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For a single hadron bunch in a circular accelerator at zero chromaticity, without multiturn wakes and
without electron clouds and other beams, only one transverse collective instability is possible, the mode-
coupling instability (TMCI). For sufficiently strong space charge (SC), the instability threshold of the
wake-driven coherent tune shift normally increases linearly with the SC tune shift, as independently
concluded by several authors using different methods. This stability condition has, however, a very strange
feature: at strong SC, it is totally insensitive to the number of particles. Thus, were it correct, such a beam
with sufficiently strong SC, being stable at some intensity, would remain stable at higher intensity,
regardless of how much higher. This paper suggests a resolution of this conundrum: while SC suppresses
the TMCI, it introduces head-to-tail convective amplifications, which could make the beam even less stable
than without SC, even if all the coherent tunes are real, i.e., all the modes are stable in the conventional
absolute meaning of the word. This is done using an effective new method of analysis of the beam’s
transverse spectrum for arbitrary space charge and wake fields. Two new types of beam instabilities are
introduced: the saturating convective instability and the absolute-convective instability.

DOI: 10.1103/PhysRevAccelBeams.22.034202

I. ABSOLUTE AND CONVECTIVE INSTABILITIES

Transverse mode coupling instabilities (TMCI) are
believed to be one of the main limitations for the intensity
of bunched beams. Such single-bunch instabilities develop
when the head-tail phase is small, ξσδ=Qs ≪ 1, where ξ is
the chromaticity, σδ is the relative rms momentum spread,
andQs is the synchrotron tune, so that the chromatic effects
can be neglected; see e.g., Ref. [1]. For proton beams, an
important question is, how does TMCI depend on the space
charge (SC) tune shift ΔQsc? Since the latter is typically
high for low- and medium-energy machines, where the SC
parameter q ¼ ΔQsc=Qs ≫ 1 is even far from the transition
energy, the question is really important.
According to Refs. [2–7], TMCI intensity threshold

increases, with rare exceptions, proportionally to the SC
tune shift; SC makes the bunch more stable in this respect.
We called this dominating class of the mode-coupling
instabilities vanishing, meaning that they vanish at high SC,
when the SC tune shift sufficiently exceeds the wake-
related coherent tune shifts. For coasting beams, however,
dependence of the transverse instability on SC is opposite:
the threshold wake amplitude drops down as SC increases,
since the latter suppresses Landau damping [8]. This

oppositeness may be especially puzzling in light of the
similarity, if not identity, of the bunched and coasting beam
thresholds without SC, clearly seen when the former is
expressed in terms of the maximal line density and rms
momentum spread, and the latter is supposed to be
Gaussian or alike. This similarity was presumed long
ago by approximate fast microwave transverse stability
criterion for bunched beams [9]. The main idea behind it (as
well as behind similar Keil-Schnell-Boussard criterion for
the longitudinal direction) was one of a fast microwave
instability, which occurs locally, so that neither synchrotron
motion nor bunch density variation should be very impor-
tant. Following this idea, it can be expected that the
microwave criterion is rather accurate for short wakes,
and may be a reasonable estimation with correct scaling for
arbitrary wakes. Indeed, the agreement of this criterion with
the computed TMCI thresholds was found to be especially
good for short wakes, i.e., long bunches; for details see
Ref. [10,11]. Due to this similarity of the coasting beam
stability criteria to the bunched one without SC, the
theoretical statement of oppositeness of their dependence
on SC raises a suspicion that something is lost in the
picture. The suspicion is strengthened with realization that
at strong SC the mentioned TMCI stability condition does
not depend on the number of particles, since wake tune shift
and space charge tune shift are equally proportional to that.
Thus, if the beam is stable at some number of particles, it
should remain stable at any number of them according to
this criterion. This strange statement is certainly refuted
by measurements at CERN SPS [12], especially for the old
Q26 optics with its high SC parameter, q ≃ 20, showing
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definite existence of the threshold number of particles and
only weak, if any, dependence of the instability thresholds
on SC. Nonexistence of the threshold number of particles
for the vanishing TMCI cases shows that, most likely, the
real instability mechanism is lost in that picture. If so, what
could this mechanism be?
For both coasting and bunched beams, the microwave

instability can be considered in terms of time evolution of
an initial wave packet, traveling opposite to the beam
motion, due to the wake causality. If the wave packet
grows, as it travels that way along the coasting beam, the
beam is unstable. However, this may not be so for the
bunched beam, where a similarly growing microwave
packet may travel in that manner only for a finite length,
up to the bunch tail, and for a finite time, shorter than a
half of the synchrotron period; thus, its growth does not
necessarily entail the collective instability. The same
mechanism of interaction may cause instability in the
coasting beam and only head-to-tail signal amplification
in the bunch, without making the entire bunch unstable. To
articulate this distinction, we may, following Ref. [13] and
references therein, use the terms absolute and convective to
qualify instabilities: for the former, the initial perturbation
causes an unrestricted exponential growth everywhere in
the medium, while for the latter, there is only a spacial
amplification, and the perturbation eventually decays
everywhere when a dissipation is added, no matter how
tiny. Thus, the absolute instability in the coasting beammay
correspond to only a finite amplification along the similar
bunch, i.e., to a convective instability, without the absolute
growth of the initial perturbation. It is worth noting that
even without SC, the TMCI threshold may be much higher
than the instability threshold of the corresponding coasting
beam: for instance, this is the situation with the air-bag
bunch in a square well, the ABS [2]. Because of the absence
of Landau damping, the corresponding two-stream coasting
beam instability is thresholdless, while the TMCI threshold
for the ABS model is finite.
With SC, for the dominant vanishing case, the TMCI

