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The semiclassical Baïer-Katkov (BK) formula is an approximation to the spectrum of the radiation by an
ultrarelativistic electron in a nonuniform field, taking into account the recoil and spin effects. The question
why it involves only the initial electron trajectory is addressed. When the field is an electromagnetic
plane wave, the exact helicity amplitudes in the null-plane frame are derived using Volkov solutions of the
Dirac equation and a modified form of the BK formula is obtained. In passing, the application to Compton
scattering is outlined and interesting spin properties are noted. For a general field, two conditions of
validity of the BK formula are proposed: (1) the field is approximately uniform in the transverse directions,
(2) the relative velocity between the field and the electron is close to c. The applications to bremsstrahlung,
coherent bremsstrahlung and channeling radiation are discussed.
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I. INTRODUCTION

The semiclassical Baïer-Katkov (BK) formula [1,2],
written below in the form of Eqs. (24), (27), (28) and 29,
predicts an energy-angle spectrum of the radiation by an
ultrarelativistic electron in an initial nonuniform field
F in ¼ fEðt; rÞ;Bðt; rÞg. Like the classical radiation for-
mula [3], it involves only the initial classical trajectory of the
electron, riðtÞ (prolongated up to t ¼ þ∞) but, in addition,
it takes into account the loss of energy-momentum (or recoil
effect) and predicts a dependence on the electron polari-
zation. These two effects become importantwhen the photon
energy ω is comparable to the electron one, ϵ≡ p0 ¼
γm ¼ ðm2 þ p2Þ1=2.1 Here are two examples: (i) linear or
nonlinear Compton effect when pi · ki ≳m2 (pi and ki are
the initial 4-momenta of the electron and the photon); in this
caseF in is the classical field describing the initial photon or
coherent state of photons; (ii) synchrotron radiation in the
strong field regime, χ ≡ γF=m2 ≳ 1, where F ¼ −eðEþ
v × BÞ is the Lorentz force. In the uniform field approxi-
mation, the natural photon energy cutoffωc ¼ χϵ=ð1þ χÞ is
comparable to ϵ. The BK formula generalizes the “magnetic
bremsstrahlung” formula [see, e.g., Eq. (90.22) of [4]] to the

case of nonuniform fields. The BK formula has been
applied, with good enough agreement with experiment
[5–8], in Monte Carlo simulations of channeling radiation
or coherent radiation in bent crystals at high energy
(e.g., 50 GeV for axial channeling in germanium,
10 GeV in tungsten). Here the strong field parameter is
χ≡maxfeγjEðrTÞj=m2g≳1, where EðrTÞ is the Lindhard
continuous field.
The fact that the BK formula does not involve a final

electron trajectory rfðtÞ is surprising, since the true quantum
amplitude involves both initial and final wave functions, as
in Eq. (14) below. On the other hand, rfðtÞ is not uniquely
defined. If the emission is considered as a local process
which occurs at a definite time tem, rfðtÞ should start at the
point riðtemÞ 2 and, due to the recoil effect, separate from
riðtÞ for t > tem. But in reality the photon source is the whole
initial trajectory [see Eq. (23) or (29)]. For a given k one
can only define a family of final trajectories rfðt; temÞ. The
BK formula does not involve this family explicitly, as if
rfðt; temÞwas fully determined by riðtÞ for t > tem, whatever
the field F inðt; rÞ is around riðtÞ.
In this article we show that the BK formula becomes

exact, after a replacement of ϵ by pþ=2≡ ðϵþ pzÞ=2,
when the field F inðt; rÞ is a plane wave. For this purpose
we will use the Volkov solutions of the Dirac equation, to
which we associate a classical electron trajectory. In
passing we analyze the helicity dependence of the radiation
amplitude, give the Stokes parameters of the photon and
apply the exact formula to Compton scattering. Then we
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1“γ” can also designate a photon. We use units where
ℏ ¼ c ¼ 1; α ¼ e2=ð4πÞ ≃ 1=137.

2Here we neglect a side slipping [9,10] of the electron,
necessary to conserve energy and momentum.
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will give examples where the BK formula is accurate. We
finally discuss its use in channeling radiation.

