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Ambient mechanical vibrations could cause significant detuning in superconducting accelerating cavities,
disturbing the acceleration regime. The mechanical damper, first developed at Laboratori Nazionali di
Legnaro, Istituto Nazionale di Fisica Nucleare by A. Facco [Mechanical mode damping in superconducting
low β resonators, in Proceedings of the Eighth Workshop on RF Superconductivity, SRF’97, Abano Terme
(Padova), Italy, 1997 (JACoW, Geneva, 1997)], dissipates the kinetic energy of vibrations due to friction.
The study of damping efficiency, corresponding to the maximum cavity detuning, is addressed in this paper.
The mechanism of the damper parameters impacting on the maximum cavity detuning at a given excitation is
investigated. An analytical model of the damper has been derived to predict the nonlinear response.
Numerical results from simulations in ANSYS confirmed the model over a wide range of excitation. An
experimental demonstration has been conducted successfully on a test bench. Online measurements taken on
the ISAC-II superconducting linac at TRIUMF further verify the analytical model.
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I. INTRODUCTION

The coaxial quarter wave resonator (QWR) is widely
used in the low β section of heavy ion superconducting
accelerators [1–5] and in addition has been developed in a
deflecting mode geometry for high-luminosity colliders [6]
and even as a superconducting rf gun [7]. Its operational rf
mode resonated in a quarter wavelength brings compact-
ness but also an up and down asymmetry, which poses
issues of beam steering as addressed in Refs. [8,9] and
operation stability [10]. Because of the inner conductor of
the QWR acting like a long pendulum mostly at a
frequency of 50–100 Hz, ambient microphonic noise can
easily excite resonant mechanical mode vibrations. Under
the natural damping of the cavity material, niobium, in
general, large amplitude vibrations are likely to be devel-
oped. Correspondingly, the long decay time leads to the
resonant vibrations enduring for seconds. The induced
detuning from microphonic noise could bring the rf
resonant frequency of the cavity outside the bandwidth
of the low-level rf (LLRF) control system operation.
Unlocking in the accelerating field occurs often as a result.
Sufficient overcoupling of power couplers is required to

broaden the loaded bandwidth to maintain stable rf control
system operation in superconducting cavities [11]. But a
broader bandwidth proportionally takes more rf power to
generate the necessary field level in a cavity. Efforts on
complicated detuning compensation by using reactive
devices or a fast tuner have been made to allow operation
with less overcoupling [12–14]. On the other hand, a kind
of passive friction damper was first developed at Laboratori
Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare
(INFN-LNL) [10]. At 4.2 K, the options for the dissipation
of vibration energy are limited in the liquid helium bath due
to practical concerns of reliability. Frictional damping turns
out to be a natural choice. Besides the INFN-LNL frictional
damper, stainless balls inside of the inner conductors of
QWRs at Inter University Accelerator Center have also been
employed [15].
The INFN-LNL damper design has been employed in

several accelerator projects [3–5], including the ISAC-II
linac at TRIUMF, which consists of 20 superconducting
QWRs operating at 106 MHz [3] and 20 QWRs at
141 MHz. However, the damper parameters for the best
damping efficiency were not optimized for the design of
the ISAC-II QWRs. To generate 1 MVaccelerating voltage
in a 106 MHz QWR, 7 W of rf power is required for the
cavity while beam loading is negligible. To broaden the rf
bandwidth, overcoupling is used with a forward power of
∼200 W typically required. To compensate detuning, the
amplitude loop controller in the LLRF system increases the
rf power so that at the limits of the bandwidth a forward
power of 400 W is required. Higher forward power, in
particular, with a high standing wave ratio, increases the
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risk of overheating and rf discharge in rf cables of
the transmission lines as well as in couplers. As a result
of the discharge, there is the risk of contamination into
superconducting cavities for common vacuum design cry-
omodules or of permanent damage to the rf feed internal to
the cryomodule. Consequently, major intervention is neces-
sary afterwards. Rather than moving towards more robust
and expensive rf components, optimizing damping effi-
ciency is favorable so that the overcoupling can be reduced.
The damping effect is represented by an equivalent