threshold tends to grow proportionally to the SC tune shift,
while the condition for the wave packet to grow fast
benefits from SC due to its tendency to make the bunch
slices rigid (see Ref. [3] and multiple plots below). Thus,
there should be an interval of wake amplitudes between the
convective and absolute instability, and the width of this
interval has to increase linearly with SC. Note that contrary
to the beam breakup in linacs (BBU), the expected regime
of the signal amplification would not lead to an unlimited
growth of the perturbation at the bunch tail; the amplifi-
cation saturates due to the synchrotron oscillations. Indeed,
with all the collective modes being stable, it is impossible to
get an unlimited signal. However, with time intervals short
compared to the synchrotron period, the amplification
should grow similarly to the beam breakup. To keep this
distinction, I call the convective instabilities of a bunch

with its spectrum of absolutely stable modes saturating
convective instabilities (SCI), while the beam breakup
represents its alternative, an unbounded convective insta-
bility (UCI), typical for bunches without modes.
One more important feature of the convective instabil-

ities is that they make the bunch prone to the absolute
instability: even a weak tail-to-head action by means of
a multibunch or overrevolution wake, negligible by itself,
may be sufficient to make bunch oscillations unstable
absolutely. Moreover, it is shown below that a damper
of any sort, including the conventional bunch-by-bunch
resistive kind, works as a generator of the absolute
instability if the convective instability is present; thus,
sufficiently large convective amplification turns the bunch
into a sort of fragile metastable state. The absolute
instability of such a combined kind may be called an
absolute-convective instability (ACI). One more possibility
for the tail-to-head action relates to the bunch halo, which
may lead to a special sort of ACI, the core-halo instability;
see Ref. [14].
Amplification of the fast transverse microwave pertur-

bation along the bunch was considered by Brandt and
Gareyete [15,16] with respect to a long positron bunch in
the CERN SPS in the LEP era; a BBU-type estimation for
the amplification coefficient was found. This no-SC for-
mula was suggested later for the proton bunch in the same
machine by Cappi, Metral and Metral [17]; based on that,
the bunch lifetime with respect to the tail particle losses was
estimated. It was pointed out in Ref. [10] that substitution
of the inverse synchrotron frequency for this BBU lifetime
leads to the same formula as the TMCI threshold, within a
factor smaller than 2. On these grounds, it was concluded
that the same instability shows itself as TMCI, when
approached from below the threshold, or as BBU, when
approached from above it. The same statement has been
made by Gareyte [18] a bit earlier. As it will be shown in
this paper, that BBU-TMCI identification and distinction of
Gareyte et al., being reasonable at no-SC, is incorrect when
SC is strong, as it is at PS and similar low- and medium-
energy rings. It will be also explained why the no-SC
formula for the TMCI threshold worked fairly well for the
SPS, notwithstanding the fact that the actual TMCI thresh-
old was much above the number predicted by this formula.
It is worth noting that saturating convective instabilities

in the longitudinal plane are discussed for bunches with
significant SC since long ago; see Ref. [19] and references
therein. Although they are not intended to be considered in
this paper, a simple explanation of their existence well
deserves to be presented here. Quoting Ref. [19], “Due to
the fact that the backward running (slow) mode grows and
the forward running (fast) mode is damped the total growth
over one round trip vanishes.” In fact, a similar explanation
works for the transverse plane below the TMCI threshold,
when the bunch slices can be treated as rigid and the
synchrotron motion slow compared with the wake-related
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phase and group velocities of microwave packets: the
same logic leads in this case to the conclusion about the
saturating convective instabilities in the transverse planes.
Convective transverse instabilities of bunched beams

with SC are considered in this paper by means of the
ABS model. In the last two sections, it is shown how the
suggested understanding, supported by various computa-
tions, resolves the mentioned paradoxes and controversies
between the theory and observations of the TMCI with SC.

II. ABS MODEL

A. Description

So far, the ABS model is the only one which allows
effective and precise solutions of Vlasov equations for
transverse oscillations of bunched beams with arbitrary
wake functions and SC tune shifts. Moreover, this model
is realistic: the ABS bunch can be physically prepared,
and many of its core features are not so different from the
Gaussian bunch. For the no-SC case and broadband
impedance, it yields the instability threshold fairly close
to the Gaussian bunch, albeit modes of different numbers
may turn out to couple first with it [11]. For strong SC,
spectral properties of ABSwith various wakeswere recently
discussed in Ref. [7]; generally, they were found to be not so
different from those of the Gaussian bunches in parabolic
potential wells. Certainly, ABS has its limitations, as any
physical model. Some of them are rather obvious, like its
missing of the intrinsic Landau damping [3,20], while
othersmay show themselves only at later stages; some of the
limitations can be effectively overcome with reasonable
model modifications as in Refs. [14,21]; others, really not.
Since the main virtue of the model, a combination of its
exact and effective solvability, physical reason, and rich-
ness, is extraordinary, let us go ahead with it.
It is convenient in this case to measure coordinates s

along the bunch as fractions of its full length, so that
0 ≤ s ≤ 1, and to measure time θ in synchrotron radians, so
the synchrotron period Ts ¼ 2π. The wake functions can be
dimensionlessed by measuring them in units of their
amplitudes, specified for each case. After that, equations
of motion of the positive and negative fluxes of the ABS
bunch in terms of their complex amplitudes x�ðθ; sÞ can be
presented as follows:

∂xþ
∂θ −

1

π

∂xþ
∂s ¼ iq

2
ðxþ − x−Þ þ iF;

∂x−
∂θ þ 1

π

∂x−
∂s ¼ iq

2
ðx− − xþÞ þ iF;

