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We introduce a 1D planar static model to elucidate the underlying mechanism of large ion current losses
in the vacuum convolute and the inner magnetically insulated transmission line (MITL) of the Z machine.
We consider E × B electron flow, parallel to the electrodes, and ion motion across the vacuum gap, for
given voltage V, gap distance d, anode magnetic field Ba, and vacuum electron current ΔI. This model has
been introduced and solved before by Desjarlais [Phys. Rev. Lett. 59, 2295 (1987)] for the applied magnetic
field ion diode. Here we apply it to convolute and inner MITL ion losses of Z, relaxing the fix magnetic flux
condition of that reference. In the absence of ions we show that the electron vacuum flow must be close to
the anode if its current exceeds the value given by the local flow impedance, implying high electric fields
there. We then introduce space charge limited ion emission from the anode, neglecting the magnetic force
on ions. We obtain the solution of the steady state equations for two special cases: (a) when both the electric
potential and the electric field are zero inside the gap, and there is a layer of electrons not carrying current
that neutralizes the ion charge between the virtual and the electrode cathode, making that region electric
field free, and (b) when the electric field is zero inside the gap, but the potential is not, and zero electron
charge between that point and the physical cathode. For case (a) we obtain an ion current density which we
conjecture is the maximum attainable for any electron charge distribution in the electron current carrying
layer, given V; d; Ba;ΔI an ion species. We obtain the enhancement factor for both cases with respect to
the ion-only Child-Langmuir ion current density, and show that it can be significantly larger than that of the
electron saturated flow case. Furthermore, imposing electron current conservation as the flow enters the
inner MITL from the four outer MITLs, we recover the well-known dependence jion ∼ V3=2=d2, where
voltage and gap are taken near the joining point of those outer MITLs. The implications and limitations
of the proposed model are discussed.
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I. INTRODUCTION

The Z machine is a large pulsed power accelerator at
Sandia National Laboratories; its outer diameter is 33 m. It
has been amply described in the literature, for instance for a
complete description of the Z machine see Refs. [1,2].
We focus in this paper on the section of the Z machine

extending to approximately 10 cm from the accelerator axis
shown schematically in Fig. 1. This is the section of Z
where it is believed that most of the machine current losses,
and correspondingly power loss, occur. The region we
concentrate on has cylindrical 3D periodic geometry.
The four magnetically insulated transmission lines (outer
MITLs) of approximately 3 m diameter, converge at the
post-hole convolute of Z, located at about 10 cm from the

axis, where their respective currents are added into a single
MITL. This single 2D radially convergent MITL, extending
from the inner part of the convolute to the load, is called
the inner MITL. Depicted in Fig. 1 are the four MITLs,
A, B, C, D, (oftentimes referred to as levels) as they join in
the convolute.
There is experimental and simulation evidence [3–6] of

current loss in the vacuum convolute and in the inner
MITL of Z [7]. The current losses in the convolute region
(CR) itself are measured directly as the difference of the
sum of the outer MITL currents entering the convolute,
and the current measured by Bdot probes, located at 6 cm
from the axis [8]. The measurement of inner MITL losses
is most of the time inferred from simulations when the
load behavior is assumed to be known [6], or in some
cases when use of techniques such as VISAR [9], allow for
a direct unfold of the load current. Circuit calculations
employing a detailed circuit model of the entire Z
machine, including physics-based load and electron
and ion current loss in vacuum models [10], point to
the necessity of assuming large ion current losses in the
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CR and inner MITL, to adequately reproduce the elec-
trical measurements.
In this work we only address losses caused by positive

ions crossing the anode-cathode gap. Other loss mecha-
nisms related to the possible presence of negative ions are
considered in [11]. Magnetically insulated ion flow not
resulting in positive ion current losses, studied for instance
in Refs. [12–14], is neither part of this research.
Electron flow in the outer MITLs is well understood

[15]. Less clear is where the electron charge and current go
as the MITLs join into the vacuum convolute.
For the large current of the Z experiments, magnetic

diffusion and electron deposition heats the anode inner
MITL and convolute surfaces to temperature above 400 °C
[16], resulting in neutral desorption and anode plasma
formation, which is the source of ion space charge limited
emission considered in this paper.

II. PLANAR E ×B FLOW IN STEADY STATE

We assume that in order to highlight the main ion current
loss mechanisms, the cylindrical system can be approxi-
mated by planar geometry; with the electric field in the
negative across the gap z direction, the magnetic field in
the negative y direction and the space electron flow in the
E ×B negative x direction, which is also the direction of

the power flow into the load as shown in Fig. 2. In order to
make contact with the actual convergent geometry of Z, we
introduce the relationship Ba½G� ¼ Ia½A�=5r½cm�, which is
the relationship between the magnitude of the anode
magnetic field, the anode current and the actual radius
of the considered point on the Z machine.
We expect that even if using a planar static 1D model is

a gross oversimplification, the model will be able to point to
a mechanism that may be dominant in the actual 3D
geometry of the CR, and the 2D of the MITL, as well
as being a guiding way to look at the actual time dependent
reality.
The equations for steady electron E ×B planar flow

and cross ion current, shown in Fig. 2(a), are (neglecting
the effect of the ion current on the magnetic field and
vice versa)

dE=dz ¼ 4πeðZn − neÞ; E ¼ Eẑ ð1aÞ

dB=dz ¼ 4πewe=c; B ¼ Bŷ ð1bÞ

In Eq. (1) n, and ne are the ion and electron charge
number densities, and we the electron velocity, while
the ion charge is eZ, with −e being the electron charge.
The ion mass is m ¼ μmp, where mp is the proton
mass. The second equality in Eq. (1b) is obtained
employing the laminar E ×B electron flow assumption,
i.e., we ¼ E × B=B2 ¼ −wex̂ ¼ −ðE=BÞcx̂. Unless we
explicitly state different units we are using CGS-
Gaussian units throughout. Equation (1) neglects mag-
netic field effects on ions, we therefore only consider in
this work ion species neither magnetically significantly
deflected nor insulated.