mechanical quality factor to characterize the nonlinear
behavior of a damped QWR structure in Ref. [10]. The
derived quality factor is proportional to the vibration ampli-
tude and has an inverse proportionality to the damper mass.
However, this result is more applicable to the scenario
assuming free slipping over an oscillation cycle, though a
partial slipwas considered in themoderate excitation regime.
In the scopeof free slipping, the energydissipation by friction
is proportional to the vibration amplitude, while the stored
energy is proportional to the square of the amplitude. There
will be a tendency of stronger vibration and less damping
for the system response. The system could turn into an
unbounded instability. This paper presents a study to under-
stand the key factors impacting on damping efficiency and
the parameters controlling the maximum detuning level in
the operational condition. The analytical model developed in
this paper to address the issue of nonlinear system response
differs from the approach in Ref. [10] in three important
aspects. First, a time-varying model characterizing the
relative motion on the friction interface in an oscillation
cycle is introduced to derive the response at a moderate
excitation. This is crucial for understanding the mechanism
of the damper parameters impacting on the maximum cavity
detuning. Second, the excitation that defines the boundary
of a damping effective region is identified as a criterion of

recognizing system instability. Third, the model is further
extended to solve the response involving a two-dimensional
effect, which is arisen from the excitation in mutually
orthogonal directions. The paper is organized in the follow-
ing manner. Section II derives a theoretical model to predict
the response over a wide range of excitations. Section III
covers simulations in ANSYS performed to confirm the
numerical result and to capture the transient response in the
time domain. Experiments conducted on a bench setup to
demonstrate the theoretical model are reported in Sec. IV.
Online measurements on the ISAC-II linac are presented in
Sec. V, and conclusions are given in Sec. VI.

II. ANALYTICAL MODEL DEVELOPMENT

The inner conductor of a 106 MHz QWR is mechanically
coupled with a coaxial reinforcing tube by a damper
assembly as shown in Fig. 1. The principle of the damper
operation is described in Ref. [10]. Both the inner conductor
and reinforcing tube are fixed at the root. The damper
assembly rests on the frictional brass plate terminated bottom
of the reinforcing tube. It consists of three parts: a brass
damper weight, a stainless steel conical base, and three
coupling pins. The damper weight provides the main con-
tribution of normal load that applies to the frictional plate
from the damper. The three pins symmetrically spaced 120°
on azimuth are free to slip over both the inside of the QWR
inner conductor and the damper stainless steel base. They are
in contact by gravity from the brass load, which enables
motion transfer. Consequently, the vibration energy is dis-
sipated by friction when the damper moves on the fric-
tional plate.
In either orthogonal direction, the whole system can be

presented as a damped double mass-spring oscillator (see
Fig. 2) in a frictional contact. A single contact friction model

FIG. 1. The drawing of 106 MHz QWR with details of the damper assembly.
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is employed to capture the main characteristics of the system
response. The tip displacement of the reinforcing tube has
been scaled to that of the inner conductor by its fundamental
mode vector modulusϕd at the damper position. A harmonic
drive simulates excitations from the ambient noise. A drive
is acting in one direction, and the issue is said to be one
dimensional with the motion back and forth, while more
generally a two-dimensional motion is formed by multiple
excitations acting in mutually orthogonal directions. The
responses in both cases will be solved in sequence.

