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A theoretical approach for describing the electromagnetic radiation produced by a prolonged electron
bunch propagating in the lattice of metallic wires of finite length is presented. This approach is based on the
vibrator antenna theory and involves the approximate solving of Hallen’s integral equation. For a single
wire, it is also supposed that a wire is sufficiently thin and charge motion is relativistic. For many-wire
structures, the approximation similar to the kinematic approach of the parametric x-ray radiation theory
is additionally applied. The validity of the method is verified by numerical simulations with COMSOL

Multiphysics. Possible applications of the interaction between charged particle bunches and artificial wire
structures are discussed.
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I. INTRODUCTION

Artificial wire structures that have been attractive to
researchers over the past several decades have not lost their
importance in recent years. One widespread motivation of
mentioned research was the “simulation” of plasma proper-
ties for microwave frequencies with the use of a “rodded
medium,” i.e., the lattice of parallel conducting wires
(rods) [1]. Later on, this idea was extensively utilized in
the context of development of metamaterials and mainly
“left-handed” metamaterials [2]. In the latter case, a “wire
medium” was used for providing negative effective dielec-
tric permittivity (within a certain frequency region), while
negative effective magnetic permeability in this region was
provided by a lattice of “split-ring resonators” [3–5].
Effective electromagnetic (EM) properties of the wire
medium itself were also studied in detail [6–8]. For
example, the role of spatial dispersion and various pos-
sibilities to suppress this effect were discussed [9]. It is
worth noting that in the aforementioned investigations the
wavelengths under consideration were supposed to be
much larger compared to the period of wire structure,
therefore allowing an averaged electromagnetic description
of the structure with the use of “effective” macroscopic

parameters. In this “long-wave” framework, radiation
occurring during the passage of a charged particle bunch
through a three-dimensional wire medium (i.e., Cherenkov
radiation) or in the vicinity of a planar wire structure was
actively studied [10–16]. In particular, this long-wave
radiation is of essential interest due to its nondivergent
properties [10,11].
However, when the bunch is sufficiently short, short

wavelengths (comparable with the structure period) can be
generated, therefore altering the possibility to describe the
wire structure using effective parameters. The portion of the
EM radiation related to these short enough wavelengths
(“diffraction response” or “short-wave response”) can be
described using Bragg’s diffraction theory formalism,
similarly to the parametric x-ray radiation (PXR) in real
crystals [17,18]. Under the described conditions, the
metallic wire assembly can be referred to as a “wire
crystal.” For example, if the array spacing is of the order
of millimeters, the resulting Cherenkov radiation wave-
length is in the terahertz (THz) frequency range. Since this
range was of significant interest during the past decade
due to its prospective applications in various areas [19],
corresponding wire structures can be used for the devel-
opment of efficient THz radiation sources [20]. It should
be noted that the usage of artificial crystals sufficiently
changes the connection between the increment of insta-
bility and the beam density, resulting in a significant
reduction in the beam current needed to reach the
stimulated emission effect. This fact allows considering
such sources as a new type of free electron laser–volume
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free electron laser [21–23]. Moreover, waveguides loaded
with artificial metamaterials (including specific THz
wire crystals) are considered nowadays as prospective
candidates for the development of high-power and high-
gradient accelerators [24,25].
In our previous paper [26], we have started developing

the universal approach for the investigation of EM radiation
produced by a charged particle bunch moving through the
wire structure composed of finite length perfectly con-
ductive wires. In this paper, we describe this approach in
detail and prove its applicability by a comparison between
analytical results and results of simulations with COMSOL

Multiphysics. In particular, we show that the approximation
similar to the kinematic approach of PXR is applicable to
the wire structure with thin enough conductors and a sparse
enough lattice. It should be emphasized that the presented
formalism is valid for a monodirectional, monoenergetic
bunch only. Effects of emittance and energy spread as well
as beam dynamics are not taken into account.
The paper is organized as follows. After the introduction

(Sec. I), we formulate the problem for the EM radiation in a
wire structure (Sec. II) and consider in detail the EM
response of a single wire (Sec. III). Within this section, two
approximations are discussed: the case where radiation
influence on the surface current distribution is neglected
(Sec. III A) and the case with radiation corrections taken
into account (Sec. III B). Section IV contains numerical
results, a comparison between simulated and analytical
results, and a discussion. Section V finishes the paper.