FIG. 2. (a) 1D planar electron only flow, showing coordinates
and boundary conditions, as well as the directions of the fields
and the electron and power flow direction E ×B. (b) Same 1D
planar geometry as in (a) for the case of two electron layers,
electron and ion crossing the gap, for the model we are
considering; see the text for the meaning of the symbols.

FIG. 1. Schematics of the four vacuum transmission lines
(truncated) of the Z machine, denominated levels A, B, C, and
D. Anodes are represented by black lines and cathodes by red
ones. Currents for the four levels are added up at the post-hole
convolute (cathode holes shown in dotted red circles, and anode
posts in black). To the left of the post-hole convolute there is a
single inner MITL, and the green lines represent the load. VD
stands for the voltage of one of the post-hole structures at level D.
The convolute region goes from about 7 to 11 cm in radius. The
vacuum transmission lines extend to a diameter of approximately
3 m. See Refs. [1,2] for detailed descriptions.
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A. Electron only flow

We first consider the case n ¼ 0 everywhere in the gap.
From Eqs. (1a) and (1b) we immediately obtain the known
pressure balance condition [17]:

E2
a − E2

c ¼ B2
a − B2

c ¼ ðI2a − I2cÞ=ð25r2Þ
≅ 2IaðIa − IcÞ=ð25r2Þ; ð2Þ

where Ia; Ic are the anode and cathode currents,
respectively.
The units of Eq. (2) are CGS-Gaussian, with the

exception of the currents that are in Amperes. The last
approximate equality of the equation is valid for the small
ratio of ðIa − IcÞ=Ia. We have introduced the radius r to
relate to the actual radially convergent geometry of the Z
machine. As seen in Fig. 2(a), Ea; Ec are the values of the
electric field at the top and bottom edges of the electron
flow, as well as at the physical anode and cathode,
respectively, while Ba, Bc are the values of the magnetic
field at anode and cathode, respectively. Both E and B are
constant between the edges of the electron flow strip and
the respective metallic electrodes.
From Eq. (2) it follows that E2

a ≥ B2
a − B2

c. For instance,
at r ¼ 4 cm, Ia ¼ 20 MA, Ia − Ic ¼ 1 MA, and therefore,
Ba ¼ 1 MG, Bc ¼ 0.95 MG, it follows that jEaj ≥
3.1 × 105 stat V=cm ¼ 94 MV=cm.
We assume that the electron motion is laminar and that

the electrons are all going in the same power flow direction
towards small radius. Thus, in the planar geometry we
describe in the Introduction, the power flow is in the x̂
direction, the magnetic field in the ŷ direction and the
electric field in the ẑ direction. Thus the E ×B flow is the
power flow x̂ direction. The assumption of the electron
motion being towards the load in the x̂ direction is para-
mount to assuming that the electric field does not change
sign from cathode to anode, E ¼ −ϕ0 ≤ 0, and thus the
electric potential ϕ increases from cathode z ¼ 0 to anode
z ¼ d. We therefore have, for constant ne in the electron
flow strip,

−EaΔ2 ≤ V ¼ −EaðΔ2 þ Δ=2Þ − EcðΔ1 þ Δ=2Þ: ð3Þ

The quantitiesa Δ2;Δ;Δ1 are, respectively, the distance
between the anode and the electron flow edge, the thickness
of the electron beam, and the distance between the lower
edge of the flow and the cathode per Fig. 2(a), thus
d ¼ Δ1 þ Δþ Δ2.
For example, using the same values for Ba ¼ 1 MG,

Bc ¼ 0.95 MG, a voltage V ¼ 3 MV would result in
Δ2 þ Δ=2 ≤ 3.2 × 10−2 cm. That is, the upper edge of
the laminar electron flow must be very near the anode. This
would result in a very high electric field. We remark that
there is no loss of generality in assuming constant electron
density; neither is takingΔ2 ¼ 0 as a special case within the

laminar flow approximation. This latter point is consistent
with the small electron Larmor radius; for the example we
have given it would be of the order of 5.8 × 10−3 cm
classically and about twice of this value relativistically.

B. Space charge limited ion current
in cross E ×B electrons flow

We now turn to solving Eqs. (1a) and (1b), together with
the boundary condition EðdÞ ¼ 0, voltage V, magnetic
field Ba, Bc at the electrodes, gap d. We assume that ions
emitted at the anode cross the gap without being affected by
the magnetic field. Neglecting this effect implies that there
is no ion current in the power flow direction [see Fig. 2(b)].
In steady state the ion current density is constant, i.e.,

ji¼−jiẑ; ji¼Zenwi¼Zen
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eZðV−ϕÞ=m

p
; ð4Þ

where wi is the ion velocity in the z direction, and the last
equality in Eq. (4) comes from the ion energy conservation
relation: Zeϕþmw2