II. VOLKOV STATES

Let F inðt; rÞ ¼ fEðζÞ;BðζÞg be a plane electromagnetic
wave packet moving in the −ẑ direction. ζ ≡ Xþ ¼ tþ z
and τ≡ X− ¼ t − z are the lightlike coordinates of a space-
time point X, while XT ¼ ðx; yÞ are the transverse coor-
dinates. F in can be derived from a vector potential
ATðζÞ ¼ ðAxðζÞ; AyðζÞÞ:

EðζÞ ¼ dATðζÞ=dζ; BðζÞ ¼ −ẑ × EðζÞ: ð1Þ

The Dirac equation for the electron,

½i∂t þ α · ði∇ − eATÞ −mβ�ΨðXÞ ¼ 0; ð2Þ

admits the Volkov solutions (see [11] or Chapter IV in [4]),
which are eigenstates of pþ ¼ p0 þ pz ¼ i∂t − i∂z and
PT ¼ −i∇T . They can be factorized in the form

ΨðXÞ ¼ expf−ipþτ=2þ iPT ·XTgψðζÞ: ð3Þ

Then Eq. (2) reduces to

½ð1 − αzÞpþ=2þ ið1þ αzÞ∂ζ

− αT · pTðζÞ −mβ�ψðζÞ ¼ 0; ð4Þ

where pTðζÞ ¼ PT þ eATðζÞ is the (gauge-invariant but
nonconserved) mechanical transverse momentum, PT
being the (conserved) canonical one. We use a representa-
tion of Dirac matrices where

αz ¼
�
1 0

0 −1

�
; β ¼

�
0 1

1 0

�
;

αT ¼
�

0 σzσT
σTσz 0

�
; ð5Þ

obtained from the spinorial representation [4] by permuting
the second and fourth components of the spinors. Thus
ψ ¼ ðϕχÞ, where the Pauli spinors ϕ and χ are the αz ¼ þ1

and αz ¼ −1 components respectively. Equation (4)
splits in

2ipþ∂ζϕðζÞ ¼ ½m2 þ p2
TðζÞ�ϕðζÞ; ð6Þ

pþχðζÞ ¼ ½m − σzσT · pTðζÞ�ϕðζÞ: ð7Þ

The solution of the first equation is

ϕðζÞ ¼ ϕð0Þ exp
�
−i

Z
ζ

0

dζ0
m2 þ p2

Tðζ0Þ
2pþ

�
: ð8Þ

Equations (3), (7) and (8) form the Volkov solution.
We will consider the Volkov states jpþ;PT; λi, where
ϕð0Þ ¼ jλi is the basic eigenvector of σz with eigenvalue
2λ. λ ¼ �1=2. is the helicity in the null plane or pþ → ∞
frame. These states form a continuous complete basis with
the orthogonality relation,

hpþ;PT; λjp0þ;P0
T; λ

0i
¼ δλλ0Jþ × ð2πÞ3δðpþ − p0þÞδðPT − P0

TÞ; ð9Þ

where Jþ=2 ¼ ðJ0 þ JzÞ=2 ¼ dNe=ðd2XTdτÞ is the flux
density crossing a hyperplane of constant Xþ. With our
normalization,

Jþ ≡Ψ†ðXÞð1þ αzÞΨðXÞ ¼ 2ϕ†ð0Þϕð0Þ ¼ 2: ð10Þ

A. Associated classical trajectories

Let us consider a classical electron world line
XclðζÞ ¼ ½tclðζÞ; rclðζÞ�, parametrized by ζ instead of t.
In the field F in, pþ is conserved due to the second equation
of (1). The canonical transverse momentum PT ¼ pcl;T −
eAT is also conserved due to the invariance of the
four-potential in the transverse directions. Thus
pcl;TðζÞ ¼ PT þ eATðζÞ. From the mechanical constraint
p2 ¼ m2 we have also p− ¼ p−ðζÞ ¼ ½m2 þ p2

TðζÞ�=pþ.
Using dXμ

cl=dζ ¼ pμ=pþ, we deduce

rcl;TðζÞ ¼ rcl;Tð0Þ þ
Z

ζ

0

dζ0
pcl;Tðζ0Þ

pþ ; ð11Þ

τclðζÞ ¼ τclð0Þ þ
Z

ζ

0

dζ0
m2 þ p2

cl;Tðζ0Þ
ðpþÞ2 : ð12Þ

To this trajectory corresponds the Volkov states jpþ;PT;
�1=2i. Conversely, for one Volkov state we can associate
an infinite family (or “bundle”) of classical trajectories,
all parallel but distinguished by their rclð0Þ. Since pcl;TðζÞ
is equal to the eigenvalue of the operator pTðζÞ ¼ PT −
ATðζÞ of the Volkov state, we will omit the subscript “cl” in
the former.

