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Microbunched electron cooling is a promising cooling technique that can find applications in future
hadron and electron-ion colliders to counteract intrabeam scattering that limits the maximum achievable
luminosity of the collider. To minimize the cooling time, one would use amplification cascades consisting
of a drift section followed by a magnetic chicane. In this paper, we first derive and optimize the gain factor
in an amplification section for a simplified one-dimensional model of the beam. We then deduce the
cooling rate of a system with one and two amplification cascades. We also analyze the noise effects that
counteract the cooling process through the energy diffusion in the hadron beam. Our analytical formulas are
confirmed by numerical simulations for a set of model parameters.
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I. INTRODUCTION

Microbunched coherent electron cooling (MBEC) of
relativistic hadron beams has been proposed by Ratner [1]
as a way to achieve cooling rates higher than those provided
by the coherent cooling using a free electron laser [2]. The
mechanism of MBEC can be understood in a simple setup
shown in Fig. 1. An electron beam with the same relativistic
γ factor as in the hadron beam copropagates with the
hadrons in a section of length Lm called the “modulator.”
In this section, the hadrons imprint microscopic energy
perturbations onto the electrons via the Coulomb inter-
action. After the modulation, the electron beam passes

through a dispersive chicane section, Rðe;1Þ
56 , where the

energy modulation of the electrons is transformed into a
density fluctuation referred to as “microbunching.” This
chicane is followed by an amplification section consisting

of a drift of length Ld and another chicane Rðe;2Þ
56 , as shown

in Fig. 1(a). If the length of the drift is equal to one-quarter
of the plasma oscillation period in the electron beam, 1

4
λp,

and the chicane strength is properly optimized, the density
fluctuations in the electron beam generated by the chicane

Rðe;1Þ
56 are increased in amplitude. This section can be

repeated several times: Fig. 1(b) shows the setup with
two amplification sections. Meanwhile, the hadron beam

passes through its dispersive section, RðhÞ
56 , in which more

energetic particles move in the forward direction with
respect to their original positions in the beam, while the

less energetic hadrons trail behind. When the beams are
combined again in a section of length Lk, called the
“kicker,” the electric field of the induced density fluctua-
tions in the electron beam acts back on the hadrons. With a
proper choice of the chicane strengths, the energy change of
the hadrons in the kicker leads, over many passages
through the cooling section, to a gradual decrease of the
energy spread of the hadron beam. Transverse cooling is
achieved in the same scheme by introducing dispersion in
the kicker for the hadron beam.
A theoretical analysis of MBEC without amplification

has been carried out in a recent study [3]. In this paper, we
extend the analysis of Ref. [3] to include the amplification
sections. Following the approach developed in Ref. [3],
we adopt a general framework in which we look at the
dynamics of the fluctuations in both beams. We assume
that, before the beams start to interact, their density and
energy fluctuations can be described as uncorrelated shot
noise. In the process of interaction, the fluctuations in the
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FIG. 1. Schematic of the microbunched electron cooling
system: (a) with one amplification section and (b) with two
amplification sections. The blue lines show the path of the
electron beam, and the red lines indicate the trajectory of the
hadron beam.
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electron and hadron beams establish correlations, and when
the beams are recombined in the kicker the fluctuating
electric field in the electron beam acts in a way that
decreases the energy spread in the hadron beam. As in
Ref. [3], for the hadron-electron as well as electron-electron
interactions, we adopt a model in which the particles are
replaced by thin disks with a Gaussian transverse charge
distribution.
The paper is organized as follows. In Sec. II, we

summarize the Coulomb interaction between thin slices
with transverse Gaussian distribution of charge. In Sec. III,
we study plasma oscillations in a beam consisting of thin
Gaussian slices. In Sec. IV, we demonstrate that an initial
sinusoidal modulation of small amplitude in a beam is
amplified after the passage through a quarter of plasma
wavelength drift and a subsequent chicane. The amplifi-
cation factor derived in this section is then used, in Secs. V
and VI, for the calculation of the cooling rate in an MBEC
cooling system with one and two amplification sections,
respectively. In Sec. VII, we discuss the wakefield asso-
ciated with the amplified cooling which is related to the
effective energy exchange of two hadrons located at a given
distance z. In Sec. VIII, we present results of computer
simulations of the cooling rates. In Sec. IX, the noise and
saturation effects in the cooling process are studied, and in
Sec. X numerical estimates of the hadron cooling are
presented for the eRHIC electron-ion collider design. We
conclude this paper with the summary in Sec. XI.
We use the Gaussian system of units throughout this

paper.

II. INTERACTION OF CHARGED
GAUSSIAN SLICES

As was already mentioned in the introduction, we treat
the Coulomb interaction between particles as if a hadron
were a disk of charge Ze with an axisymmetric Gaussian
radial distribution with the rms transverse size equal to
the rms transverse size of the beam. The electron is
also modeled by a Gaussian disk of charge −e with the
same transverse profile. A similar Gaussian-to-Gaussian
interaction model was used in 1D simulations of a
longitudinal space charge amplifier in Ref. [4].
In this model, a hadron of charge Ze at the origin of

the coordinate system exerts a force fz on an electron at
coordinate z:

fzðzÞ ¼ −
Ze2

Σ2
Φ
�
zγ
Σ

�
; ð1Þ

where Σ is the rms beam radius and the function Φ is
defined by the following expression [5]:

ΦðxÞ ¼ 1

2

�
x
jxj −

x
ffiffiffi
π

p
2

exp

�
1

4
x2
�
erfc

�
1

2
jxj
��

; ð2Þ

with erfc the complementary error function. The functionΦ
is odd, Φð−xÞ ¼ −ΦðxÞ; its plot can be found in Ref. [3].
Neglecting the relative longitudinal displacements of
hadrons and electrons in the modulator, the force (1) causes
the relative energy change Δη of an electron located at
coordinate z:

ΔηðzÞ ¼ −
ZreLm

γΣ2
Φ
�
zγ
Σ

�
; ð3Þ

where Lm is the length of the modulator, re ¼ e2=mec2 is
the classical electron radius, and we use the notation η
for the energy deviationΔE of a particle normalized by the
nominal beam energy γmc2, η ¼ ΔE=γmc2. Equation (3)
can also be considered as a Green function for the energy
modulation of electrons induced by a delta-function
density perturbation in the hadron beam.
In our analysis, we will assume that the beam radius in

the amplification sections, Σp, may be different from the
beam radius in the kicker and the modulator, Σ. For the
electron-electron interaction in these sections, we use
Eq. (1) with Z ¼ −1 and Σ → Σp:

FzðzÞ ¼
e2

Σ2
p
Φ
�
γz
Σp

�
: ð4Þ

In what follows, we will also need the Fourier transform
of the function Φ. Because of the antisymmetry of the
functionΦ, its Fourier transform is purely imaginary, so we
define function H as

HðϰÞ ¼ i
2

Z
∞

−∞
dxΦðxÞe−iϰx ¼

Z
∞

0

dxΦðxÞ sinðϰxÞ: ð5Þ

The plot of function HðϰÞ is shown in Fig. 2. For large
values of the argument, ϰ ≫ 1, the function H asymptoti-
cally approaches 1=2ϰ. One can also find an approximation
for H near the origin, ϰ ≪ 1, H ≈ ϰð2 ln ϰ − γEÞ, where
γE ¼ 0.577 is the Euler constant.