i =2¼ZeV and from setting wiðdÞ ¼ 0.
From Eq. (4) we have

Zeni ¼ ji=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eZðV − ϕÞ=m

p
: ð5Þ

From Eqs. (1a), (1b), and (4) we obtain

Ba
2 − B2 ¼ −E2 þ 16πjið

ffiffiffiffiffiffiffiffiffiffiffiffi
V − ϕ

p
=ð2eZ=mÞ1=2: ð6Þ

To obtain the result of Eq. (6) we have invoked
ϕðdÞ ¼ V, EðdÞ ¼ Ea ¼ 0.
If we further assume the presence of a “full virtual

cathode,” setting ϕ ¼ 0, E ¼ 0, in Eq. (6) at a given point
inside the gap, 0 < z0 < d, we obtain a particular value of
the ion current density j0:

j0 ¼ ½ðB2
a − B2

cÞ=
ffiffiffiffi
V

p
�ð2eZ=mÞ1=2=16π; ð7aÞ

Recalling that B2
a − B2

c ¼ 2ΔIĪ=25r2, I½A�, B½G�, where
ΔI ¼ Ia − Ic, and 2Ī ¼ Ia þ Ic, we can rewrite Eq. (7a)
employing units V; A; A=cm2; cm:

j0½A=cm2� ¼ 2.20 × 10−4ðZ=μÞ1=2ΔIĪ=ð
ffiffiffiffi
V

p
r2Þ: ð7bÞ

This current density is realized, given the boundary
conditions we have stated, for a special case we will discuss
below. We will see that it requires sufficient electron charge
per unit area to be realized. That is, given V; Ba; d; Z; μ and
a diamagnetic drop from Ba to Bc, assuming the presence
of a virtual cathode determines both its position and the
electron charge in the gap.
We recall that the space charge limited ion-only

Child-Langmuir (CL) current density is given by jCL ¼
ð2eZ=mÞ1=2V3=2=9πd2, and we will use this as a
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normalization factor for the actual ji, defining the enhance-
ment factor η ¼ ji=jCL.
We now convert our differential equations (1) to dimen-

sionless variables: φ ¼ ϕ=V, ν ¼ z=d. In terms of these
variables the equation for the dimensionless potential φ is
given by

φ00ðνÞ ¼ α=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φðνÞ

p − βðνÞ: ð8Þ

In Eq. (8) we have defined α≡ ð4=9Þji=jCL,
β≡ 4πneed2=V. Thus, the enhancement factor is
η ¼ 9α=4. On the other hand, α ¼ 4=9, β ¼ 0 corresponds
to the ion-only CL solution. The boundary conditions for
Eq. (8) are, φð1Þ ¼ 1, φð0Þ ¼ 0, φ0ð1Þ ¼ 0. Furthermore,
the condition that a given electron current produces a
diamagnetic effect reducing the magnetic field from BðνÞ
to Bc becomes

ðb2 − b2cÞ=2 ¼
Zv

0

dνβðνÞφ0ðνÞ; ð9aÞ

where b2 ¼ B2d2=V2, and in particular,

γ20 ≡ ðb2a − b2cÞ ¼ 2

Z1

0

dνβðνÞφ0ðνÞ: ð9bÞ

There are infinite nondenumerable solutions for Eqs. (8)
and (9), depending on the boundary conditions and the
electron density distribution βðνÞ. We restrict the solution
set by not allowing the electric field to change sign,
precluding counterflow of electrons, which in terms of
the derivative of the scaled potential becomes φ0 ≥ 0. We
also consider only piecewise constant electron charge
density, that is, β is piecewise constant.
We first seek solutions for which there is a virtual

cathode, i.e., φ0ðν0Þ ¼ 0, 0 ≤ ν0 < 1 [18,19]. The motiva-
tion for considering β piecewise constant is that it allows us
to solve the governing Eqs. (8) and (9) analytically, while
not being excessively restrictive, we can always think of the
constant β representing the average electron charge density
over the region considered.
The motivation for allowing a virtual cathode is that,

for given voltage, magnetic field, gap distance and space
electron flow current, we believe that this provides the
maximum possible enhancement. We show in a later
section that there is a choice of electron density distribution
for which this ion current enhancement is realized.
Multiplying both sides of Eq. (8) by φ0 and integrating

from ν2 ≥ ν ≥ ν1 we obtain

φ02jν2ν1 ¼ ½4α
ffiffiffiffiffiffiffiffiffiffiffi
1 − φ

p − 2βð1 − φÞ�jν2ν1 ð10aÞ

Changing variables in Eq. (10a) by defining u ¼ ffiffiffiffiffiffiffiffiffiffiffi
1 − φ

p
,

we obtain

ðu0uÞ2jν2ν1 ¼ ðαu − βu2=2Þjν2ν1 : ð10bÞ

For the upper region 1 ≥ ν ≥ ν0 from Eq. (10a) recalling
u0ð1Þ ¼ 0 we have

u0 ¼ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2α − βuÞ=2u

p
: ð11Þ

We integrate Eq. (11) to obtain, in the upper region,
1 ≥ ν ≥ ν0,

ν ¼
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uðq − u
p

Þ − q arcsin
ffiffiffiffiffiffiffiffi
u=q

p i ffiffiffiffiffiffiffiffi
2=β

p
þ 1;

where q ¼ 2α=β; β ≠ 0: ð12Þ

The solution exhibited in Eq. (12) has been obtained
before (Ref. [20]), where they were applied to magnetically
insulated ion diodes. We remark that since we are imposing
φ0 ≥ 0 ⇒ u0 ≤ 0 that the inverse function φðνÞ is unique.
We can also solve Eq. (10) for β ¼ 0 in the lower

region i.e., the interval 0 ≤ ν ≤ ν0. In the special case
u0ðν0Þ ¼ φ0ðν0Þ ¼ 0, we obtain

ν ¼ ν0 − ð2=3Þð2u0 þ uÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi
u − u0

p
=

ffiffiffi
α

p
; u0 ≡ uðν0Þ:

ð13Þ

We will treat two distinct cases (high enhancement or
HE, and low enhancement or LE). We impose continuity of
potential and electric field and allow for discontinuous
charge density.

