
 

Statistics of relativistic electrons radiating in periodic fields
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We develop a general method for assessing the evolution of the energy spectrum of relativistic electrons
that undergo small quantum losses, such as the ionization losses when the electrons pass through matter
and the radiation losses in periodic fields. These processes are characterized by a small magnitude of the
recoil quantum as compared with the particle’s initial energy. We convey the statistical consideration of the
radiating electrons and demonstrate that, for a small average number of recoils, the electron energy
spectrum can be described as a composition of consecutive convolutions of the recoil spectrum with itself,
weighted with a Poisson distribution. In this stage, the electron’s spectrum reveals some individual
characteristics of the recoil spectrum. Later, the spectrum loses individuality and allows for an approximate
description in terms of statistical parameters. This consideration reveals that the width of the electron’s
spectrum is increasing with the number of recoils according to a power law, with the power index being
inverse to the stability parameter, which gradually increases with the number of recoils from one to two.
The increase of the spectrum width limits the ability of the beam to generate coherent radiation in the hard
x-ray and gamma-ray region.
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I. INTRODUCTION

In a number of processes involving beams of high-
energy electrons, such as radiation in periodic structures,
ionization losses in matter, etc., the energy degradation of
an incident electron is in the form of small portions (recoil
quanta), which spectrum is almost independent of the
electron’s energy. In our previous papers [1,2], we consid-
ered the evolution of the spectrum of such an electron
beam. It was shown that the spectrum is determined by
the parameters of a single recoil and the average number
of recoils.
In a small average number of recoils, the electron energy

spectrum can be described as a composition of consecutive
convolutions of the recoil spectrum with itself weighted
with a Poisson distribution. In the diffusion limit (a big
number of recoils), the width of the spectrum increases
as the square root of the number of recoils. This paper is

focused on the dependence of the spectrum width on the
number of recoils in the intermediate range.
The paper is organized as follows: In the second section,

we present a method of assessing the evolution of the
straggling function that describes the distribution of the
energy losses in the interim range of the number of recoils.
In the third section, we validate the method by comparing
it to the known theories at the limiting cases. The fourth
section presents the results of the study of the radiating
electrons kinetics in short undulators. The fifth section
summarizes the results.

II. STATISTICS OF THE RADIATING ELECTRONS

A. Preliminaries

Distinguishing features of the considered system are
(i) a big number of ensemble members (electrons in the
radiating bunch) n ∼ 1010 and (ii) a small average number
of recoils (defined as the ratio of the energy emitted by
the electron to the mean energy of the spectrum of the
radiation) x < 104.
We adopt the assumption that the spectrum of emitting

quantum of the radiation-inducing energy loss (recoil),
wðωÞ, is “physical”: It has compact support, 0 ≤ ωmin ≤
ω ≤ ωmax < ∞ with ω being the energy of the recoil.
The spectrum is normalized to unity,

R
wðωÞdω ¼ 1. (Here

and below, we drop the infinite limits in integration.)
In this paper, we use the reduced energy units: ϵ for the

energy in the straggling spectrum and ω for the energy of
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the spectrum of the recoil quantum; both are dimensionless,
normalized to the energy unit, e.g., to the charged particle
rest energy [2]. We use a convention for the Fourier
transform in the form

ðFfÞðsÞ ¼ f̂ðsÞ ¼
Z

e−2iπωsfðωÞdω

with s being the variable in the Fourier transform domain
that complements ω (or ϵ). For the inverse Fourier trans-
form ðF−1fÞðsÞ ¼ f̌ðsÞ, the (−) sign in the exponent of the
integrand is replaced with a (þ) sign.
A sketch of the straggling electron’s trajectory in the

plane ðx; ϵÞ is presented in Fig. 1. The trajectory is
composed of free paths of random length, with the mean
unit value and the (positive) random jumps having the same
probability density distribution wðωÞ. Such a process
belongs to the subclass of the subordinate to the compound
Poisson process, which in turn belongs to the α-stable
(or Lévy) processes; see, e.g., Ref. [3].
Evolution of the energy spectrum of the electron bunch is

described by a transport equation [4,5]:

∂fðx; γÞ
∂x ¼

Z
∞

−∞
½wðωÞfðx; γ þ ωÞ − wðωÞfðx; γÞ�dω; ð1Þ

with γ being the dimensionless particle energy (Lorentz
factor).
A solution to (1) in the form of the characteristic function

(Fourier transform of the distribution density) [1,2] is

f̂ ¼ f̂0 exp½xðw̌ − 1Þ�; ð2Þ

where f0 is the initial spectrum. The parameter x > 0 is the
ensemble average number of the recoils undergone by an
electron since entering the driving force [1,2].