II. PROBLEM FORMULATION

Figure 1 shows the geometry of the problem under
consideration. A thin Gaussian bunch (carrying a total
charge q and having an rms length σ) with the following
charge distribution:

ρðx; y; z; tÞ ¼ qδðxÞδðyÞffiffiffiffiffiffi
2π

p
σ

exp

�
−ðz − υtÞ2

2σ2

�
ð1Þ

traverses with constant velocity υ ¼ βc the periodic lattice
of perfectly electric conductive (PEC) cylinders distributed

in a vacuum. Since the bunch is considered to be infinitely
small in the transverse plane, the approach presented
below can be referred to as the “1D theory.” The cylinders’
length is 2L, and the cylinders’ radius is r0. Wires are
located in nodes of a rectangular lattice with periods dx and
dz excluding the z axis, along which the bunch moves.
Therefore, the position of each cylinder’s axis xlm, zlm is
given by a pair of integers ðl; mÞ, so that

xlm ¼ ldx; zlm ¼ mdz: ð2Þ

Below, we will use the following approximation: we
suppose that each wire is excited by a Coulomb field of
the moving bunch but does not get affected by the field
produced by each neighboring wire. This approximation is
very close to the “kinematic approach” of the parametric
x-ray radiation of charged particle bunches in real crystals.
The validity of this approach will be further verified by
numerical simulations in COMSOL (see Sec. IV). The
approach used below for the calculation of the response
of each wire is related to Hallen’s method widely used in
the antenna theory. For example, the formulation of a
typical Hallen’s problem for receiving or transmitting a
wire antenna can be found in Ref. [27], where the reference
to the seminal Hallen paper is also given. Note that here
we generalize this approach to the case of excitation by a
charged particle bunch. This approximation allows the
consideration of a single-wire excitation independently.

III. SINGLE-WIRE EXCITATION

In this section, we will calculate the response generated
by a single wire with “coordinates” ðl; mÞ aside which a
Gaussian bunch moves. The geometry of this subproblem is
shown in Fig. 2.
The problem is solved in the frequency domain; there-

fore, Fourier harmonic amplitudes are considered, i.e.,

fE⃗ω; H⃗ωg ¼ 1

2π

Z þ∞

−∞
dtfE⃗; H⃗g exp ðiωtÞ: ð3Þ

The “incident” field (r component in the cylindrical frame
associated with the Cartesian frame x, y, z) has the form

FIG. 1. Geometry of the structure: Perfectly conductive wires of
length 2L and radius r0 form a rectangular lattice with periods dx
and dz which is traversed by a Gaussian bunch (1) of charged
particles. There are no wires on bunch trajectory z ¼ 0.

FIG. 2. Single-wire excitation and local coordinate frames
(Cartesian frame x0, y0, z0 and cylindrical frame r0, φ0; z0)
associated with the wire.
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EðiÞ
ωr ¼ iqs0

2βc
Hð1Þ

1 ðrs0Þeiðωz=υÞe−ðω2σ2=2υ2Þ: ð4Þ

Here r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, Hð1Þ

1 is the Hankel function, s0 ¼ iσ0,

σ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2υ−2ð1 − β2Þ

p
, and Re ffip > 0.

For σ ¼ 0, expression (4) corresponds to the field of a
point charge moving in a vacuum. Below, the relativistic
motion will be considered, β → 1; therefore, σ0 → 0. Using
asymptotic expressions for the Hankel function [28], the
incident field can be simplified, and Er takes the form

EðiÞ
ωr ≈

β→1

q
πc

1

r
exp

�
i
ωz
c

−
ω2

ω2
σ

�
; ð5Þ

where ωσ ¼
ffiffiffi
2

p
cβ=σ.

The main problem here is to find the surface current
induced at the surface of the wire. We will suppose that
wires are thin, i.e.,

r0 ≪ L; ð6Þ

therefore, wire flanges can be neglected. Moreover, we can
suppose that the surface current has only a y component
and it does not depend on φ0 (see Fig. 2). Therefore, surface
current j⃗surfe can be presented as follows:

j⃗surfe ¼ e⃗yjsurfe ; jsurfe ¼ Iðz0Þ
2πr0

δðr0 − r0Þ; ð7Þ

where Iðz0Þ is the total current of a wire. The current Iðz0Þ
should satisfy the boundary conditions at the ends of a wire:

IðLÞ ¼ Ið−LÞ ¼ 0: ð8Þ

Vector and scalar potentials satisfy the following equations:

ðΔþ k20Þ
�
A⃗ω

Φω

�
¼ −4π

�
c−1j⃗surfe

ρsurfe

�
; ð9Þ

where k0 ¼ ωc−1 and the Lorentz gauge condition is
utilized, divA⃗ω − ik0Φω ¼ 0. In accordance with Eq. (7),
A⃗ω ¼ e⃗yAωy; therefore, we can conclude from the Lorentz

gauge condition that Φω ¼ 1
ik0

∂Aωy

∂y . For the y component of
the electric field, we obtain

Eωy ¼ −
∂Φω

∂y þ ik0Aωy ¼
i
k0

�∂Aωy

∂y2 þ k20Aωy

�
: ð10Þ

A solution of Eq. (9) for the vector potential is obtained via
a convolution between the current and the Green function:

Aωyðr0;yÞ¼
1

c

ZZ
S
jsurfe

expðik0RÞ
R

dS

¼ 1

2πc

Z
L

−L
dz0Iðz0Þ

Z
π

−π
dφ0expðik0RÞ

R
; ð11Þ

where S is the surface of the cylinder excluding flanges and

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0Þ2 þ r20 − 2r0r0 cosφ0 þ ðy − z0Þ2

q
: ð12Þ

Let us introduce the “longitudinal potential” UðyÞ:

UðyÞ ¼ 2Aωyðr0; yÞ; ð13Þ

which is proportional to Aωy calculated at the surface of the
cylinder. After a series of transformations, the connection
betweenUðyÞ and total current IðyÞ can be presented as the
following integral relation:

UðyÞ ¼ 2

c

Z
L

−L
dz0Iðz0ÞKðy − z0Þ; ð14Þ

where

Kðy − z0Þ ¼ 1

2π

Z
π

−π
dφ0 expðik0R1Þ

R1

;

R1 ¼ Rjr0¼r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r20sin

2ðφ0=2Þ þ ðy − z0Þ2
q

: ð15Þ

Neglecting the φ0 dependence in the numerator of the
integrand’s fraction in Eq. (15), we obtain

Kðy − z0Þ ≈ exp ðik0jy − z0jÞK1ðy − z0Þ;

K1ðy − z0Þ ¼ 1

2π

Z
π

−π

dφ0

R1

; ð16Þ

where the kernel function K1ðy − z0Þ can be expressed
through the complete elliptic integral of the first kind
KeðξÞ [28]:

K1ðy − z0Þ ¼ 1

πa
ϰKeðϰÞ; ð17Þ

where ϰ ¼ 2r0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy − z0Þ2 þ 4r20

p
. In particular, one can

show that K1ðy − z0Þ possesses a logarithmic singularity
for y → z0. Besides, K1ðy − z0Þ ¼ K1ðz0 − yÞ. Finally, we
obtain the following integral equation connecting U and I:

UðyÞ ¼ 2

c

Z
L

−L
dz0Iðz0Þ exp ðik0jy − z0jÞK1ðy − z0Þ: ð18Þ

Now we are able to formulate Hallen’s problem for a
single passive wire vibrator excited by the Coulomb field
of a moving charged particle bunch. The incident field on
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a wire ðl; mÞ has the following form (wire thickness is
neglected here):

EðiÞ
ωyjr0¼r0

¼ EðiÞ
ωrjr0¼r0

z0

rlm
≈
β→1

q
πc

z0

r2lm
exp

�
i
ωzlm
c

−
ω2

ω2
σ

�
;

ð19Þ

where rlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2lm þ ðz0Þ2

q
. The surface current generates

the following field at the surface of the wire:

Eωyjr0¼r0
¼ −

1

2ik0

�
d2U
dy2

þ k20U

�
: ð20Þ

The standard boundary condition on the wire surface
requires that the total tangential electric field is zero, i.e.,

ðEðiÞ
ωy þ EωyÞjr0¼r0

¼ 0; ð21Þ

therefore,

d2UðyÞ
dy2

þ k20UðyÞ ¼ 2ik0E
ðiÞ
ωy: ð22Þ

Ordinary differential equation (22), integral equation (18),
and boundary condition (8) formulate Hallen’s problem for
the surface current Iðz0Þ.
Inhomogeneous equation (22) can be solved straight-

forwardly. The general solution is

UðyÞ ¼ As sinðk0yÞ þ Ac cosðk0yÞ þ Uinh; ð23Þ

where As and Ac are constants. The particular solution
UinhðyÞ can be found using the method of variation of
constants. Unknown UinhðyÞ is decomposed over
known solutions [sinðk0yÞ and cosðk0yÞ] of homogeneous
equation (22):