1. High enhancement

We consider electron density β1 constant for ν0 ≤ ν ≤ 1,
followed by a different constant β2 for 0 ≤ ν ≤ ν0, pro-
ducing a full virtual cathode. We will call this case high
enhancement (HE), because we will show that enhance-
ment factors for this case are potentially high. This is
precisely the model solved by Desjarlais, for the so-called
ρ ¼ 1 case in Refs. [18,19]. The main difference of this
work with that reference, is that there the magnetic flux is
constant; while in our case we do not apply this restriction.
We also have solved directly using the magnetic field
instead of the magnetic potential, both approaches being
completely equivalent. As shown in Eqs. (12) and (13), an
analytic solution of νðφÞ can be obtained, which as we
mentioned before, is an invertible function. We show in
Appendix B the equivalence of this approach with the
solution of Refs. [18,19] for ρ ¼ 1 (using the nomenclature
of those papers).
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2. Low enhancement

In this case, no electron charge is allowed beyond the
diamagnetic electron current carrying layer, relaxing the
condition that the point of zero electric field is also the point
where the potential is zero. We call this case low enhance-
ment (LE), because we show that the enhancement factor
can only attain a maximum limit we derive.
In the sections that follow, we describe the solution

for these two cases. We neglect electron emission at the
physical cathode,which is a good approximation because the
emitted electron sheath electrostatically shields it, carrying a
negligible amount of the total electron space current.

3. High enhancement solution

In Eq. (10a) the scaled potential satisfies the
conditions φð1Þ ¼ 1, φ0ð1Þ ¼ 0. By further requiring
φðν0Þ ¼ φ0ðν0Þ ¼ 0, it follows that β1 ¼ 2α. It is also
immediately obvious from Eq. (8) that by making the total
dimensionless charge density φ00 ¼ 0, for 0 ≤ ν ≤ ν0, φ, φ0
stay zero for the same interval, from which it follows that
β2 ¼ α ¼ β1=2. That is, the electron charge density in that
charge-neutral region is one half of the charge density in the
electron current carrying layer, and it is the same as the ion
charge density there. It is also evident, given the choice of
boundary conditions for this case, that the ion current
density j0 of Eq. (7) is attained, and that from Eq. (9), and
from β1 ¼ 2α,

β2 ¼ α ¼ β1=2 ¼ γ20=4 ð14aÞ

η ¼ ð9=4Þα ¼ ð9=16Þγ20 ð14bÞ

δ ¼ 1 − ν0 ¼ π=γ0: ð14cÞ

We remark that, as anticipated when we introduced j0,
Eq. (14) shows the relationship between having a given
diamagnetic effect represented by γ0, and the enhancement
factor η. They also give the necessary electron charge β1,
β2, as well as the dimensionless distance between anode
and virtual cathode, δ. The voltage and gap distance appear
in the scaling factors used to define the dimensionless
variables utilized in those equations.
Also, as expected, Eq. (14) implies that the larger the

enhancement factor the larger the electron charge density
necessary in the upper and lower layers, to carry the
electron current and to neutralize the ion charge density
in the lower layer, respectively.
We notice that for the HE case, as seen from our

derivation of Eq. (7a), it is not necessary to assume constant
electron charge density in the upper region to attain the ion
current density j0, as long as there is a neutral lower layer
characterized by β2 ¼ γ20=4, and that the dimensionless
charge distribution is such as to produce the same dia-
magnetic drop, i.e.,

R
1
ν0
β1ðνÞφ0ðνÞdν ¼ γ20=2.

We conjecture that for given values of anode and cathode
magnetic field, voltage, gap, and total electron charge per
unit area, j0 given by Eq. (7) and realized in this HE case, is
the highest attainable ion current density within the model
we are considering.
One particular such solution is the one for which ν0 ¼ 0.

This is the so-called electron saturated flow, introduced in
Refs. [19,20]. From Eq. (14) setting ν0 ¼ 0 we obtain

π=2 ¼
ffiffiffiffiffiffiffiffi
β=2

p
⇒ β ¼ π2=2; α ¼ π2=4;

η ¼ ð9=4Þα ¼ 9π2=16 ¼ 5.55: ð15Þ

The value for the enhancement factor η in Eq. (15) is
exactlywhatwas found in those references for the ion current
density for this particular saturated electron flow case.
It is also interesting to notice that this HE case behaves as

if only the upper electron layer existed, see Refs. [18,19].
From the point of view of the circuit quantities there would
be no way to differentiate between having a physical or
rather a virtual cathode. In fact, it can be shown, by
straightforward algebra, that

j0 ¼ ð9π2=16ÞjCLðV; δdÞ
¼ ð9π2=16Þð2eZ=mÞ1=2V3=2=ðδdÞ2

That is, j0 is the saturated ion current density for the
diode formed between the anode and the virtual cathode.
Thus, the dependence of the enhancement factor is a

