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Ion acceleration in electrostatic collisionless shocks is driven by the interaction of the high-power laser
with specially tailored near-relativistic critical density plasma. 2D EPOCH particle-in-cell simulations
show that the ion acceleration is dependent on the target material used. In materials with low charge-to-
mass ratio hZ=Ai, proton beams with high flux and low energy spread are generated. In multi-ion plasmas
the ions with different hZ=Ai acquire different velocities under a non-oscillating component of electrostatic
field in the upstream region. This relative drift between the protons (hZ=Ai ¼ 1) and the lower hZ=Ai ions
leads to the excitation of electrostatic ion two-stream instability. This in turn generates a low-velocity
component in the upstream expanding protons. The velocity distribution of the upstream expanding protons
is further broadened toward the higher velocity by the electrostatic ion two-stream instability between
reflected protons, which results in large number of protons being accelerated by the shock.

DOI: 10.1103/PhysRevAccelBeams.22.043401

I. INTRODUCTION

The development of high-intensity laser systems has
opened a new era for laser-driven ions acceleration and
there are several promising mechanisms for laser-driven ion
acceleration. The energetic ion beams driven by laser-
plasma interaction have many potential applications such as
accelerator physics, cancer therapy, proton radiography,
and inertial confinement fusion [1–3]. However, producing
a proton beam with high energy, high flux, and low energy-
spread proved to be the major challenge for practical
applications [4,5]. Several mechanisms have been
studied for laser-driven acceleration. At present, the most
widely understood mechanism is Target Normal Sheath
Acceleration (TNSA). This mechanism [6] and a related
radiation-pressure hybrid-scheme [7] can drive protons to
energies approaching 100 MeV. Alternative acceleration
schemes, such as radiation-pressure acceleration that can
achieve monoenergetic and higher energy suitable for
applications impose strict and challenging conditions in
experiments, such as the target thickness and laser contrast
[8–10].We describe amethod to circumvent such constraints
whilst providing methods to achieve higher ion energies.

Collisionless shock acceleration (CSA) has been pro-
posed separately by Denavit [11] and Silva [12], with a
detailed theoretical investigation complemented by Fiuza
[13]. These studies suggest that a special near-critical
density profile, Ncr, is important in order to control the
sheath electric field, ETNSA, at the plasma-vacuum inter-
face. This in turn affects the ion spectrum in CSA. The
ETNSA amplitude can be reduced by using an exponentially
decreasing density profile on the rear-side of the target [14],
finally resulting in a quasimonoenergetic distribution for
the CSA ions. CSA experiments using a linearly polarized
CO2 laser with near-Ncr gas-jet targets produced 20 MeV
proton beam [15]. A number of experiments have been
carried out over the last few years to understand and
characterize ion acceleration via CSA [16–21]. One aspect
of CSA that is currently not well understood for accel-
erating mono-energetic ions to high energies is the effect of
the target material used.
In this paper we used the EPOCH particle-in-cell (PIC)

open source code [22] to study the generation of electrostatic
(ES) collisionless shocks and proton acceleration from
shocks formed in plasmas of different material composition.
Our results show that a low average charge-to-mass ratio
(hZ=Ai) plasma produces a higher proton beam flux with a
higher laser-to-proton energy conversion efficiency, and
these differences become smaller at higher laser intensities.
In the plasma with multi-ion species the ions with lower
hZ=Ai compared to the protons (with hZ=Ai ¼ 1) gain
different velocities. This results in difference between
relative drift velocities of the protons and lower hZ=Ai ions
in the upstream region of the shock. This leads to the
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excitation of an electrostatic ion two-stream instability (EITI)
[23], which in turn enhances the number of the shock-
accelerated protons [24]. To our best knowledge, most of the
previous work has focused on shock formation [25–27] and
ion heating [28–30]. This paper is the first investigation on
the material (or hZ=Ai) dependence of EITI on CSA.