FIG. 2. Plot of function HðϰÞ for positive values of the
argument.
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III. PLASMA OSCILLATIONS IN A
GAUSSIAN BEAM

To calculate the increase in the amplitude of the fluctua-
tions in the electron beam when it propagates through the
amplification sections, we first need to analyze the beam
plasma oscillations in the drift. A similar problem has been
studied in Ref. [6]; however, our treatment is simpler,
because we will assume a cold plasma and neglect the
transverse degrees of freedom in the beam. In our analysis,
we use the Vlasov equation for the distribution function in
the longitudinal phase space, fðz; η; tÞ, normalized so thatR∞
−∞ f dη ¼ n, with n the number of particles in the beam per
unit length. Here z ¼ s − vt is the longitudinal coordinate in
the beamwith s the distance measured along the direction of
the beam propagation in the lab frame and v the nominal
beam velocity. We represent the distribution function as
f ¼ n0F0ðηÞ þ δfðz; η; tÞ, where F0ðηÞ is the equilibrium
beam distribution function, n0 is the nominal linear particle
density, and δf describes small-amplitude time-dependent
fluctuations in the beam, jδfj ≪ F0. We consider the
fluctuations with the longitudinal scale much smaller than
the bunch length and carry out our analysis in a small vicinity
of a given location in the bunch where the variation of the
distribution function F0 with z can be neglected; for this
reason, the coordinate z is omitted from the arguments of the
function F0.
The linearized Vlasov equation for the perturbation of

the distribution function, δf, is

∂δf
∂t þ cη

γ2
∂δf
∂z þ _ηn0F0

0ðηÞ ¼ 0; ð6Þ

where _η is the energy change per unit time. The rate of
energy change is expressed through the longitudinal force
in the electron beam:

_η ¼ 1

γmec

Z
∞

−∞
dz0δnðz0; tÞFzðz − z0Þ; ð7Þ

where

δnðz; tÞ ¼
Z

∞

−∞
dη δfðz; η; tÞ ð8Þ

and Fz is given by Eq. (4). Making the Fourier transform
of Eqs. (6) and (7) and using the notations

δf̂kðη; tÞ ¼
Z

∞

−∞
dz e−ikzδfðz; η; tÞ;

δn̂kðtÞ ¼
Z

∞

−∞
dz e−ikzδnðz; tÞ; ð9Þ

we obtain

∂δf̂k
∂t þ ikcη

γ2
δf̂k þ ζðkÞδn̂kn0F0

0ðηÞ ¼ 0; ð10Þ

with the effective impedance ζðkÞ given by

ζðkÞ ¼ 1

γmc

Z
∞

−∞
dξe−ikξFzðξÞ ¼ −

2ie2

Σpγ
2mc

H

�
kΣp

γ

�
;

ð11Þ

where the function H is defined by Eq. (5). At large values
of k, k≳ γ=Σp, we have HðϰÞ ∼ 1=ϰ, so the impedance in
this region can be estimated as ζ ∼ e2=Σ2

pγmck.
In our analysis, we will assume that the second term in

Eq. (10) is much smaller than the third one. The conditions
for such an assumption are estimated at the end of this
section. Neglecting the second term, we can integrate the
Vlasov equation over time:

δf̂kðη; tÞ ¼ δf̂kðη; 0Þ − ζðkÞn0F0
0ðηÞ

Z
t

0

dt0δn̂kðt0Þ: ð12Þ

To get an equation for δn̂kðtÞ, we integrate Eq. (10) over η:

dδn̂k
dt

þ ikc
γ2

δq̂k ¼ 0; ð13Þ

where

δq̂k ¼
Z

∞

−∞
dη ηδf̂k ð14Þ

is the averaged perturbation of the energy η by δf̂k. Note
that the large third term in Eq. (10) does not contribute to
this equation, so we have to keep the contribution from the
second term. We can also obtain an equation for δq̂k by
integrating Eq. (10) with weight η:

dδq̂k
dt

− ζðkÞδn̂kn0 ¼ 0; ð15Þ

where we have neglected the contribution from the second
term in Eq. (10). Combining Eqs. (13) and (15), we find

d2δn̂k
dt2

þ ikc
γ2

ζðkÞn0δn̂k ¼ 0; ð16Þ

which is the equation for plasma oscillations in the beam.
A somewhat different derivation of plasma oscillations in a
relativistic beam is given in Ref. [7]. Note that there are no
Landau damping effects [6] in this equation, which means
that our assumption of the smallness of the second term in
Eq. (10) is equivalent to the cold plasma approximation.
It follows from Eq. (16) that the plasma frequency ωpðkÞ is
given by the following equation:
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ω2
p ¼ ikcn0

γ2
ζðkÞ ¼ 2kn0e2

Σpγ
4m

H

�
kΣp

γ

�
¼ 2Ω2ϰpHðϰpÞ;

ð17Þ

with

Ω2 ¼ n0e2

mΣ2
pγ

3
ð18Þ

and ϰp ¼ kΣp=γ. The plot of the function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϰpHðϰpÞ

p
—

this function is equal to the normalized plasma frequency
ωp=Ω—is shown in Fig. 3. One can see that, for the
short-period plasma oscillations with k ≫ γ=Σp, the plasma
frequency is approximately equal to Ωp, while for the long-
wavelength oscillations ωp decreases with the wavelength.
We can now find the condition when the second term

in Eq. (10) is much smaller than the third one. In our
estimates, we will assume k ∼ γ=Σp, which gives for the
impedance ζ ∼ e2=Σpγ

2mc. Using the estimates F0
0 ∼ 1=σ2e,

δf̂k ∼ δn̂k=σe, and η ∼ σe, we find that the ratio of the third
term to the second one is approximately equal to

e2n0
γmc2σ2e

∼
1

σ2e

Ie
γIA

; ð19Þ

which has to be much greater than one. Here Ie ¼ ecn0 is
the peak beam current and IA ¼ mc3=e is the Alfvén
current. In the next section, we will see that the same
parameter (19) appears in the expression for the gain factor
of the amplification section.