function, at a given voltage, ion type and gap distance,
of B2

a − B2
c ¼ 2ΔIĪ=25r2, where Ī ¼ ðIa þ IcÞ=2, when

assuming sufficient electron charge to carry the diamag-
netic current, and to neutralize the ion charge density
beyond that layer. In fact there is a one to one relationship
between charge per unit length and the electron diamag-
netic current, which can be derived straightforwardly from
Eq. (14):

qe ¼ ðrV=8dÞðγ20 þ πγ0Þ
¼ ½ΔIIad=ð100rVÞ� þ π

ffiffiffiffiffiffiffiffiffiffiffiffi
2ΔIIa

p
=40; ð16Þ

where in Eq. (16) we have set B2
a − B2

c ¼ 2ΔIĪ=25r2 and
assumed Ia ≫ ΔI.
Therefore to realize HE as expressed in Eq. (16) and its

corresponding enhancement factor of Eq. (14b), the charge
per unit length should be sufficient so that γ0 ≥ π.
From these considerations we infer that “the valve”

determining the ion current enhancement factor is the
electron space current magnitude and distribution entering
the convolute and inner MITL region, coming from the
outer MITLs without striking the anode.
We show in Figs. 3–6 relevant quantities for this

case, for input corresponding to the following example,
we call EX: Cþ, V ¼ 3 MV, d ¼ 0.5 cm, Ia ¼ 20 MA,
r ¼ 4 cm. For instance, for ΔI ¼ 0.4 MA EX yields an
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enhancement factor of η ¼ 55.7, yielding the Cþ current
density ji ¼ 1.82 × 104 A=cm2.

4. Low enhancement solution

For this case we start with a given value of α and
find a value of β for the upper layer setting u0ðν0Þ ¼ 0,

uðν0Þ ¼ u0 ≤ 1 in Eq. (12). In this manner a selected value
of α determines the values of β, and u0, ν0, and thus from
Eq. (9b) the magnitude of the diamagnetic effect,

ðB2
a − B2

cÞðd=VÞ2=2≡ γ20=2 ¼ βð1 − φ0Þ ¼ βu20: ð17Þ

FIG. 3. Electron velocity in units of 109 cm=s in the electron
current carrying layer for EX in the HE regime of Sec. II B 3,
corresponding to ΔI ¼ 0.4 MA. See the text for the meaning of
the symbols.

FIG. 4. Dimensionless potential (red, left scale) and electric
field magnitude. The electric field (blue, right scale) peak is about
5 V=d, 30 MV=cm, EX for the HE regime of Sec. II B 3 and
ΔI ¼ 0.4 MA. See the text for the meaning of the symbols.

FIG. 5. Ion and electron number densities profiles (right scale),
for EX in the HE regime of Sec. II B 3, and ΔI ¼ 0.4 MA. The
ion number density in units of 1014 cm−3 (green), which goes to
infinity at the anode (integrable singularity) is cutoff to allow
comparison with the electron number density (blue), in the same
units as electron number density. The ion velocity multiplied in
units of 108 cm=s (left scale) is shown in red.

FIG. 6. Profile of dimensionless magnetic field for EX in the
HE regime of Sec. II B 3, and ΔI ¼ 0.4 MA. See the text for the
meaning of the symbols.
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From Eq. (11), making u0ðν0Þ ¼ 0, implies that
βu0 ¼ 2α, q ¼ u0. Using this relationship in Eq. (12) we
obtain

ffiffiffi
α

p
ν0 ¼

ffiffiffi
α

p − u3=20 π=2; ð18Þ

and from Eq. (13), applicable for no electron charge density
in the lower layer, setting uð0Þ ¼ 1, it follows that

ð2=3Þð1þ 2u0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
u − u0

p ¼ ffiffiffi
α

p
ν0: ð19Þ

Thus, from Eqs. (18) and (19) we find

ffiffiffi
α

p ¼ ð2=3Þð1þ 2u0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u0

p
þ u3=20 π=2: ð20Þ

In Fig. 7 we plot α ¼ fðu0Þ. Clearly given a value of α
we can obtain the corresponding value of u0 and vice versa,
and from it β ¼ 2α=u0, and all other relevant quantities.
The most important feature of Eq. (20), as seen in Fig. 7,
is that there is a maximum attainable value α ¼ αmax ¼
3.7408, which corresponds to a maximum enhancement
factor of η ¼ 8.417.
This is the maximum attainable enhancement for LE. We

also have found, as expected, that for u0 ¼ 0; α ¼ 4=9.
For this LE case we show in Fig. 8 φðνÞ and φ0ðνÞ for

α ¼ αmax, respectively.
For the same values of anode magnetic field, voltage,

gap, and radius of EX we find that ΔI ¼ 52.8 kA and
ji ¼ 2747 A=cm2. Remarkably, it takes a relatively small

electron flow current, about 0.26% of the anode current, to
achieve this maximum enhancement factor.
For u0 ¼ 1, i.e., φ0 ¼ 0, we recover the electron flow

saturated case αsat ¼ ðπ=2Þ2, ηsat ¼ 5.55. We also remark
that for αsat ≤ α < αmax, where αsat ¼ 2.468, there are two
possible values of u0 and thus two possible values of the
diamagnetic effect value, γ20 ¼ 2βu20 ¼ 4αu0, 9.87 ≤ γ20 ≤
13.62 corresponding to two distinct values of the dimen-
sionless electron charge density β (see Fig. 7).
As in the HE case a relation between charge per unit

length and electron diamagnetic current is easily calculated,
in this LE case numerically.
We conclude this section by remarking that the cases

shown are, as mentioned before, just examples of electron
charge density distributions. However, the solutions we
have derived provide indeed a rationale for a plausible
existence of large enhancement factors of the nonmagneti-
cally insulated ion current density with respect to the ion-
only CL case.
The actual electron density distribution is determined by

the dynamics of the electron flow entering the Z convolute
and inner MITL region from the outer MITLs, and it can
be best studied by detailed 3D codes such as CHICAGO [21].
It is important to notice that in this model that actual
electron space charge and current in the outer MITLs
determine the ion losses in the inner MITL and convolute.
This fact should be used to suggest validation experiments
and further simulations, and if confirmed would be para-
mount in the future design of larger pulsed power machines
beyond Z.