Equation (2) may be generalized and simplified due to
the assumption of independence of the recoils on the
electron energy, as proposed in Ref. [4]. Instead of the
beam spectrum, we consider the distribution density of
losses (the straggling function [2]). The straggling function,
normalized to unity, presents the loss spectrum: Only
the particles that have undergone at least one recoil
contribute to it.
The characteristic function for the straggling function Sx

and its Poisson-weighted expansion are

Ŝx ¼ ŵexðŵ−1Þ; SxðϵÞ ¼
X∞
n¼0

e−xxn

Γðnþ 1ÞFnðϵÞ;

Fn ¼ Fn−1 � w; F0 ¼ w; ð3Þ

where � stands for the convolution operation. The first
three moments of the straggling function—mean, variance,
and skewness—read

ϵ̄ ¼ ð1þ xÞω̄; ð4aÞ

Var½ϵ�≡ ðϵ − ϵ̄Þ2 ¼ ð1þ xÞω2 − ω̄2; ð4bÞ

Sk½ϵ�≡ ðϵ − ϵ̄Þ3 ¼ ð1þ xÞω3 − 3ω2 ω̄þ2ω̄3: ð4cÞ

Here ω̄, ω2, and ω3 are the raw moments of the recoil
spectrum wðωÞ, ωn ≡ R

ωnwðωÞdω, and the “overline”
indicates the ensemble average.
A universal solution for the straggling function (3)

allows for an accurate evaluation at the beginning of the
process, x≲ 1 when the series may be limited to a few self-
states Fn and, in the opposite limit of the large number of
recoils, x → ∞ when the few first moments (4) adequately
represent the function. The first moment—mean energy
loss—always holds, since it presents the energy conserva-
tion law.

B. Statistical properties for a finite number of recoils

From a practical point of view, the most interesting for
the physically realizable systems is a medium number of
recoils, when a particle, after entering the system, lost a
small fraction of its initial energy in the moderate number
of recoils, xω̄ ≪ γ0, with γ0 being the initial electron
energy.
To evaluate the functional dependency of the spectrum

width against the average number of recoils, σ ¼ σðxÞ, we
compare the distribution (3) with the Lévy α-stable dis-
tributions, the only ones attracting the sum of independent
identically distributed variables; see Ref. [6].
It should be emphasized that, despite the relevance of the

trajectory to the α-stable class, the bunch of such trajecto-
ries does not rigorously match the class, since individual
trajectories come into the stage at different x, as is depicted

FIG. 1. A sketch of the straggling process. The distribution of
recoil magnitudes resembles the dipole radiation spectrum.
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in Fig. 2. Nevertheless, at x ≫ 1, when almost all of the
particles have been recoiled and the width of the distribu-
tion exceeds the width of the spectrum of recoil, the bunch
of the trajectories is expected to obey a stable law.
The characteristic function of the α-stable process (see,

e.g., Ref. [6]) has the general form

ϕ̂ðsÞ ¼ exp f−2πisμ − j2πσsjα½1 − iβsgnðsÞΦ�g; ð5Þ

with

Φ ¼
� tanðπα

2
Þ; α ≠ 1;

− 2
π log jsj; α ¼ 1:

The parameters of the stable distribution are α ∈ ð0; 2� the
stability parameter, σ > 0 the scale parameter, β the skew-
ness parameter, and μ the location parameter.
The model under consideration allows for a reduction of

the range of the parameters: The stability parameter should
be in the range α ∈ ð1; 2� due to a finite mean of the recoil
spectrum; the location parameter is simply equal to the first
moment of the straggling function (4a).
A comparison of the characteristic function of straggling

(3) with that of the stable distribution (5) leads to two
important conclusions: (i) The scaling parameter σ is
determined by the real part of the exponent, and (ii) the
Fourier transform of a recoil spectrum, in general, may not
be of the power form, ∝ jsjα with α ¼ const.

We aim the study at the evaluation of the scale parameter
of distribution and take into account the similarity theorem,
which states that the width of the distribution is inversely
proportional to the width of its Fourier transform.
Therefore, we suggest evaluating the stability parameter
at s ¼ s�, where the real part of the exponent of the
characteristic function equals unity:

Re½xð1 − ŵðs�ÞÞ� ¼ 1 ¼ jπσs�jα: ð6Þ

Here in the square brackets in the left-hand side of Eq. (6),
we intentionally omit the small term Re½log ŵðs�Þ� ∝ −s2�.
From this suggestion, an expression for the stability

parameter is readily derived:

α ¼ sDsRe½ŵ�
1 − Re½ŵ�

����
s¼s�

; ð7Þ

where Ds ≡ ∂
∂s and s� ¼ s�ðxÞ > 0 is the root of Eq. (6).