III. RADIATIVE TRANSITION BETWEEN
VOLKOV STATES

The spectrum of the radiation by an electron in a
monochromatic plane wave was calculated by Ritus [12]
using the Volkov states. Here we consider the more general
case where the wave is not monochromatic. The radiative
transition between states jii ¼ jpþ

i ;PiT ; λii and jfi ¼
jpþ

f ;PfT; λfi yields the differential photon spectrum per
electron
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dNðkÞ
d3k=ω

≡ dNðkÞ
d2kTdkþ=kþ

¼ α

4π2
X
ε̂;λf

jhλfjaðk; ε̂Þjλiij2 ð13Þ

with ω ¼ jkj and

hλfjaðk; ε̂Þjλii ¼
Z þ∞

−∞
ðdζ=2Þ expðik−ζ=2Þ

× ψ†
fðζÞðε̂� · αÞψ iðζÞ: ð14Þ

ψðζÞ was defined in (3) and normalized with (10); ε̂ is the
polarization vector of the photon (ε̂⊥k; ε̂� · ε̂ ¼ 1).
The derivation of Eqs. (13) and (14) is given in the

Appendix A. For a given photon momentum k the electron
final state is fully fixed, apart from λf, by the conservation
laws

pþ
f ¼ pþ

i − kþ; PfT ¼ PiT − kT ð15Þ

which result from the invariance of F in under translations
in τ and XT .
Let us place ourselves in a frame where kT ¼ 0,3 using

the Lorentz transformation “on the null plane”

XT ⇒ XT þ θXþ;

X− ⇒ X− þ 2θ ·XT þ θ2Xþ;

ψðζÞ ⇒
�

1 0

θ · σσz 1

�
ψðζÞ; ð16Þ

which leaves pþ, ζ, F in and the spinor ϕ invariant.
We specify the kinematical variables in this frame with a
check ( ˇ ) accent. Then, ǩ− ¼ 0, P̌fT ¼ P̌iT ≡ P̌T and
p̌fTðζÞ ¼ p̌iTðζÞ≡ p̌TðζÞ. Equation (14) rewrites

hλfjaðk; ε̂Þjλii ¼
Z þ∞

−∞

dζ
2
hλfjQðε̂; ζÞjλiieiξðζÞ ð17Þ

with

ξðζÞ ¼ kþ

2

Z
ζ

0

dζ0
m2 þ p̌2

Tðζ0Þ
pþ
i p

þ
f

ð18aÞ

¼ Ck · ½Xi;clðζÞ − Xi;clð0Þ�; ð18bÞ

C ¼ pþ
i =p

þ
f ; ð19Þ

Qðε̂; ζÞ ¼ σzε̂� · σ
mþ σ · p̌TðζÞσz

pþ
i

þmþ σzσ · p̌TðζÞ
pþ
f

ε̂� · σσz: ð20Þ

Expression (18a) of the phase ξðζÞ is derived with the help
of Eq. (8). Using (12) and kþτ=2 ¼ k · X, it becomes (18b).
Thus, although we use a full quantum treatment, the
phase in the integrand of the amplitude hλfjaðk; ε̂Þjλii is
expressed in terms of a classical trajectory associated to the
initial Volkov state.
We choose photons of helicity Λ ¼ �1, of polarization