UinhðyÞ ¼ BsðyÞ sinðk0yÞ þ BcðyÞ cosðk0yÞ; ð24Þ

where unknown functions BsðyÞ and BcðyÞ are found from
the system

dBs

dy
sinðk0yÞ þ

dBc

dy
cosðk0yÞ ¼ 0;

dBs

dy
cosðk0yÞ −

dBc

dy
sinðk0yÞ ¼ 2iEðiÞ

ωy: ð25Þ

After a series of simple calculations, we obtain

BsðyÞ ¼
2iq exp ðik0zlm − ω2=ω2

σÞ
πc

½IcðyÞ − Icð0Þ�;

BcðyÞ ¼
2q exp ðik0zlm − ω2=ω2

σÞ
cπi

½IsðyÞ − Isð0Þ�; ð26Þ

where

IsðyÞ ¼
Z

sinðk0y0Þy0
ðy0Þ2 þ x2lm

dy0;

IcðyÞ ¼
Z

cosðk0y0Þy0
ðy0Þ2 þ x2lm

dy0: ð27Þ

Functions (27) can be expressed through elementary
functions, integral sine (si) and integral cosine (Ci) as
follows [29]:

2IcðyÞ ¼ coshðk0xlmÞ
× ½Ciðk0yþ ik0xlmÞ þ Ciðk0y − ik0xlmÞ�
þ i sinhðk0xlmÞ
× ½siðk0yþ ik0xlmÞ − siðk0y − ik0xlmÞ�; ð28Þ

2IsðyÞ ¼ coshðk0xlmÞ
× ½siðk0yþ ik0xlmÞ þ siðk0y − ik0xlmÞ�
− i sinhðk0xlmÞ
× ½Ciðk0yþ ik0xlmÞ − Ciðk0y − ik0xlmÞ�; ð29Þ

where

siðyÞ¼−
Z

∞

y

sinðξÞdξ
ξ

; CiðyÞ¼−
Z

∞

y

cosðξÞdξ
ξ

: ð30Þ

Equations (24), (26), (27), (28), (29), and (30) determine
the inhomogeneous solution of Eq. (22). Constants As
and Ac in Eq. (23) should be determined from the boundary
condition (8). For this, one should solve integral
equation (18).

A. Hallen’s problem solution in “quasistationary”
approximation

In this section, we describe the simplest approximation
(the so-called quasistationary approximation) for a solution
of integral equation (18). Let us rewrite (18) equivalently
and separate out the “local” term:

UðyÞ ¼ 2

c

Z
L

−L
dz0K1ðy− z0Þ

× fIðyÞ− ½IðyÞ− Iðz0Þ exp ðik0jy− z0jÞ�g

¼ 2

c
IðyÞ

Z
L

−L
dz0K1ðy− z0Þ

−
2

c

Z
L

−L
dz0½IðyÞ− Iðz0Þ exp ðik0jy− z0jÞ�K1ðy− z0Þ:

ð31Þ

Let us denote
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ΩðyÞ ¼
Z

L

−L
dz0K1ðy − z0Þ; ð32Þ

therefore, Ωð−yÞ ¼ ΩðyÞ. Figure 3 shows the typical
behavior of function ΩðyÞ for L=r0 ≫ 1. As one can
see, this function changes significantly only near y ¼ L;
therefore, ΩðyÞ ∼Ωð0Þ ¼ Ω0 for −L < y < L. For the
calculation of Ω0, the singular kernel K1ðy − z0Þ is fre-
quently substituted by some regular function, for example,

K1ðy − z0Þ ≈ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðy − z0Þ2 þ r20
p ; ð33Þ

therefore, one can obtain an approximate analytical expres-
sion,Ω0 ≈ 2 lnð2L=r0Þ. The valueΩ0 is the large parameter
of the problem, in accordance with Eq. (6). However, Ω0

increases just logarithmically (i.e., relatively weakly) with
an increase in ratio L=r0.
Based on small parameter α0 ¼ 1=Ω0 ∼ 1=ΩðyÞ, one can

realize an approximate scheme for solving Eq. (18).
Eq. (31) gives

UðyÞ ¼ 2

c
IðyÞΩðyÞ − 2

c

Z
L

−L
dz0K1ðy − z0Þ

× ½IðyÞ − Iðz0Þ exp ðik0jy − z0jÞ�; ð34Þ
therefore,

IðyÞ ¼ c
2

UðyÞ
ΩðyÞ þ

1

ΩðyÞ
Z

L

−L
dz0K1ðy − z0Þ

× ½IðyÞ − Iðz0Þ exp ðik0jy − z0jÞ�: ð35Þ

The simplest approximation following from Eq. (35)
(the so-called quasistationary approximation) consists in
neglecting the integral term. In such an approximation, we
obtain the local relation between the current I and the
longitudinal potential U:

IðyÞ ¼ c
2

UðyÞ
ΩðyÞ : ð36Þ

Boundary condition (8) immediately results inUð�LÞ ¼ 0;
therefore, unknown constants in the general solution (23)
can be simply determined. As a result, we obtain

As¼
2iqexpðik0zlm−ω2=ω2

σÞ
πcsinðk0LÞ

× ½ðIsðLÞ− Isð0ÞÞcosðk0LÞ− ðIcðLÞ− Icð0ÞÞsinðk0LÞ�;
Ac ¼ 0: ð37Þ

The fact that Ac ¼ 0 is quite natural, because the incident
field on the wire (20) is odd with respect to z0, and the
particular solution of the inhomogeneous equation Uinh is
also odd; therefore, the total solution should contain odd
functions only. Formulas (36), (23), (24), (26), and (37)
solve Hallen’s problem for a single wire ðl; mÞ in the
approximation described above.
One important peculiarity of this approximate solution is

the presence of the term sinðk0LÞ in the denominator of
Eq. (37). This term equals zero for resonant frequencies:

ω¼�ωm¼�2πfm; fm¼ c
2L

m; m¼1;2;…: ð38Þ

For example, the first resonant wavelength λ1 ¼ c=f1 ¼
2L; i.e., it equals the total length of the wire. Therefore,
resonances take place when the total wire length is an
integer of wavelengths. This resonant condition will be
clarified in Sec. III B.
To conclude this subsection, we should note the follow-

ing. As is known in the antenna theory, the quasistationary
approximation described above does not take into account
the influence of radiation on the distribution of surface
current along the wire. An analog of this approximation
from the circuit theory is a passive oscillatory circuit
without active resistance (without dissipation) possessing
a singularity for a resonant frequency. Taking into account
active resistance resolves this singularity. For a passive
vibrator, taking into account the dissipation is equivalent
to taking into account the radiation and its effect on the
current distribution.

B. Hallen’s problem solution with radiation
taken into account

First, let us obtain a solution of Eq. (18) with higher
accuracy (with respect to small parameter α0) compared to
the local solution (36). To do this, we substitute into the
square brackets of the integrand in Eq. (35) the local
solution (36). Since the integral in Eq. (35) is already
multiplied by small parameter α0, such a substitution is
sufficient to obtain the first-order correction to the local
solution (36). We obtain

FIG. 3. Typical behavior of ΩðyÞ normalized by Ω0 on the half-
length of the wire for L=r0 ¼ 200.
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IðyÞ ¼ c
2

UðyÞ
ΩðyÞ þ

c
2ΩðyÞ

Z
L

−L
dz0K1ðy − z0Þ

×

�
UðyÞ
ΩðyÞ −

Uðz0Þ
Ωðz0Þ exp ðik0jy − z0jÞ

�
: ð39Þ

In accordance with the form of the general solution for
UðyÞ, Eq. (23), let us denote

gsðyÞ ¼
c
2

sinðk0yÞ
ΩðyÞ þ c

2ΩðyÞ
Z

L

−L
dz0K1ðy − z0Þ

×
�
sinðk0yÞ
ΩðyÞ −

sinðk0z0Þ
Ωðz0Þ exp ðik0jy − z0jÞ

�
; ð40Þ

gcðyÞ ¼
c
2

cosðk0yÞ
ΩðyÞ þ c

2ΩðyÞ
Z

L

−L
dz0K1ðy − z0Þ

×

�
cosðk0yÞ
ΩðyÞ −

cosðk0z0Þ
Ωðz0Þ exp ðik0jy − z0jÞ

�
; ð41Þ

ginhðyÞ ¼
c
2

UinhðyÞ
ΩðyÞ þ c

2ΩðyÞ
Z

L

−L
dz0K1ðy − z0Þ

×

�
UinhðyÞ
ΩðyÞ −

Uinhðz0Þ
Ωðz0Þ exp ðik0jy − z0jÞ

�
: ð42Þ

Taking into account the oddness of the kernel K1ðy − z0Þ
and the function ΩðyÞ, one can show that

gs;cð−yÞ ¼∓ gs;cðyÞ; ginhð−yÞ ¼ −ginhðyÞ: ð43Þ
With these notations, the total surface current is expressed
as follows:

IðyÞ ¼ AsgsðyÞ þ AcgcðyÞ þ ginhðyÞ; ð44Þ

where As and Ac are unknown constants. Boundary
conditions (8) lead to the following inhomogeneous linear
system for As and Ac:

AsgsðLÞ þ AcgcðLÞ þ ginhðLÞ ¼ 0;

Asgsð−LÞ þ Acgcð−LÞ þ ginhð−LÞ ¼ 0; ð45Þ

with the determinant D ¼ 2gsðLÞgcðLÞ. The solution of
this system can be easily obtained:

As ¼ −
ginhðLÞ
gsðLÞ

; Ac ¼ 0: ð46Þ

Again, the fact that Ac ¼ 0 is connected with the oddness
of the incident field and the function Uinh. Formulas (44),
(40), (42), and (46) solve the problem. As one can see from
Eqs. (46) and (40), the singularity for resonance frequen-
cies (38) is absent in Eq. (44), since gsðLÞ ≠ 0 for f ¼ fm.
Therefore, the obtained solution is more physical compared
to the local solution obtained in Sec. III A.

C. Scattered electromagnetic field

Since the total surface current is found, the electromag-
netic field scattered by a single wire can be easily
calculated. For clarity, let us rewrite here the final expres-
sion for the current excited at the wire ðl; mÞ, obtained in
the quasistationary approximation:

IðlmÞðz0Þ ¼ iq exp ðik0zlm − ω2=ω2
σÞ

πΩðz0Þ
�
sinðk0z0Þ
sinðk0LÞ

½ðIsðLÞ − Isð0ÞÞ cosðk0LÞ − ðIcðLÞ − Icð0ÞÞ sinðk0LÞ�

þ ðIcðz0Þ − Icð0ÞÞ sinðk0z0Þ − ðIsðz0Þ − Isð0ÞÞ cosðk0z0Þ
�
: ð47Þ

As one can see, the Gaussian nature of the bunch is
manifested in the induced surface current via the term
∼ expð−ω2=ω2

σÞ. The vector potential of such a current is
calculated via formulas analogous to Eq. (11):

AðlmÞ
ωy ðx; y; zÞ ¼

Z
L

−L
dz0

IðlmÞðz0Þ
2πc

Z
π

−π
dφ0 exp ðik0R0lmÞ

Rlm
;

ð48Þ
where

Rlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0lmÞ2 þ r20 − 2r0r0lm cosφ0 þ ðy − z0Þ2

q
; ð49Þ

r0lm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − zlmÞ2 þ ðx − xlmÞ2

p
, and at the argument of

the exponent in Eq. (48) we have neglected retardation

at the width of a wire, in accordance with Eq. (6),
that is,

R0lm ¼ Rlmjr0¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xlmÞ2 þ ðz − zlmÞ2 þ ðy − z0Þ2

q
: ð50Þ

Components of the electromagnetic field (which are of the
most interest) are calculated via standard formulas analo-
gous to Eq. (10). In particular, we have