Substituting the explicit expression for Re½ŵ�,

jπσs�jα ¼ x
Z

wðωÞ½1 − cosð−2πs�ωÞ�dω

¼ x
Z

wðωÞ½πs�ω�αdω ¼ xmα½w�½πs��α;

we get a general dependence of the scale parameter—the
width of the straggling distribution—on the number of
recoils:

σðxÞ ¼ ½xmα½w��1=α; ð8Þ

where mα½w� is the raw generalized α moment of the recoil
spectrum:

mα½w�≡
Z

ωαwðωÞdω:

Thus, the width of the spectrum increases with the
average number of recoils as ∝ x1=αðxÞ. The stability
parameter αðxÞ, in turn, increases with x from unity to two.
It should be noted that the scale parameter is equal to

the half-width of the distribution at 1=e of the maximum.
At α → 2 when the distribution approaches the normal
(Gaussian) distribution, the scale parameter approaches
the square root of Gaussian variance divided by 2,

σðxÞ → ½ðϵ − ϵ̄Þ2=2�1=2.

III. VERIFICATION OF THE METHOD

The two known functional limits of the considered
process, 1 ≤ α ≤ 2 with α ¼ 1 being the Landau distribu-
tion and α ¼ 2 the Gaussian distribution (Fokker-Plank or
diffusive limit), may be considered as benchmarks of the
method; see, e.g., Ref. [7].

FIG. 2. Four simulated trajectories for the recoils from the
dipole radiation emission (top). The density of the nonrecoiled
particles is indicated in gray in the bottom panel.
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A. The diffusion limit

As stated by the central limit theorem, the sum of
independent identically distributed variables with the finite
variance should approach the normal (Gaussian) distribu-
tion, which is a limiting case of the stable distributions with
α ¼ 2. Directly following from Eq. (3), at x → ∞, the real
part of the exponent approaches Gaussian:

Re½ŵ − 1� ≈ 2π2s2ω2:

The same result, α ¼ 2, directly stems from Eq. (7), since
s� → 0 when x → ∞.

B. The Landau distribution

A particular case of the stable distributions, the Landau
distribution function [4] (α ¼ 1, β ¼ 1), is of special
importance, since it has undergone extensive study and
experimental validation; see Refs. [8,9]. The process of
ionization losses described by the Landau distribution
agrees with the assumption of small recoils, whose spec-
trum is independent of the energy of particles. The problem
is the dependence on the energy of the idealized unbound
recoil spectrum of ∝ ω−2. This spectrum—the Rutherford
cross section—cannot be normalized (it has infinite
moments).
To avoid the divergence, we consider a truncated recoil

spectrum, 0 < a ≤ ω ≤ b < ∞, then take the limits a → 0,
b → ∞, and keep the total energy losses finite. A physical
normalized Rutherford cross section (see Refs. [10,11])
reads

wLðωÞ ¼
sgnðω − aÞ − sgnðω − bÞ

2ω2

ab
ðb − aÞ : ð9Þ

Its raw moments are finite:

ω̄ ¼ ab
b − a

log

�
b
a

�
; ω2 ¼ ab:

The Fourier transform for this cross section is

ŵLðsÞ ¼
1

ðb − aÞ ffiffiffiffiffiffi
2π

p × fb cosðasÞ − a cosðbsÞ

þ sab½SiðasÞ − SiðbsÞ� − i½sabðCiðasÞ
− CiðbsÞÞ − b sinðasÞ þ a sinðbsÞ�g; ð10Þ

where SiðzÞ ¼ R
z
0 sinðtÞ=tdt is the integral sinus and

CiðzÞ ¼ −
R
∞
z cosðtÞ=tdt is the integral cosine.

Explicitly, we have for the model

αLðs; a; bÞ ¼ 1þ a cosð2πbsÞ − b cosð2πasÞ
abðb − aÞ

þ 2πsab
ðb − aÞ ½Sið2bπsÞ − Sið2aπsÞ�; ð11Þ

with s ¼ s� being the root of Eq. (6).
The stability parameter (11) has two limits: (i) a, b finite,

x → ∞ (accordingly, s� → 0) and (ii) x finite, a → 0;
b → ∞ (Rutherford cross section):

lim
s→0

αLðs; a; bÞ ¼ 2; 0 < a < b < ∞; ð12aÞ

lim
a→0;b→∞

αLðs;a; bÞ ¼ 1; 0 < s: ð12bÞ

Thus, the stability parameter (11) coincides with the
Landau distribution at the Rutherford cross section and
with the Gaussian distribution at x → ∞ and the finite-
moments recoil spectra.
For the physically grounded cases of ionization losses,

both the Landau and the Vavilov formulas are valid. The
Landau distribution evolves into the Gaussian well beyond
the physical region, as is illustrated in Fig. 3 for 50 MeV
electrons traversing liquid hydrogen (in this case, the
ionization losses are dominant).
As it can be seen from Fig. 3, the Landau distribution

adequately describes the evolution of the straggling func-
tion. The width of the distribution within the range of
validity linearly increases with the mean losses. (Small
oscillations in the stability parameter occur because of
errors in the numerical computation of the root s�.)

