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The semiclassical Baier-Katkov (BK) formula is an approximation to the spectrum of the radiation by an
ultrarelativistic electron in a nonuniform field, taking into account the recoil and spin effects. The question
why it involves only the initial electron trajectory is addressed. When the field is an electromagnetic
plane wave, the exact helicity amplitudes in the null-plane frame are derived using Volkov solutions of the
Dirac equation and a modified form of the BK formula is obtained. In passing, the application to Compton
scattering is outlined and interesting spin properties are noted. For a general field, two conditions of
validity of the BK formula are proposed: (1) the field is approximately uniform in the transverse directions,
(2) the relative velocity between the field and the electron is close to c¢. The applications to bremsstrahlung,
coherent bremsstrahlung and channeling radiation are discussed.
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I. INTRODUCTION

The semiclassical Baier-Katkov (BK) formula [1,2],
written below in the form of Egs. (24), (27), (28) and 29,
predicts an energy-angle spectrum of the radiation by an
ultrarelativistic electron in an initial nonuniform field
Fin =A{E(t.r),B(z,1)}. Like the classical radiation for-
mula [3], itinvolves only the initial classical trajectory of the
electron, r;(¢) (prolongated up to 7 = +o0) but, in addition,
it takes into account the loss of energy-momentum (or recoil
effect) and predicts a dependence on the electron polari-
zation. These two effects become important when the photon
energy @ is comparable to the electron one, ¢ = p? =
ym = (m? + p?)"/2.! Here are two examples: (i) linear or
nonlinear Compton effect when p; - k; = m? (p; and k; are
the initial 4-momenta of the electron and the photon); in this
case JFj, is the classical field describing the initial photon or
coherent state of photons; (ii) synchrotron radiation in the
strong field regime, y = yF/m?> 2 1, where F = —¢(E +
v x B) is the Lorentz force. In the uniform field approxi-
mation, the natural photon energy cutoff w, = ye/(1 + y)is
comparable to €. The BK formula generalizes the “magnetic
bremsstrahlung” formula [see, e.g., Eq. (90.22) of [4]] to the
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y” can also designate a photon. We use units where
h=c=1;a=e*/(4r) ~1/137.
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case of nonuniform fields. The BK formula has been
applied, with good enough agreement with experiment
[5-8], in Monte Carlo simulations of channeling radiation
or coherent radiation in bent crystals at high energy
(e.g., 50 GeV for axial channeling in germanium,
10 GeV in tungsten). Here the strong field parameter is
y=max{ey|E(r;)|/m*} =1, where E(ry) is the Lindhard
continuous field.

The fact that the BK formula does not involve a final
electron trajectory r(¢) is surprising, since the true quantum
amplitude involves both initial and final wave functions, as
in Eq. (14) below. On the other hand, r/(¢) is not uniquely
defined. If the emission is considered as a local process
which occurs at a definite time 7, rs(¢) should start at the
point r;(f,) > and, due to the recoil effect, separate from
r;(t) fort > t.,. Butin reality the photon source is the whole
initial trajectory [see Eq. (23) or (29)]. For a given k one
can only define a family of final trajectories r(t; f.,). The
BK formula does not involve this family explicitly, as if
r/(t; te) was fully determined by r,(¢) for ¢ > t,,,, whatever
the field F;,(z,r) is around r;(z).

In this article we show that the BK formula becomes
exact, after a replacement of ¢ by pt/2= (e + p*)/2,
when the field F;,(z,r) is a plane wave. For this purpose
we will use the Volkov solutions of the Dirac equation, to
which we associate a classical electron trajectory. In
passing we analyze the helicity dependence of the radiation
amplitude, give the Stokes parameters of the photon and
apply the exact formula to Compton scattering. Then we

"Here we neglect a side slipping [9,10] of the electron,
necessary to conserve energy and momentum.
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will give examples where the BK formula is accurate. We
finally discuss its use in channeling radiation.