A. One-dimensional motion

The motion in the vertical direction with coordinate
labels U and Y is considered only. For convenience, to
solve a nonlinear problem with friction, all the lumped
parameters in Fig. 2 are nondimensionalized with the
following notations:

ϵ¼m2

m1

; p¼ k2
k1

; q¼ F
ϕdμN

; fN ¼ FN

ϕdμN
;

ω2
1 ¼

k1
m1

; Ω¼ ω

ω1

; u¼ k1U
ϕdμN

; y¼ k1Y
ϕdμN

;

t¼ ω1T; ξ1 ¼
c1

2
ffiffiffiffiffiffiffiffiffiffi
k1m1

p ; ξ2 ¼
c2

2
ffiffiffiffiffiffiffiffiffiffi
k2m2

p : ð1Þ

Here, μ is the sliding coefficient of friction, and N is the
normal force contributed by the entire damper assembly.
For sliding friction, fN ¼ 1. c1 and c2 are viscous damping
parameters defined by material properties of niobium and
stainless steel, respectively.
The system is governed by two equations of motion:

u00 þ 2ξ1u0 þ u ¼ q cosðΩtÞ − fN;

ϵy00 þ 2ξ2
ffiffiffiffiffiffi
ϵp

p
y0 þ py ¼ fN; ð2Þ

where the maximum response highly depends on the slip
rate of the damper. When the forcing drive magnitude q is
relatively low, the damper purely sticks to the frictional plate
underneath, and the entire system response is linear to the drive
with a higher natural frequency, Ω1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ pÞ=ð1þ ϵÞp
.

Equation (2) can be rewritten in a combined form:

ð1þ ϵÞu00 þ 2ðξ1 þ ξ2
ffiffiffiffiffiffi
ϵp

p Þu0 þ ð1þ pÞu ¼ q cosðΩtÞ:
ð3Þ

The resonant response is given by

A ¼ q
2ðξ1 þ ξ2

ffiffiffiffiffiffi
ϵp

p ÞΩ1

: ð4Þ

The system is linear with an increasing drive until the
maximum static friction is unable to maintain the coordi-
nating motions:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpA1 − ϵA1Ω2

1Þ2 þ ð2ξ2
ffiffiffiffiffiffi
ϵp

p
Ω1A1Þ2

q
¼ 1: ð5Þ

Plugging the result A1 into Eq. (4) yields the drive
magnitude q1 at which the damper is activated.
When relative motion between the damper and the

reinforcing tube is initiated, the response is no longer
linearly varying with the drive. Assuming that the steady-
state forced response is approximately harmonic, the
displacement offset u − y varies over a period of oscillation
as illustrated in Fig. 3. Relative motion occurs on the paths
with a nonzero slope. The maximum offset Δ is determined
by the slip rate out of a period. In the case of the linear
response, Δ ¼ 0. The energy dissipated in the relative
motion by friction per cycle is given by 4Δ. Averaging in a
cycle results in the energy balance in the steady state:

4Δ ¼ πðq − q1ÞA1: ð6Þ

The response amplitude is limited at A1, since the
presence of slip dissipates the portion of driven energy,
accounting for the further exponential rise on A1. This is in

FIG. 2. Equivalent spring-mass model of a QWR installed with
a damper.

FIG. 3. Time-varying displacement offset u − y over a period of
oscillation.
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analogous to the presence of beam loading counteracting
the exponential rise of a cavity field in the filling stage of an
rf cavity. A flattop of the field is resulted over a macrobeam
pulse. The partial slip in a cycle makes the damper work in
an efficient way, which has been suggested in the study on
aeroelastic instability control of engine airfoils [16,17].
This energy balance holds until the drive is sufficiently
strong for the damper to be able to freely slip in all the
cycle. Accordingly, Δ equals A1 and yields

q2 ¼
4

π
þ q1: ð7Þ

q2 is an approximation to the critical condition and slightly
higher than 4=π, since q1 ≪ 4=π. Beyond q2, the system
response is then dominated by the large-scale motion of
the inner conductor, and the resonance is rapidly shifted
towards its natural frequency. At resonance, Ω ¼ 1, the
energy balance relation similar to Eq. (6) is given by

