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A unit cell with one homogeneous bending magnet is commonly used in the design of multi-bend
achromat (MBA) lattices for the new generation of diffraction limited storage rings. But significantly lower
emittance at moderate focusing properties can be achieved by combining longitudinal gradient bends
(LGB) and reverse bends (RB) in a periodic lattice unit cell. LGBs alone, however, are of rather limited
gain. We investigate the emittance achievable for different unit cell classes as a function of the cell phase
advance in a general framework, i.e., with a minimum of assumptions on the particular cell optics. Each
case is illustrated with a practical example of a realistic lattice cell, eventually leading to the LGB/RB unit
cell of the baseline lattice for the upgrade of the Swiss Light Source.
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I. INTRODUCTION

The quantum nature of light is the origin of finite
emittance in an electron storage ring: sudden loss of energy
due to photon emission causes an electron to start a betatron
oscillation around the closed orbit corresponding to its
reduced energy. The orbit position as a function of energy is
given by the lattice dispersion. Thus emittance is mini-
mized by suppression of dispersion at locations where
radiation is emitted, i.e., the bending magnets (bends). In a
planar, separate-function lattice, this can be done in three
ways: (1) Horizontal focusing of the beam into the bends,
since dispersion occurs in the horizontal dimension in a
planar lattice. (2) Using many bends of small deflection
angle to limit the dispersion growth inside the bend. This is
the concept of the multibend achromat (MBA) lattice in its
classic form [1,2] and its modifications (hybrid MBA) [3].
(3) Variation of the magnetic field inside the bend to
compensate the growth of dispersion beyond the magnet
center. This is the concept of the longitudinal gradient bend
(LGB) [4]. For the new generation of diffraction limited
storage rings, technological progress enabled miniaturiza-
tion of vacuum chambers and magnets. This leads to a
reduction of unit cell length, so that the double or triple
bend achromats of third generation light sources could be
replaced by MBAs containing five or more lattice cells

within the same arc length, as pioneered by MAX IV [5].
Since the emittance ε scales with the inverse cube of unit
cell bending angle [6,7], the introduction of small-aperture
MBA lattices enabled emittance reduction by 1–2 orders of
magnitude compared to third generation light sources.
The emittance of a classic MBA is dominated by the

emittance of the unit cell. The two dispersion suppressor
cells at the ends of the arc are similar to half unit cells. The
unit cell is made from a bend and focusing elements
(i.e., quadrupoles) to provide periodic solutions for beta
functions and dispersion in order to string together
several cells.
The requirement of a horizontal focus in the bend

center for minimizing dispersion leads to a high horizontal
betatron phase advance 2ϕ of a low emittance cell. We
consider phase advances 2ϕ < π as sensible, because
solutions with 2ϕ > π require a second focus of the
horizontal beta function, resulting in rather long cells.
The so-called theoretical minimum emittance (TME) cell

provides the minimum emittance for a unit cell containing
one homogeneous bend, as can be shown without any
assumptions on the particular cell optics [8], but the
corresponding phase advance is very high. Therefore most
lattices are based on homogeneous-bend (HOM) cells at
lower phase advance providing about three times larger
emittance than the TME.
To further reduce the emittance, LGBs and reverse bends

(RB, also called antibends) gained interest: LGBs have the
potential to achieve sub-TME emittance by concentrating
the quantum excitation in regions of vanishing dispersion,
i.e., the bend center [9–11]. And (weak) RBs at the cell
ends are useful to reduce the dispersion at the LGB center
by manipulating the periodic solution of the dispersion
function [12–14].
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In this work we generalize the TME cell and the class of
homogeneous-bend cells towards two different bends per
cell with arbitrary longitudinal gradient but no transverse
gradient, still not making any assumptions on the detailed
focusing in the cell. This allows a general study of the
alternative concept of the RB cell with and without LGB in
a common framework.
It is shown that, while RB cells and LGB cells both may

have slight advantages over HOM cells, only a combination
of both (LGB/RB cell) enables superior emittance reduc-
tion and is also compatible with the requirements of classic
MBAs built from periodic unit cells.
In the following, we first discuss unit cells with one

bending magnet (Sec. II–IV) and then generalize to cells
with two different bending magnets (Sec. V). General
treatment of emittance, optimal parameters, and cell classes
is done with a minimum of assumptions on the particular
structure of the unit cell.
The design of a real cell, however, has to provide

horizontal and vertical stability, has to take into account
technical limitations and will strive for a minimum cell
length. Therefore, the general treatment of each cell class
is accompanied by the design [15] of a realistic example
cell, which eventually cumulates in the present baseline
design for the upgrade of the Swiss Light Source, SLS 2.0
[16–18] (Sec. VI).