II. VOLKOYV STATES

Let F;,(z,x) = {E({), B({)} be a plane electromagnetic
wave packet moving in the —Z direction. { = X" =1+ z
and 7 = X~ = t — z are the lightlike coordinates of a space-
time point X, while X; = (x,y) are the transverse coor-
dinates. F;, can be derived from a vector potential

A7 (8) = (A*(0).A*(0)):
E() = dA7({)/dC, B({)=-2xE(). (1)
The Dirac equation for the electron,
[0, +a- (iV—eAr) —mplP(X) =0,  (2)
admits the Volkov solutions (see [11] or Chapter IV in [4]),

which are eigenstates of p* = p® + p* =id, —i0, and
P; = —iVy. They can be factorized in the form

¥(X) = exp{~ip*t/2 +iPr- Xr}y(().  (3)
Then Eq. (2) reduces to
(1 —a)p/2+i(l +a,)0;
—ar - pr() —mply($) =0, (4)

where p7({) = Py + eAr({) is the (gauge-invariant but
nonconserved) mechanical transverse momentum, Pz
being the (conserved) canonical one. We use a representa-
tion of Dirac matrices where

/10 /01
az_(o —1)’ ﬁ_<1 0)’

. 0 0,01
aT_(GTGZ 0 >’ (5)

obtained from the spinorial representation [4] by permuting
the second and fourth components of the spinors. Thus

v = (f), where the Pauli spinors ¢ and y are the a, = +1

and a, = —1 components respectively. Equation (4)
splits in
2ip* 0 ¢(0) = [m* + p7(0)]¢(0). (6)
px({) = [m—o.o7-pr(0)]p(0). (7)

The solution of the first equation is
2 2 (!
2p

H(O) = p(0)exp {—i [Fae

Equations (3), (7) and (8) form the Volkov solution.
We will consider the Volkov states |p*,Pr, 1), where
¢(0) = |4) is the basic eigenvector of o, with eigenvalue
24. A = £1/2. is the helicity in the null plane or p* — oo
frame. These states form a continuous complete basis with
the orthogonality relation,

(™. P, Alp" P X)
=807 x (2r)’5(p* — p'")6(Pr —P),  (9)

where J*/2 = (J° +J%)/2 = dN,/(d*Xrdr) is the flux
density crossing a hyperplane of constant X*. With our
normalization,

TH =W (X)(1+a)¥(X) =2¢7(0)p(0) =2.  (10)

A. Associated classical trajectories

Let us consider a classical electron world line
Xa(¢) = [ta($), rq()], parametrized by ( instead of 1.
In the field F;,, p™ is conserved due to the second equation
of (1). The canonical transverse momentum Py = p. 7 —
eA7 is also conserved due to the invariance of the
four-potential in the transverse directions. Thus
Pa.7($) = Py + eAy({). From the mechanical constraint
p?=m® we have also p~ = p~({) = [m® + p}()]/p".
Using dX%,/d¢ = p*/p*, we deduce

far(€) = rar(©)+ [ dc:"p—“) (1)

0

m* + pgl,T(C/)
(p)?

To this trajectory corresponds the Volkov states |p™, Py,
+1/2). Conversely, for one Volkov state we can associate
an infinite family (or “bundle”) of classical trajectories,
all parallel but distinguished by their r(0). Since py 1(¢)
is equal to the eigenvalue of the operator p;({) = Py —
A7 () of the Volkov state, we will omit the subscript “cl” in
the former.

ra(l) = 7a(0) + A s (12)

III. RADIATIVE TRANSITION BETWEEN
VOLKOYV STATES

The spectrum of the radiation by an electron in a
monochromatic plane wave was calculated by Ritus [12]
using the Volkov states. Here we consider the more general
case where the wave is not monochromatic. The radiative
transition between states |i) = |p;, P, 4;) and |f) =
| p}’,PfT,Af> yields the differential photon spectrum per
electron
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dN(k) _  dN(k)
Pkjw  dPkpdkt [k

= SNl dlP (13)

&
with @ = |k| and
(Al 8)4,) = / de/2) explik-¢/2)
<YL E - @wi(0). (14)

w (&) was defined in (3) and normalized with (10); £ is the
polarization vector of the photon (¢ LKk,&*-& =1).