FIG. 3. The stability parameter (black curve) and the scale
parameter (blue) against mean energy loss. The vertical green line
indicates the limit of validity of the Landau distribution (10%
loss; see Ref. [12]), and the red line indicates the physical limit:
all the energy radiated out.
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IV. RADIATION IN PERIODIC STRUCTURE

As an example of an application of the method to a
practical case, we consider the evolution of the straggling
function due to emission of the undulator radiation; see,
e.g., Ref. [13]. The undulator parameter K is

K ¼ eBλu
2πmec

;

where B is the magnetic field strength, λu is the spatial
period of the magnetic field, e and me are the electron
charge and the rest mass, respectively, and c is the speed
of light.
The evolution of the straggling function for a long

undulator and K ≳ 1 approximates the diffusion process
[14]. On the other hand, for the dipole radiation K ≪ 1
and a short undulator (or the entrance section of a long
undulator), x≲ 5, this function is asymmetric and non-
Gaussian [1,15].
Figure 4 represents the straggling function profiles

computed in accordance with Eq. (3) for a small average
number of recoils. It shows that the straggling function
resembles the spectrum of the recoil at x ≪ 1, and then it
gradually spreads out and smoothes, approximating to
some degree the Landau distribution.
The stability parameter against the number of recoils,

computed in accordance with Eq. (7) for different undulator

parameters K, is presented in Fig. 5. As can be seen from
the figure, the wider the recoil spectrum, the later the
stability parameter approaches the diffusion limit of α ¼ 2.
When the stability parameter approaches the “diffusion”

value of α ¼ 2 (still remaining below it), the third centered
moment (4c) stays positive and increases with x. We can
derive practical information about the mode of the dis-
tribution. Making use of Pearson’s skewness for a distri-
bution close to normal (see, e.g., Ref. [16]),

ϵ̄ − ϵmode

σ
¼ Sk½ϵ�

2σ3
;

where ϵmode is the maximum of the distribution density,
we get

ϵmode ¼ ϵ̄ −
Sk½ϵ�
2σ2

¼ ð1þ xÞω̄ −
ð1þ xÞω3 − 3ω2 ω̄þ2ω̄3

2½ð1þ xÞω2 − ω̄2�
: ð13Þ

For a big number of the recoils, x → ∞, the shift of the
mode from the mean is almost independent of the number
of recoils:

ϵmode − ϵ̄ ≈ −
ω3

2ω2
:

The mode—position of the maximum—is shifted from
the mean to smaller energy losses by the constant value,
which is determined by the raw moments of the recoil
spectrum.

FIG. 4. Straggling distribution function caused by recoils in a
helical undulator, K ¼ 1, x ¼ 0.01, 0.5, 1, 2 (shifted by 0, 1, 2,
and 3 from bottom to top, respectively).

FIG. 5. Stability parameter for K ¼ 0.01 (blue), K ¼ 0.3
(green), and K ¼ 1 (red) vs the average number of recoils.
(The inset presents the corresponding recoil spectra.)
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V. SUMMARY

A general dependence of the distribution of energy
losses by relativistic electrons due to radiation in periodic
structures or ionization losses in matter was analyzed. The
straggling function—distribution density of fluctuations—
is determined solely by the ensemble-average number of
recoils having undergone by the particle since entering the
field (or medium in the case of ionization losses) and the
spectrum of the recoil.
The straggling function was compared to the Lévy stable

process as the only attractor of such processes according to
the generalized central limit theorem. The results of this
consideration reveal that the width of the electron spectrum
is increasing with the number of recoils in accordance with
the power law, the power index being inverse to the stability
parameter, i.e., linearly with the number of recoils at the
beginning of the process, and in proportion to the square
root from the number of recoils at the diffusion limit.
An increase of the spectrumwidth limits the ability of the

beam to generate coherent radiation in the hard x-ray and
gamma-ray region.
Despite the assumed independence of the recoil spec-

trum on the electron’s energy, a “negligible” (from the
electron’s point of view) change in this spectrum may play
an important role in the reduction of the brightness of
sources of hard x rays and gamma rays, which employed
relativistic electrons.
It occurs due to the fact that only a small fraction of the

spectrum is used: The pinhole fraction of the spectrum has a
strong dependency upon the energy spread of the electrons.
The attainable width of the pinhole collimated radiation—
upper limit of it—will exceed double the electron bunch
energy spread [17].
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