II. SIMULATIONS

We used 2D EPOCH simulations to investigate proton
acceleration via CSA mechanism by modeling plasmas
with different multi-ion compositions used commonly in
experiments as target materials. The simulation box is
300 × 6 μm in size and composed of 9000 × 180 cells
along the x- and y-axis respectively. Each cell contains
24–30 particles depending upon the material being studied.
Open and periodic boundary conditions are used along the
x- and y-axis respectively for both fields and particles.
The laser pulse and target in the PIC simulations use the

parameters achievable at the Institute of Laser Engineering,
Osaka University. An experiment would use the high
intensity LFEX for the main interaction and the Gekko
XII laser to preionize the target rear surface and create the
necessary density profiles for CSA mechanism. The high
intensity beam irradiated on the target front surface is
linearly p-polarized with a temporal Gaussian profile of
1.5 ps full-width at half-maximum and peak intensity of
1.4 × 1019 W=cm2 (a0 ¼ 3.35). The target consists of a
tailored density profile increasing exponentially for 30 μm
with 5 μm density scale length at Ncr on laser side, a 5 μm
region of constant density at the relativistic critical density
a0Ncr, and an exponentially decreasing density with 30 μm
scale-length on the rear extending for 125 μm. The initial
density profile is shown in Fig. 1(a), t ¼ 0. The corre-
sponding ion densities are configured to ensure quasineu-
trality. The density profile and laser parameters are the
same for all materials. The different material compositions
and associated hZ=Ai used in this study are summarized in
Table I. The simulations are timed to reach peak irradiance
at 1.5 ps and have an initial electron and ion temperature
of Te ¼ Ti ¼ 500 eV.

A. Collisionless shock formation

Figure 1(a) shows the temporal evolution of NH=Ncr in
C2H3Cl for a number of times after the peak of the laser
pulse, which enter the particle grid at 1.5 ps. During the
time from t ¼ 0 to t ¼ 1.75 ps the laser interaction with
plasma results in uniform electron heating via J × B [31].
This compresses the plasma in front of the exponentially
decreasing density on the rear target side, as shown by the
peak in the density profile in Fig. 1(a). As time evolves,
the density on the target rear side is expanding, resulting
in the formation of the ES collisionless shock. The shock
propagates at velocity Vsh in the forward direction. The
exponentially decreasing density profile in the upstream

plasma, the region ahead of the shock results in a uniform
ES sheath field ahead of the shock, ETNSA ¼ Te=eLg,
where Te is the upstream electron temperature, e is the
electric charge, and Lg is the exponentially decreasing rear-
side scale-length [14]. This ETNSA field gives a uniform
velocity V0 to the upstream expanding protons.
For an ES collisionless shock to accelerate protons by

ion reflection the ES potential ϕ at the shock must satisfy
the relation Zeϕ ≥ 1

2
AmpðVsh − V0Þ2, where Z ¼ A ¼ 1

for protons, andmp is the proton mass [32]. Shock reflected
protons have a velocity Vr ¼ 2Vsh − V0. ϕ can be esti-
mated by subtracting the non-oscillating component of
ETNSA from the overall ES field (Ex) and integrating along
the x-axis, ϕ ¼ R

x
∞ðEx − ETNSAÞdx. At t ¼ 2.5 ps, ϕ is

large, as a result, acceleration of upstream protons via

FIG. 1. (a) The temporal evolution of NH=Ncr in C2H3Cl at
t ¼ 0, 1.75, 2.50, 3.25, and 4.00 ps. (b) hZ=Ai dependence of the
ion acoustic speed Cs, the lower threshold VL, the shock speed
Vsh, Vϕ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eϕ=mp

p
, and the velocity of the shock reflected

protons Vr at t ¼ 4.0 ps.

TABLE I. The charge-to-mass ratio for different targets. Note,
all ions are fully ionized except chlorine which has ZCl ¼ 15.