The derivation of Egs. (13) and (14) is given in the
Appendix A. For a given photon momentum k the electron
final state is fully fixed, apart from 1, by the conservation
laws

Py =Pir— kg (15)

which result from the invariance of F;, under translations
in 7 and X7.

Let us place ourselves in a frame where k; = 0} using
the Lorentz transformation “on the null plane”

X,y = X +0XT,
X" = X" +20-X;+60°X+,

v©)= (0 1 O (16

which leaves p*, {, F;, and the spinor ¢ invariant.
We specify the kinematical variables in this frame with a
check (*) accent. Then, k= =0, f’fT =P, =P; and
Psr(8) = Pir(¢) = Pr(¢). Equation (14) rewrites

% .
Glatk.d)lz) = [ Grlo@ opeso  an
with
K6 B
(0= [ ps (182)
= Ck - [X;a(0) = X;a(0)]. (18b)
C=p{/py. (19)

This frame is, e.g., the Breit frame of the emitted photon and a
photon of the initial wave. Other k; = 0 frames are related to it
by a boost along 7.

m+o- f)T(C)UZ
pi

n m + azti' pr() .o

Py

0&,{)=o0.¢ 0
o.. (20)

Expression (18a) of the phase £(¢) is derived with the help
of Eq. (8). Using (12) and k*7/2 = k - X, it becomes (18b).
Thus, although we use a full quantum treatment, the
phase in the integrand of the amplitude (A,|a(k,&)|4;) is
expressed in terms of a classical trajectory associated to the
initial Volkov state.

We choose photons of helicity A = +£1, of polarization
vector & = &(A) = (% + iA¥)//2. Representing helicities
only by their signs, Eq. (20) gives

(=lo(+.9l-) = (+le(= Ol+)"

=V2[p. (&) —ip,(O)/pF.  (2la)
(+HO(+. O)+) = (-|Q(-.0)|-)*
= V2[p.(0) —ip,(O]/pf.  (21b)
(=|0(+.0)|+) = =(+Q(-.0)|-)
= V2(m/pf =m/p{),  (2lc)
(+HO(+.0)|-) = (-|Q(=.0)|+) =0.  (21d)

Gathering Eqs. (17) and (21a)—(21d) we finally obtain

(A/2]a(k, A)|A/2) = C&*(A) -], (22a)

(=A/2la(k, A)| = AJ2) = & (A) - ], (22b)
c-1

(=A/2|a(k,A)|A/2) = A== 1. (22¢)

(A/2]a(k, A)| = A/2) =0, (22d)

where [ and J are expressed in terms of a classical
trajectory associated to the initial state:

)Ll

£(¢) being given in (18a).
Averaging Eq. (13) over the initial helicity and summing
over the final ones gives the unpolarized spectrum,

dNk) «a

Frjo " g2 (C- P H(CE+10I-T) (24

The factor C = p//p; > 1 is the recoil correction. The
classical radiation formulas are obtained by putting C = 1,
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p}r = p; in (182)—(24). As an example of application of
Egs. (22) we give the Stokes parameters of the photon for
unpolarized electrons:

P =N7IC(ILP = 1, P).

Py =N"HC* + 1)Im(J,J;),

Py =2N"'CRe(J,J;).

N = (1/2)[(C - D)1

2+ (CP+ 1)) (25

(P, and P; = degree of polarizations along X and X + §
respectively, P, = mean helicity).

A. Notes on the spin properties

For the hardest photons we have p; < p/, thus the

amplitudes (21b) and (21c) are dominating over (21a): the
photon helicity takes the sign of the initial electron one,
similarly to the bremsstrahlung case.