Fðθ; sÞ ¼ w
Z

s

0

ds0Wðs − s0Þx̄ðθ; s0Þ; ð1Þ

where the local centroid offset x̄ ¼ ðxþ þ x−Þ=2, and the
boundary conditions

xþ ¼ x− at s ¼ 0; 1: ð2Þ

Here the SC parameter q is the ratio of the SC tune shift to
the synchrotron tune, and w is the wake parameter:

w ¼ NpW0r0R0

4πγβ2QβQs
; ð3Þ

with Np the number of particles per bunch, W0 the wake
amplitude, r0 the classical radius, R0 the average radius of
the machine, γ and β the relativistic factors, and Qβ and Qs

the betatron and the synchrotron tunes.
It may be useful to note that by virtue of Eqs. [(1), (2)]

the space derivatives of the two offset amplitudes, xþ and
x−, are opposite at the bunch edges, ∂xþ=∂s ¼ −∂x−=∂s at
s ¼ 0, 1.
An alternative way to represent Eqs. [(1), (2)] opens if

we consider the fluxes xþ and x− as two parts of a single
circulation xðψÞ in the longitudinal phase space, with the
synchrotron phase ψ running from −π to 0 for xþ part, and
continuing to run from 0 to π for x−. In other words,

xðψÞ ¼
�
xþðsÞ; with ψ ¼ −πs; −π ≤ ψ ≤ 0;

x−ðsÞ; with ψ ¼ πs; 0 ≤ ψ ≤ π:
ð4Þ

This representation automatically takes into account the
boundary condition (2) and turns two dynamic equations (1)
into one on the circulating flux xðθ;ψÞ:

∂x
∂θ þ

∂x
∂ψ ¼ iq

2
½xðψÞ − xð−ψÞ� þ iF; ð5Þ

with x̄ ¼ ½xðψÞ þ xð−ψÞ�=2. By virtue of the periodicity on
the synchrotron phase ψ , the circulation x can be expanded
into a Fourier series

xðθ;ψÞ ¼
X∞
n¼−∞

AnðθÞ expðinψÞ: ð6Þ

After that, the problem is reduced to a set of ordinary
differential equations on the time-dependent Fourier coef-
ficients AnðθÞ:

i _An ¼ nAn −
q
2
ðAn − A−nÞ − w

X∞
m¼−∞

UnmAm;

Unm ≡
Z

1

0

ds
Z

s

0

ds0Wðs − s0Þ cosðπnsÞ cosðπms0Þ: ð7Þ

In this form, the equations of motion can be easily solved
with a proper truncation of the Fourier sums; number of
calculated matrix elements Unm is reduced ∼8 times if
one notes that Unm ¼ Ujnjjmj ¼ ð−1Þn−mUmn. For those
wakes when the integral Unm can be taken analytically, the
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problem can be solved with a contemporary laptop for a
negligible time.

B. Eigensystem

Without accounting for wakes, the ABS eigensystem,
xk ∝ expð−iνkθÞ, has been described in Ref. [2]:

νk ¼ −q=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2=4þ k2

q
;

x�k ðsÞ ¼ Ck½cosðkπsÞ ∓ i sinðkπsÞνk=k�; ð8Þ

for k ¼ 0, ν0 ¼ 0, x�0 ¼ C0, and νk > 0 at k > 0. Hereafter,
the normalization constants Ck are chosen so that the ABS
eigenfunctions are of the unit norm:

Zπ

−π

dψ
2π

jxkj2 ¼
Z

1

0

ds
jxþk j2 þ jx−k j2

2
¼

X∞
n¼−∞

jAnkj2 ¼ 1: ð9Þ

It may be worth noting that the ABS no-wake eigenvalues
νk (8) are similar to the coherent tune shifts ωcoast

n of
the equivalent two-stream coasting beam, ωcoast

n ¼
−q=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2=4þ n2δω2

p
, with δω as the revolution fre-

quency offsets and n as the conventional longitudinal
harmonic number.
At zero SC, νk ¼ k; thus, in this simplest case the

eigenfunctions xkðθ;ψÞ are just plain traveling waves,
xkðθ;ψÞ ¼ exp½−ikðθ − ψÞ�, yielding standing waves for
the centroid oscillations, x̄k ¼ cosðπksÞ expð−ikθÞ.
At high SC, i.e., at q ≫ 2jkj, the low-order modes almost

degenerate: νþk ≈ k2=q, ν−k ≈ −q − k2=q. This spectrum
tells us that at high SC, the two fluxes oscillate almost
identically, xþ ≈ x− for the positive modes, and they are in
the opposite phases for the negative modes, xþ ≈ −x−,

which is indeed the case. The lowest no-wake and strong
SC eigenfunctions are demonstrated in Fig. 1. Contrary to
the no-SC case, the eigenfunctions xl are pretty much
standing waves here; their phases arg xl do not run but stay
constant, close to π for the positive modes and π=2 for the
negative ones, jumping by π at the function nodes. These
specific values of the phases show that the fluxes xþ and x−

are almost in phase for the positive modes and almost out
of phase for the negative. This transfer from the traveling
waves at zero SC to the standing waves at strong SC
follows directly from the equation of motion (5) for the
no-wake case, F ¼ 0. For zero SC, the eigenfunctions of
Eq. (5) are ones of the translation generator ∂=∂ψ, which
are complex exponents, expðilψÞ. At strong SC, the
equation’s eigenfunctions have to be eigenfunctions of
the dominating SC operator which core ∝ δðψ − ψ 0Þ−
δðψ þ ψ 0Þ; thus, they must have a certain parity with the
phase ψ , being either even (positive modes and zero mode)
or odd (negative modes). Since SC mixes every Fourier
harmonic n only with its opposite, −n, these eigenfunctions
can be only even and odd combinations of expðinψÞ and
expð−inψÞ, i.e., they can be only cosðnψÞ, for the positive
modes, and sinðnψÞ, for the negative ones. Figure 2 shows
stroboscopic snapshots of the centroid oscillations for
the same no-wake and strong SC case, as Fig. 1, i.e.,
overlapping plots ℜ½x̄ðsÞ expð−iθjÞ�, with the stroboscope
time θj ¼ 2πj=Ns, j ¼ 0; 1;…; Ns − 1, and Ns as an
adjustable integer number. Note that with the same pattern
of the identically normalized opposite modes, l and −l,
their centroid amplitudes differ at strong SC by a factor
of jlj=q ≪ 1.
With wake on, the eigenfrequencies νk shift from their

no-wake values (8), and, if the wake is large enough,
they couple, giving rise to the transverse mode coupling

FIG. 1. No-wake ABS eigenfunctions for strong SC, q ¼ 20,
with their order l written below each plot. The blue line shows
natural logarithms of the absolute values, log jxþl ðsÞj; the orange
line represents the complex arguments arg xþl ðsÞ.