vector ε̂ ¼ ε̂ðΛÞ ¼ ðx̂þ iΛŷÞ= ffiffiffi
2

p
. Representing helicities

only by their signs, Eq. (20) gives

h−jQðþ; ζÞj−i ¼ hþjQð−; ζÞjþi�
¼

ffiffiffi
2

p
½p̌xðζÞ − ip̌yðζÞ�=pþ

i ; ð21aÞ

hþjQðþ; ζÞjþi ¼ h−jQð−; ζÞj−i�
¼

ffiffiffi
2

p
½p̌xðζÞ − ip̌yðζÞ�=pþ

f ; ð21bÞ

h−jQðþ; ζÞjþi ¼ −hþjQð−; ζÞj−i
¼

ffiffiffi
2

p
ðm=pþ

f −m=pþ
i Þ; ð21cÞ

hþjQðþ; ζÞj−i ¼ h−jQð−; ζÞjþi ¼ 0: ð21dÞ

Gathering Eqs. (17) and (21a)–(21d) we finally obtain

hΛ=2jaðk;ΛÞjΛ=2i ¼ Cε̂�ðΛÞ · J; ð22aÞ

h−Λ=2jaðk;ΛÞj − Λ=2i ¼ ε̂�ðΛÞ · J; ð22bÞ

h−Λ=2jaðk;ΛÞjΛ=2i ¼ Λ
C − 1ffiffiffi

2
p I; ð22cÞ

hΛ=2jaðk;ΛÞj − Λ=2i ¼ 0; ð22dÞ

where I and J are expressed in terms of a classical
trajectory associated to the initial state:

�
I

J

�
¼

Z þ∞

−∞

dζ
pþ
i

�
m

p̌TðζÞ

�
eiξðζÞ; ð23Þ

ξðζÞ being given in (18a).
Averaging Eq. (13) over the initial helicity and summing

over the final ones gives the unpolarized spectrum,

dNðkÞ
d3k=ω

¼ α

8π2
fðC − 1Þ2jIj2 þ ðC2 þ 1ÞJ · J�g: ð24Þ

The factor C ¼ pþ
i =p

þ
f > 1 is the recoil correction. The

classical radiation formulas are obtained by putting C ¼ 1,

3This frame is, e.g., the Breit frame of the emitted photon and a
photon of the initial wave. Other kT ¼ 0 frames are related to it
by a boost along ẑ.
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pþ
f ¼ pþ

i in (18a)–(24). As an example of application of
Eqs. (22) we give the Stokes parameters of the photon for
unpolarized electrons:

P1 ¼ N −1CðjJxj2 − jJyj2Þ;
P2 ¼ N −1ðC2 þ 1ÞImðJxJ�yÞ;
P3 ¼ 2N −1CReðJxJ�yÞ;
N ¼ ð1=2Þ½ðC − 1Þ2jIj2 þ ðC2 þ 1ÞJ · J�� ð25Þ

(P1 and P3 ¼ degree of polarizations along x̂ and x̂þ ŷ
respectively, P2 ¼ mean helicity).

A. Notes on the spin properties

For the hardest photons we have pþ
f ≪ pþ

i , thus the
amplitudes (21b) and (21c) are dominating over (21a): the
photon helicity takes the sign of the initial electron one,
similarly to the bremsstrahlung case.
The helicity-flip amplitude (21c) vanishes for m ¼ 0 due

to chiral invariance.
In the classical theory the photon is fully polarized; one

can check that Eq. (25) givesP2
1 þ P2

2 þ P2
3 ¼ 1 forC ¼ 1.

For C > 1 the polarization is only partial: due to the
coupling between the electron and photon spins, part of
the entropy (lack of information) on the former affects
the later.
We can apply Eqs. (13)–(25) to Compton scattering

(see Appendix B). One obtains unconventional but simple
expressions (B6) and (B7) for the polarized cross section.
The denominators pþ

i ¼ðs−m2Þ=ð2ωiÞ and pþ
f ¼ðm2−uÞ=

ð2ωiÞ of (21a) and (21b) come from the s and u poles
respectively. The absence of the s pole in (21b) may be
related to the too large total helicity Λþ λf ¼ �3=2 in the
s-channel final state. A similar remark holds for the absence
of the u pole in (21a). In (21d) both u and s poles are
blocked. The null result in this case is nontrivial since it
does not ensue from P and T invariances.

B. Generalization to a kT ≠ 0 frame

The kT ¼ 0 frame simplifies the calculations but for
applications it is more convenient to use a frame not linked to
k, for instance a pT ¼ 0 frame, where generally kT ≠ 0. The
kT ¼ 0 frame is deduced from it by the Lorentz trans-
formation (16) with θ ¼ −kT=kþ. In this transformation,

piT ⇒ p̌T ≡ pi;T − ðpþ
i =k

þÞkT; ð26Þ

to be used in formulas (18a), (20), (21a), (21b) and (23).

