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The transverse mode coupling instability of a bunched beam is investigated in the paper at different
forms of the bunches, with space charge included. An equation of transverse motion of the bunch in the
parabolic potential well of synchrotron oscillations is derived and analyzed. The bunch of constant density
(flat bunch) is examined in detail to make a comparison with the square well model. It is shown that both
models result in very close instability thresholds of the flat bunch. Then different form bunches are
investigated in the parabolic potential well. It is shown that decrease of the bunch RMS length leads to the
growth of its threshold, that is the flat bunch model gives only a minimal estimation of the threshold. The
results are treated in terms of Landau damping due to a spread of the space charge tune shift.
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I. INTRODUCTION

Transverse mode coupling instability (TMCI) of the
bunched beam has been observed first in the electron
storage ring PETRA and explained by Kohaupt [1]. Using
the two-particle model, the author has shown that the
instability occurs when tunes of two head-tail modes
approach each other being shifted by the bunch wakefield.
The shift should be about the synchrotron tune to reach the
betatron tune coalescence and the beam instability.
In proton rings, the space charge (SC) tune shift ΔQsc

has to be taken into account as well because it typically
exceeds the synchrotron tune Qs. This effect has been
considered first by Blaskiewicz [2,3]. The main point of the
papers is that the SC pushes upward the TMCI threshold,
that is it improves the beam stability. However, relatively
small SC tune shift was considered in these works.
Different wakes were considered in the subsequent

papers [4–9] at the unlimited value of the SC tune shift.
It was shown that, at increasing tune shift, the TMCI
threshold goes up if the wake is negative, and goes down if
it is positive (the wake sign coincides here with sign of the
tune shift for a rigid bunch oscillation). The effect of a
resonant wake is more complicated being dependent on its
phase advance in the bunch [8,9].
Another result has been represented in Ref. [10].

According to it, the stable and unstable zones alternately

replace each other when the SC tune shift increases, even at
the constant wakefield. The two-particle approximation has
been used in the paper like the pioneer work [1], with a
model of the space charge field proposed. Further exami-
nation of the model looks to be needed.
It should be noted that most of the mentioned results

were obtained in the framework of the flat (square) bunch
model. It ignores dependence of the SC tune shift of
particles on their longitudinal position, and related beta-
tron tune spread. Meanwhile, it is known that the spread
due to nonlinearity or chromaticity affects the transverse
instability thresholds by a redistribution of the tunes [11].
The similar effect should not be excluded if the spread is
caused by space charge. This problem is investigated in
this paper.
In Sec. II, the physical model is introduced, and the

equation of transverse oscillations of an arbitrary bunch
with the wakefield and the space charge is proposed.
In Sec. III, the equation is applied to the flat bunch to

compare the results with the known models and to check
their identity and applicability.
In Sec. IV, the equation is applied to different bunch

forms to investigate their spectra and thresholds in com-
parison with the flat bunch.

II. PHYSICAL MODEL

A. General

We will consider coherent transverse oscillations of a
bunch in the rest frame, representing its displacement in a
point of the longitudinal phase space as real part of the
function

X ¼ Yðθ; uÞ exp½−iðQ0 þ ξÞθ − iðQ0 þ νÞΩ0t� ð1Þ
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where θ ¼ z=R0 and u ¼ _θ are the longitudinal coordinate
and corresponding velocity, R0 and Ω0 are the accelerator
average radius and central revolution frequency, Q0 and ν
are the bare betatron tune and the addition to it caused by
the collective effects, and ξ is the normalized chromaticity:

ξ ¼ −
dQ0=d lnðuÞ
α − 1=γ2

ð2Þ

with α as the momentum compaction factor. The slowly
changing amplitude of the betatron oscillations Y satisfies
the equation [5]

νY þ iQs
∂Y
∂ϕþ ΔQscðY − ȲÞ

¼ 2

Z
∞

θ
qðθ0 − θÞ exp½−iξðθ0 − θÞ�Ȳðθ0Þρðθ0Þdθ0 ð3Þ

where ϕ and Qs are phase and tune of the synchrotron
oscillations. The space charge tune shift ΔQscðθÞ does not
depend on transverse coordinates because it is an average
over the beam cross section [12]. The normalized wake
field potential qðθÞ is proportional to usual transverse wake
function W1ðzÞ:

qðθÞ ¼ r0NbR0W1ð−R0θÞ
8πβ2γQ0

ð4Þ

with r0 ¼ e2=mc2 as the particle electromagnetic radius, β
and γ as its normalized velocity and energy, and Nb as the
bunch population. Besides, the notation and the normali-
zation condition are used in Eq. (3):