The helicity-flip amplitude (21c¢) vanishes for m = 0 due
to chiral invariance.

In the classical theory the photon is fully polarized; one
can check that Eq. (25) gives P3 4+ P3 + P = 1 forC = L.
For C > 1 the polarization is only partial: due to the
coupling between the electron and photon spins, part of
the entropy (lack of information) on the former affects
the later.

We can apply Egs. (13)—(25) to Compton scattering
(see Appendix B). One obtains unconventional but simple
expressions (B6) and (B7) for the polarized cross section.
The denominators p;” = (s—m?)/(2w;) and p} = (m*—u)/
(2w;) of (21a) and (21b) come from the s and u poles
respectively. The absence of the s pole in (21b) may be
related to the too large total helicity A + 1, = 4-3/2 in the
s-channel final state. A similar remark holds for the absence
of the u pole in (21a). In (21d) both u and s poles are
blocked. The null result in this case is nontrivial since it
does not ensue from P and T invariances.

B. Generalization to a k; # 0 frame

The ky =0 frame simplifies the calculations but for
applications it is more convenient to use a frame not linked to
k, for instance a p; = 0 frame, where generally k; # 0. The
k; =0 frame is deduced from it by the Lorentz trans-
formation (16) with @ = —k;/k™. In this transformation,

pir = Pr=pir — (p; /k")kr, (26)
to be used in formulas (18a), (20), (21a), (21b) and (23).

IV. COMPARISON WITH THE
BAIER-KATKOV FORMULA

The unpolarized BK formula, as written in, e.g. [5,13],
takes the form of Eq. (24) but with

C:€i/€f (27)

Lo [t m 4 pi(r)
‘E(I)‘EA dt’T. (28)

m -/ L,fzt) } e, (29)

instead of (19), (18a) and (23). ¢; = ¢; + w is the initial
electron energy. The BK formula is used for the radiation of
an ultrarelativistic electron in an arbitrary nonhomogenous
field F;, = {E(z,r), B(z,r)}, which is not necessarily a
plane wave, e.g., a static field. p, instead of py is the
component perpendicular to k, not to a z axis related to F,.
To summarize, the BK formula is obtained from (18a), (19),
(23) and (24) by parametrizing the trajectory with 7 instead
of ¢ and making the replacements p; = p; and

kt = 2, pT = 2e, d¢ = 2dt.  (30)
Similarly, (22a)—(22d) correspond to equations (18a)—(18d)
of [10].

If F;, is a free plane wave, the BK formula becomes
exact in the ultrarelativistic limit €; — oo. This is clear in
the k; = 0 case, where p, =Py, k™ =2w and pT/e =
d¢/dt — 2. To generalize this result in the k; # 0 case, we
cannot invoke a Lorentz transformation because the BK
formula is not Lorentz invariant. However, assuming

€w> p; -k, (31)

the 4-vectors p; and k are nearly collinear and we still have
k*dé'//(pi*p?) ~ wdt'/(e;e;) for Eq. (18a), pi*/p]f ~
¢;/e; for Eq. (19) and d¢/p; ~dt/e; for Eq. (23). It
remains to compare p | to py defined in (26), measured in
their respective transverse planes. The direction of motion
of the incoming wave being —2, we define 2’ = k/|k| and
write pr = p,X + p,§ and p, = pyX' + p,§. where § =
Zx17'/|lix7| is a common y axis, X =§xZ and
R =§x 2. Then p, = p, and some calculations gives

Py — ]V)x = (p : k)kx/(a)k+) (32)

In the ultrarelativistic limit, k™ - co while p-k and
k;/w stay finite, therefore p, — p, — 0. Thus we have
(py» py) = (Px» Py), Which completes the proof of the
exactness of the BK formula, in the ultrarelativistic limit,
for an electron crossing a free plane wave.