FIG. 2. Stroboscopicsnapshotsof thecentroidoscillations for the
same case,w ¼ 0,q ¼ 20 andmodes, l ¼ �1,�2, as Fig. 1 above.
The opposite modes, l and −l, show the same pattern,
x̄lðsÞ ∝ cosðπlsÞ, but the amplitudes differ by a large factor
jlj=q, reflecting almost in phase oscillations of xþ and x− for the
positivemodesandalmostoutofphaseones for thenegativemodes.
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instability, TMCI. Whatever the wake, some general
features of the eigenfunctions can be stated. (i) Without
any loss of generality, the eigenfunctions xþk and x−k at the
head of the bunch can be taken as the same real number:
ℑ½x�k ð0Þ� ¼ 0. (ii) Due to the symmetry of Eqs. (1) and their
boundary conditions (2), x−k ðsÞ ¼ xþ�

k ðsÞ for any eigen-
function k with real eigenfrequency νk, where * means the
complex conjugate. Hence, the amplitudes are real at the
tail end, x��ð1Þ ¼ x�ð1Þ. (iii) It follows that for the modes
with real frequencies νk the head-to-tail phase advances μk
of x�k ðsÞ are multiples of π, μk ¼∓ πk. The centroid x̄kðsÞ
is a real function for such modes. The centroid’s number of
zeroes (nodes) is almost always [22] equal to the modulus
of the mode number.
Following Ref. [3], we use a term strong SC, meaning

that the SC tune shift considerably exceeds all other tune
shifts. In other words, it means that the SC parameter q is
large in comparison with the mostly involved modes’
numbers jlj and with the wake-driven coherent tune shifts
≃wUll, i.e., q ≫ jlj and q ≫ w=w0

th, where w
0
th is the TMCI

threshold value of the wake parameter at zero SC. At strong
SC, the wake cannot effectively mix positive and negative
modes. Thus, for strong SC, the separation between
positive modes, coupled with wake, and negative modes,
uncoupled with it, is effective with wake as well as without
it; hence, only positive modes may play a role, i.e., the
bunch longitudinal slices are rigid [3].
Examples of the eigenfunctions, without and with SC,

are presented in Figs. 3–6 for the broadband resonator wake

WðsÞ ¼ expð−αrsÞ sinðk̄sÞ; ð10Þ

with αr ¼ kr=ð2QrÞ, k̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2r − α2r

p
, Qr ¼ 1. To make an

accent on long bunches, especially interesting for many
proton machines, a rather short resonator wake was taken,
which phase advance over the bunch length kr ¼ 10. The
wake parameter w ¼ 13; it is chosen to be rather close to
the no-SC TMCI threshold, wth ¼ 15.
Several features of these eigenfunctions deserve to be

noted: (i) For the no-SC case, the phases run pretty much

FIG. 3. Same as Fig. 1, but for no-SC and the wake parameter w ¼ 13, which is slightly below the TMCI threshold, w0
th ¼ 15, where

the modes −2 and −3 couple. Note the general traveling wave pattern for all modes and that the precoupled negative modes are
considerably head-dominated, contrary to the positive modes.

FIG. 4. Stroboscopic images of the centroid oscillations for the same parameters and modes as in Fig. 3. Each mode has as many nodes
as the modulus of its number.
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linearly, similarly to the no-wake no-SC case. (ii) For the
strong SC, the phases are mostly constant, quickly chang-
ing by �π. For the negative modes, the phases are mostly
close to�π=2, which means that the two fluxes, xþ and x−,
oscillate in counter-phase. For the positive modes, the
phases are mostly close to 0 or �π, showing that the two
fluxes move together. These features are again similar to the
no-wake case of Fig. 1. (iii) Without SC, the modes −2 and
−3 couple at the wake parameter wth ¼ 15, just slightly
above w ¼ 13 of Figs. 3–6. According to the author’s
observations, the precoupled modes are typically domi-
nated by the head [22]. (iv) At the strong SC, negative
modes are not sensitive to wake, while the positive modes
steeply rise to the tail, showing something like cobra
shapes, with the bunch tail as the cobra head, though;
see Fig. 5. The reason is that at strong SC, the two bunch

fluxes oscillate almost in opposite phases for negative
modes, almost canceling their wake forces. Contrary to
that, for the positive modes, the fluxes oscillate together,
their wake fields add in phase, which results in the
convective instability, well seen in Figs. 5 and 6. Having
discussed the way the convective instabilities show them-
selves through the eigensystems, we may exercise another,
complementary, way to look at them: the initial conditions
or Cauchy problem.

III. CAUCHY PROBLEM FOR ABS

A. Difference scheme

Perhaps the most straightforward method to solve at this
point in the Cauchy problem is one suggested by the
Fourier form of Eq. (7). For the sake of diversity, though, as

FIG. 5. Eigenfunctions with the broadband resonator wake, Eq. (10), wake and SC parameters w ¼ 13, q ¼ 20; compare with Figs. 1,
3. At that strong SC, the wake parameter w is ≃9 times below the TMCI threshold. Blue lines show natural logarithms of the amplitudes
log jxþl j; the orange ones are reserved for the phases argðxþl Þ. All the modes are absolutely stable, ℑνl ¼ 0, while head-to-tail
amplification for the non-negative modes may exceed 100 for these parameters; note the cobra shapes, typical for these convective
instabilities. Contrary to that, the negative modes look identical to their no-wake shapes of Fig. 1: with the out of phase motion of the þ
and − fluxes, the wake fields of the fluxes almost cancel each other.