IV. GAIN FACTOR IN AN AMPLIFICATION
CASCADE

The solution of Eqs. (13) and (15) is

δn̂k ¼ δn̂kð0Þ cosðωptÞ −
ikc
γ2ωp

δq̂kð0Þ sinðωptÞ; ð20Þ

where δn̂kð0Þ and δq̂kð0Þ are the initial values of the density
and energy perturbations in the beam, respectively. Let us

compare the first and the second terms in this equation,
taking into account that plasma oscillations occur after the

fist chicane, Rðe;1Þ
56 , of the cooling section. In these esti-

mates, we again assume k ∼ γ=Σp and the optimal value for

the chicane strength, Rðe;1Þ
56 ∼ Σp=γσe (see the order of

magnitude estimates in Ref. [8]). The magnitude of δn̂kð0Þ
is estimated as δn̂kð0Þ ∼ kRðe;1Þ

56 δq̂kð0Þ ∼ δq̂kð0ÞkΣp=γσe,
so that the ratio of the second term to the first one in
Eq. (20) is of the order of cσe=γΩΣp. This combination of
parameters turns out to be equal to the inverse of the square
root of the parameter in Eq. (19),

cσe
γΩΣp

∼ σe

ffiffiffiffiffiffiffi
γIA
Ie

s
≪ 1; ð21Þ

and, by assumptions, is much smaller than one. Hence, we
can neglect the second term in Eq. (20):

δn̂k ≈ δn̂kð0Þ cosðωptÞ: ð22Þ

Substituting this result in Eq. (12), we obtain

δf̂kðη; tÞ ¼ δf̂kðη; 0Þ −
1

ωp
ζðkÞn0F0

0ðηÞδn̂kð0Þ sinðωptÞ:

ð23Þ

Estimating the relative magnitude of the two terms on the
right-hand side in this equation, as was done in the
derivation of Eq. (19), we find that the ratio of the first
term to the second one is given by the same parameter (21),
and hence we can neglect the first term in Eq. (23). Using
this expression for δf̂k, we can find the linear density

perturbation in the beam, δn̂ð2Þk , after it passes through the

second chicane Rðe;2Þ
56 at the end of the drift [see Fig. 1(a)]:

δn̂ð2Þk ¼
Z

∞

−∞
dηδf̂ke

−ikRðe;2Þ
56

η

¼ −
1

ωp
ζðkÞn0δn̂kð0ÞgðkÞ sin

�
ωpLd

c

�
; ð24Þ

where we have replaced the time by the length of the drift
divided by the speed of light, t ¼ Ld=c, and

gðkÞ ¼
Z

∞

−∞
dηF0

0ðηÞe−ikR
ðe;2Þ
56

η ¼ ikRðe;2Þ
56 e−k

2ðRðe;2Þ
56

Þ2σ2e=2:

ð25Þ

The last expression in this formula is calculated for a
Gaussian distribution function F0 ¼ ð2πÞ−1=2σ−1e e−η

2=2σ2e

with σe the rms relative energy spread in the electron
beam. It makes sense to define the gain factor G of the

FIG. 3. Plot of the function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϰpHðϰpÞ

p
.
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amplification section as G ¼ δn̂ð2Þk =δn̂kð0Þ. Using Eq. (11)
for the impedance and Eq. (17) for the plasma frequency,
after simple calculations, we find

G ¼ −
1

σe

ffiffiffiffiffiffiffi
2Ie
γIA

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϰpHðϰpÞ

q
qpe−ϰ

2
pq2p=2 sin

�
ωpLd

c

�
; ð26Þ

where qp ¼ Rðe;2Þ
56 σeγ=Σp. The dependence of G versus the

transverse size of the beam Σp is mostly determined by
the ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðkΣp=γÞ=Σp

p
, and for a given value of k this

function, and hence the gain factor, increases when Σp

becomes smaller. As a function of the chicane strength,
the gain factor reaches maximum at qp ¼ 1=ϰp with the
maximum value of G equal to

Gmax ¼ −
1

σe

ffiffiffiffiffiffiffi
2Ie
γIA

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HðϰpÞ
eϰp

s
sin

�
ωpLd

c

�
; ð27Þ

where e ≈ 2.71 is the base of the natural logarithm. The plot
of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HðϰpÞ=eϰp

p
is shown in Fig. 4.

For a drift length equal to a quarter of the plasma
wavelength, Ld ¼ πc=2ωp, the sin function is equal to one.
Note that in this case the gain factor (26) is negative
(if qp > 0). It means that an amplification section also
introduces a 180° phase shift in harmonics of the plasma
oscillations relative to their values at the beginning of the
section.

V. COOLING RATE WITH ONE
AMPLIFICATION SECTION

For the cooling time measured in the revolution periods
in the ring, Nc, without the amplification sections [that is, in

the absence of the driftLd and the chicaneR
ðe;2Þ
56 in Fig. 1(a)],

the following expression was derived in Ref. [3]:

N−1
c ¼ 2icrhqh

πΣσh
Re
Z

∞

0

dϰZðϰÞϰe−ϰ2q2h=2; ð28Þ

where Σ is the rms transverse beam size in the modulator
and the kicker, σh is the relative rms energy spread of the
hadron beam, rh ¼ ðZeÞ2=mhc2 with mh the hadron mass,
qh is the normalized strength of the hadron chicane,

qh ¼ RðhÞ
56 σhγ=Σ, and ϰ is the normalized wave number k,

ϰ ¼ kΣ=γ. The impedance Z is given by

ZðϰÞ ¼ −
4iIeLmLk

cΣ2γ3IAσe
q1ϰe

−ϰ2q2
1
=2H2ðϰÞ; ð29Þ

with q1 ¼ Rðe;1Þ
56 σeγ=Σ and Lm and Lk the lengths of the

modulator and the kicker, respectively.
With one amplification section, a density perturbation

with a wave number k is amplified by the factor (26), and
hence we need to multiplyZ in Eq. (28) byG. Denoting the
product Zp ¼ ZG, we find