V. CASES OF GOOD ACCURACY

In the case treated in Sec. III the final trajectory r/({) is
fully determined, up to a space-time translation at constant
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¢, by the initial one r;(¢{) and k. In the k; = 0 frame we
have indeed p7({) = p;7({) and from Egs. (11) and (12)

one has

rfT(C) - l'fT(O) = Clrir(¢) — i (0)],
77(8) = 74(0) = C*[1;(¢) — w:(0)]. (33)

This explains why the amplitudes (22) and (23) involves
only r;({), more precisely pr(¢) = ptdr;;/d¢ [there is an
equivalent formula involving only r/({)]. Two properties of
Fin play a crucial role: (i) it is a wave packet traveling at the
light velocity; both trajectories are forced to traverse it
entirely; (ii) this wave is planar, so that r;({) and r/({)
probe the same field.

These properties are not postulated in the original
derivation of the BK formula [1]. However the first one
is approximately realized for an ultrarelativistic electron in
a static field. Indeed, in the initial electron frame, the field
becomes almost equivalent to a radiation field (this is the
basis of the equivalent photon method). As for the second
property, it is also approximately realized if the field does
not vary too fast in the transverse directions, more
precisely, if the trajectories r;(¢) and r/(t;t.,) explore
approximately the same field.

Here are two examples where the BK formula is
applicable, at least for y > 1: (i) synchrotron radiation;
(i1) coherent bremsstrahlung on atomic planes, provided
that ;7 and €47 > U, where e7 = ew?/2 is the transverse
energy, y is the angle between the atomic planes and the
electron velocity outside the crystal and U, is the height
(for e™) or depth (for ¢™) of the Lindhard potential.

A. Application to bremsstrahlung on a single atom

In the Born approximation, or if the coherence length [,
is much bigger than the atom size r,, the differential
bremsstrahlung cross section takes the factorized form

dN (k)
&’k /w

wdo dog
ey S
Priq, PP W) =g

(Pips k) (34)

q=p; +k—p; is the momentum transfer; o is the
elastic cross section; /. is given by

20m? _ P,Z,L P},L o

pi  pf vy

(35)

The | or | components are relative to k; here p* = p°+£ p|.
The last factor of (34) is independent of the atomic
potential. It can be calculated with the BK formula applied
to the broken trajectory r;(f) made of two semi-infinite
straight lines respectively parallel to p; and p/; defined by

pf—l—k

—_ 36
b, K (36)

Py = IPil

Introducing the vectors w=p; /m, W =pl  /m,
Eq. (23) gives

(1
CCo\l+w? 1+w?2)
2y w w
e - . 37
J Cw(l—l—w2 1+w/2> (37)

The cross section obtained from (34), (24) and (37) is
equivalent to the QED one in the Born approximation [see
Eqgs. (93.7) of [4]), in the ultrarelativistic limit. In pure
QED, w' is defined as p;, /m but at high energy we have
Py =Py + Kk so that py; | ~py.

Beyond the Born approximation and for /. <r,, the
bremsstrahlung amplitude may be calculated in the eikonal
approximation (see e.g. [14]). For a given impact parameter
b and in a frame where both the atom and the electron are
relativistic, the eikonal wave functions are close to the
Volkov ones in the equivalent radiation field. The asso-
ciated classical trajectories r;(f) and ry(t;t,.,) are practi-
cally not separated in the region where the field is
important. It seems therefore that the BK formula applies
to this case. This has been done in [15] for scalar electron
and in [16] to study a correction to the factorization
theorem.