FIG. 6. Stroboscopic images of the centroid oscillations for the same parameters and modes as in Fig. 5. Number of nodes for each
mode is identical to the modulus of its number.
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well as for a possibility of cross-checking, the author of this
paper prefers to use another, not less effective, method of
solution: a simple first-order numerical difference scheme,
applied to the original equation of motion (1) with the
boundary condition (2). The time derivative there can be
taken as

∂x
∂θ ≈ ðxμþ1;p − xμ;pÞ=Δθ

for both þ and − fluxes, where the Greek characters
enumerate the time steps, and the Latin ones,
p ¼ 1; 2;…; P, are used for the space; Δθ ≪ 1 and Δs ¼
1=ðP − 1Þ ≪ 1 are the time and space steps respectively. To
make the algorithm numerically stable, the space deriva-
tives have to be taken in accordance with the flux direction:

∂xþ
∂s ≈ ðxþμ;pþ1 − xþμ;pÞ=Δs; ð11Þ

∂x−
∂s ≈ ðx−μ;p − x−μ;p−1Þ=Δs; ð12Þ

and the Courant condition Δθ < πΔs has to be satisfied.
The boundary conditions, Eq. (2), allow one to express x�
when the spacial indices step outside the bunch length:

xþμ;Pþ1 ¼ x−μ;P−1; x−μ;0 ¼ xþμ;2: ð13Þ

With these substitutions, as well as a first-order trans-
formation of the wake integral into a sum, the resulting
equations for a 2P-component vector Xμ ¼ ðxþ

μ ;x−
μ Þ,

composed of two P-component vectors x�
μ , can be written

in a matrix form

Xμþ1 ¼ Xμ þ ΔθL ·Xμ; ð14Þ

where L is the time-independent infinitesimal 2P × 2P
generator matrix. From here, the sought-for vector at given
time θ can be represented as

XðθÞ ¼ expðθLÞXð0Þ ¼ ðI þ ΔθLÞNθXð0Þ; ð15Þ

where Nθ ¼ θ=Δθ is a total number of the time steps, I is
2P × 2P identity matrix, and Xð0Þ is a 2P vector of the
initial conditions. The described numerical method reduces
the problem to raising a 2P × 2P matrix to a power
Nθ ≫ 1. Note that this computation can be performed
with only log2ðNθÞmatrix multiplications, if the number of
time steps Nθ is made an integer power of 2, making the
numerical scheme extremely efficient.

B. TMCI and convective instability

Let us start from the simplest example of the Heaviside
step wakeWðsÞ ¼ ΘðsÞ, where some analytical estimations

are possible and not cumbersome, and which presents an
alternative to the short broadband wake considered in
the previous section. For short time intervals θ ≪ 1, the
synchrotron motion can be neglected. Assuming the head-
tail amplification coefficient K to be large enough, its
natural logarithm can be estimated:

logK ≃ 2ðiwθÞ1=2: ð16Þ

Hence, the maximally achievable amplification scales as

logK ∝
ffiffiffiffi
w

p
: ð17Þ

This statement can be checked by means of the described
solution of the Cauchy problem for the ABS model.
Without SC, its TMCI threshold is wth ¼ 1; see Refs. [2,7].
Figures 8 and 9 show the results of evolution after 1.5

synchrotron periods of the constant initial offset x�ðsÞ ¼ 1;
the wake parameters are w ¼ 1 and w ¼ 20 correspond-
ingly, and the SC parameter q ¼ 20. It has been separately
checked that the amplification reaches its limit after ∼1
synchrotron period, so for both cases the bunch is stable in
the absolute sense, notwithstanding its wake being 20 times
above the no-SC threshold for the latter case. Several things
are worth mentioning for these plots: (i) At the no-SC
threshold, w ¼ 1, the convective amplification is already
significant, K ≃ 10. (ii) The two fluxes expectably oscillate
in phase: out of phase oscillations are detuned by the SC
tune shift from the wake-coupled motion of the centroid
ðxþ þ x−Þ=2. That is why SC boosts head-to-tail signal
amplification, making the bunch longitudinal slices rigid.
(iii) The convective instability leads to the acclivitous cobra
shape of the amplitudes jx�j, with zero derivative at the
bunch tail. (iv) While the wakes differ by a factor of 20, the
logarithms of the amplification confirm the scaling (17),
showing that they differ by a factor close to

ffiffiffiffiffi
20

p
. (v) These

plots make it possible to fit the numerical factor for the
amplification (17) for the ABS model with the steplike
wake: logK ≃ 2

ffiffiffiffi
w

p
. After this brief examination of the

theta wake, let us come back to the broadband wake,
Eq. (10), with the same phase advance kr ¼ 10 and the
quality factor Qr ¼ 1 as above, to compare the comple-
mentary results of the eigensystem problem and the Cauchy
problem with constant initial condition, x� ¼ 1, for that
physically interesting case.
Figure 10 demonstrates evolution of the standard initial

conditions x� ¼ 1 after 8 synchrotron periods for the same
wake and SC parameters as in Fig. 7, q ¼ 4.1 and w ¼ 35,
slightly above the TMCI threshold wake value wth ¼ 30 at
this SC, twice as it is at no SC case. Identity of this pattern
with ones of the coupled eigenfunctions l ¼ −2 and l ¼ −3
of Fig. 7 serves as a good cross-check.
Figure 11 shows what happens at w ¼ 13 and q ¼ 20

with the initial perturbation, x� ¼ 1, after 1.5 synchrotron
periods; the amplification coefficient can be compared with
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such of zero mode of the related Fig 5. The convective
instability saturation is demonstrated by the 3D plot of
Fig 12. Contrary to the absolute instabilities, for the
convective ones there is no selection with time of the most

unstable mode, since all the modes are stable in the absolute
sense, all the growth rates are zeroes. That is why the
practically dominating constant initial perturbation excites
several modes, and none of them is going to be stressed at
the following evolution. As a result, the nodes of one
convectively unstable mode overlap with antinodes of the
neighbor modes, excited by the same initial perturbation,
which smears all the nodes. Thus, no nodes have to be
observed for the convective instability, unless a special
mode is carefully excited at the beginning. This statement is
illustrated by Fig. 13, showing the centroid stroboscopic
plot after 1.5 synchrotron periods for q ¼ 20 and w ¼ 13,
i.e., for the same conditions as in Fig. 12.
Since strong SC makes the bunch slices rigid, and thus,

maximally coupled with wake, with strong SC the bunch
may get considerably more unstable than without it; this is
demonstrated by Fig. 14 showing significant convective
amplification at q ¼ 20 and w ¼ 7, i.e., for the wake
parameter of half the no-SC TMCI threshold.