Material C2H3Cl CH He3H Hydrogen

hZ=Ai 0.4839 0.5385 0.8 1
hZi 30 7 4 1
hAi 62 13 5 1
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shock reflection occurs. By t ¼ 4.0 ps, ϕ is gradually
dissipating and reflection of protons becomes negligible.
Figure 1(b) compares the hZ=Ai dependence of a number

of velocities relative to the speed of light, c. Here Vϕ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eϕ=mp

p
and VL ¼ Vsh − Vϕ is the lower threshold for

the proton reflection. The velocities Vr, Vsh, VL, Vϕ and the
ion acoustic speed CS show a general increase with hZ=Ai.
The increasing velocities result from a

ffiffiffiffiffiffiffiffiffi
Z=A

p
dependence

in the hole-boring velocity VHB ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z
2A

me
mp

Ncr
Ne

a20
q

with the

nonrelativistic limit [33]. This is a good approximation for
the low a0 used. Hereme is the electron mass, a0 andNe are
the same for all the materials. The shock front moves
forward at velocity Vsh, which is powered by the laser-
driven hole boring process at the target front. As there is
a rear surface density drop, Vsh increases in time. Protons
with velocities V0 that lie between VL and Vsh are
accelerated via shock reflection.
A 2D-relativistic Maxwellian fðEÞ ∝ E expð−E=TeÞ is

used for the electron energy spectrum in the upstream
region. For all materials, Te ∼ 2.0 MeV. This implies that
the ion acoustic speed is given by Cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTe=Amp

p
is

only a function of hZ=Ai as shown in Fig. 1(b).
Figures 2(a)–2(d) show the proton phase-space at 4.0 ps

for each of the materials shown in Table I. The red solid line
overlaid on each of the plots corresponds to the proton
velocity distribution in the upstream region ahead of the
shock front. This is integrated from the velocities within the
vertical box in the phase-space plots, which spans across a
range of Δx ¼ 3 μm. The horizontal lines are the material
dependent velocities Vr, Vsh, and VL. Protons that satisfy
the inequality VL ≤ V0 ≤ Vsh are shock reflected. For
target materials with lower hZ=Ai, such as C2H3Cl and
CH, a significantly larger number of protons satisfy this
inequality when compared to He3H and H. As a result, a
larger number of protons are shock accelerated. This is
deduced by comparing Figs. 2(a) and 2(b) with Figs. 2(c)
and 2(d). The proton velocity distribution is broader at
lower hZ=Ai due to the presence of the lower hZ=Ai ions.
A broad velocity distribution results in a variation of

the Mach number (M). To account for this we define
M ¼ ðVsh − VmeanÞ=Cs, where Vmean is a mean value of V0

in the distribution. In our calculations, we obtain M ¼
1.6–1.7 for all materials. This is in agreement with the
critical Mach number (Mcr ¼ 1.6), which has been pre-
viously validated in PIC simulations for linearly polarized
laser pulse [11,13]. Therefore, the particle acceleration, and
thus shock dissipation, is expected when the ions are being
reflected. The maximum velocity of the reflected protons
from the shock front is expected to reach 2Vsh − VL.
Simulations show that the velocity distribution just ahead
of the shock peaks around this maximum velocity. In the
upstream plasma, protons with higher hZ=Ai are preferen-
tially accelerated in the x-direction by the ES field ETNSA,
which in turn drives the EITI.

Figure 3(a) shows the energy distribution of accelerated
protons in thewhole upstream region.We find that the energy
spread increases with increasing hZ=Ai. Simulations show
that this occurs at early times whenϕ is relatively weak. This
is due to hole-boring on the front side of the target. These
protons have a different velocity distribution and lower
energies compared to the shock reflected protons, which
results in the larger energy spread. The differences are
apparent in Figs. 2(c) and 2(d).