B. The case of channeling radiation

The condition of almost uniformity of the field in the
transverse directions is not satisfied in channeling radiation.
A warning fact is that the spectral lines predicted by the BK
formula differ significantly at large @ from those given by
the quantized transverse energy levels [10]. The discrep-
ancy is especially strong in the free-fo-bound transitions,
because the initial and final trajectories explore quite
different fields. Nevertheless the BK formula is used in
Monte Carlo simulations of channeling and above-barrier
radiations at high energy [5-8]. In [5,6], for example, the
trajectory is divided in pieces containing about one or two
channeling oscillations and Eq. (29) is integrated on each
piece, prolonged upstream and downstream by two semi-
infinite lines of uniform motions. Each piece prolonged in
this way is equivalent to the trajectory of an electron
crossing a thin crystal. Integrations on the semi-infinite
lines introduce a spurious infrared divergence, which
however keeps the total radiated energy finite and for
which a phenomenological cutoff can be fixed by sum
rules [17].

The segmentation prevents large separation between
r;(t) and r/(f;1.y,) in the equivalent thin crystal, so that
these two trajectories explore nearly the same fields, which
is the main condition of validity of the BK formula. On the
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other hand it discards the interferences between emission
from different pieces, so that the spectral peaks generated
by a periodic trajectory are blurred. This is a drawback
especially in the case of planar channeling of positrons at
medium (<10 GeV) energy, where channeling radiation is
quasimonochromatic. However in axial channeling at high
energy the spectral peaks become dense enough and the
segmentation method just makes a local average of the
spectrum. Anyway, at least in the channeling regime where
Wmax X €, the total radiated energy is not affected by the
segmentation because it is given by the Liénard formula,

W=t [* o] + PR ). 69

F(r) being the force acting on the electron, || and L being
relative to the electron velocity.

From what we learned in Sec. VA, incoherent brems-
strahlung and its interference with channeling radiation are
automatically included if incoherent scatterings are intro-
duced as kinks of the trajectory. This was done in [5-8],
where incoherent scatterings were generated at the differ-
ential rate (d’cy/d*q) x (Debye-Waller factor) x p(r),
where p(r) is the local density of scattering centers.
The simulation results obtained with the above methods
in [5,6,18,19] are in good enough agreement with
experiments.

VI. CONCLUSION

Using the Volkov states we have given an exact deriva-
tion of the formula for the photon spectrum emitted by an
electron crossing an electromagnetic plane wave, both in
the polarized and unpolarized cases. This formula is similar
to the Bailer-Katkov formula, but written in terms of
lightlike coordinates. In fact the BK formula converges
to it in the ultrarelativistic limit.

We explained why the exact formula for an incident
plane wave involves only the initial trajectory. The BK
formula also has this property, indicating a strong condition
for its validity, namely that in the initial rest frame of the
electron the field can be approximated by an electromag-
netic plane wave; in particular this field should be homo-
geneous enough in the transverse directions, so that, after
emitting a photon, the electron explores approximately the
same field as if its motion was not affected by any recoil.
This condition is realized in synchrotron radiation, beam-
strahlung in future high-luminosity e*e™ or e~e™ colliders,
Compton back scattering on intense focused laser beam
and coherent bremsstrahlung at transverse energies > |U,|.

The BK formula also applies to bremsstrahlung on a
single atom. It gives a simple derivation, via Egs. (34), (24)
and (37), of the differential cross section in the Born
approximation, but can be applied to the non-Born, non-
factorized regime as well. Concerning channeling radia-
tion, the condition of the nearly uniform field in the

transverse directions is not fulfilled, but the BK formula
can nevertheless be used to get a smooth photon spectrum,
after segmenting the trajectories in pieces containing only a
few oscillations.

In passing we have noted interesting spin properties
and derived unconventional but simple expressions of the
Compton amplitudes. Using crossing symmetry, most of
our derivations and conclusions can be transposed to the
Baier-Katkov formula for e*e™ pair creation in external
fields. Due to its simplicity and intuitive character, the
Baier-Katkov formula is an invaluable tool in theory and
phenomenology of high-energy electromagnetic processes.