FIG. 7. Value of αðu0Þ, where u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ0

p
, where φ0 the

value of the dimensionless potential at the point that the electric
field is zero. See the text for the meaning of the symbols in
Sec. II B 4.

FIG. 8. Dimensionless potential (red, left scale) and its deriva-
tive (blue, right scale) for αmax LE regime of Sec. II B. For LE the
value of ΔI is determined by the function plot in Fig. 7, for EX
ΔI ¼ 52.8 kA, for α ¼ αmax ¼ 3.7408. See the text for the
meaning of the symbols.
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III. HEURISTIC SCALING FOR ION LOSSES
IN THE INNER Z MITL

We recover a CL-like relation, if we assume the ion
current density given in Eq. (7), at times near the peak
current, when the voltage at the outer MITLs near the
convolute is approximately the same as the voltage in the
inner MITL. We can write for any of the four levels (see
Fig. 1 and captions for meaning of levels and Refs. [1,2]),
in practical units, i.e.,V; A;Ω,

I2ai− I2ci¼V2=Z2
fi; Zfi≃30di=ri; i¼1;4; ð21Þ

where ZfðΩÞ is defined in Ref. [17].
By noting that I2ai − I2ci ¼ ðIai þ IciÞðIai − IciÞ≃

2IaiΔIi ≃ 2ðIa=4ÞðΔI=4Þ, where Ia;ΔI are the total anode
and electron space current entering the convolute, respec-
tively, we can write

ðI2a − I2cÞ ≃
X4
i¼1

ðI2ai − I2ciÞ ¼ 16ðI2ai − I2ciÞ ¼ 16V2=ðZfiÞ2:

ð22Þ

We substitute this result of Eq. (22) in Eq. (7b) obtaining

j0½A=cm2� ¼ 1.76 × 10−3ðZ=μÞ1=2V3=2=½ðZfiÞ2r2�: ð23aÞ

We express ðZfiÞ2 ¼ ð30d̄=r̄Þ2 with the result

j0½A=cm2� ¼ 1.96×10−6ðZ=μÞ1=2ðV3=2=d̄2Þðr̄=rÞ2: ð23bÞ

The enhancement factor with respect to the “average”
CL ion current density, with voltage and gap distance
corresponding to their average values taken at the outer
MITLs convolute joining point, is thus

η ¼ 36ðr̄=rÞ2: ð24Þ

For instance, forCþ, V ¼ 3 MV, d̄ ¼ 0.6 cm, r̄ ¼ 7 cm,
r ¼ 5 cm we obtain j ¼ 1.2 × 104 A=cm2, an enhance-
ment factor of 70.6.
Clearly the CL-like dependence applies because of the

assumption that the electron flow generated in the outer
MITLs goes through the convolute without any of its
current being lost to the anode before the radial position
considered in Eqs. (23) and (24). Thus, the enhancement
we have derived in Eq. (24) should be an upper limit.
For the time in the pulse when the voltage is approx-

imately constant along the “inductance line” (İ ≃ 0 for
purely inductive loads) we have

Iion½A� ¼
Zrmax

rmin

2πj0rdr

¼ 1.23 × 10−5ðV3=2=d̄2Þ
ffiffiffiffiffiffiffiffi
Z=μ

p
r̄2 lnðrmax=rminÞ:

ð25Þ

The maximum and minimum radii of Eq. (25) are
approximately the convolute radius, and a radius close to
the load, respectively. Since the ion current in Eq. (25)
depends logarithmically on their ratio, we can take for
example that ratio to be, say 5. For the example EX
suggested above, we would therefore have Iion ≃ 3 MA.
We remark that these large ion losses result in some of the
ion current going in the direction of the power flow, thus in
turn modifying the structure of the magnetic field. We have
neglected this, as it is expected not to be a dominant effect
in our search for the main underlying mechanisms of ion
losses in the region of Z under consideration.

IV. CONCLUSIONS

We have been able to solve analytically in relevant cases
the 1D steady state equations in planar geometry, for ion
anode limited space charge current in the presence of an
electron layer undergoing laminar E ×B flow. We have
introduced this simplified model in search of an underlying
mechanism to elucidate current losses in the CR and inner
MITL of the Z machine experiments. In fact those experi-
ments are actually time dependent, and the experimental
arrangement corresponds to cylindrical 3D periodic geom-
etry at the convolute of Z, and 2D convergent geometry
elsewhere in Z, see Fig. 1. We found the possibility, within
this simple steady state 1D planar model, of high enhance-
ment factors for the ion current density over the ion-only
CL solution, for relatively small diamagnetic electron
current. We distinguished two cases: low and high enhance-
ment, for two-layer piecewise constant electron charge
density, depending on the values of the charge density on
those layers. This applies to high voltages and high enough
magnetic fields, as to make the E ×B flow assumption
valid, and for ion species not magnetically insulated, and
heavy enough to be able to neglect the magnetic field force
on them.
In the examples we have given in this paper we have

considered Cþ, rather than Hþ as the heavy ion, because
for the magnetic fields, voltage and anode-cathode gaps of
those examples protons are magnetically insulated, while
Cþ or for example Oþ are not. For the values we employed
in the examples, V ¼ 3 MV; B ¼ 1 MG; d ¼ 0.5 cm, the
proton Larmor radius is 0.25 cm, and instead it is 0.87 cm
for Cþ and 1.0 cm for Oþ.
We give the examples of those ions because water and

hydrocarbon desorption appear to be the main source of the
anode plasma, see Ref. [22] and references therein.
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However, protons would not be magnetically insulated
when voltage and magnetic field are such that the proton
Larmor radius, rproton½cm� ¼ 2.5 × 103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V½statV�p