4Aþ 2πξ1A2 ¼ πqA: ð8Þ

Here, the material damping of the reinforcing tube is
reasonably ignored. The corresponding response is written
in the form of

A ¼ q − 4
π

2ξ1
: ð9Þ

For a real solution, q should be greater than 4=π. Let A1

plug into the left part of Eq. (9), and a more conservative
boundary to instability is obtained as

q3 ¼
4

π
þ 2ξ1A1: ð10Þ

From Eq. (4), q3 is less than q2. As the drive is sweeping
over 4=π, the system response goes through a transition
from constant A1 to large-scale motion. Instead of using
more complex analytical methods to the approach, a sharp
corner (q3; A1) represents the transition which originally in
physics should be smooth. With this assumption and from
Eqs. (4), (5), (7), and (9), the maximum response of the
system at any harmonic excitation can be completely
obtained.

B. Two-dimensional motion

Two harmonic drives in the quadrature phase are applied
to m1 as seen in Fig. 2. If the two drives are in phase, the
problem is still in the scope of one dimension with the
combined motion in back and forth. In quadrature phase
thus is reasonably assumed. The two drives are first
assumed at the same amplitude. The governing motion
equation of system is written in a vector form:

�
v

u

�00
þ 2ξ1

�
v

u

�0
þ
�
v

u

�
¼ q

�
sinðΩtÞ
cosðΩtÞ

�
− fN;

ϵ

�
x

y

�00
þ 2ξ2

ffiffiffiffiffiffi
ϵp

p �
x

y

�0
þ p

�
x

y

�
¼ f N: ð11Þ

For q ≤ q1, the linear solution in Eq. (4) holds in the
motion of either direction. A circular path could be
visualized by the combined movements:

�
v

u

�
¼

�
x

y

�
¼ A

�
cosðΩ1tÞ
sinðΩ1tÞ

�
: ð12Þ

The friction force is in the form

f N ¼ fN

�
cosðΩ1tþ δÞ
sinðΩ1tþ δÞ

�
: ð13Þ

Here, the phase factor δ is determined by the rela-
tion tanðδÞ ¼ 2ξ2

ffiffiffiffiffiffi
ϵp

p Ω1=ðΩ2
1 − 1Þ.

For q > q1, dynamic friction is present. A phase shift is
required to allow relative motion:

f N ¼ fN

�
cosðΩ1tþ δþ ϕÞ
sinðΩ1tþ δþ ϕÞ

�
; ð14Þ

where its amplitude jf Nj ¼ 1. This implies a full slip all
over a cycle as long as sliding occurs and certainly differs
from one-dimensional motion in which a partial slip exists.
With respect to the displacements of both masses, the
integral in Eq. (14) over a period leads to the energy
balance equation

πA1½sinðϕþ δÞ − sinðδÞ� ¼ πA1ðq − q1Þ: ð15Þ
Here, in the integral, the displacements are given by

�
v

u

�
¼ A1

�
cosðΩ1tÞ
sinðΩ1tÞ

�
;

�
x

y

�
¼ A1

�
cosðΩ1tþ ϕÞ
sinðΩ1tþ ϕÞ

�
: ð16Þ

Equation (15) suggests that as in one-dimensional
motion there is also a damping effective region though
the damper slips fully in a cycle. The phase shift ϕ ranges
in ð0; π=2Þ, within which a constant response at A1 is kept
and bounded at π=2:

q2 ¼ cosðδÞ − sinðδÞ þ q1: ð17Þ

Typically, tanðδÞ ≪ 1, δ ≈ 0, and q2 is approximated as

q2 ≈ 1þ q1: ð18Þ

For q > q2, large-scale motion at the resonance ofΩ ¼ 1
will dominate the response. Ignoring the negligible motion
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of the reinforcing tube results in a similar energy balance
equation as Eq. (9):