FIG. 2. A phase-space and velocity spectrum of the protons
taken at Δx ¼ 3 μm in the upstream of the shock front at
t ¼ 4.0 ps are shown for (a) C2H3Cl, (b) CH, (c) He3H, and
(d) Hydrogen.
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The energy distribution of the shock reflected protons
multiplied by the peak energy in the distribution, E0, is
shown as a function of hZ=Ai in Fig. 3(b). The laser-to-
proton energy conversion efficiency (CE) is compared to
the distribution in the same figure. Material with the lowest
hZ=Ai (C2H3Cl) show a CE almost an order of magnitude
higher than a pure proton target with the highest hZ=Ai.
In comparison, the peak energy of the distributions is
increasing by a comparatively small factor of ∼1.4 from
C2H3Cl to H as shown in Fig. 3(a).
Figures 4(a) and 4(b) show the x-y spatial profile of

the ES field, Ex, for the C2H3Cl upstream plasma. The
simulation box size is y ¼ 6 and 20 μm, respectively.
Both cases show a wavelike structure propagating in the
x-direction, with increasing wavelength for larger x. The Ex
profile along the x-axis is averaged along the y-axis and
overlaid on the phase-space of the corresponding proton
velocity distribution in the upstream shown in Fig 4(c). The
modulation in Ex shows comparative correlation with the
proton phase-space distributions. These modulations are
caused by the EITI in the upstream plasma. This is excited
by the relative drift velocity (vd) between the two ion
populations in plasmas with multi-ion species [23]. Our
simulations show that this relative drift is driven by the
ETNSA in the upstream plasma which results in slower
moving heavier ions with low hZ=Ai and faster moving
protons with high hZ=Ai. Simulations done by Zhang [26]
have shown that in the transverse size-reduced simulation
EITI propagates in the x-direction, whereas in the large
transverse size simulation it propagates obliquely. In our

case, since the propagation directions of EITI are in the
x-direction both for the small and the large transverse-
size simulations [Figs. 4(a) and 4(b)], the instability is not
oblique but longitudinal.
Temporal evolution of the upstream ion velocity distri-

bution dN=dVx in the C2H3Cl plasma is compared in
Figs. 5(a) and 5(b). These plots were captured just ahead
of the shock at t ¼ 2.0 ps and 4.0 ps respectively. Initially,
vd is small and the instability has not established. As time
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evolves, vd increases, which leads to a growth in the
instability. This results as shown in Fig. 5(b), in a high-
velocity tail in the C-ion and a low-velocity component to
the proton distributions. We note that the chlorine distri-
bution does not broaden in time. This observation suggests
that the broadening of proton distributions discussed in
relation to Fig. 2 results from the EITI.
Temporal evolution of the velocity at the peak of the

dN=dVx distribution for Cl-ions, VCl (from the C2H3Cl
target) is plotted in Fig. 6. VCl shows a logarithmic
dependence with time indicating that VCl is determined
by the upstream ETNSA. By taking a derivative of a fit to the
VCl distribution with hZ=Ai ¼ 0.429, we infer that the time
dependent ETNSA evolves with a 1=t dependence as shown
in Fig. 6. The temporal variations for VCl and ETNSA
relationship described by Mora [34]. The time dependence
of the C-ion velocity (VC) at the peak of dN=dVx agrees
well with calculations of VC based on the inferred ETNSA
and hZ=Ai ¼ 0.5 (VC−TNSA). At t ¼ 2.5 ps, a high-velocity
tail (VH

C ) appears in VC. This results from acceleration by
an electric field associated with the EITI. The calculated
velocity for H-ions from ETNSA (VH−TNSA) with hZ=Ai ¼ 1,
which gives the maximum possible velocity for H-ions
caused by ETNSA, is included for the comparison in Fig. 6.
We approximate the simulated velocity distributions for
protons as a sum of the three 1D-shifted Maxwellian’s.
These velocities, the lower (VL

H), mean (VM
H ), and higher

(VH
H) velocity Maxwellian distributions are shown in Fig. 6.