II. UNIT CELLS WITH ONE BEND

We consider a half cell of unspecified length and
focusing properties, the ends of which are denoted by
indices q ∈ f0; 1g. The half-cell ends are symmetry planes
of optical functions (see Fig. 1).
The bending magnet at position 0 with full length 2L0

generates a total bending angle 2θ0 > 0, which for cells
with only one bend equals the bending angle per cell.
As this angle is small (θ0 ≪ 1), the effective focal length of
the bending magnet is f ¼ L0=θ20 ≫ L0 such that βðsÞ
approximately propagates like in a drift space, βðsÞ ¼
β0 þ s2=β0—this is consistent with [7,9,19] and confines

our model to magnets without transverse gradients. Thus
the phase advance in the bending magnet is always defined
by β0, resulting in a lower limit for the half-cell phase
advance

ϕ > arctanðL0=β0Þ or β0 > L0 cotϕ: ð1Þ

Unlike βðsÞ, the dispersion function ηðsÞ inside the bend
depends specifically on the shape of its magnetic field,
respectively the closed-orbit curvature bðsÞ, via [9]

ηðsÞ¼ η0þ
Z

s

0

η0ðs̃Þds̃; with η0ðsÞ¼
Z

s

0

bðs̃Þds̃: ð2Þ

The dispersion outside of the bending magnet depends
only on its length and bending angle, as at its ends
ηðL0Þ ¼ ηð−L0Þ and η0ð�L0Þ ¼ �θ0. It is therefore rea-
sonable for matching purposes to introduce the equivalent
dispersion value η∨ ¼ ηðL0Þ − L0 · η0ðL0Þ at the bend
center (position 0) that would occur if the bending magnet
was thin, but retained its bending angle (Fig. 1); this
method is also used in [20]. In case of a nonfocusing bend,
we can apply partial integration and obtain

η∨ ¼ η0 −
Z

L0

0

s · bðsÞds: ð3Þ

The horizontal transfer matrix of the half-cell [21] can be
expressed as

T ¼ B1RðϕÞB−1
0 with B ¼ 1ffiffiffi

β
p

�
β 0

−α 1

�
; ð4Þ

where Bq is the mapping from normalized phase space to
standard phase space at the respective end q of the half-cell,
and RðϕÞ is a clockwise rotation matrix with the half-cell
phase advance ϕ. The matching condition for the thin-
dipole dispersion can then be written as

B−1
1

�
η1

0

�
¼ RðϕÞB−1

0

�
η∨
θ0

�
: ð5Þ

Insertion of optics expressions for the Bq matrices using
symmetry conditions (αq ¼ 0) yields

P⃗1 ¼ RðϕÞP⃗0; with

P⃗0 ¼
1ffiffiffiffiffi
β0

p
�

η∨
θ0β0

�
; P⃗1 ¼

�
η1=

ffiffiffiffiffi
β1

p

0

�
: ð6Þ

This is shown in Fig. 2 with the half-cell phase advance

ϕ ¼ atan2ðθ0β0; η∨Þ; ð7Þ

FIG. 1. Course of dispersion and equivalent thin-dipole
dispersion for half-cells with one bend. The half-cell ends are
denoted by blue and orange lines. In the bend-free region (shaded
area), βðsÞ and ηðsÞ are unspecified.
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where atan2 is the four-quadrant inverse tangent, returning
the signed angle of a point ðx; yÞ in the Euclidean plane
with the x axis. It follows that

η∨ ¼ θ0β0 cotϕ: ð8Þ

The previously mentioned drift-space assumption for the
bend implies the horizontal damping partition Jx ≈ 1 [6], so
that the emittance contribution of a cell is proportional to
the fraction of radiation integrals [22]

ε ∝
I5
I2

with I5 ¼
Z

jb3ðsÞjHðsÞds; ð9Þ

I2¼
Z

b2ðsÞds; and HðsÞ¼ γη2þ2αηη0 þβη02 ð10Þ

being the dispersion action. Throughout the cell, the action
of thin-dipole dispersion

HBF ¼ jP⃗0j2 ¼
η2∨
β0

þ θ20β0 ¼ jP⃗1j2 ð11Þ

is constant (Fig. 2), and thus HBF is also the dispersion
action in the bend-free region.