APPENDIX A: DERIVATION
OF EQS. (13) AND (14)

The photon spectrum in the radiative transition from
state |i) to state |f) can be written in a covariant way:

2

3
d’k ’ (A1)

INEsi = 30y

[ expm

where j,(X) = —eWy(X)y*¥;(X) is the field source,
A,(X) = &' exp(—ik,X") the photon wave function and
e the polarization 4-vector. Using d*X = d*X,drd{/2,
the gauge ¢* = (0,€) and ¥(X) of the form (3), Eq. (A1)
becomes

with
7= /drdr’ exp{—ig* (7 —1)/2}
x / PXd Xy expliar - (X —Xp)}  (A3)

and ¢* = P? +k*—pi, ar = Pyr + ky — P;7. Integrating
only on 7’ and X/ gives

7= 2(2ﬂ)35(q+)62(q7)/deZXT. (A4)
The delta functions express the conservation laws (15).
The remaining integral in (A4) is the total area x duration
of the incident wave front. It is infinite, as the time-
integrated total flux (J;/2) [ drd®*X; of initial electron
across the wave front, with J l* = 2 according to (10). Thus,
removing the infinite factor | drd*X; and keeping

1= 2(271)35(pf+~ +kt = ph)B(Prr+kr —Pir),  (A5)
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the expression (A2) becomes the differential photon yield
per incident electron.

We now sum over the final electron state |f), using the
completeness relation

dp dz fT
>nui=3 / LTt P ) (9 Py,
(A6)

associated to the onhogonahty relation (9), with J+ =2.
The integrations over p} + and P are trivial owing to (AS).
Equations (13) and (14) are thus obtained.

APPENDIX B: APPLICATION TO
COMPTON SCATTERING

We consider the reaction e; (P;) +y,(k;) = €5 (Py)+
y(k), where k = k;. The incoming photon can be described
by the classical field

Ar(§) = ARelé; exp(—iw;{))] (B1)
with &; - &/ = 1. We first place ourselves a frame where
Py =0, Prr = —Kky, pPir(§) = eAr({), e.g., the cm.
frame or the e; rest frame. Applying (26),

Pr = —(pf/k")ky (B2a)
Pr(0) = Pr + eAr(0). (B2b)

Calculating (18) and (23) to first order in e.A, we obtain

1 m2+lv’%~ I
=275 T et — B3
[J] g <2p,*p,? w) {J’} (B3)

with

cmPr - €

I — + ;
()
J/ p[ C(PT'é[)PT—éi/z

and ¢ = k*/[2w;p; p;]. Integrating (13) with (22) and (23)
over kT gives the differential photon spectrum
dN(k)/d’k of the scattered photon. This is done in
analogy with (A3) and (A4): the square of the 2z6(--+)
factor of (B3) is replaced by 275(- f d¢. Integrating
the delta function over k™ (noting p ;= = p — k") yields a
factor 2(p)*/(m* + P%). Removing [ d¢ and dividing by
the incident photon density

dehot/(dZXTdC> = Azwi/zv <B5)

we obtain the fully polarized Compton cross section in the
form

pol 42 &, ¢ |M(7)[&;, 4;)|?
do :%XK? f3\ (T)|"324 i (B6)
d*w  m C*(1+w?)

where w = P;/m and C = (p; - k;)/(p; - k) is linked to w
by (C—1)(1+w?) =2p; - k;/m*. w* ranges from O for
backward scattering to oo for forward scattering.
Introducing the complex variable w = w, + iw,, the matrix
elements of M for circular polarizations R or L of the
photons and helicities £1/2 of the electrons have the
simple forms

(L, ) = (R, +| )= Cw?,
(L. +IM|L.+) = (R.=|M|R. —)* = w?,
(R.~IMIL.+) = (R, )= (C- 1w,
(L, +[M|L, =) = (L, +[M|R,=)" = (1 = C)w,
(R,+|M|L,+) = (L,—|M|R,-) = -C,
(R,—|M|L,—) = (L, ) 1,
(R, +|M|L,-) = (L, ) =0. (B7)
The unpolarized Compton cross section
[ MM ZCZ R

agrees the standard result found, e.g., in [4].
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