FIG. 8. Evolution of constant initial offset x�ðsÞ ¼ 1 after 1.5
synchrotron periods, with the SC parameter q ¼ 20, step wake at
the no-SC threshold, w ¼ 1. Natural logarithms of the absolute
values and complex arguments of the amplitudes x� are shown.
Note that the complex amplitudes of the fluxes are almost
identical, xþ ≈ x−.

FIG. 9. Same as the previous figure, but with 20 times larger
wake, w ¼ 20. With that high amplification, the oscillations are
still absolutely stable, as they must be, since the wake is below its
threshold value. Note the cobra shape, typical of the SCI.

FIG. 7. Centroid oscillations for a moderate SC, q ¼ 4.1 and w ¼ 35, which is a bit above the TMCI threshold wth ¼ 30 at this SC
parameter, twice as high as at zero SC. Nodes of the coupled modes l ¼ −2 and l ¼ −3 become waists. Note that head-dominated TMCI
of the negative modes is complemented by tail-dominated SCI of the positive ones.

FIG. 10. Evolution of the standard initial conditions x� ¼ 1
after 8 synchrotron periods for the same wake and SC parameters
as in Fig. 7, q ¼ 4.1 and w ¼ 35, slightly above the TMCI
threshold wake value wth ¼ 30 at this SC, twice as it is at the no
SC case. Identity of this pattern with the coupled eigenfunctions
l ¼ −2 and l ¼ −3 of Fig. 7 serves as a good cross-check.
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C. Absolute-convective instability

The considerations and examples above demonstrate one
important thing. Although at strong SC TMCI vanishes, it
does not mean that in reality the beam becomes much more
stable: the amplification of the saturating convective
instability, SCI, can be intolerably large already at the
wake parameter corresponding to the no-SC TMCI thresh-
old, if not below that, so SCI may well be not any less
dangerous than the TMCI. Moreover, the SCI, dangerous
by itself, opens a door for one more type of instability. With
high convective amplification, even a weak tail-to-head
feedback by means of a multibunch or overrevolution
wake, negligible by itself, may be sufficient to make the
beam unstable in the absolute sense. The convective
instability may work as a huge amplification of the
otherwise insignificant mechanism of an absolute insta-
bility. In this respect, the convective instability constitutes a
sort of fragile metastable state. The absolute instability
generated by such amplification may be called absolute-
convective instability.
The simplest way of modeling the tail-to-head over-

revolution wake is to add to both right-hand-sides of Eq. (1)

FIG. 12. Time evolution of the local centroids x̄ðθ; sÞ ¼
½xþðθ; sÞ þ x−ðθ; sÞ�=2 for the same case, i.e., for q ¼ 20,
w ¼ 13 and constant initial conditions, x� ¼ 1. The amplifica-
tion is saturated within ∼1 synchrotron period.

FIG. 13. Stroboscopic image of the beam centroid for the same
parameters as in Fig. 12 after 1.5 synchrotron periods. Note that
there are no nodes.

FIG. 14. Same as Fig. 11, but with weaker wake w ¼ 7, i.e., 2
times lower than the no-SC TMCI threshold. Thus, with strong
SC the bunch may get considerably more unstable than without it.

FIG. 11. Evolution of the standard initial perturbation after 1.5
synchrotron periods for the wake parameterw ¼ 13 and strong SC,
q ¼ 20. Note that the two amplitudes are close; comparewithFig. 5.

FIG. 15. Evolution of the constant initial conditions x�ðsÞ ¼ 1
after time θ ¼ 32 · 2π, or 32 synchrotron periods, with the gain so
small that gθ ¼ 1. The growth rate is ∼6 times higher than what
the gain provides by itself. The wake phase advance kr ¼ 10, the
SC parameter q ¼ 20, and the wake parameter corresponds to the
no-SC TMCI threshold, w ¼ 15.
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a center-of-mass antidamper term g
R
1
0 dsx̄ðsÞ, where g is

the gain. Taken by itself, this term would drive an instability
with the growth rate g per synchrotron radian, or 2πg per
synchrotron period. With the convective instability, the
absolute growth rate, caused by the same gain, can be
significantly larger. An example of such a dramatic
amplification of the growth rate is shown in Fig. 15. For
this case, the growth rate is ∼6 times higher than the
antidamper gain would provide alone. Note that the ACI
looks similar to SCI, having alike cobra shape and rigid
slices.
At this point, one may ask the following. If convective

instabilities amplify external antidamping, turning it into a
much faster ACI, would they not enhance external damping
as well, making its effect even more stabilizing? Well, the
answer is worse than a simple no. In fact, the convective