IV. COMPARISON WITH THE
BAÏER-KATKOV FORMULA

The unpolarized BK formula, as written in, e.g. [5,13],
takes the form of Eq. (24) but with

C ¼ ϵi=ϵf ð27Þ

ξðtÞ ≃ ω

2

Z
t

0

dt0
m2 þ p2⊥ðt0Þ

ϵiϵf
: ð28Þ

�
I

J

�
¼

Z þ∞

−∞

dt
ϵi

�
m

p⊥ðtÞ

�
eiξðtÞ; ð29Þ

instead of (19), (18a) and (23). ϵi ¼ ϵf þ ω is the initial
electron energy. The BK formula is used for the radiation of
an ultrarelativistic electron in an arbitrary nonhomogenous
field F in ¼ fEðt; rÞ;Bðt; rÞg, which is not necessarily a
plane wave, e.g., a static field. p⊥ instead of pT is the
component perpendicular to k, not to a z axis related toF in.
To summarize, the BK formula is obtained from (18a), (19),
(23) and (24) by parametrizing the trajectory with t instead
of ζ and making the replacements p̌T ⇒ p⊥ and

kþ ⇒ 2ω; pþ ⇒ 2ϵ; dζ ⇒ 2dt: ð30Þ

Similarly, (22a)–(22d) correspond to equations (18a)–(18d)
of [10].
If F in is a free plane wave, the BK formula becomes

exact in the ultrarelativistic limit ϵi → ∞. This is clear in
the kT ¼ 0 case, where p⊥ ≡ p̌T , kþ ≡ 2ω and pþ=ϵ ¼
dζ=dt → 2. To generalize this result in the kT ≠ 0 case, we
cannot invoke a Lorentz transformation because the BK
formula is not Lorentz invariant. However, assuming

ϵiω ≫ pi · k; ð31Þ

the 4-vectors pi and k are nearly collinear and we still have
kþdζ0=ðpþ

i p
þ
f Þ ≃ ωdt0=ðϵiϵfÞ for Eq. (18a), pþ

i =p
þ
f ≃

ϵi=ϵf for Eq. (19) and dζ=pþ
i ≃ dt=ϵi for Eq. (23). It

remains to compare p⊥ to p̌T defined in (26), measured in
their respective transverse planes. The direction of motion
of the incoming wave being −ẑ, we define ẑ0 ¼ k=jkj and
write p̌T ¼ p̌xx̂þ p̌yŷ and p⊥ ¼ px0 x̂0 þ pyŷ, where ŷ ¼
ẑ × ẑ0=jẑ × ẑ0j is a common y axis, x̂ ¼ ŷ × ẑ and
x̂0 ¼ ŷ × ẑ0. Then py ¼ p̌y and some calculations gives

px0 − p̌x ¼ ðp · kÞkx=ðωkþÞ: ð32Þ

In the ultrarelativistic limit, kþ → ∞ while p · k and
kT=ω stay finite, therefore px0 − p̌x → 0. Thus we have
ðpx0 ; pyÞ → ðp̌x; p̌yÞ, which completes the proof of the
exactness of the BK formula, in the ultrarelativistic limit,
for an electron crossing a free plane wave.

V. CASES OF GOOD ACCURACY

In the case treated in Sec. III the final trajectory rfðζÞ is
fully determined, up to a space-time translation at constant

X. ARTRU PHYS. REV. ACCEL. BEAMS 22, 050705 (2019)

050705-4



ζ, by the initial one riðζÞ and k. In the kT ¼ 0 frame we
have indeed pfTðζÞ ¼ piTðζÞ and from Eqs. (11) and (12)
one has

rfTðζÞ − rfTð0Þ ¼ C½riTðζÞ − riTð0Þ�;
τfðζÞ − τfð0Þ ¼ C2½τiðζÞ − τið0Þ�: ð33Þ

This explains why the amplitudes (22) and (23) involves
only riðζÞ, more precisely pTðζÞ ¼ pþdriT=dζ [there is an
equivalent formula involving only rfðζÞ]. Two properties of
F in play a crucial role: (i) it is a wave packet traveling at the
light velocity; both trajectories are forced to traverse it
entirely; (ii) this wave is planar, so that riðζÞ and rfðζÞ
probe the same field.
These properties are not postulated in the original

derivation of the BK formula [1]. However the first one
is approximately realized for an ultrarelativistic electron in
a static field. Indeed, in the initial electron frame, the field
becomes almost equivalent to a radiation field (this is the
basis of the equivalent photon method). As for the second
property, it is also approximately realized if the field does
not vary too fast in the transverse directions, more
precisely, if the trajectories riðtÞ and rfðt; temÞ explore
approximately the same field.
Here are two examples where the BK formula is

applicable, at least for γ ≫ 1: (i) synchrotron radiation;
(ii) coherent bremsstrahlung on atomic planes, provided
that ϵiT and ϵfT ≫ U0, where ϵT ¼ ϵψ2=2 is the transverse
energy, ψ is the angle between the atomic planes and the
electron velocity outside the crystal and U0 is the height
(for eþ) or depth (for e−) of the Lindhard potential.