EðlmÞ
ωx ¼ i

k0

∂2AðlmÞ
ωy

∂x∂y
¼ i

2πk0c

Z
L

−L
dz0

Z
π

−π
dφ0IðlmÞðz0ÞDðlmÞ

xy ; ð51Þ
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EðlmÞ
ωz ¼ i

k0

∂2AðlmÞ
ωy

∂x∂z ¼ i
2πk0c

Z
L

−L
dz0

Z
π

−π
dφ0IðlmÞðz0ÞDðlmÞ

xz ; ð52Þ

where

DðlmÞ
xy ¼ ∂2

∂x∂y
exp ðik0R0lmÞ

Rlm

¼ ðx − xlmÞ
exp ðik0R0lmÞ

Rlm
×

�
ðx − xlmÞ

�
ik0
R0lm

−
r0lm − r0 cosφ0

r0lmR
2
lm

�
2

þðy − y0Þ
�
−ik0
R3
0lm

þ 2
r0lm − r0 cosφ0

r0lmR
4
lm

��
; ð53Þ

DðlmÞ
xz ¼ ∂2

∂x∂z
exp ðik0R0lmÞ

Rlm

¼ ðx − xlmÞðz − zlmÞ
exp ðik0R0lmÞ

Rlm

×

��
ik0
R0lm

−
r0lm − r0 cosφ0

r0lmR
2
lm

�
2

þ
�
−ik0
R3
0lm

−
�

1

ðr0lmÞ2R2
lm

−
r0lm − r0 cosφ0

ðr0lmÞ2R4
lm

�
R2
lm

r0lm
þ 2r0lm

����
: ð54Þ

Let us discuss the applicability of the obtained results for
a field calculation in wire structures containing more than
one wire. In our approach, it is supposed that each wire
antenna is excited by the field of the moving bunch only.
However, rigorously speaking, each wire in a wire structure
is also excited by fields produced by all other wires.
Therefore, the described approach can be used for many-
wire structures if a response of each wire is small compared
to the field of the bunch. This should be true at least for
sufficiently thin wires and a sufficiently sparse lattice. The
analogous approximation (usually referred to as the “kin-
ematic approach”) is widely used for the consideration of
PXR produced by charged particle bunches in real crystals.
The validity of the approach developed in this paper (which
also can be called the kinematic approach for wire
structures) will be proved and discussed in Sec. IV.

IV. NUMERICAL RESULTS AND DISCUSSION

Here we present results of numerical simulations of
electromagnetic processes occurring during the interaction
of a charged particle bunch or a point charge with single-
wire and many-wire structures and compare this numerical
result with analytical results obtained above. For simula-
tions, we have used the frequency domain solver of
COMSOL Multiphysics RF module. Corresponding simu-
lated results can be directly compared with analytical ones,
because the Fourier harmonics of the scattered field is
calculated via formulas (51) and (52) of the developed
theory. The structure of the model is shown in Fig. 4.
The simulation area is a cylinder with a perfectly
matched layer (PML) on its back surface. The scattering
boundary condition (SBC) was applied at the “flanges”
of this cylinder. Such a combination of boundary

FIG. 4. Simulation area in COMSOL Multiphysics. The current cylinder with radius rcur [inside which the external current density (55)
is defined] is shown by red.
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conditions allows eliminating the influence of boundaries
on the results.
In the frequency domain, a point charge moving along

the axis of the structure corresponds to the threadlike
current. This current is modeled in COMSOL by a traveling
wave of external current density defined inside a cylinder of
a small radius rcur (“current cylinder”). The density of this
current has the form

j⃗ext ¼ e⃗zIω0 exp
�
i
ω

c
z −

ω2

ω2
σ

�
; Iω0 ¼

q
2π2r2cur

; ð55Þ

where rcur ≪ λ is the radius of the current cylinder and
λ ¼ c=f is the wavelength under consideration. Current
(55) corresponds to the Fourier harmonic of the threadlike
current produced by a Gaussian bunch (1) moving with
velocity υ ¼ c. Since the Gaussian nature of the bunch only
decreases the magnitude of the current (55), the simulations
presented below are performed for σ ¼ 0, i.e., for the case
of a point moving charge. It should be noted that the
described COMSOL model has been approved in our
previous paper [30]. Table I shows the list of parameters
used for simulations.
Figure 5 shows a comparison between COMSOL and

analytical results for the case of charge flight near a single
wire of resonant length (see Table I) with coordinates (1,0).
The real part of the Eωx component is shown on a line

parallel to the z axis for x ¼ 0.5dx [Fig. 5(a)] and for
x ¼ 1.5dx [Fig. 5(b)] as a function of z. In accordance with

Eq. (4), the real part of EðiÞ
ωx is proportional to cosðωz=υÞ.

The background in Fig. 5 corresponds to a half-cycle of this
cosine function. An expressed peak for z ¼ 0 corresponds
to the response of a wire, as additionally illustrated by

TABLE I. Parameters of simulations in COMSOL Multiphysics.

Parameter Value

f (GHz) 10
λ (cm) 3
Length of the simulation area along z 5c=ω ≈ 2.4 cm
Radius of the simulation area 4c=ω ≈ 1.9 cm
q (nC) 1
dx 0.15c=ω ≈ 0.07 cm
dz 0.15c=ω ≈ 0.07 cm
2L (short wire) 0.2λ ¼ 0.6 cm
2L (resonant wire) λ ¼ 3 cm
L=r0 200
rcur 0.01c=ω ≈ 0.005 cm

FIG. 5. Real part of Eωx component over z along the line x ¼
0.5dx (top) and x ¼ 1.5dx (bottom). A spike for z ¼ 0 corre-
sponds to the response of a wire. Wire has the “resonant” length,
see Table I.

