We can also observe that we see
slightly larger detuning for the case with same polarity. This
is due to the fact that the opposite polarity reduces the cross
terms and hence reduces the detuning. The simulations and
the measurements are in very good agreement and the
largest deviation is for the driven oscillations with the same
polarity. In this case it seems that the simulations give a
slightly larger detuning compared to the measurements.

FIG. 2. The difference between the fractional horizontal and
vertical tune as a function of vertical action for driven oscil-
lations. The excitation was done using the ac dipole and the
settings of the octupoles were: MOF ¼ −5 m−4, MOD ¼
−5 m−4 and MOF ¼ 5 m−4, MOD ¼ −5 m−4. The natural tunes
were Qx ¼ 0.28 and Qy ¼ 0.31 and the drive tunes were Qx;D ¼
0.268 and Qy;D ¼ 0.32. The dark gray area shows the linear jC−j
and the light gray area show the uncertainty of the measured
coupling.
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Tune drifts in the order of 10−3 between the two set of
measurements would explain this. The model used does not
include any errors and the purpose of the comparison is not
to have a perfect agreement but to show that a simple model
can accurately reproduce the measurements.

IV. CONCLUSION

A compensation scheme for ADeCTA, generated by
skew quadrupolar and normal octupolar fields, has for the
first time been demonstrated in the LHC. The results are in
qualitative agreement with previous theoretical understand-
ing as well as with simulations. This could provide a way to
mitigate this potential harmful modification of the Landau
damping.
Analytical studies have shown that skew quadrupoles

together with the octupole term: K3x2y2 do not generate
ADeCTA for forced oscillations. This higher order effect
deviates from the established relations between free and
forced amplitude detuning at first order. This has been
confirmed with measurements and simulations that do not
show any tendency to deviate away from the linear jC−j.
The fact that forced oscillations do not feature the ADeCTA
as in free motion makes it difficult to measure this effect at
configurations where fast reinjection is not possible, such
as at collision energy in the LHC.
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