A. Application to bremsstrahlung on a single atom

In the Born approximation, or if the coherence length lc
is much bigger than the atom size ra, the differential
bremsstrahlung cross section takes the factorized form

ωdσ
d3kd2q⊥

ðpi;pf;kÞ ¼
dσel
d2q⊥

×
dNðkÞ
d3k=ω

ðpi;pf;kÞ; ð34Þ

q ¼ pf þ k − pi is the momentum transfer; σel is the
elastic cross section; lc is given by

1

lc
≡ −qk ¼

2ωm2

pþ
i p

þ
f
−
p2
i;⊥
pþ
i
þ p2

f;⊥
pþ
f

∼
ω

γiγf
: ð35Þ

The ⊥ or k components are relative to k; here p�≡p0�pk.
The last factor of (34) is independent of the atomic
potential. It can be calculated with the BK formula applied
to the broken trajectory riðtÞ made of two semi-infinite
straight lines respectively parallel to pi and p0

el defined by

p0
el ¼ jpij

pf þ k

jpf þ kj : ð36Þ

Introducing the vectors w ¼ pi;⊥=m, w0 ¼ p0
el;⊥=m,

Eq. (23) gives

I ¼ 2γ

Cω

�
1

1þ w2
−

1

1þ w02

�
;

J ¼ 2γ

Cω

�
w

1þ w2
−

w0

1þ w02

�
: ð37Þ

The cross section obtained from (34), (24) and (37) is
equivalent to the QED one in the Born approximation [see
Eqs. (93.7) of [4]), in the ultrarelativistic limit. In pure
QED, w0 is defined as pf⊥=m but at high energy we have
p0
el ≃ pf þ k so that p0

el;⊥ ≃ pf⊥.
Beyond the Born approximation and for lc ≲ ra, the

bremsstrahlung amplitude may be calculated in the eikonal
approximation (see e.g. [14]). For a given impact parameter
b and in a frame where both the atom and the electron are
relativistic, the eikonal wave functions are close to the
Volkov ones in the equivalent radiation field. The asso-
ciated classical trajectories riðtÞ and rfðt; temÞ are practi-
cally not separated in the region where the field is
important. It seems therefore that the BK formula applies
to this case. This has been done in [15] for scalar electron
and in [16] to study a correction to the factorization
theorem.

B. The case of channeling radiation

The condition of almost uniformity of the field in the
transverse directions is not satisfied in channeling radiation.
Awarning fact is that the spectral lines predicted by the BK
formula differ significantly at large ω from those given by
the quantized transverse energy levels [10]. The discrep-
ancy is especially strong in the free-to-bound transitions,
because the initial and final trajectories explore quite
different fields. Nevertheless the BK formula is used in
Monte Carlo simulations of channeling and above-barrier
radiations at high energy [5–8]. In [5,6], for example, the
trajectory is divided in pieces containing about one or two
channeling oscillations and Eq. (29) is integrated on each
piece, prolonged upstream and downstream by two semi-
infinite lines of uniform motions. Each piece prolonged in
this way is equivalent to the trajectory of an electron
crossing a thin crystal. Integrations on the semi-infinite
lines introduce a spurious infrared divergence, which
however keeps the total radiated energy finite and for
which a phenomenological cutoff can be fixed by sum
rules [17].
The segmentation prevents large separation between

riðtÞ and rfðt; temÞ in the equivalent thin crystal, so that
these two trajectories explore nearly the same fields, which
is the main condition of validity of the BK formula. On the
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other hand it discards the interferences between emission
from different pieces, so that the spectral peaks generated
by a periodic trajectory are blurred. This is a drawback
especially in the case of planar channeling of positrons at
medium (≲10 GeV) energy, where channeling radiation is
quasimonochromatic. However in axial channeling at high
energy the spectral peaks become dense enough and the
segmentation method just makes a local average of the
spectrum. Anyway, at least in the channeling regime where
ωmax ≪ ϵ, the total radiated energy is not affected by the
segmentation because it is given by the Liénard formula,