We note that VH
C and VL

H represent the EITI accelerated
and decelerated C-ion and proton populations, respectively,
and these populations have similar velocities. This occurs as
an additional EITI develops due to the relative drift between
the shock reflected proton population moving at approx-
imately 2Vsh − V0, through the upstream expanding proton

population moving at V0. This further increases the number
of protons satisfying the condition for CSA.

B. Electrostatic ion two-stream instability

In the cold plasma approximation, the dispersion relation
for EITI is given by [30]

1þ 1

k2xλ2De
¼ ω2

p1

ω2
þ ω2

p2

ðω − kxvdÞ2
: ð1Þ

where kx is the wave number in the x-direction, λDe is the
Debye length, ωp1 and ωp2 are the proton and heavy ion
plasma frequencies, and vd is the relative drift between the
two ion populations. In multi-ion plasmas,ωp1 is the proton
plasma frequency ωpp, and ωp2 is the heavy-ion plasma
frequency, as in, ωp2 is the carbon plasma frequency ωpc

for C2H3Cl and CH.
For C2H3Cl at t ¼ 4.0 ps, the maximum amplitude of the

modulation inEx in the region of x ¼ 135–145 μmoccurs at
kx ¼ 4.7 × 106 m−1 [dashed line in Fig. 4(d))], and λDe ¼
0.4 μm (for Ne ¼ 6.5 × 1020 cm−3 and Te ¼ 2 MeV) at
x ¼ 140 μm in the upstream region. This results in
kxλDe > 1, enabling us to neglect the second term on the
left-hand side of Eq. (1). At x ¼ 140 μm, the carbon ion
and proton number densities are NC ¼ 4 × 1019 cm−3 and
Np ¼ 1.3 × 1020 cm−3 giving ωpc¼ωpp¼1.5×1013 sec−1.
Equation (1) has an unstable solution with the maximum
growth rate of ∼ωpc=2 at kx ∼

ffiffiffi
3

p
ωpc=vd. We take vd¼

VH
H−VC¼0.042c at t¼4.0ps. This gives, kx∼2.1×106m−1,
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which agrees relatively well with the value of kx ¼ 4.7 ×
106 m−1 extracted from simulation. We refer to this as
heavy-ion EITI.
At x ¼ 160 μm, NC¼1×1019 cm−3, which gives ωpc ¼

7.2 × 1012 sec−1, and vd ¼ 0.040c at t ¼ 4.0 ps. Thus,
kx ∼ 1.0 × 106 m−1, which is comparable to kx ∼ 1.6 ×
106 m−1 as shown in simulation in Fig. 4(e). Hence, it is
clear from Figs. 4(d) and 4(e), kx decreases as x increases
because the plasma density decreases as shown in
Fig. 1(a) (t ¼ 4.0 ps).
At t > 2.5 ps, the number of protons reflected by the

shock front increases, which contributes to the excitation
of the EITI between the expanding and the reflected
protons. This is referred to as reflected-proton EITI. This
leads to the generation of a high-velocity tail in VH

H in the
upstream plasma. In the case of reflected-proton EITI,
ωp1 ¼ ωpp and ωp2 is the reflected proton plasma fre-
quency ωpref. As shown in Fig. 2(a), the number of
reflected protons is smaller than that of the expanding
protons even at t ¼ 4.0 ps. Hence, ωpref < ωpp. The
maximum growth rate of reflected-proton EITI [30] is
∼ð3 ffiffiffi