instability turns any damper, with whatever phase, into an
ACI generator. This statement deserves to be doubly
stressed, since it may seem counterintuitive: yes, even a
normal bunch-by-bunch resistive damper works as an ACI
generator, even for moderately amplified convective insta-
bility, considerably below the no-SC threshold; Figs. 16
and 17 present an example. To be more precise, it may
be said that the damper is just useless, if its gain is too
small; then, with a higher gain, the damper shows itself
as an enhancer of the SCI, and at a slightly higher gain
the damper triggers the absolute-convective instability.
Qualitatively this sequence of stages is the same for all
gain phases, although the ACI threshold shows some
quantitative dependence on this phase. The reason for this
detrimental effect of any center-of-mass damper can be
seen in the properties of the non-negative modes at strong
SC, presented in Fig. 5. Due to the cobra shapes of the
modes, the damper sees only their tails, acting back on the
whole bunch proportionally to the tail offset. However,
the tail motion is in fact driven by the head, which phase
differs by lπ from the tail one, where l is the mode number.
Thus, whatever the gain phase, either even or odd modes
will get a positive feedback. As a result, for a conventional
resistive damper, an odd positive mode with the largest
coupling with the wake will be most ACI unstable. For the
broadband wake example, presented in Fig. 5, it is the
mode l ¼ 1. Indeed, this very mode can be recognized in
the ACI evolution presented in Fig. 16, where the head-tail
phase difference is about π.

IV. WHY WRONG WORKED RIGHT

According to Ref. [12], the intensity threshold at CERN
SPS is fairly well described, both at the old Q26 and new
Q20 optics, by no-SC TMCI threshold formula, presented
therein as its last Eq. (C.207), with a reference to [10]. A
recent derivation of this formula with a discussion of its
numerical factor, for ABS and Gaussian bunches, can be
found in Ref. [11] for no-SC. For the ABS with the
broadband wake, Qr ¼ 1, this threshold can be written as

w0
th ¼ 2.3þ 0.7kr þ 0.08k2r : ð18Þ

While at new SPS optics SC cannot be considered to be
really strong, at the old Q26 case it was strong indeed; in
terms of the ABS model, its SC parameter with Q26 can be
estimated as q ≈ 0.5maxΔQsc=Qs ≈ 20. Reasonably good
guidance, provided by the no-SC formula at the strong SC
case, should not be possible according to unanimous claims
of the theoretical works [2–4], so the question is, why did
this happen? A brief answer to this question was already
suggested in several parts of this paper: the same formula
may suggest reasonable estimations for both no-SC TMCI
threshold and the bunch intensity limit imposed by too high
convective amplification at strong SC. In this section, this
statement is illustrated by special computations, presented

FIG. 17. Time evolution of the ACI for the same parameters as
Fig. 16. An exponential growth is clearly seen.

FIG. 16. ACI driven by damping, with the gain g ¼ −0.024 ¼
−0.15=Ts, for thewakeparameterw ¼ 7andSCparameterq ¼ 20.
Evolution of the initial constant offset x� ¼ 1 is shown after 10
synchrotron periods. Pure convective instability, SCI, for these
wake and SC parameters is shown in Fig. 14.
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in Figs. 18–21. These figures show contour plots of the
convective amplification and TMCI growth rates for
various SC and wake parameters. For each given set of
parameters, we compute two complementary maxima over
the collective modes l, with their tunes νl and eigenfunc-
tions xlðψÞ: the maximal growth rate, ℑν≡maxlℑðνlÞ, and
the maximal amplification

K ≡max
l

���� xlðπÞxlð0Þ
���� ¼ max

l

����
P∞

n¼−∞ð−1ÞnAnlP∞
n¼−∞ Anl

����: ð19Þ

This presentation of the amplification indicates a slow
convergence of the Fourier series for large amplification
when the Fourier coefficients almost cancel each other in
the denominator of Eq. (19). Thus, sufficiently many
Fourier harmonics have to be kept to make the result
correct; the higher amplification, the larger has to be the
Fourier truncation number. By the same reason, the matrix
elements Ulm of Eq. (7) have to be computed with extra
accuracy, do not spoil such cancellations. These require-
ments are well facilitated for the resonator wakes, since the
integrals Ulm can be taken analytically, allowing broad
parameter scans to be reliable and reasonably fast even for
huge amplifications.
Figures 18–20 present pairs of contour plots, for natural

logarithm of the amplification, logK, on the left, and for
the growth rate ℑν, on the right, versus the wake parameter
0 < w < 100, along the vertical axis, and the phase

advance 0 < kr < 25, along the horizontal. The last figure
of this series, Fig. 21, shows only the amplification, since
there is no TMCI there, ℑν ¼ 0 for the entire area of
parameters at its strongest SC, q ¼ 20. The black dashed
line on some of the plots shows the ABS no-SC TMCI
threshold, Eq. (18), in agreement with the TMCI border of
Fig. 18 for the phase advances kr ≥ 3. The left part of this
figure shows that amplification can be large in the abso-
lutely stable area even without SC; the higher phase
advance kr, the larger can be the amplification of the
absolutely stable bunch. Thus, in principle, for very short
wakes the convective instabilities may be more dangerous
than absolute, even without SC. All these contour plots
illustrate how the absolute instability, TMCI, recedes with
growing SC, and the amplification increases along its no-
SC threshold line. For the strongest SC case, q ¼ 20 of
Fig. 21, modeling the CERN SPS Q26 situation, the no-SC
threshold line almost goes along the amplification level line
K ≃ 300–1000 for as short wakes as supposed to be at the
SPS. Observations, presented in Ref. [12], Fig. 4.21 top left

FIG. 19. Same as Fig. 18, for SC q ¼ 5. The TMCI threshold
moves up with SC. The black dashed line is the same no-SC
TMCI threshold, Eq. (18).

FIG. 20. The same, for larger SC, q ¼ 10. While TMCI
threshold recedes, the amplification grows.

FIG. 21. Amplification for SC q ¼ 20. The black dashed line of
no-SC TMCI threshold is close to the contour line K ≃ 300–1000
for large interval of the phase advances. For the entire area of the
parameters, the system is absolutely stable, ℑν ¼ 0.