III. HOMOGENEOUS BEND

For a homogeneous-bend cell (HOM cell) with curvature
b ¼ θ0=L0, the fraction of radiation integrals from Eq. (9)
simplifies to

I5
I2

¼ θ0
L0

hHi0 ¼ θ30hĤi0; ð12Þ

where h·i0 denotes the average over the length of the
bending magnet [22], and the normalized average of the
dispersion action is defined via

hĤi0 ¼
hHi0
L0θ

2
0

: ð13Þ

Again using the drift-space approximation for βðsÞ in the
bending magnet and Eq. (2), this average can be rewritten
as (Appendix B 1)

hĤi0 ¼
L0

β0

��
η0

θ0L0

�
2

−
1

3

�
η0

θ0L0

�
þ 1

20

�
þ 1

3

β0
L0

: ð14Þ

A. The TME condition

Minimization of hĤi0 with regard to β0, η0 yields the
theoretical minimum emittance (TME) conditions [8]

βTME
0

L0

¼ 1ffiffiffiffiffi
15

p ≈ 0.258;
ηTME
0

θ0L0

¼ 1

6
; ð15Þ

and thus by Eq. (3) with the integral term simplifying to
θ0L0=2 (see [7]), using Eqs. (7) and (12)

ðI5=I2ÞTME ¼ θ30
2

3
ffiffiffiffiffi
15

p ;

ϕTME ¼ π − arctan

ffiffiffi
3

5

r
≈ 142.2°: ð16Þ

The TME cell provides the minimum possible emittance for
a single homogeneous bend per cell, but requires a large
phase advance 2ϕ. Also, considerable focusing into the
bending magnet is required to reach the necessary β0.
For the following parts of this work, all emittances are

compared to that of the ideal TME cell (implying a
homogeneous bending magnet). We therefore define the
emittance ratio in accordance with [14] as

F ¼ I5=I2
ðI5=I2ÞTME

: ð17Þ

B. Emittance in the (ϕ, β0) plane

To obtain minimal emittances for a HOM cell at a fixed
phase advance, one can insert the homogeneous case
bðsÞ ¼ θ0=L0 into Eq. (3) and the phase relation following
from Eq. (8), so that

η0ðβ0;ϕÞ ¼
1

2
θ0L0 þ θ0β0 cotϕ: ð18Þ

With this expression, Eq. (14) can be transformed to
depend on β0 and ϕ,

hĤi0ðβ0;ϕÞ ¼
2

15

L0

β0
þ AðϕÞ β0

L0

þ 2

3
cotϕ

with AðϕÞ ¼ 1

3
þ cot2ϕ: ð19Þ

The optics settings for minimal emittance at a given phase
then follow via

FIG. 2. Normalized phase space for dispersion. To enforce
ϕ < π=2, P⃗0 is rotated so that η∨ > 0 (dashed line).
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βopt0 ðϕÞ
L0

¼
ffiffiffiffiffiffiffiffiffiffi
2=15
AðϕÞ

s
: ð20Þ

The aforementioned relations for HOM cells are shown
in Fig. 3. It is apparent that sensible phase advances 2ϕ < π
can only be realized at significantly higher emittances
F > 2.45 relative to a cell fulfilling the TME condition.

C. Homogeneous-bend (HOM) example cell

In a series of examples throughout this work, we
demonstrate the development of a lattice cell [15], starting
with a HOM cell. All example cells have sufficient space to
install additional sextupole magnets at proper positions,
and their specifications can be found in Appendix A. The
bend half-length was chosen as L0 ¼ 0.2 m, and assuming
a beam energy of 2.4 GeV, the half angle was set to
θ0 ¼ 2.5°. For these values, the emittance of a TME cell
is εTME ¼ 121 pm.
A common technique to reduce the TME cell phase

advance consists in detuning η∨ to positive values so that
ϕ < π=2 (see Fig. 2). The half-cell phase advances of the
example cell were fixed at ϕ ¼ 0.43π in the horizontal
plane and ϕy ¼ 0.13π in the vertical plane—the higher
horizontal than vertical tune results from focusing into the
bend in order to achieve small emittance. Fixing the half-
cell length to 1.1 m constrains β0 to a larger-than-optimal
value of 0.183 m. The example cell parameters are also
marked in the emittance surface in Fig. 3.
Figure 4 shows the optical functions and the magnetic

field. The emittance of this HOM cell is ε ¼ 454 pm
(or F ¼ 3.75).