Z
∞

−∞
Fðθ; uÞYðθ; uÞdu ¼ ρðθÞȲðθÞ; ð5aÞ

Z
∞

−∞
Fðθ; uÞdu ¼ ρðθÞ; ð5bÞ

Z
∞

−∞
ρðθÞdθ ¼ 1 ð5cÞ

where F is the bunch distribution function in the longi-
tudinal phase space.

B. Used simplifications

Being interested mainly by dependence on the TMCI
threshold on the SC tune shift at arbitrary bunch shape,
we restrict ourselves to the case of zero chromaticity and
constant wake: ξ ¼ 0, q ¼ q0 ¼ const. Besides, we will
consider only linear synchrotron oscillations takingQs ¼ 1
in the equations. Finally, we will consider a bunch of
restricted length, and will take new longitudinal coordinate
and velocity x ∝ θ, v ¼ _x, to have the bunch location in the
region −1 < x < 1. Then Eq. (3) obtains the form

νY þ i
∂Y
∂ϕþ ΔQscðY − ȲÞ ¼ 2q0

Z
1

x
Ȳðx0Þρðx0Þdx0 ð6Þ

with the normalization conditions replacing Eq. (5)

Z
Fðx2 þ v2ÞYðx; vÞdv ¼ ρðxÞȲðxÞ; ð7aÞ

Z
Fðx2 þ v2Þdv ¼ ρðxÞ; ð7bÞ

Z
1

−1
ρðxÞdx ¼ 1: ð7cÞ

Parameter q0 is proportional to an average value of the
original wake potential W1, if the last is a monotonous
function of the coordinate (for example the resistive wall
wake). The proportionality coefficient is clear from Eq. (6)
itself because it should give the tune shift ν ¼ q0 for the
lowest (rigid) head-tail mode Y ¼ Ȳ ¼ 1:

ν ¼ 2

Z
1

−1
ρðxÞdx

Z
1

x
qðx − x0Þρðx0Þdx0

→ 2q0

Z
1

−1
ρðxÞdx

Z
1

x
ρðx0Þdx0 ¼ q0:

C. High space charge approximation

Furthermore, it is convenient to consider only the even
part of the function Y which has the form YþðϕÞ ¼
½YðϕÞ þ Yð−ϕÞ�=2 and satisfies the equation [9]:

∂
∂ϕ

�∂Yþ

ν̂∂ϕ
�
þ ν̂Yþ¼ΔQscȲþ2q0

Z
1

x
Ȳðx0Þρðx0Þdx0 ð8Þ

where ν̂ðxÞ ¼ νþ ΔQscðxÞ. Multiplying this equation by
the function F, integrating on v, using Eq. (7), and taking
into account the relations

∂
∂ϕ ¼ v

∂
∂x − x

∂
∂v ;

∂F
∂ϕ ¼ 0 ð9Þ

we obtain

d
dx

�
d
ν̂dx

Z
YþFv2dv

�
þ d
dx

�
xρȲ
ν̂

�
þ νρȲ

¼ 2q0ρðxÞ
Z

1

x
Ȳðx0Þρðx0Þdx0: ð10Þ

A similar equation has been proposed earlier in the
framework of the square potential well model, where the
positive phase can be identified with the longitudinal
coordinate [6]. The goal of this paper is to extend this to
arbitrary potential well using the high space charge
approximation developed in papers [4,12]. The main idea
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is that at rather large ΔQsc, the function Yþ depends on
coordinate x essentially stronger than on velocity v. In
accordance with this, one can put Yþ ≃ Ȳ in the left-hand
part of Eq. (10). It results in the equation for the bunch
dipole momentum DðxÞ ¼ ρðxÞȲðxÞ:

d
dx

�
dðU2DÞ
ν̂dx

�
þ d
dx

�
xD
ν̂

�
þ νD ¼ 2q0ρðxÞ

Z
1

x
Dðx0Þdx0

ð11Þ

where UðxÞ is the RMS value of normalized momentum of
the particles at the longitudinal coordinate x:

U2ðxÞ ¼ 1

ρðxÞ
Z

1

−1
Fðx2 þ v2Þv2dv ð12Þ

It is easy to check that

dðρU2Þ
dx

¼ −xρðxÞ: ð13Þ

A usage of this relation in Eq. (11) would allow us to get a
final form of this integral-differential equation. However, it
is more convenient for the numerical solution to represent it
as the system of three first order equations

dD
dx

¼ ν̂ðxÞD1ðxÞ
U2ðxÞ ; ð14aÞ

dD1

dx
¼

�
d
dx

�
U2ρ0ðxÞ

ν̂ρ

�
− ν

�
Dþ 2q0ρD2; ð14bÞ

dD2

dx
¼ −DðxÞ: ð14cÞ

The incoming functions satisfy the relations ρðxÞ ¼ 0 and
U2ðxÞ ¼ 0 at x ¼ �1. Because the bunch dipole momen-
tum DðxÞ and its derivative are expected to be constrained
values on any point of the space, the following boundary
conditions must be satisfied:

D1ð�1Þ ¼ 0; D2ð1Þ ¼ 0: ð15Þ

The problem has a countless number of eigenfunctions
and corresponding eigentunes. The real eigentunes can be
found by means of the following steps as it has been
proposed and applied in Refs. [6,9]:
(1) At given value of the SC tune shift, and with a trial

value of the wake q0, series of Eq. (14) should be resolved
step by step by moving from the bunch end x ¼ 1 to its
beginning x ¼ −1, with initial conditions Dð1Þ ¼ 1,
D1ð1Þ ¼ 0, D2ð1Þ ¼ 0.
(2) The tune ν should be varied to find the value providing

fulfillment of the boundary condition D1ð−1Þ ¼ 0.

(3) Steps 1-2 should be repeated with different q0 so
many times to obtain several curves νiðq0Þ describing
the dependence of eigenvalues on the wake strength at
given ΔQsc.
(4) The instability threshold of each mode should be

determined as the curve turning point.
The operations should be repeated with all desirable tune

shifts. Note that the condition ν̂ðxÞ ≠ 0 is assumed to be
fulfilled at any step of the solving. This important point will
be discussed in detail in Sec. IV.

III. FLAT BUNCH

The TMCI threshold of a flat bunch (ρ ¼ const) was
considered earlier using different approximations, includ-
ing the expansion technique and/or the square well model
[2,4,7,9]. However, the case of linear synchrotron oscil-
lations has been analyzed only at a modest value of the SC
tune shift. Equation (14) allows us to consider the problem
more widely.
The involved functions are at jxj < 1

ρðxÞ ¼ 1

2
; ð16aÞ

U2ðxÞ ¼ 1 − x2

2
; ð16bÞ

ν̂ ¼ νþ ΔQsc ¼ const: ð16cÞ

Using the notations

P ¼ ν̂ν ¼ ν̂ðν̂ − ΔQscÞ; Q ¼ q0ν̂ ð17Þ

one can reduce Eq. (11) to the form which does not include
the SC tune shift explicitly:

d
dx

�
U2

dD
dx

�
þ PD ¼ Q

Z
1

x
Dðx0Þdx0: ð18Þ

A similar equation has been obtained in Ref. [6] on the base
of the square well model. With an equalization of the bunch
length, the only remaining difference would be the factor
4=π2 instead of U2ðxÞ ¼ ð1 − x2Þ=2 in Eq. (18).
Solution of the equation by the above-described method

provides an infinite set of the eigentunes Pn at eachQ. They
form the lines in the (Q–P) plane some of which are shown
in Fig. 1. Note that, atQ ¼ 0, Eq. (18) is Legendre equation
with eigennumbers Pm¼0;1;3;6;…mðmþ1Þ=2;…. The
lines in Fig. 1 cross the vertical axisQ just in these points so
that the numbersm can be treated as the indexes of the lower
multipole in the solution. At Q > 0, some lines merge in
pairs which will be marked further by symbols M0;1;M2;3

etc. For example, the red lines link up at Q ¼ 0.468
producing theM0;1 coupled mode. Actually, the lines extend
to the regionQ > 0.468 as the complex-conjugate pair, that
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isQ0;1 ¼ 0.468 is the critical point of theM0;1 mode. Higher
modes have higher critical points: for example Q2;3 ¼ 7.07
(blue lines in Fig. 1), Q4;5 ¼ 28.6, etc.
According to Eq. (17), each curve of the ðQ–PÞ plane is

mapped to 2 curves in the ðq0–ν̂Þ plane, dependent on
ΔQsc:

ν̂ ¼ ΔQsc

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔQ2

sc

4
þ P

r
; q0 ¼

Q
ν̂

ð19Þ

(see Fig. 2). Each obtained point is the eigentune of some
head-tail mode with space charge and wakefield. There are
left and right turning points in the curves where two real
head-tail eigentunes join together. It means an appearance
of the complex conjugated eigentunes that is the threshold
of corresponding TMCI mode.
For example, at ΔQsc ¼ 0, M0;1 mode has the turning

points q0=Qs ¼∓ 0.57 with corresponding values of
ν=Qs ¼∓ 0.75. They are the TMCI thresholds of negative
or positive wake without space charge (the black line in the
upper panel of Fig. 2). The curves stretch to the left-down
direction when the SC tune shift increases, resulting in a
movement of the turning points. Change of the TMCI
threshold in the process depends on the wake sign: thresh-
old of the positive wake decreases going to 0 at ΔQsc → ∞
whereas the threshold of the negative wake jq0j ¼ −q0
tends to infinity in the case. Similar behavior of the M2;3

mode is shown in the lower panel of Fig. 2.
The more complicated case of the negative wake is

additionally illustrated by Fig. 3 where the mentioned
modes are shown together. When the SC tune shift
increases, both turning points move to the left doing this
with different velocity. The turning point of the lower mode
M0;1 moves especially quickly, particularly because of fast
growth of distance between initial points of the loop in the
vertical axis, which always exceeds ΔQsc. Other modes

grow slower. As a result, the modeM0;1 is the most unstable
only at ΔQsc=Qs < 6, otherwise the higher mode M2;3

intercepts the threshold. Still higher modes of the flat bunch
have the higher thresholds.
Dependence of the TMCI threshold on the SC tune shift

is shown in detail in Fig. 4, where the obtained thresholds
of the M0;1 and M2;3 modes are plotted against the shift by
the solid lines. Similar curves for the square well model
have been taken in Ref. [6] and are plotted by the dashed
lines. The same results could be obtained also with the help
of Eq. (18) by the substitutionU2 ¼ 4=π2. It does not affect
the bunch shape but changes characteristics of synchrotron
oscillations, which looks like a secondary factor in the case.

IV. NONFLAT BUNCHES

The flat bunch model ignores the fact that the SC tune
shift of a particle depends on its longitudinal coordinate
which circumstance creates an additional betatron tune
spread. It is known that the spread due to chromaticity or
nonlinearity of betatron oscillations leads to an appearance
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FIG. 1. Some eigentunes of Eq. (18) against the referred wake
strength. The red line M0;1 illustrates coalescence of the lowest
head-tail pair, the blue line M2;3 does this for the next pair.
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FIG. 2. Several eigentunes of the bunch against the wake
strength at different value of the space charge tune shift. The
lower bunch modes M0;1 generated by the red line of Fig. 1 are
plotted in the top panel, and the modes M2;3 are plotted in the
bottom panel (blue line in Fig. 1).
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or an increase of the transverse instability threshold. Such
an effect in accelerators is known as Landau damping
which is treated as not dissipative damping but simply the
absence of instability due to redistribution of the particles
[11]. The “redistribution” means actually an ousting of
the coherent betatron frequency from the region where the
particle betatron frequencies are located. As a result, the
coherent frequency acquires a position outside the region, if
the frequency distribution of particles is sufficiently com-
pact, or obtains it rather far from the center (3–5σ) for the
distributions with an infinite tail, like Gaussian. It follows
from the threshold diagrams which have different asymp-
totic forms in the cases of the “compact” and the “tail”
distributions [11].
The problem is investigated in this section with regard to