ZpðϰÞ ¼
ffiffiffi
2

p
A
4iIeLmLk

cΣ2γ3IAσe

q1q2ϰ3=2

r1=2

×H2ðϰÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
HðrϰÞ

p
e−ϰ

2ðq2
1
þq2

2
Þ=2

× sin

 
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϰHðrϰÞ

r

r !
; ð30Þ

where

A ¼ 1

σe

ffiffiffiffiffiffiffi
Ie
γIA

s
; l ¼ r

ΩLd

c
; r ¼ ϰp

ϰ
¼ Σp

Σ
;

q2 ¼ rqp ¼ Rðe;2Þ
56 σeγ

Σ
: ð31Þ

Note the factor r in the normalization of the drift Ld—since
Ω scales as 1=Σp, this extra factor r makes l independent
of the transverse size of the electron beam in the ampli-
fication section. Replacing Z in Eq. (28) by Zp, we obtain

N−1
c ¼−

4
ffiffiffi
2

p

π
A

IerhLmLk

Σ3γ3IAσeσh
sgnðqhq1q2ÞI1ðqh;q1;q2;r; lÞ;

ð32Þ

where

I1 ¼ 2
jqhq1q2jffiffiffi

r
p

Z
∞

0

dϰ ϰ5=2e−ϰ
2ðq2

1
þq2

2
þq2hÞ=2

×H2ðϰÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
HðrϰÞ

p
sin

 
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϰHðrϰÞ

r

r !
: ð33Þ

Note the negative sign in Eq. (32)—it means that, in order
to have cooling, one of the chicanes (or all three of them)

FIG. 4. Plot of the function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HðϰpÞ=eϰp

p
(solid curve). The

dots show the result of the simulation of the amplification factor
(see Sec. VIII).
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should have a negative value of R56 [assuming that the sin
function in the integral (33) is positive]. This is due to the
fact that an amplification section flips the phase of
the density harmonics, as was indicated at the end of the
previous section.
Because this expression is symmetric with respect to

the interchange of the three variables jq1j, jq2j, and jqhj,
the maximum of I1 is attained when they are all equal,
jqhj ¼ jq1j ¼ jq2j ¼ q. We then have

I1ðq; r; lÞ ¼
2q3ffiffiffi
r

p
Z

∞

0

dϰ ϰ5=2e−3ϰ
2q2=2H2ðϰÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
HðrϰÞ

p

× sin

 
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϰHðrϰÞ

r

r !
: ð34Þ

We numerically maximized I1 with respect to q for given
values of the parameters r and l. Figure 5 shows the plot of
the maximum values of I1 as a function of the length l for
three values of r, and Fig. 6 shows, for r ¼ 0.2, the plot of
the dimensionless chicane strength q as a function of l at
which these maximum values of I1 are attained.
We see that smaller values of r (which mean a tighter

focusing of the electron beam in the amplification section)
allow one to obtain higher values of the integral I1 and,
hence, a higher cooling rate. Taking for the reference the

value r ¼ 0.2, we find from Fig. 5 that the maximum value
of I1;max is approximately equal to 0.042, which gives for
the cooling rate

N−1
c ¼ 0.075

I3=2e rhLmLk

Σ3γ7=2I3=2A σ2eσh
: ð35Þ

Comparing this result with Ref. [3], we conclude that an
amplification section adds a factor of

0.75
1

σe

ffiffiffiffiffiffiffi
Ie
γIA

s
ð36Þ

to the cooling rate.

VI. TWO AMPLIFICATION SECTIONS

The setup with two amplification sections is shown in
Fig. 1(b). The cooling rate for a two-section amplification is
obtained by replacing the impedanceZ in Eq. (29) byZG2,
which gives the following expression for the cooling rate:

N−1
c ¼ 8

π
A2

IerhLmLk

Σ3γ3IAσeσh
I2ðq; r; lÞ; ð37Þ

where

I2ðq; r; lÞ ¼
2q4

r

Z
∞

0

dϰ ϰ3e−2ϰ
2q2H2ðϰÞHðrϰÞ

× sin2
 
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϰHðrϰÞ

r

r !
ð38Þ

[in this expression, as in Eq. (34), we have assumed that
all dimensionless values of the chicane strength are equal,
qh ¼ q1 ¼ q2 ¼ q3 ¼ q]. We numerically maximized I2
with respect to q for several values of the parameters r and a
range of the values of l, with the result shown in Fig. 7.
Figure 8 shows, for r ¼ 0.2, the plot of the dimensionless

FIG. 5. Plot of the maximum values of I1 as a function of the
dimensionless length l for r ¼ 0.2, 0.6, and 1.0.

FIG. 6. Plot of q versus l for r ¼ 0.2.
FIG. 7. Plot of the maximum values of I2;max as a function of
the length l for r ¼ 0.2, 0.6, and 1.0.
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chicane strength q as a function of l at which these
maximum values of I2 are attained.
Taking as a reference value r ¼ 0.2, we find from Fig. 7

that the maximum value of I2;max ≈ 0.026. Substituting this
value into Eq. (37), we obtain for the cooling rate

N−1
c ¼ 0.066

I2erhLmLk

Σ3γ4I2Aσ
3
eσh

: ð39Þ

Comparing this result with Ref. [3], we conclude that two
amplification sections add a factor of 0.33A2, which is
approximately equal to the squared amplification factor of
one section (36).
Because the cooling rates (35) and (39) (which scale as

I3=2e and I2e, respectively) depend on the local electron beam
current that varies within the electron bunch, in application
to practical problems, one has to average these equations,
taking into account the finite electron bunch length which

we denote by σðeÞz . Assuming a Gaussian current distribu-

tion in the electron beam, Ie ¼ ½Qec=
ffiffiffiffiffiffi
2π

p
σðeÞz � exp½−z2=

2ðσðeÞz Þ2�, with Qe the electron bunch charge, and a
Gaussian distribution for hadrons with the rms bunch

length of σðhÞz , it is straightforward to calculate the average
values of I3=2e and I2e that a hadron sees over many passages
through the electron beam:

hI3=2e iz ¼
�

Qecffiffiffiffiffiffi
2π

p
σðeÞz

�
3=2

ffiffiffi
2

p
σðeÞzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðσðeÞz Þ2 þ 3ðσðhÞz Þ2
q ;

hI2eiz ¼
�

Qecffiffiffiffiffiffi
2π

p
σðeÞz

�
2 σðeÞzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðσðeÞz Þ2 þ 2ðσðhÞz Þ2
q : ð40Þ

Here, the average is meant as an integral over the
longitudinal position z, using the hadron probability dis-

tribution λhðzÞ ¼ ð ffiffiffiffiffiffi
2π

p
σðhÞz Þ−1 expf−z2=½2ðσðhÞz Þ2�g as a

weighting function. For instance, we have

hI2eiz ≡
Z

∞

−∞
dzλhðzÞI2eðzÞ:

For an electron beam several times shorter than the hadron

one, we can neglect σðeÞz in comparison with σðhÞz in
Eqs. (40). In this limit, replacing I3=2e in Eq. (35) by
hI3=2e iz and I2e by hI2eiz in (39) (we recall that in these
equations we have assumed the ratio Σp=Σ ¼ 0.2), we
obtain for the cooling rate with one amplification section

N−1
c ¼ 1.54 × 10−2

ðQecÞ3=2rhLmLk

ðσðeÞz Þ1=2σðhÞz Σ3γ7=2I3=2A σ2eσh
ð41Þ

and with two amplification sections

N−1
c ¼ 7.4 × 10−3

ðQecÞ2rhLmLk

σðeÞz σðhÞz Σ3γ4I2Aσ
3
eσh

: ð42Þ

Note that in the derivation of Eqs. (41) and (42) we ignored
the fact that the normalized length l in Eqs. (33) and (38)
also depends on the local beam current (because the plasma
frequencyΩ scales as

ffiffiffiffi
Ie

p
). This can be justified by the fact

that, if the argument of the sin function is chosen to be
equal π=2 for the peak beam current (so that sin has a
maximum value at this current), its variation near the
maximum value is not so important as the direct depend-
ence of the cooling time versus Ie that is taken into account
in Eqs. (41) and (42). Nevertheless, the derived equations
should be considered as a rough approximation to the
cooling rates.

VII. EFFECTIVE WAKEFIELD IN MBEC

In our preceding analysis, we used the concept of
effective impedance ZpðϰÞ, which is obtained from the
impedance without amplification (29) by multiplying Z by
the gain factor G one (for one amplification section) or two
(for two amplification sections) times. While ZpðϰÞ gives
all that is needed to calculate the cooling rates, it is also
instructive to analyze the wakefield that is associated with
this impedance. The wakefield is defined by the following
equation [3]:

wðzÞ ¼ −
c
2π

Z
∞

−∞
dkZpðkÞeikz: ð43Þ

It has the meaning of the energy change [normalized by the
square of the hadron charge, ðZeÞ2] induced by one hadron
on a second one located at distance z away due to the
interaction through the electron beam (that passes through
one or two amplification sections). For the case without
an amplification, this wakefield was calculated and plotted
in Ref. [3], where it was shown that it is positive for z > 0

FIG. 8. Plot of q versus l for r ¼ 0.2.
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and negative for z < 0 with a negative derivative w0ð0Þ > 0
at the origin.
Plots of the wakefield for one (w1) and two (w2)

amplification sections for the optimized values r ¼ 0.2,
l ¼ 0.85, and qe ¼ 0.87 are shown in Fig. 9. The nor-
malization factors for these wakes are different: w01 ¼
23=2AIeLmLk=πΣ3γ2IAσe and w02 ¼ 4A2IeLmLk=πΣ3γ2

IAσe, where A is defined in Eqs. (31) and has the meaning
of the amplification factor in one section (for the eRHIC
parameters from Table I, the normalization factors are
ew01 ¼ 30.3 V and ew01 ¼ 1.1 kV, which means that the
maximum kick from a proton is 2 and 56 V, respectively).
Note that the wake for one amplification section (curve 1)
has a positive derivative at the origin (the wake without
amplification has this derivative negative)—this corre-
sponds to the fact mentioned in Sec. IV that the amplifi-
cation factor of one section is negative. Also note that both
wakes make oscillations and change sign away from the
origin (at z ≈�3.1Σ=γ)—a feature absent in the wake of
Ref. [3]. The reason for such oscillatory behavior lies in the
finite bandwidth of the gain factor G (see Fig. 4) which is
localized in the region of small values of ϰp. This sign

change of the wake means that, for a given value of RðhÞ
56 ,

hadrons with a large energy deviation will be shifted
longitudinally into the region where the cooling force
changes sign and leads to a further increase of the relative
energy (the so-called anticooling effect). Effects of this
nature have been studied for classical stochastic cooling
(see, e.g., [9]) and for optical stochastic cooling [10]; they

impose a constraint on the value of RðhÞ
56 in order to avoid

the anticooling for particles at the tail of the distribution
function.

VIII. COMPUTER SIMULATIONS

To test our analytical theory, we carried out computer
simulations of MBEC with one amplification section. In
these simulations, electrons and hadrons are represented by
macroparticles that interact with the force given by Eq. (1).
Initially, Ne electron macroparticles are randomly distrib-

uted in the interval 0 < z < Δz with the energy ηðeÞi of the
ith electron randomly assigned from a Gaussian distribu-
tion with the rms width σe. Periodic boundary conditions
are set at the boundaries of the interval ½0;Δz�. A hadron
particle, with an energy ηðhÞ randomly selected from a
Gaussian distribution with the rms width σh, is placed at a
random location within the interval, and the energy of each

electron i is changed by ΔηðeÞi ¼ fz;iLm=γmec2, where fz;i
is the force exerting by the hadron on electron i. On the next
step, corresponding to the passage of the hadrons through
the chicane, the hadron is shifted longitudinally by Rhη

ðhÞ.
The electrons pass through the chicane Rðe;1Þ

56 , where they

are shifted longitudinally by Rðe;1Þ
56 ðηðeÞi þ ΔηðeÞi Þ and then

through one or two amplification sections, as shown in
Fig 1. Finally, in the kicker, the hadron energy is changed
from ηðhÞ to ηðhÞ þ ΔηðhÞ with ΔηðhÞ ¼PNe

i¼1 fz;iLk=γmhc2,
where now fz;i denotes the force acting on the hadron from
the ith electron. This procedure is repeated M times, and
the cooling rate is estimated as an average over M runs
of the difference ðηðhÞ þ ΔηðhÞÞ2 − σ2h.
In the drift sections of the amplification cascades, we use

the following equations of motion for the electrons:

dηi
cdt

¼ re
γΣ2

p

X
i≠j

Φ
�
γ
zi − zj
Σp

�
;

dzi
cdt

¼ ηi
γ2

; ð44Þ

where Σp is the rms size of the beam in the drift. We scale
the energy deviation p̃ ¼ η

ffiffiffiffiffiffiffiffiffiffiffiffi
Σp=re

p
, the coordinate z̃ ¼

zγ=Σp, and the distance s̃ ¼ ct=l̃, with l̃ ¼ γðΣ3
p=reÞ1=2, so

that the equations of motion become dimensionless:

dp̃i

ds̃
¼
X
i≠j

Φðz̃i − z̃jÞ;
dz̃i
ds̃

¼ p̃i: ð45Þ

The plasma frequency for the wavelengths with κ ≫ 1 is
given byΩ in Eq. (18), which means that the plasma period
in variable s̃ is

FIG. 9. Plot of normalized wake functions for one (1, blue
curve) and two (2, black curve) amplification sections. These
wakes are odd functions of coordinate z.