IV. LONGITUDINAL GRADIENT BEND

We continue the study by replacing the homogeneous
bend with an LGB. As variation of field in a longitudinal
gradient bend can be chosen arbitrarily, a general closed-
form solution without detailed specification of the field is at

FIG. 3. Emittance ratio F in the ðβ0;ϕÞ plane for HOM cells. Black isolines show values of F in integer steps up to 10. The gray
isolines in the green area show values F < 2 in steps of 0.1. The blue line shows βopt0 ðϕÞ, resulting in minimal emittance at a given phase.
The TME condition F ¼ 1 is indicated by a black dot. The example cell parameters are indicated by the cross marker. Parameters in the
gray area (bottom left) are not attainable.

FIG. 4. Half cell with a homogeneous bend. The upper plot
shows the optical functions βx (blue), βy (gray) and dispersion ηx
(red). The lower plot shows the pole-tip field components for
R ¼ 13 mm half gap (or bore radius): dipole (B, black), quadru-
pole (B0R, red), and sextupole (B00R2=2, green).
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least cumbersome, and a variety of different magnet
profiles for LGBs have been considered, e.g. [9–11].
In this work, we show elementary properties of LGBs

using a simple curvature function with only one free
parameter (Sec. IV B), and then generalize some properties
to numerically optimized free-form LGBs (Sec. IV C).
Our description of the emittance contribution from

longitudinal gradient bends closely follows [9]. To describe
the variation of curvature in the bend, we define a
normalized curvature function as

b̂ðsÞ ¼ L0

θ0
bðsÞ; with hb̂ðsÞi ¼ 1; ð21Þ

so that the emittance integrals in the bends can be expressed
using averages via

Ið0Þ5 ¼ jθ0j5
L0

hjb̂3jĤi0; Ið0Þ2 ¼ θ20
L0

hb̂2i0; ð22Þ

and Eq. (9) simplifies to

I5
I2

¼ θ30
hjb̂3jĤi0
hb̂2i0

: ð23Þ

The numerator expression can be written as (Appendix B)

hjb̂3jĤi0 ¼ C ·
β0
L0

þ L0

β0
·D

�
η0

θ0L0

�

with C ¼
�
jb̂3j

�
η0

θ

�
2
�
;

DðxÞ ¼ hjb̂3jix2 − 2hjb̂3jvixþ hjb̂3jv2i: ð24Þ

After division by the denominator term hb̂2i, the magnet-
specific coefficients of the DðxÞ polynomial (defined using
the lever function v, see Appendix B) and the coefficient C
replace constant values in the description of the homo-
geneous bend in Eq. (14). These parameters are dimension-
less variants of the In terms for the symmetric bend in [9].
Based on Eq. (3), a further magnet-specific parameter V

is required to normalize the difference between the
dispersion value η0 at the center bend and the equivalent
thin-dipole dispersion η∨ [7]

η∨ ¼ η0 − Vθ0L0 with V ¼
�
b̂

s
L0

�
: ð25Þ

To characterize the concentration of magnetic field or
curvature in the central bend region, we introduce the field
enhancement factor [9]

R ¼ maxbðsÞ
hbðsÞi ¼ b̂ð0Þ: ð26Þ

The four quantities C, D, V, R fully describe the radiation
and optics properties of the LGB in our model. The
calculation of all required magnet-specific variables from
the normalized curvature b̂ðsÞ is shown in Appendix B.

A. Emittance in the (ϕ, β0) plane

To obtain the emittance for a given phase advance of the
cell, one inserts the phase relation following from Eqs. (25)
and (8),

η0ðβ0;ϕÞ ¼ Vθ0L0 þ θ0β0 cotϕ; ð27Þ

into Eq. (24) so that

hjb̂3jĤiðβ0;ϕÞ ¼
L0

β0
DðVÞ þ AðϕÞ β0

L0

þ Ã cotϕ

with AðϕÞ ¼ Cþ hjb̂3jicot2ϕ;
Ã ¼ 2ðhjb̂3jiV − hjb̂3jviÞ: ð28Þ

The calculation of optimal β0ðϕÞ is analogous to
Eq. (20). Substituting this result into Eq. (28) yields

hjb̂3jĤioptðϕÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðVÞAðϕÞ

p
þ Ã cotϕ: ð29Þ

The optimal phase can be derived from allowing the
derivative with respect to cotϕ to vanish, so that