the influence of the SC tune spread on the TMCI threshold.
We will consider only the compact bunches with a clear
boundary. Distribution of the SC tune shifts is also clearly
confined in the case. Any coherent bunch oscillations are
impossible in this area because their energy would trans-
form at once in an incoherent form that is in the beam
heating. Therefore an essential change of the TMCI tune
and threshold has to be expected in comparison with the
flat bunch.
It follows from Fig. 3 that the lowest head-tail coherent

tunes of the flat bunch join together at ν > −ΔQsc, that is at
jνj < ΔQsc, if ΔQsc=Qs > 3. For a nonflat bunch, such a
coupling would occur within the incoherent tune spread
area. Indeed, the particle betatron tunes Qβ are located in
the area Q0−ΔQmax<Qβ<Q0 where ΔQmax ¼ ΔQscð0Þ
is the SC tune shift in the bunch center. In the used notation,
it means that −ΔQmax < νβ < 0. As mentioned above, the
coalescence cannot happen in this region, and a change of
the tunes has to be expected. It means also a change of the
wakefield required for the coalescence, that is to a change
of the TMCI threshold.

Formally, the SC tune spread can lead to an appearance
of a singularity in Eq. (8) and further, if ν is a real number
satisfying the condition −ΔQmax < ν < 0. This circum-
stance does not discard the method because the tune ν
appears in the equations as a parameter of the Laplace
transform having a positive imaginary part. However, its
extension to the real axis in subsequent transformations is
allowable only by the analytical continuation of appearing
functions. It is seen now that the continuation is possible
either at Re ν < −ΔQmax or at Re ν > 0. The second
inequality directs us to the area where a positive wake can
provide the tune coalescence and the instability. In par-
ticular, it means that the TMCI threshold of positive wake
cannot be very sensitive to the SC tune spread, that is to the
bunch shape. Therefore only the case of negative wakes is
analyzed below.
We will consider the bunch distribution functions with

different parameters α:

F ¼ 2αþ 1

2π
ð1 − A2Þα−1=2 ×

�
1 at A < 1

0 at A ≥ 1
ð20Þ

where A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ v2

p
is amplitude of synchrotron oscil-

lations. Then, using Eq. (7a) and Eq. (12), we obtain

ρðxÞ ¼ Cαð1 − x2Þα; U2ðxÞ ¼ 1 − x2

2ðαþ 1Þ ð21Þ

with the normalizing coefficient

Cα ¼
2αþ 1

2π

Z
1

−1
ð1 − t2Þα−1=2dt: ð22Þ

The series of Eq. (14) with the boundary conditions given
by Eq. (15) has been resolved by the method described at
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FIG. 3. Tunes of the modes M0;1 and M2;3 against the wake
strength for the flat bunch with negative wake. The mode M0;1
has the lowest threshold at ΔQsc=Qs < 6, otherwise the threshold
of theM0;1 mode is less. Other modes are more stable in any case.
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FIG. 4. TMCI thresholds of the flat bunch. Solid lines are
obtained in this paper, dashed lines—with the square well model
[6]. Red and blue lines represent the modes M0;1 and M2;3. It is
seen that M0;1 is the most unstable mode only at ΔQsc=Qs < 6,
otherwise M0;1 mode is more unstable.
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the end of Sec. II. The results are represented in Fig. 5
for the cases: α ¼ 0, C0 ¼ 1=2 (flat bunch); α ¼ 1=2,
C1=2 ¼ 2=π (waterbag model); and α ¼ 1, C1 ¼ 3=4
(parabolic bunch). The eigentunes are plotted in the area
−2 < νþ ΔQmax < 0 for the negative wake.

The top panel of Fig. 5 refers again to the flat bunch.
The upper loops of the graph represent eigentunes of the
mode M2;3 at different tune shifts. This mode was consid-
ered also is Sec. III where its spectrum is represented in
Fig. 3 by the lower loops. The results agree closely with
each other. For example, both plots give a threshold of this
TMCI mode q0=Qs ¼ −22 at ΔQsc=Qs ¼ 15. Following
modes M4;5 and M6;7 have essentially higher in absolute
value thresholds: q0=Qs ¼ −36 and q0=Qs ¼ −50 (the
green lines in Fig. 5).
The spectra of more realistic bunches have a similar