FIG. 6. Real part of Eωx component over z along the line x ¼
0.5dx (top) and x ¼ 0.5dx (bottom). A spike for z ¼ 0 corre-
sponds to the response of a wire. Wire is “short”, see Table I.
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insets in Fig. 5. As one can see, the curves are in very
good agreement.
Figure 6 shows a comparison between COMSOL and

analytical results for the case of a charge flight near a single
“short” wire (see Table I) with coordinates (1,0). As one
can see, the agreement between curves is worse, and
COMSOL gives a stronger response compared to the theory.
Moreover, the sign of a spike (which is responsible for the
wire response) has a different sign compared to the case of
“resonant wire” (see Fig. 5). The magnitudes of spikes are
also smaller compared to the resonant wire.
Figure 7 shows the EM field for the case of a charge

flight near a string of four short wires with coordinates
ð1; mÞ, m ¼ −3;−2;−1, 0. As one can see, the agreement
between curves is similar to those in Fig. 6. However, one
can conclude from Fig. 7 that each wire gives an indepen-
dent response. This fact proves the applicability of the
kinematic approach for wire structures used throughout this
paper (each wire is excited by a Coulomb field of a
charge only).
One should mention that for the case of short wires we

have observed a bit worse agreement between analytical
and COMSOL results compared to the case of resonant wires.
A possible reason for this is that the presented analytical
consideration is based on an approximate solution of the

integral equation (18). In the present paper, we used this
relatively simple solution to illustrate the analytical method
itself. In principle, this issue can be overcome by using
numerical procedures for solving the mentioned integral
equation with controlled accuracy which can potentially
improve the agreement between results. However, the
presented approximate solution gives surprisingly good
results for a single wire of resonant length. For many-wire
structures, more sophisticated schemes taking into account
the interaction between wires can be also utilized (see, for
example, Ref. [31]). In the context of using wire structures
for the generation of EM radiation (in particular, in the
THz frequency range), the resonant case is of most interest,
since the surface current magnitude (and, therefore, the
radiated EM field) is expected to be much larger in this case
compared to the nonresonant wire. For a potential THz
source with f ¼ 1 THz, the resonant length of a wire is
equal to wavelength λ ¼ 0.3 mm. In this case, carbon
nanotubes having their radii of the order of nanometers
and their lengths from tens of nanometers to several
centimeters can be used as thin wire antennas satisfying
the inequality (6), and a similar analytical approach can be
applied [32]. To generate this frequency, the bunch should
be also short enough. For example, for σ ≈ 0.03 mm, we
have ωσ ≈ 2π · 2 THz, and the Gaussian attenuation term
expð−ω2=ω2

σÞ ≈ 0.78, which is reasonable.

V. CONCLUSION

In the present paper, we have presented an approximate
analytical approach enabling the calculation of EM radi-
ation produced by a charged particle bunch during its
passage through various structures composed of finite
length PEC wires. Contrary to the effective medium
approach and Bragg diffraction formalism, this method
is free from limitations on the relation between the wave-
length under consideration and structure characteristic
dimensions (periods and wire length). The method is
applicable for relativistic particles and thin enough wires
comprising the structure. The limitation on wire thickness
is connected with neglecting the effect of wire flanges and
the dependence of a surface current on the azimuth angle.
Moreover, it is also supposed that interaction between wires
can be neglected, which is closely related to the kinematic
approach for PXR in real crystals. However, this limitation
is not critical and can be overcome. When the wire lattice
is close spaced, interaction between neighboring wires
can be taken into account by incorporating corresponding
terms into the integral equation. Then, an appropriate
numerical solution scheme can be utilized (see, for exam-
ple, Ref. [31]).
The presented numerical results illustrate good agree-

ment between this approach and simulations performed in
the RF module of the COMSOL Multiphysics package. In all
cases, the theory captures correctly the field behavior.
One can conclude from these results that each wire in a

FIG. 7. The real part of the Eωx component over z along the line
x ¼ 0.5dx (top) and x ¼ 1.5dx (bottom) for the case of four short
wires with coordinates ð1; mÞ, m ¼ −3;−2;−1, 0.
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many-wire structure responds independently to the
Coulomb field of the bunch. Moreover, in the resonant
case (wire length equal to the wavelength) the agreement
between the theory and COMSOL is close to ideal (for a
single wire).
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