TABLE I. Parameters of the eRHIC collider with a hypothetical
MBEC cooling section.

Proton beam energy 275 GeV
rms length of the proton beam, σðhÞz 5 cm
rms relative energy spread of the
proton beam, σh

4.6 × 10−4

Peak proton beam current, Ih 23 A
Peak electron beam current, Ie 30 A
rms transverse size of the beam in
the cooling section, Σ

0.7 mm

Electron beam charge, Qe 1 nC
rms relative energy spread of the
electron beam, σe

1 × 10−4

Modulator and kicker length, Lm and Lk 40 m

G. STUPAKOV and P. BAXEVANIS PHYS. REV. ACCEL. BEAMS 22, 034401 (2019)

034401-8



Δs̃p ¼ 2πffiffiffi
ν

p ; ð46Þ

where ν ¼ n0Σp=γ.
A different normalization of the variables is used in the

modulator and the kicker: The energy deviation η is
normalized by the rms energy spread of the electron beam,
q ¼ η=σe, and z is normalized by the transverse size Σ of
the beam in the modulator, ζ ¼ zγ=Σ. With this normali-
zation, the energy change of an electron on length Lm due
to an interaction with a hadron is

Δqi ¼ −
ZreLm

γΣ2σe

X
i≠j

Φðζi − ζjÞ: ð47Þ

We denote by A1 the factor in front of the sum in this
equation. Note the relations between the variables z̃ and p̃
in the amplifier and ζ and q in the kicker and the modulator:

z̃i ¼ ζi
Σ
Σp

; p̃i ¼ qiσe

ffiffiffiffiffiffi
Σp

re

s
: ð48Þ

We first simulated the amplification of initial perturba-
tions of small amplitude in the electron beam, as discussed
in Sec. IV. We used Ne ¼ 105 electron macroparticles and
the length of the “electron bunch” Δz ¼ 20Σp=γ in the
simulations. An initial density perturbation with the dimen-
sionless wave number ϰp and a relative amplitude of the
density perturbation of 10−3 was launched and propagated
over the distance of one-quarter of the plasma oscillation
(for that value of ϰpÞ and then sent through a chicane.
The strength of the chicane was optimized to obtain the
maximum amplitude of the density modulation at the exit.
The simulated amplification factorGmax, after averaging over
M ¼ 100 runs and scaling by the parameter−σe−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ie=γIA

p
,

is plotted by red symbols in Fig. 4. One can see an excellent
agreement with the theoretical formula (27).
We also simulated the amplification factor of an initial

small perturbation in two amplification sections. In this
case, we used Ne ¼ 105 macroparticles and the simulation
interval Δz ¼ 50Σp=γ with averaging over M ¼ 100 runs.
The initial amplitude of the density perturbation was 10−4,
and the parameter A was chosen to be equal to 1 [see
Eq. (31) for the definition of A]. The result is shown in
Fig. 10, where the red symbols are the simulated gainG and
the solid curve is the square of the one-section amplifica-
tion Eq. (27) with the sin function replaced by unity. The
scatter of the points in this figure is due to the amplification
of the intrinsic noise in the electron beam.
By properly scaling all dimensional variables of the

simulation problem, one can find that it is determined by
several dimensionless parameters. The first one, ν ¼ n0eΣ=γ,
is equal to the number of electrons on the length Σ=γ
and is proportional to the electron beam current. Two more

parameters, A1 and A2, characterize the interaction strength
in the modulator and the kicker normalized by the electron
and hadron energy spread, respectively:

A1 ¼
ZreLm

γΣ2σe
; A2 ¼

rhLk

ZγΣ2σh
; ð49Þ

and parameter A from Eq. (31) is related to the amplification
factor of one cascade. Two more parameters are the dimen-
sionless strengths of the chicanes, qe and qh, defined in
Secs. VI and VIII. Finally, there is a ratio r ¼ Σp=Σ of the
transverse size of the electron beam in the amplification
section and in the modulator and the kicker.
Calculating numerical values of ν, A, A1, and A2 for the

eRHIC parameters from Table I and assuming the electron
peak current of Ie ¼ 30 A, we find

ν ¼ 1.5 × 106; A ¼ 24.5; A1 ¼ 7.8 × 10−6;

A2 ¼ 9.3 × 10−10: ð50Þ

Simulations with these values are difficult due to the
required large number of macroparticles and small values
of the interaction strengths, so we used larger values for A1

and A2 and smaller values for ν and A:

ν ¼ 5 × 104; A ¼ 10; A1 ¼ 1 × 10−3;

A2 ¼ 1 × 10−4: ð51Þ
Because A1 and A2 are proportional to the square of the
charge, the increased values of A2 and A1 can be interpreted
as if macroparticles carry a charge larger than the elementary
charge e. Our parameter choice (51) can be interpreted as if
each electron macroparticle has a charge of approximately
11e and each hadron has a charge 328e (assuming Z ¼ 1).
With the dimensionless simulation parameters given by

Eq. (51), we also simulated the cooling process with one
amplification section. In this simulation, we used Ne ¼ 105

electron macroparticles and the length of the electron bunch
Δz ¼ 10Σ=γ in the simulations. The averaging was done
over M ¼ 5 × 104 runs. The plot of the simulated cooling

FIG. 10. Amplification factor of a small initial perturbation for
two sections.
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times as a function of the dimensionless chicane strength q
is shown in Fig. 11 by blue squares. The solid curve is
calculated using Eq. (32) with qh ¼ q1 ¼ p2 ¼ q. One can
see that Eq. (32) is in good agreement with the simulations,
which we consider as a confirmation of the correctness on
our analytical results. In these simulations, we assumed the
ratio Σp=Σ ¼ 1.
In another set of simulations, we used the ratio Σp=Σ ¼

0.2 and varied the length l of the amplification section.
The result of these simulations is shown in Fig. 12. The
theoretical curve is calculated with the same Eq. (32).
Again, we find a reasonably good agreement between the
theory and the simulation.