W ¼ 2α

3m2

Z
∞

−∞
dtðF2

k½rðtÞ� þ γ2F2⊥½rðtÞ�Þ; ð38Þ

FðrÞ being the force acting on the electron, k and ⊥ being
relative to the electron velocity.
From what we learned in Sec. VA, incoherent brems-

strahlung and its interference with channeling radiation are
automatically included if incoherent scatterings are intro-
duced as kinks of the trajectory. This was done in [5–8],
where incoherent scatterings were generated at the differ-
ential rate ðd2σel=d2qÞ × ðDebye-Waller factorÞ × ρðrÞ,
where ρðrÞ is the local density of scattering centers.
The simulation results obtained with the above methods
in [5,6,18,19] are in good enough agreement with
experiments.

VI. CONCLUSION

Using the Volkov states we have given an exact deriva-
tion of the formula for the photon spectrum emitted by an
electron crossing an electromagnetic plane wave, both in
the polarized and unpolarized cases. This formula is similar
to the Baïer-Katkov formula, but written in terms of
lightlike coordinates. In fact the BK formula converges
to it in the ultrarelativistic limit.
We explained why the exact formula for an incident

plane wave involves only the initial trajectory. The BK
formula also has this property, indicating a strong condition
for its validity, namely that in the initial rest frame of the
electron the field can be approximated by an electromag-
netic plane wave; in particular this field should be homo-
geneous enough in the transverse directions, so that, after
emitting a photon, the electron explores approximately the
same field as if its motion was not affected by any recoil.
This condition is realized in synchrotron radiation, beam-
strahlung in future high-luminosity eþe− or e−e− colliders,
Compton back scattering on intense focused laser beam
and coherent bremsstrahlung at transverse energies≫ jU0j.
The BK formula also applies to bremsstrahlung on a

single atom. It gives a simple derivation, via Eqs. (34), (24)
and (37), of the differential cross section in the Born
approximation, but can be applied to the non-Born, non-
factorized regime as well. Concerning channeling radia-
tion, the condition of the nearly uniform field in the

transverse directions is not fulfilled, but the BK formula
can nevertheless be used to get a smooth photon spectrum,
after segmenting the trajectories in pieces containing only a
few oscillations.
In passing we have noted interesting spin properties

and derived unconventional but simple expressions of the
Compton amplitudes. Using crossing symmetry, most of
our derivations and conclusions can be transposed to the
Baïer-Katkov formula for eþe− pair creation in external
fields. Due to its simplicity and intuitive character, the
Baïer-Katkov formula is an invaluable tool in theory and
phenomenology of high-energy electromagnetic processes.

APPENDIX A: DERIVATION
OF EQS. (13) AND (14)

The photon spectrum in the radiative transition from
state jii to state jfi can be written in a covariant way:

dNðε̂Þfi ¼
d3k

2k0ð2πÞ3
				
Z

d4XjμfiðXÞA�
μðXÞ

				
2

; ðA1Þ

where jμfiðXÞ ¼ −eΨ̄fðXÞγμΨiðXÞ is the field source,
AμðXÞ ¼ εμ expð−ikνXνÞ the photon wave function and
εμ the polarization 4-vector. Using d4X ¼ d2XTdτdζ=2,
the gauge εμ ¼ ð0; ε̂Þ and ΨðXÞ of the form (3), Eq. (A1)
becomes

dNfiðε̂Þ ¼
αd3k
k0ð2πÞ2 × I

×

				
Z

dζ
2
eik

−ζ=2ψf†ðζÞðε̂� · αÞψ iðζÞ
				
2

ðA2Þ

with

I ¼
Z

dτdτ0 expf−iqþðτ0 − τÞ=2g

×
Z

d2XTd2X0
T expfiqT · ðX0

T −XTÞg ðA3Þ

and qþ¼pþ
f þkþ−pþ

i , qT ¼ PfT þ kT − PiT . Integrating
only on τ0 and X0

T gives

I ¼ 2ð2πÞ3δðqþÞδ2ðqTÞ
Z

dτd2XT: ðA4Þ

The delta functions express the conservation laws (15).
The remaining integral in (A4) is the total area × duration
of the incident wave front. It is infinite, as the time-
integrated total flux ðJþi =2Þ