πAþ 2πξ1A2 ¼ πqA ð19Þ

and yields the response

A ¼ q − 1

2ξ1
: ð20Þ

q > 1 is required for a valid solution. As the response
reaches A1, the corresponding drive q3 is defined as a
conservative boundary to instability:

q3 ¼ 1þ 2ξ1A1: ð21Þ

Likewise, the transition connecting the instability region
and the damping effective region is represented by a
corner, ðq3; A1Þ.
When the two drives are unequal at amplitude ð q

q−ΔqÞ, an
elliptical path will be formed. As for pure static friction
coupling, corresponding to q < q1, the solution is linear
and Eq. (4) applies. In the range of q1 < q < q1 þ Δq, the
motion is linear in U, while in the orthogonal direction it
follows the partial slip pattern. In terms of q1 þ Δq ≤ q <
q3 þ Δq, the drives could be equivalent to a combination of
a circular term and a linear one, qðsinðΩtÞcosðΩtÞÞ − Δqð 0

cosðΩtÞÞ. The
response will be the superposition of circular motion as
given by Eq. (16) and linear motion with a displacement:

�Δv
Δu

�
¼ �ΔA

�
0

sinðΩ1tþ θÞ

�
; ð22Þ

where tanðθÞ ¼ ð1 −Ω2
1Þ=2ξ1Ω1, the sign is defined by

that of q − q3, and the amplitude

ΔA ¼ Δqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 −Ω2

1Þ2 þ ð2ξ1Ω1Þ2
p ð23Þ

is typically far smaller than A1. The path will be an ellipse
slightlymodified froma circle. Beyondq3 þ Δq, large-scale
motion in the inner conductor will dominate the system
response [Eq. (20)], leading to instability eventually.

C. Numerical results

Numerical evaluations are performed for both one-
dimensional and two-dimensional models with the
response curves indicated in Fig. 4. The linear response
of the individual inner conductor, known as ðq=2ξ1Þ, is
added to explicitly visualize the damping efficiency. The
spring constants used in the evaluation were initially
derived from a model of an idealized cantilever beam
[18]. The extension effect at the root of the inner conductor
due to finite rigidness, however, introduces an appreciable

difference to the correct eigenmode frequency of the
fundamental mode (obtained either by a modal simulation
or by measurement). Length adjustments of the cantilever
beam for both the inner conductor and reinforcing tube
were applied afterwards to take the extension effect into
account. The physical displacement and driving force
should be scaled from the numerical result by the factors
of ϕdμN=k1 and ϕdμN, respectively. Figure 4 indicates that
an effective damping region exists in both response curves
where none of the resonant mode is completely developed
due to the presence of slip. Additional damping in the fully
stick stage benefits from slightly higher resonance Ω1 and
an enhanced natural damping ratio ξ1 þ ξ2

ffiffiffiffiffiffi
ϵp

p
. As for the

free slip stage, the damping efficiency degrades drastically
with an increasing drive, ending with negligible friction
damping resisting the large motion of the inner conductor.
For less vibration in the damping effective region, one
should either select a lighter damper or use a material
combination with a smaller friction coefficient at the
interface. Certainly, on the other hand, the system would
have a lower stability boundary 4ϕdμN=π and a reduced
range of effective damping as well.

III. SIMULATIONS

A. Modal simulations

Mechanical modal simulations for the full 3D model of
106 MHz QWR with the damper either restrained or
unrestrained were performed in ANSYS [20]. By means
of finite element methods, the eigenmode frequency could
be predicted precisely in the scope of linear response.
Without the damper, the main mechanical vibration reso-
nance of the inner conductor is 68.3 Hz. It increases to
76.2 Hz as the overall stiffness is enhanced somewhat when
the damper is fully stuck on the stainless steel reinforcing
tube. The displacement patterns for both cases are shown in

FIG. 4. Numerical evaluation of the analytic models for
both 1D and 2D motion. The parameters used for evaluation:
k1 ¼ 1.11 × 105 N=m, m1 ¼ 0.61 kg, ϵ ¼ 0.073, p ¼ 0.34,
ϕd ¼ 0.31, ξ1 ¼ 0.0013 (determined by measurements in
Sec. IV), and ξ2 ¼ 0.006 [19].
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Fig. 5. Considering the operational condition at 4.2 K, there
will be about a 15% rise on Young’s modulus of niobium
and a 7% rise for stainless steel [21,22], with a correspond-
ing 7.5% improvement on the modal frequency expected.