configuration but demonstrate an essentially weaker depend-
ence of the instability threshold on the mode number. Two of
them are shown in Fig. 5. The waterbag model α ¼ 1=2 is
considered in the central panel, and the parabolic bunch
α ¼ 1 is represented in the lower panel. Three coupled
modes are shown on each of the graphs at different ΔQmax.
Their thresholds are distinct from each other with no more
than 10% that is essentially less than in the flat model. It is
seen also that dependence of the threshold on the mode
number can be nonmonotonic. The same follows from
Table I where the numerical values of the threshold are
given at ΔQmax=Qs ¼ 15.
Consideration of other distributions supports these con-

clusions. The results are collected in Fig. 6 where the
dependence of the TMCI threshold of the most unstable
mode on the maximal value of the SC tune shift is plotted
for the distributions with different α. It is seen that
the TMCI threshold rises when the parameter α increases.

-175 -150 -125 -100 -75 -50 -25 0
q0/Qs

-2

-1.5

-1

-0.5

0

(ν
+Δ

Q
m

ax
)/Q

s

ΔQmax /Qs = 5

ΔQmax/Qs = 10

ΔQmax/Qs = 15

ΔQmax/Qs = 20

ΔQmax/Qs = 25

ΔQmax/Qs = 30

-175 -150 -125 -100 -75 -50 -25 0
q0/Qs

-2

-1.5

-1

-0.5

0

(ν
+Δ

Q
m

ax
)/

Q
s

-175 -150 -125 -100 -75 -50 -25 0
q0/Qs

-2

-1.5

-1

-0.5

0

(ν
+Δ

Q
m

ax
)/

Q
s

FIG. 5. The eigentunes of different bunches ν̂m ¼ νm þ ΔQmax
against the wake strength q0 at different ΔQmax. The represented
area −2 < ν̂m < 0 is located below the particle tunes: ν̂m < νβ.
The top panel: flat bunch α ¼ 0; the central panel: waterbag
model α ¼ 1=2; the bottom panel: parabolic bunch α ¼ 1. The
same colors are used in all the panels for the same ΔQmax=Qs.
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SC tune shift.

TABLE I. Thresholds of negative wake q0=Qs of the lower
TMCI modes at ΔQmax=Qs ¼ 15 for different bunch shape.

M2;3 M4;5 M6;7

Flat −22 −36 −50
Waterbag −57 −50 −53
Parabolic −64 −73 −73
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Note that the increase of α means the decrease of the bunch
RMS length. Really, it follows from Eq. (20)

σ2¼2αþ1

2π

Z
1

0

ð1−A2Þαþ1=2A3dA
Z

π

−π
cos2ϕdϕ¼ 1

2αþ3
:

It means that, at the same central density, the shorter bunch
has the higher TMCI threshold, and that the flat bunch
model provides only the lower estimation of the threshold.

V. CONCLUSION

It is shown in this paper that the TMCI thresholds of a
flat bunch only slightly depends on the potential well shape
being almost identical in the square well and in the
parabolic one, if the same ratio of the space charge tune
shift to the synchrotron tune ΔQsc=Qs is used. This means
that the characteristic of synchrotron oscillations is the
secondary factor in the case. The space charge tune shift
reduces the TMCI threshold of positive wakes and
increases it if the wake is negative. In the last case, the
most unstable coupled modes of the flat bunch are the
lowest modeM0;1 atΔQsc=Qs < 6, and the next modeM2;3

at ΔQsc=Qs > 6. Corresponding coherent tunes are a little
higher or lower of the particle betatron tunes, with the SC
tune shift included. All other modes have a higher thresh-
old, at any value of the SC tune shift.
A spread of the SC tune shift which is intrinsic to any

real (nonflat) bunch essentially changes the bunch spectrum
if the wake is negative. It forces out the coherent mode
tunes from the area −ΔQmax < ν < 0 where the particle
incoherent tunes are located. As a result, the mode M0;1 is
excluded from the spectrum at ΔQmax > Qs, and tunes of
other coherent modes fall below the minimal particle tune.
In such conditions, thresholds of all the TMCI modes

differ from each other to only a small extension. The
thresholds increases when the RMS length of the bunch
decreases at fixed total length. Therefore the flat bunch
model with given ΔQmax provides only the lowest estima-
tion of the TMCI threshold.
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