R
dτd2XT of initial electron

across the wave front, with Jþi ¼ 2 according to (10). Thus,
removing the infinite factor

R
dτd2XT and keeping

I ¼ 2ð2πÞ3δðpþ
f þ kþ − pþ

i Þδ2ðPfT þ kT − PiTÞ; ðA5Þ
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the expression (A2) becomes the differential photon yield
per incident electron.
We now sum over the final electron state jfi, using the

completeness relation

X
f

jfihfj ¼
X
λf

Z dpþ
f d

2PfT

Jþf ð2πÞ3
jpþ

f ;PfT; λfihpþ
f ;PfT; λfj;

ðA6Þ

associated to the orthogonality relation (9), with Jþf ¼ 2.
The integrations over pþ

f and PfT are trivial owing to (A5).
Equations (13) and (14) are thus obtained.

APPENDIX B: APPLICATION TO
COMPTON SCATTERING

We consider the reaction e−i ðPiÞ þ γiðkiÞ → e−f ðPfÞþ
γðkÞ, where k≡ kf. The incoming photon can be described
by the classical field

ATðζÞ ¼ ARe½ε̂i expð−iωiζÞ� ðB1Þ

with ε̂i · ε̂�i ¼ 1. We first place ourselves a frame where
PiT ¼ 0, Pf;T ¼ −kT , piTðζÞ ¼ eATðζÞ, e.g., the c.m.
frame or the e−i rest frame. Applying (26),

P̌T ¼ −ðpþ
i =k

þÞkT; ðB2aÞ

p̌TðζÞ ¼ P̌T þ eATðζÞ: ðB2bÞ

Calculating (18) and (23) to first order in eA, we obtain

�
I

J

�
¼ 2πδ

�
m2 þ P̌2

T

2pþ
i p

þ
f

kþ − ωi

��
I0

J0

�
ðB3Þ

with

�
I0

J0

�
¼ −eAkþ

pþ
i

�
cmP̌T · ε̂i

cðP̌T · ε̂iÞP̌T − ε̂i=2

�
ðB4Þ

and c ¼ kþ=½2ωip
þ
i p

þ
f �. Integrating (13) with (22) and (23)

over kþ gives the differential photon spectrum
dNðkÞ=d2kT of the scattered photon. This is done in
analogy with (A3) and (A4): the square of the 2πδð� � �Þ
factor of (B3) is replaced by 2πδð� � �Þ × R

dζ. Integrating
the delta function over kþ (noting pþ

f ¼ pþ
i − kþ) yields a

factor 2ðpþ
f Þ2=ðm2 þ P̌2

TÞ. Removing
R
dζ and dividing by

the incident photon density

dNphot=ðd2XTdζÞ ¼ A2ωi=2; ðB5Þ

we obtain the fully polarized Compton cross section in the
form

dσpol

d2w
¼ 4α2

m2
×
jhε̂; λfjMðτÞjε̂i; λiij2

C3ð1þ w2Þ4 ; ðB6Þ

where w ¼ P̌T=m and C ¼ ðpi · kiÞ=ðpi · kÞ is linked to w
by ðC − 1Þð1þ w2Þ ¼ 2pi · ki=m2. w2 ranges from 0 for
backward scattering to ∞ for forward scattering.
Introducing the complex variable w ¼ wx þ iwy, the matrix
elements of M for circular polarizations R or L of the
photons and helicities �1=2 of the electrons have the
simple forms

hL;−jMjL;−i ¼ hR;þjMjR;þi� ¼ Cw2;

hL;þjMjL;þi ¼ hR;−jMjR;−i� ¼ w2;

hR;−jMjL;þi ¼ hR;−jMjR;þi� ¼ ðC − 1Þw;
hL;þjMjL;−i ¼ hL;þjMjR;−i� ¼ ð1 − CÞw;
hR;þjMjL;þi ¼ hL;−jMjR;−i ¼ −C;

hR;−jMjL;−i ¼ hL;þjMjR;þi ¼ −1;

hR;þjMjL;−i ¼ hL;−jMjR;þi ¼ 0: ðB7Þ

The unpolarized Compton cross section

2α2

m2

Z
d2w

ð1þ C2Þð1þ jwj4Þ þ 2ðC − 1Þ2w2

C3ð1þ w2Þ4 ðB8Þ

agrees the standard result found, e.g., in [4].
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