B. Transient simulation in one dimension

The numerical response of the QWR with a damper for
external excitations can be obtained from a simulation
using the ANSYS transient solver. The same cantilever
beam model adopted in Sec. II is used to simplify fine
geometric features in the full 3D model and avoids massive
mesh generation. The two cantilever beams are connected
by a contact element (CONTAT12) that represents the
damper. This simplified model consists of 33 meshes.
Multiple runs to identify the maximum response are
enabled with an acceptable time cost in both frequency
and drive sweeping of the harmonic drive, which is applied
to the inner conductor tip. The sliding coefficient of dry

friction 0.35 for a steel-brass interface is used [23]. The tip
displacement of the inner conductor is recognized as the
response and monitored over a wide range of drive.
Figure 6 (left) illustrates the transient response at q ¼
0.15 in the time domain. The flattop as a termination of the
exponential rise is clearly seen. Figure 6 (right) shows both
the simulation and analytical responses in good agreement.
A slight rise of amplitude appears from the presence of slip
in the simulation. The transition region as the drive crosses
over the stability boundary, 4=π, is captured in the transient
simulation. The evolutionary process of a slip rate with an
increasing drive is well demonstrated in a series of plots of
transient displacements (u; y; u − y) in Fig. 7. The motion
of the reinforcing tube is gradually out of tone with respect
to that of the inner conductor and becomes negligible when
the slip rate increases to the maximum. By rolling the
time axes into one period, the displacement offset u − y
becomes the same as Fig. 3.

FIG. 5. Displacement pattern of the fundamental mode with scale in microns. Left: No damper; right: damper installed. The left pattern
also includes the undeformed frame.
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FIG. 6. Left: Transient response at q ¼ 0.15 varying with time—the envelope is marked in red; right: simulation responses (1D and
2D) with the damper on—plots are added to Fig. 4 with a scale factor of ϕdμN=k1 and ϕdμN.
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FIG. 7. Normalized displacements (u; y; u − y) over time with an increasing drive (q).
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FIG. 8. Ellipse path formed under drives at unequal amplitude.

DAMPING OF VIBRATIONS IN SUPERCONDUCTING … PHYS. REV. ACCEL. BEAMS 22, 030103 (2019)

030103-7



C. Transient simulation in two dimensions

The same procedure of simulation is performed to
compute the maximum response in two-dimensional
motion. The element of CONTAT12 is replaced with the
more advanced one, CONTAT52, which is capable of
solving the two-dimensional friction problem. In Fig. 6
(right) is shown the simulation response by sweeping a
circular drive. The lower boundary of the damping effective
range with an offset of 0.27 to the one-dimensional case is
consistent with the analytical prediction 4

π − 1. Under an
elliptical drive in the damping effective range, the simu-
lated paths as shown in Fig. 8 compare well with the
predictions by Eqs. (16) and (22). The response is mainly
determined by the condition in Eq. (5) activating the
damper, and thus the path is visually closer to a circle.