IX. SATURATION AND NOISE EFFECTS

In this section, we discuss the effects of diffusion and
nonlinear behavior (saturation) for an MBEC configuration
that utilizes amplification stages. In Ref. [3], it was shown
that diffusion effects due to the noise in the hadron beam
can be quantified by means of a diffusion coefficient Dh,
which is given by

Dh ¼
n0h
4πT

�
rhc
γ

�
2
Z

∞

−∞
dkjZðkÞj2: ð52Þ

Here, Z is the impedance without amplification cascades,
given by Eq. (29). For the cooling to overcome the
diffusion, we need to satisfy the following requirement:

Dh <
σ2h
2tc

¼ σ2h
2TNc

: ð53Þ

With one stage of amplification, we need to replace Z with
Zp ¼ ZG, where G is the amplification gain of Eq. (26).
For the case of two amplification stages, we instead replace
Z by ZG2. Here, we will focus on the latter case, for which
the effects of diffusion and saturation are more important.
After working out the algebra, we obtain

Dh ¼
16σ2h
πT

IhI4er2hL
2
mL2

k

I5Aγ
9reΣ5σ6eσ

2
h

q6

r2

Z
∞

−∞
dϰϰ4H4ðϰÞH2ðrϰÞe−3ϰ2q2

×sin4
 
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϰHðrϰÞ

r

r !
: ð54Þ

The equation given above assumes that all chicane
strengths q are equal to each other, which is indeed the
optimized configuration. To take the finite length of the
electron beam into consideration, we follow an averaging
procedure entirely analogous to the one used for the
cooling. In particular, after noting that Dh ∝ IhI4e, we
obtain

hDhiz ≈
4σ2h
π3T

ðQecÞ4Ið0Þh r2hL
2
mL2

k

I5AðσðeÞz Þ3σðhÞz γ9reΣ5σ6eσ
2
h

×
q6

r2

Z
∞

−∞
dϰ ϰ4H4ðϰÞH2ðrϰÞe−3ϰ2q2

× sin4
 
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϰHðrϰÞ

r

r !
; ð55Þ

where we have neglected the dependence of l with respect
to Ie. Moreover, we have made use of the property

hIme Inhiz ¼
�

Qecffiffiffiffiffiffi
2π

p
σðeÞz

�
m ðIð0Þh ÞnσðeÞzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnþ 1ÞðσðeÞz Þ2 þmðσðhÞz Þ2
q

≈
�

Qecffiffiffiffiffiffi
2π

p
σðeÞz

�
m ðIð0Þh ÞnσðeÞzffiffiffiffi

m
p

σðhÞz

; ð56Þ

which generalizes Eq. (40). For r ¼ 0.2, l ¼ 1.0, and
q ¼ 1.1 (the optimized section length and chicane
strength), the value of the term in the second and the third
lines of Eq. (55) is about 10−3. Combining this with
Eq. (42), we obtain the formula

FIG. 12. Cooling time as a function of dimensionless length l of
the amplification section for one cooling section.

FIG. 11. Cooling time as a function of the dimensionless
chicane strength for a system with one amplification section.
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r1 ≡ 2hDhiz
ðσ2h=TÞh1=Nciz

≈ 0.019
ðQecÞ2Ið0Þh rhLmLk

I3AðσðeÞz Þ2γ5reΣ2σ3eσh
:

ð57Þ

Using a similar procedure, we can derive the diffusion
rate of the hadrons due to the intrinsic noise in the electron
beam. For the energy perturbation of the hadrons due to the
electrons in the kicker, we use a formula analogous to
Eq. (48) from Ref. [3], i.e.,

ΔηðhÞðzÞ ¼
Z

∞

−∞
dz0δneðz0ÞGðhÞ

η ðz − z0Þ; ð58Þ

with

GðhÞ
η ðzÞ ¼ −

rhLk

ZγΣ2
Φ
�
zγ
Σ

�
: ð59Þ

The electron density perturbation δne is now due to the shot
noise in the e-beam, so we have

hδneðzÞδneðz0Þi ¼ n0eδðz − z0Þ ð60Þ

for the case of no amplification. A general definition of the
diffusion coefficient was given in Ref. [3] as

D ¼ 1

2T
hðΔηðhÞÞ2i: ð61Þ

Adapted for the new coefficient, this expression yields

De ¼
1

2T

Z
∞

−∞
dz0dz″GðhÞ

η ðz− z0ÞGðhÞ
η ðz−z″Þhδneðz0Þδneðz″Þi

¼ 1

2T
n0e

Z
∞

−∞
dzGðhÞ

η ðzÞ2¼ n0e
r2hL

2
k

TZ2γ3Σ3

Z
∞

0

dξΦðξÞ2:

ð62Þ

To accommodate the amplification effect, we first substitute

Z
∞

0

dξΦðξÞ2 ¼ 2

π

Z
∞

0

dϰHðϰÞ2 ð63Þ

into Eq. (62), to obtain

De ¼
2

π
n0e

r2hL
2
k

TZ2γ3Σ3

Z
∞

0

dϰHðϰÞ2: ð64Þ

Next, we note that, when including amplification stages,

the Fourier quantity G̃k ∝
R
∞
−∞ dze−ikzGðhÞ

η ∝ HðϰÞ is
modified by a factor of GS, where S is the number of
stages and G is the gain factor expressed by Eq. (26). Thus,
sinceHðϰÞ is basically akin to the impedanceZ in Eq. (52),
Eq. (64) becomes

De ¼
2

π
n0e

r2hL
2
k

TZ2γ3Σ3

Z
∞

0

dϰHðϰÞ2jGðϰÞj4 ð65Þ

for the case of two amplification stages. Substituting the
expression for the gain, we obtain

De ¼
8σ2h
πT

I3er2hL
2
k

Z2I3Aγ
5reΣ3σ4eσ

2
h

q4

r2

Z
∞

0

dϰϰ2H2ðϰÞH2ðrϰÞe−2ϰ2q2

×sin4
 
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϰHðrϰÞ

r

r !
: ð66Þ

The averaged diffusion rate is

hDeiz ≈
8σ2hffiffiffi

3
p

πð2πÞ3=2T
ðQecÞ3r2hL2

k

Z2I3AðσðeÞz Þ2σðhÞz γ5reΣ3σ4eσ
2
h

×
q4

r2

Z
∞

0

dϰϰ2H2ðϰÞH2ðrϰÞe−2ϰ2q2

× sin4
 
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϰHðrϰÞ

r

r !
; ð67Þ

yielding a new diffusion ratio (again for r ¼ 0.2, l ¼ 1.0,
and q ¼ 1.1)

r2 ≡ 2hDeiz
ðσ2h=TÞh1=Nciz

≈ 0.45
QecrhðLk=LmÞ
Z2IAσ

ðeÞ
z γreσeσh

: ð68Þ

Finally, we would like to address the issue of possible
nonlinear behavior in the amplification cascade, an effect
which can be important if the gain is large enough.
Recalling our earlier analysis, we observe that the lineari-
zation of the Vlasov equation is valid provided that
jδnj ≪ n0e, where δn ¼ R∞−∞ dk eikzδn̂k=2π is the density
modulation of the electron beam. Let us assume, for the
moment, that no amplification stages are present and δn
represents the density perturbation after the electron chi-

cane. In Ref. [3], it was shown that δn̂k ¼ F ðkÞδn̂ðMÞ
k ,

where δn̂ðMÞ
k is the density perturbation of the hadrons in

the modulator and F ðkÞ≡ Zn0eg0ðkÞζ0ðkÞ. The other
functions mentioned here are given by