=B½G� ≥
gðtÞ, is larger than the effective anode-cathode gap. This
effective gap results from both electrodes plasma expan-
sion. Moreover, for situations such as the HE regime
described in this paper, the effective gap would be
determined from the edge of the expanding anode plasma
and the virtual cathode, beyond which and up to the
expanding cathode plasma the electric field is zero and
the electric potential constant.
It is completely straightforward to do the relevant

calculations, using the models offered in this paper to then
compute the proton loss.
We remark that in dynamic calculations which ions

cross the gap depends on whether they are assumed to be
available in large enough densities in the anode plasma for
space charge limited emission to occur, and, as stated
above, on their local time dependent Larmor radius being
larger than the effective anode-cathode gap.
We conclude that either we have large enhancement

factors over CL, or there is no steady state situation like we
describe coming from the actual dynamics. That is, the
presence of electron E ×B flow of such magnitude as we
found necessary to provide those large enhancement factors
might be impossible. We could discern this by performing
idealized CHICAGO calculations with very high resolution.
For instance, we could do a 2D calculation at constant
voltage and prescribed magnetic fields at the electrodes,
where in a cathode anode gap a beam of electrons is
injected. We would need very high resolution and small
time steps, of the order of 10−3 cm, 10−14 s. Such a
calculation would clarify questions of instabilities, con-
vergence and actual electron charge density distribution.
Although there has been in the past several years ground

breaking LSP particle in cell code 3D simulations, in steady
state [23], and time dependent [24], of the Z convolute and
part of the inner MITL they were not geared to investigate
ion losses other than protons. The minimum radius simu-
lated was 4 cm. They were understandably performed with
relatively low resolution, of the order of 1 mm cells.
Moreover, to the best of our understanding they do not
contain analysis of, for instance, what is the local ion loss at
a given location “reading” the voltage and anode magnetic
field there, which is what would be needed for a direct
comparison between the simplified model presented in this
work and those simulations. This is the reason why we
suggest well-resolved calculations including smaller radii
to elucidate whether the mechanisms described here are
present in those numerical simulations we propose. We
believe that understanding of main mechanisms can only
enhance the design and interpretation of future numerical
simulations.
We have given a heuristic argument showing how to

recover a CL-like solution for the ion current density,

depending on the actual flow entering the gap from the
outer MITLs into the convolute and inner MITL of Z.
We show that the commanding factor is the average flow
impedance of the outer MITLs, determining the electron
flow input. We calculated the enhancement factor over the
ion only CL solution approximately.
The consequences of the finding of this model and our

heuristic arguments, assuming they happen to capture the
main mechanism of ion losses in the post-convolute region,
are as follows.
1. The high electric fields produced by the electron flow

in the absence of ion charge in that gap could perhaps be the
cause of the anode plasma creation, e.g., at electric fields
of 50–100 MV=cm, field ionization of the desorbed neutral
layer would be rapid. If this were physically realizable it
would add a mechanism of anode plasma formation, other
than Ohmic heating, electrons hitting the anode and
UV [22].
2. Ion current losses in the convolute and postconvolute

region depend entirely on what happens with the electron
flow at the outer MITLs, before the convolute. The loss thus
depends on voltage and flow impedance of the outerMITLs.
3. The highest fractional ion losses Iion=Ia occur at high

voltage and lower anode current, as shown in Eq. (25), i.e.,
the ion loss being proportional to V3=2 and independent of
the anode current.
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APPENDIX A: MEDIUM ENHANCEMENT
CASE: TWO ELECTRON LAYERS

We proceed to solve for the more general case in which
there are two layers with different dimensionless electron
charge densities (again piecewise constant), β ¼ β1, for
ν0 ≤ ν ≤ 1, and β ¼ β2 for 0 ≤ ν < ν0 and the electric field
being zero inside the physical gap. Then we have from
Eq. (10) for the upper and lower regions,
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u02 ¼ α=u − β1u=2; ν0 ≤ ν ≤ 1 ðA1Þ

ðu0uÞ2 ¼ ðβ2=2Þð−u2 þ q2uþ 1− γ20=2β2Þ; 0 ≤ ν ≤ ν0:

ðA2Þ

Equation (A2) satisfies the conditions uð1Þ ¼ 0, u0ð1Þ ¼ 0.
In Eq. (A2) we have defined q2 ¼ 2α=β2, and obtain it by
imposing continuity of u; u0, at ν0. The diamagnetic effect
condition of Eq. (9a) for this present case is