IV. EXPERIMENTAL VERIFICATION

Harmonic response measurements on a spare 106 MHz
QWR were conducted to experimentally verify the pre-
dictions from both the analytical model and simulations.
The test bench was configured in the similar way as in
Ref. [10] and placed in a class 1000 clean room for ambient
stability. This allows us access to switch on and off the
damper during the measurement. The cavity was vertically
suspended on a rigid frame with a fixed support at the top.
A mechanical shaker driven by an audio amplifier was
linked with the cavity outer wall via a copper band to create
a forced vibration. Only one-dimensional excitation was

applied. An rf signal generator fed the cavity through the
power coupler port. As a reference, its frequency had been
tuned to the cavity resonance in the static state. The
electromagnetic field in the cavity was picked up via
another port. The induced cavity detuning with respect
to the reference is proportional to the response of the forced
vibration. The phase error Δφ between the pickup rf signal
from the cavity and reference is related to the detuning level
Δf by the formula

tanðΔφÞ ¼ 2QL
Δf
fr

; ð24Þ

whereQL is the loaded quality factor of the cavity and fr is
the reference frequency. This phase error was detected by a
phase detector and further processed into the spectrum in
a dynamic signal analyzer (DSA). The DSA also provided a
sinusoidal signal to drive the audio amplifier. The setup
schematic is depicted in Fig. 9. The conversion coefficient
to the cavity detuning level from the measured voltage at
the DSA was calibrated.
By sweeping the drive signal frequency, the resonance

measurement was first taken on the cavity with the damper
off. The frequency sweeping was performed manually with
one single frequency driving at each time to avoid any
possible interference. The fundamental mode is identified
at 68 Hz with a quality factor of 378, corresponding to a
natural damping ratio of 0.0013. Further decay time mea-
surements to confirm this material property gave consistent
results.
By fixing the drive frequency at 68 Hz, the linear

response of the cavity with the damper off was measured
as a baseline. The drive magnitude for the shaker was swept
over a wide range of 3 orders. This allows the investigation
of all the predicted stages for the following measurements
with the damper engaged to the cavity. Out of all the
damper parameters, only the dependence on damper weight
was examined for the practical concern of variable control.
The original damper assembly has a weight of 120 g.
Lighter ones of 85 and 60 g were prepared by modifications
only on the weight part, as seen in Fig. 10, while all the
shapes and materials of contact surfaces were kept the
same. All three dampers were measured consequently

FIG. 9. Schematic of the test bench.

FIG. 10. From left to right, the weight part photos of the 120 (original), 85, and 60 g damper assembly.
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without an interruption of force transmission between the
shaker and cavity. The common mode for the coupled inner
conductor and reinforcing tube as expected by the modal
simulation was measured at 77 Hz with a sufficient low-
level drive to avoid sliding. Figure 11 shows the response
curves in comparison to that without the damper. The trend
of the response curve with an increasing drive is consistent
with the analytical prediction. In the partial slip stage,
the amplitude rises, but a higher ramping rate than the
simulation is seen for all three dampers. With the presence
of slip, the lighter damper is more sensitive and provides
better damping efficiency. In the damping effective range,
reducing the damper weight leads to a proportional reduction
in the maximum detuning level (Fig. 12).

V. ONLINE MEASUREMENTS

Online measurements of microphonics detuning were
carried out on ISAC-II 106 MHz QWRs. The phase error
representing the cavity detuning level according to Eq. (24)
was detected by the phase detector in the tuner loop of the

LLRF board for each cavity. It could be accessed via an
additional output port of the phase error without interfering
with the machine running. Time series data were recorded
by the calibrated DSA with a maximum duration of 140 s.
The measured phase error is converted back to the detuning
level, which is plotted as a probability distribution with
Gaussian fitting (see Fig. 13 for an example). On average of
seven cavities, the rms detuning level is 1 Hz. Projected
to the plot in Fig. 11, the corresponding excitation that
leads to 1 Hz rms detuning is typically in the far left range,
where the damper fully sticks to the reinforcing tube. The
fundamental mode of inner conductor vibration is identified
as 82 Hz from the phase error spectra (Fig. 14), as expected
by the simulation. This frequency results from the common
mode of the bundled inner conductor and reinforcing tube.
The slight frequency rise with respect to that at room
temperature is accounted for by the increased stiffness
at 4.2 K.
It can be drawn from online measurements that the