3
p ðNref=NexpÞ=16Þ1=3ωpp at kx ∼ ωpp=vrd. The relative

drift between the reflected and expanding protons is vrd ¼
0.064c at x ¼ 140 μm and t ¼ 4.0 ps. Therefore,
kx ∼ 6.8 × 105 m−1, which is comparable to the kx value
for the maximum growth rate of heavy-ion EITI at x ¼
140 μm by a factor of 0.31. As a result, this suggests both that
heavy-ion and reflected-proton EITIs occur with similar
growth rates and wave numbers.
VH−TNSA or the maximum possible velocity of H-ions

accelerated by ETNSA in C2H3Cl is shown in Fig. 6. We
infer that a large number of protons is accelerated by the
wave electric field of reflected-proton EITI and obtain
the expansion velocity V0 larger than VH−TNSA. This
acceleration generates a significant number of expanding
protons with the velocities larger than VL, and results in
the enhancement of the shock accelerated protons.
Simulation studies done by Grassi et al. [35], have shown
that the development of ion turbulence in H plasma leads
to the heating of upstream ions, which allows a fraction of
ions to exceed the threshold for ion reflection from the
shock front.
To confirm the effect of hZ=Ai on EITI, PIC-simulations

with the same laser and density properties used throughout
are compared to fully ionized carbon deuterium (CD)
plasma. As shown in Fig. 7(a), since both C and D-ions
have the same hZ=Ai ¼ 0.5, both ions are accelerated by
ETNSA in the upstream plasma, and there is no relative drift
between them, as in, vd ¼ 0. Therefore, no instability is
excited, and no broadening of the upstream ions occurs. In
multi-ion plasmas, a high-velocity tail and a low-velocity
component appear in the smaller and larger hZ=Ai ions,
respectively. Figure 7(b) represents upstream ion velocity
distribution for CCl2 plasma with fully ionized C and

ZCl ¼ 10. A high-velocity tail in Cl-ions and a low-velocity
component of C-ions appear because of heavy-ion EITI.

III. DISCUSSION AND SUMMARY

We further generalize our results by finding the depend-
ence of the peak energy of the reflected protons and proton
flux on the laser intensity corresponding to the a0 ¼ 3.35,
10, and 33. In order to compensate for relativistically
induced transparency, the initial electron density is varied
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for different laser intensities by a0Ncr for all plasmas.
Figure 8 represents the peak energy (E0), conversion
efficiency (CE), and number (dN=dE at E0) of the shock
accelerated protons for different laser intensities corre-
sponding to a0 ¼ 3.35, 10, and 33 in C2H3Cl and H
plasmas. For C2H3Cl plasma, E0, dN=dE, and CE increase
with increasing laser intensity. However for H plasma, E0

and dN=dE increase but CE first increases and then
decreases with increasing laser intensity. The E0,
dN=dE, and CE are always larger for C2H3Cl plasma
compared to H plasma. As shown in Fig. 8(b), the incre-
ment in the dN=dE and CE for the higher laser intensity is
different from the lower laser intensity, whereas dN=dE
and CE of the shock accelerated protons are always higher
in lower hZ=Ai (C2H3Cl) plasma than pure H plasma.
At lower laser intensity (a0 ¼ 3.35), these increments are
found to be ∼8.6 and ∼4, while at higher laser intensity
(a0 ¼ 33), these increments are found to be ∼2 and ∼1.3.
We have performed the 2D PIC simulations in a plane

wave approximation with an infinite spot-size. In the 3D
scenario a smaller amplitude TNSA field will appear on the
rear-side of the target according to Xiao et al. [36], which
results in a quasimonoenergetic distribution for the CSA
ions [14]. Even with this small amplitude TNSA field, the
ions with different hZ=Aiwill be accelerated to the different
velocities. This leads to the development of EITI in multi-
ion species plasma.
In summary, we have presented a PIC simulation study

of the ES collisionless shock proton acceleration in differ-
ent target materials. Protons with high flux and narrower
energy spread can be produced using the lower hZ=Ai
materials. The excitation of heavy-ion EITI leads to a large
velocity spread in the upstream region of protons in multi-
ion materials. The velocity distribution of the upstream
expanding protons is further broadened toward the higher
velocity by the EITI between reflected protons. As a result,
a larger number of protons are driven by collisionless shock
acceleration mechanism. This work supports future exper-
imental work and investigations to a complete understand-
ing of EITI and collisionless shocks using accessible
experimental parameters.
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