β1u20 þ β2ð1 − u20Þ ¼ γ20=2; where u0 ¼ uðν0Þ: ðA3Þ

The analytic solution νðuÞ for Eqs. (A1) and (A2) is then

ν ¼ 1þ
ffiffiffiffiffiffiffiffiffiffi
2=β1

p h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðq1 − uÞ

p − q1 arcsin
ffiffiffiffiffiffiffiffiffiffi
u=q1

p i
;

for ν0 ≤ ν ≤ 1

and for 0 ≤ ν ≤ ν0∶

ν ¼
ffiffiffiffiffiffiffiffiffiffi
2=β2

p n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−u2 þ q2uþ ð1 − γ20=2β2Þ

q

− ðq2=2Þ arcsin½ð2u − q2Þ=
ffiffiffiffiffiffi
det

p
�
o
þD: ðA4Þ

The constant D is determined by imposing the condition
νð1Þ ¼ 0, i.e.,

D ¼
ffiffiffiffiffiffiffiffiffiffi
2=β2

p h
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ q2 þ ð1 − γ20=2β2Þ

q

þ ðq2=2Þ arcsinð2 − q2Þ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q22 þ 4ð1 − γ20=2β2Þ
q i

;

where det ¼ q22u
2 þ 4ð1 − γ20=2β2Þ; qi ¼ 2α=βi; i ¼ 1, 2.

The charge densities α; β1; β2 must fulfill the following
constraints for a solution to exist, and satisfy the boundary
conditions, and the requirement that u0 ≤ 0:q1 ≤ 1, and
−u2 þ q2uþ 1 − γ20=2 ≥ 0; j2u − q2j ≤ 1, for 0 ≤ ν ≤ ν0.
A general solution would have three free parameters, for

instance β1; β2; u0. By requiring, as in the LE and HE cases,
that u00 ¼ u0ðν0Þ ¼ 0, for this extra condition only two
parameters are free, for instance β1; β2. From this condition
from Eqs. (A1) and (A2), it follows that

q1 ¼ 2α=β1 ¼ u0; and that −u20þq2u0þ 1− γ20=2β2 ¼ 0;

ðA5Þ

respectively. We recall that to realize the HE case one can
select β1 and it follows that β2 ¼ β1=2, determining all
other quantities; while in the LE we can chose β1 and make
β2 ¼ 0, also determining all the other parameters, as
discussed in Secs. II B 3 and II B 4 in the main text.
Applying the condition u00 ¼ u0ðν0Þ ¼ 0, we find from

Eq. (A4) the following nonlinear algebraic equation:

ν0 ¼ 1 − ffiffiffiffiffiffiffiffiffiffi
2=β1

p
ðq1π=2Þ

¼
ffiffiffiffiffiffiffiffiffiffi
2=β2

p �
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − γ20=2β2

q

þ q2
2

�
sin−1 ð2 − q2Þffiffiffiffiffiffi

det
p þ π=2

��
; ðA6Þ

where all the quantities appearing in this equation can be
expressed in terms of β1 and β2, employing Eqs. (A3)
and (A5).
From Eq. (A6), it is straightforward to verify that one

obtains the HE case for β2 ¼ β1=2, and the LE one
for β2 → 0.

APPENDIX B: REPRODUCING DESJARLAIS
ρ = 1 CASE FROM REFS. [18,19]

For this HE case with the virtual cathode inside the
physical gap, i.e., φðν0Þ ¼ 0, φ0ðν0Þ ¼ 0 0 < ν0 ≤ 1, we
have, directly from Eqs. (9) and (10),

α ¼ β1=2; β1 ¼ γ20=2: ðB1Þ

Also from Eq. (14),

ν0 ¼ 1 − π=γ0: ðB2Þ

To complete the statement of the problem we have to
impose flux conservation as it was done in Refs. [18,19].
That is,

F ¼
Zd

xc

Bdx ¼ B0d; ðB3Þ

where in (B3), F is the magnetic flux, and B0, xc, d are the
quantities defined in Ref. [19] (B0 here is the so-called B̄0

in that reference). Turning to the nomenclature of the
present paper, and in CGS-Gaussian units,

F ¼ B0d ¼ Vf ¼ V
Z1

νc

bdν;

where b≡ Bd=V; and ν ¼ x=d: ðB4Þ

The limiting voltage can be obtained by taking the limit
of the enhancement factor going to infinity, that is when
the applied magnetic ion diode impedance collapses, thus,
η ¼ ð9=4Þα ¼ ð9=16Þγ20 → ∞, or equivalently γ0 → ∞,
occurring as νc → 1.
Therefore,

V� ¼ B0d=f�: ðB5Þ
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To obtain the limiting dimensionless flux in the
electron layer we have from Eq. (9a) in terms of the
variable u,

f� ¼ lim
νc→1

Z1

νc

bdν

¼ lim
νc→1

Z1

νc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2c þ γ20ð1 − u2Þ

q
dν

¼ bc� lim
νc→1

Z1

νc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ20ð1 − u2Þ=b2c�

q
dν; ðB6Þ

where bc�d¼B0x0=ðdþx0Þ¼B0=4, x0¼0.5cm, d¼1.5cm.
By making the change of variables dν¼du=u0¼
−du ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4=uð1−uÞ=γ20
p

, which follows from Eq. (10a) and
(B1), the limit of the integral of the last equality of Eq. (B6)

becomes;
R 1

0
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð1þuÞp ¼½3 ffiffiffi

2
p

=2−lnð3þ2
ffiffiffi
2

p Þ�. Thus

from Eq. (B5),

bc�d ¼ B0x0=ðdþ x0Þ ¼ B0=4;

x0 ¼ 0.5 cm; d ¼ 1.5 cm;

From which it follows V� ¼ 0.595B0d, to three significant
figures, which is indeed the result of Ref. [19] for the
case ρ ¼ 1.
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