excitations acting on the ISAC-II QWRs are normally in a
moderate range, where the dampers are not activated. Only
when the cavity is driven to large-scale vibration does the
damper turn into the slip regime. As a result, the vibration is
no longer on the track of exponential rising. Therefore, the
maximum detuning is limited by the vibration amplitude at
which the damper starts to slip. It is evident that it would be
better to have dampers that initiate slip at lower excitations,
particularly for the 106 MHz QWRs. Reducing the damper
weight is a simple way to improve the sensitivity as
demonstrated in the bench test. For the original damper
(120 g), slip onsets at a detuning level of about 20 Hz near
the operational bandwidth, leading to out of lock in the
phase loop. The 60 g damper reduces the maximum
detuning level to 9 Hz, which enables less overcoupling.
For stable operation, the loaded bandwidth is better to cover
the maximum detuning with an appropriate margin. As for
the 10% margin to the maximum detuning level, 20 Hz
of loaded bandwidth corresponds to a forward power of

FIG. 11. Responses (represented by detuning) of drive sweep-
ing with the damper off and with 120, 85, and 60 g dampers on.

FIG. 12. Detuning level in the presence of slip for various
damper weights.

FIG. 13. An example of microphonics detuning probability.
Gaussian fitting is included (σrms ¼ 0.9 Hz).
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100 W. With the friction interface kept, the lightest weight
that could be achieved by modifying the original design is
45 g. The reduction of the maximum detuning could be
speculated to be 63%. At a margin of 30%, 20 Hz of loaded
bandwidth takes 100 Wof rf power as well, but more stable
operations will be expected. Here, the speculation on
reducing the operational forward power has carried over
the measured data of the maximum detuning level from the
bench test into the online measurement. A constant sliding
coefficient of friction is assumed as well. There are actually
two contrary effects involved to account for the change of
the sliding coefficient of friction from room temperature to
4.2 K, including the hydrodynamics of lubrication and
temperature dependence, but which are roughly balanced
on the variation for the steel-brass friction joint [24].

VI. CONCLUSION

The damping of microphonics detuning in superconduct-
ing QWRs with frictional dampers is analytically addressed.
In the scope of one-dimensional motion, the solution for a
nonlinear system with friction is approached. The measure is
then extended to the scenario of two-dimensional motion
driven by multiple excitations in mutually orthogonal
directions. The numerical results of the analytical model
applied to the 106MHz QWR of ISAC-II are consistent with
that predicted by the transient simulations in ANSYS. It has
been shown that effective damping is maintained over a
wide range of excitation. By increasing the excitation, the
response amplitude holds at a relative low level along with a
slight ramp in the response curve. The predicted character-
istics of the response have been successfully demonstrated in
the bench tests.
The response variation in the slip regime is highlighted in

this work. The detuning measurements in the operational
condition indicate that the excitation imposed on the
QWRs is normally below the threshold level to start slip.
When large-scale vibration of the QWR inner conductor
is developed from environment noise, the presence of
slip curtails amplitude growth. The sensitivity to trigger

a slip could be adjusted by modifying the normal load of
the damper. A lighter damper is suggested to limit the
maximum detuning to a lower level as verified in the bench
tests with various damper weights. The maximum detuning
of 20 Hz for the original damper is reduced to 9 Hz for
the lightest damper with half the weight. One-third of the
weight could be achieved by modifying the original design
with a speculated reduction of the maximum detuning level
by 63%. Such an improvement would enable a reduction
in the bandwidth with more than a 50% reduction of
rf power. Further verification on the performance of a
modified damper implemented in the running cavities will
be done in future tests. The study in this paper for selecting
damper parameters could be extended to those supercon-
ducting QWRs that also employ frictional dampers in other
accelerators.
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