FIG. 18. Left: contour plot for natural logarithm of the maximal
head-to-tail amplification logK versus wake phase advance kr,
horizontally, and its amplitude parameter w, vertically, for the
broadband case,Qr ¼ 1, and no SC. Right: TMCI growth rate for
the same parameters; the black dashed line is the no-SC TMCI
threshold, Eq. (18), according to Ref. [11].
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therein, seem to be compatible with this estimation. This
explains why the mistaken assumption of TMCI insensi-
tivity on SC worked fairly well for prediction of the
intensity limitations at the SPS. At Q26, the machine
was limited not by TMCI, which threshold was far above,
but by amplification of the convective instability, which
physically acceptable limit of ≃1000 occurred fairly close
to the no-SC threshold. For Q20 optics with its moderate
SC parameter q ≈ 5, the no-SC TMCI threshold was not
that far, ≃20%–30% below its actual threshold, as one may
see in Fig. 19 with kr ≃ 20–25.
Figure 22 suggests a general schematic plot for the

TMCI and SCI areas on the SC-wake plane, where the color
intensity varies either with the growth rate (orange) or the
amplification (green). According to Ref. [7], at sufficiently
large SC parameter, the TMCI threshold wth increases
linearly with that, wth ∝ q, for all practically important
cases. That is why the threshold is represented by a straight
line at the sketch. The reader should not be confused by the
green area border from above: the TMCI threshold does not
prevent the convective amplification to grow exponentially
with the wake in the TMCI area as well. For the broadband
wake cases, demonstrated in Figs. 18–20, the threshold
slope is estimated as b ≃ 4 for all kr ≥ 6, while its no-SC
value a ¼ w0

th is given by Eq. (18).

V. THEORY, OBSERVATIONS, AND
SIMULATIONS

Many impressive observations of the convective insta-
bilities were actually made at the CERN machines, albeit

the instabilities were usually misinterpreted as TMCI. For
instance, Fig. 5 of Ref. [23] shows a convective signal at the
PSB, with head-to-tail amplification not less than ∼10, as it
may be guessed at a glance. Much larger amplification was
observed at the PS, see e.g., Fig. 14 of Ref. [24], where the
amplification looks like it is in the range of hundreds, if not
more. A huge head-to-tail amplification is seen in Fig. 4.21,
top left, of Ref. [12], showing bunch transverse oscillations
measured at the SPS. To the right of this figure, a result
of the no-SC HEADTAIL simulations is presented as a
counterpart, with a claim that the two plots show “very
similar intra bunch motion.” It is difficult to agree with this
claim though, seeing an enormous measured amplification
on the left and almost perfectly mirror-symmetric simu-
lation picture on the right. It deserves a special reflection,
that although no model was ever suggested with a con-
siderable amplification generated by the mode coupling,
and no cases were theoretically found with mode coupling
insensitive to SC, still the single bunch instabilities at
strong SC, with their impressive head-to-tail amplification,
were unanimously called “TMCI” in countless publica-
tions, and in many of them the no-SC formula for the
instability threshold, never derived for strong SC, was
treated as a theoretical “result” for cases with strong SC.
To further complete the picture, more about the theo-

retical aspect has to be said. As it was already discussed in
the beginning of this paper, one of the firmly established
theoretical conclusions about TMCI was independence of
the stability condition on the number of particles at the
strong SC case: if the bunch is stable at some population,
it must be stable at a higher intensity, regardless of how
much higher. Apparently, this amazing statement was never
publicly criticized or rejected as obviously unreasonable.
When there was a need to compare the observations, like
those mentioned above, with theoretical predictions, the
only theory available so far was the no-SC TMCI model
in its various implementations, not much different from
each other. The no-SC TMCI theory was applied to beams
with large SC parameters not only without any theoretical
justification, but against theoretical conclusions, which
unanimously [2–4] cried out about the opposite, that strong
SC does change the situation dramatically. The theoretically
grounded conclusions were tacitly disregarded, and the fully
ungrounded statement of validity of no-SC theory for strong
SC cases was employed for checking this sort of observation
with the “theory” or with whatever stood for it. This
comparison had one serious justification, mentioned in the
previous section: the model at hand did predict intensity
limitations fairly well. For such a virtue, many theoretical
sins can be excused bypractical people, especiallywhen their
only choice is between an unjustified, but at least partly
working formula, and a failure, if not absurdity, even if the
latter was apparently derived from the first principles. This
checking with theory was also complemented by a remark-
able agreement between different no-SC computations, like

FIG. 22. General sketch of the instability areas on the SC-wake
plane. The color gradients represent the growth rate for the TMCI
and the amplification for the SCI. The white area at w ≤ a
corresponds to stability with insignificant amplification. The
convective amplification grows exponentially with the wake
amplitude; the TMCI threshold w ≃ aþ bq does not prevent
the convective amplification to grow this way in the TMCI area as
well. The coefficients a ¼ w0

th and b depend on the shape of the
wake function.
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MOSES and HEADTAIL [24,25], convincing one that both
no-SC programs are most likely correct, not more. Well,
turning a blind eye to theoretical inconsistency can be
comprehensible in this kind of situation, but it may cost
progress in understanding, since the value of the latter is
supplanted by a too empiricist attitude.
A seed of new understanding can be seen in a publication

of Quatraro and Rumolo [26], where significant depend-
ence of the “TMCI” threshold on SC was demonstrated; see
Fig. 4 therein. Figure 3 of that article, computed with the
resistive wall impedance, clearly shows that all the excited
modes are positive, contrary to the no-SC situation. It
shows also that the modes are uncoupled at the “mode
coupling threshold.” Moreover, it shows that the mode
excitation gradually increases with intensity, rather than
suddenly springing from a barely visible state of stability to
the infinite radiance of the real TMCI with no SC, as in
Fig. 5 therein. All these important features of the collective
dynamics, clearly seen in the pioneer results of Ref. [26],
create the impression that only a tiny step separated its
authors from overcoming the common misconceptions and
discovering the new types of beam collective instabilities.
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