ζ0ðkÞ ¼ −
2ireLm

Σγ2
H

�
kΣ
γ

�
ð69Þ

and

g0ðkÞ ¼ ikRðe;1Þ
56 e−k

2ðRðe;1Þ
56

Þ2σ2e=2: ð70Þ
These are basically the expressions of Eqs. (53), (55),
and (57) from Ref. [3], with some minor notation changes.
In the case of amplification stages, we have F ðkÞ≡
Zn0eg0ðkÞζ0ðkÞGSðkÞ, where (again) S is the number of
stages and G is the gain factor. In all these cases, we
have F ð−kÞ ¼ F �ðkÞ, so the linearity condition can be
rewritten as
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I2sat ≡ hδn2i=n20e ¼
1

ð2πÞ2n20e

Z
∞

−∞
dkdk0eiðkþk0Þz

× F ðkÞF ðk0Þδn̂ðMÞ
k δn̂ðMÞ

k0

¼ n0h
2πn20e

Z
∞

−∞
dkjF ðkÞj2 ≪ 1; ð71Þ

where we have defined a saturation measure Isat and made
use of the property hδn̂ðMÞ

k δn̂ðMÞ
k0 i ¼ 2πn0hδðkþ k0Þ regard-

ing the initial noise in the hadron beam. Collecting all the
necessary terms, the result for two stages becomes

I2sat ¼
16Z2reL2

mIhI2e
πγ5Σ3σ6eI3A

q6

r2

Z
∞

0

dϰϰ4H2ðϰÞH2ðrϰÞe−3ϰ2q2

× sin4
 
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϰHðrϰÞ

r

r !
≪ 1: ð72Þ

X. ESTIMATES FOR THE ERHIC COLLIDER

As a numerical illustration of the general theory devel-
oped in the previous sections, we will estimate the
optimized cooling rate for the nominal parameters of the
electron-hadron collider eRHIC [11]. The parameters of
the proton beam in eRHIC and hypothetical parameters of
the electron beam in the cooling system are given in Table I.
Substituting parameters from Table I into Eqs. (41) and

(42) gives Nc ¼ 7.7 × 108 for one-section amplification
and Nc ¼ 4.1 × 107 for two sections. With the revolution
period in the RHIC ring of 13 μs, this corresponds to 2.7 hr
and 9 min cooling time, respectively. For the two-stage
case, lopt ≈ 1.0 for r ¼ 0.2, so the length of the amplifi-

cation section is L ¼ l
ffiffiffiffiffiffiffiffiffiffiffi
IA=Ie

p
Σγ3=2 ≈ 83 m.

Using the results of the previous section, we can also
estimate the diffusion and saturation effects for the eRHIC
parameters. For the diffusion caused by the noise in the
proton beam, from Eqs. (57), we find the ratio r1 ≈ 0.90,
and for the diffusion due to the noise in the electron beam,
Eq. (68) yields r2 ≈ 8 × 10−2. While both conditions
r1; r2 < 1 are satisfied, the margin for r1 is not large.
From Eq. (72), we also find Imax

sat ∼ 0.85, which means that
in this regime the nonlinear effects are essential. Thus, for
the 9 min cooling time, the hadron diffusion and saturation
neglected in our study are considerable. The situation can
be mitigated by choosing a smaller chicane strength and
slower cooling rate. For instance, using q ¼ 0.3, we obtain
a cooling time of 50 min, with r1 ≈ 0.11, r2 ≈ 4 × 10−2,
and Imax

sat ∼ 0.15. For this set of parameters, the linear theory
of this paper provides a good approximation to reality.
A relatively small value q ¼ 0.3 also helps with the

cooling of hadrons at the tail of the beam energy distri-
bution. As was discussed in Sec. VII, for the particles that
are shifted longitudinally more than 3.1Σ=γ, the effective

wake function changes sign and their energy spread
increases with time (the anticooling effect). With q ¼ 0.3,

the strength of the hadron chicane is RðhÞ
56 ¼ 0.3Σ=γσh, and

such particles lie at the far tail of the energy distribution,
η > 10σh, where their effect can be neglected.

XI. SUMMARY

In this paper, we derived the cooling rate for the
longitudinal, or momentum, cooling using a simple 1D
model that treats particles as charged disks interacting
through the Coulomb force. Extending analysis of Ref. [3],
we studied the cooling with one and two amplification
sections in the system. In contrast to Ref. [3], where the
noise effects are small, adding one or two cascades of signal
amplification through a quarter of plasma wavelength drifts
and chicanes also amplifies the noise. We have analyzed
the role of the diffusion caused by the amplified noise in
the electron beam. We also derived formulas that allow the
estimation of nonlinear effects in the amplification. These
effects limit the maximum amplification level that can be
used in an MBEC cooling device.
In our analysis, we assumed a round cross section of

the beams with a Gaussian radial density distribution.
This assumption can be easily dropped and other transverse
distributions (e.g., with unequal vertical and horizontal
sizes) used for the particle interaction. This will change
only the specific form of the interaction potential (47), with
the rest of the calculations of the cooling rate remaining
the same.
There are several effects that are neglected in our

model. Clearly, the transverse dynamics due to the beam
focusing is ignored, as well as longitudinal displacement
of particles due to this focusing. We also ignored plasma
oscillations in the electron beam in the modulator and
the kicker regions. This is justified if the length of the
modulator and the kicker is smaller than a quarter of the
plasma period in the electron beam.
Finally, we note that the 1D theory can also be extended to

include the effects of transverse cooling. This type of cooling
is achieved through the introduction of the dispersion in the
modulator and the kicker regions, as was proposed for the
optical stochastic cooling scheme [12,13]. A preliminary
consideration of the horizontal emittance cooling in MBEC
has been carried out in Ref. [14].
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