2hjb̂3ji
ffiffiffiffiffiffiffiffiffiffiffi
DðVÞ

p
cotϕopt ¼ −Ã

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðϕoptÞ

q
: ð30Þ

The constraint bðsÞ ≥ 0 results in Ã > 0 (Appendix B). As
all other quantities but cotϕ are also positive, this implies in
our context that the optimal cell phase advance 2ϕ is larger
than π for any LGB cell with only positive curvature in its
bend. In this case,

ϕopt ¼ π − arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DðVÞhjb̂3ji2

CÃ2
−
hjb̂3ji
C

s
: ð31Þ

B. Inverse distance-scaling magnet shape

To proceed further, we need to specify the shape of
longitudinal field variation b̂ðsÞ. We use the curvature
function

b̂ðsÞ ¼ R
wðsÞ for s ≤ L0; ð32Þ

where wðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðs=hÞ2

p
is a normalized distance to a

point in the magnet midplane s ¼ 0with a transverse offset
h. Due to the inverse dependence of curvature on this
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distance, the shape is named “inverse distance-scaling
magnet” (IDM) in the following. As a distinction between
the usage of IDM and more general LGB field shapes as
main bend, we refer to the former as “IDM cell” and to the
latter as “LGB cell.”
The IDM curvature has the advantage of being differ-

entiable for all values jsj < L0, leading to a smooth yoke
shape (see, e.g., [23]). For s > L0, the curvature vanishes. It
thus can in principle be realized “as-is” when not consid-
ering fringe fields at the magnet end.
The field enhancement factor for the IDM shape is then

given by

R ¼ L0=h
arsinhðL0=hÞ

: ð33Þ

In the limit h → ∞, equivalent to R → 1, the IDM reduces
to a homogeneous magnet of length L0 (Sec. III A).
Emittance integrals and related quantities are computed
in Appendix B.
The properties of IDM cells in dependence of R are

shown in Fig. 5. For optimized cell phase advance ϕ and
β0, the emittance of the LGB cell relative to a HOM cell

with equal ϕ, β0 can be significantly reduced for increas-
ing R. This optimal phase advance unfortunately
increases with R, such that for any given phase in the
region of interest (2ϕ < π), there exists a critical field
enhancement factor above which the IDM cell emittance
is actually larger than that of a HOM cell. We can also
observe that in the region of interest, F < 2 is not
possible. On the other hand, we observe that R ≤ 2 is
sufficient. This missing emittance reduction is a result of
the improperly matched optics at the bend for sensible
phase advances (especially the lower dispersion bound
η0 > Vθ0L0 for 2ϕ < π).
To select a proper field enhancement for a study of the

(ϕ, β0) plane, we choose R ¼ 2 which is moderate and
technically feasible for many setups and in principle allows
significant emittance reduction. The characteristics of the
LGB cell with this field enhancement factor are shown in
Fig. 5 (bottom left). On the one hand, the capability of the
IDM cell in reducing emittance for large phase advances
relative to HOM cells is again obvious. On the other hand,
the emittance reduction for sensible phase advances is
marginal, although having the advantage of being robust
toward increasing β0.

FIG. 5. Properties of the IDM shape. Top: TME emittance ratio F for optimal β0 in dependence of R, ϕ. The red line shows ϕopt for
given R. The dark-yellow line shows the optimal field enhancement R for given ϕ. Above the dotted line (critical field enhancement),
a HOM cell tuned to the LGB-optimal parameters ϕ, βopt0 yields lower emittance than the LGB cell. The region with F < 1 is shaded in
blue (see legend in Fig. 3). Bottom left: F in the ðβ0;ϕÞ plane for an IDM with R ¼ 2; the optimum emittance is denoted with a blue dot.
Right: IDM on-axis field profile for R ¼ 2.
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C. Optimized free-form LGBs with positive curvature

Is the limited performance of IDM cells for sensible
phase advances a phenomenon that generalizes to all LGB
cells? For given ϕ, β0, we strive to find a curvature shape
with bðsÞ ≥ 0 that minimizes F, in other words the func-
tional FðbÞ. While dipole field optimizations have been
performed in many other works, the transfer matrix of the
cell is either not kept constant during optimization [11,24],
resulting in detuning of β0, ϕ during the procedure; or the
projected dispersion and its derivative are set to vanish at
some position in the lattice [25].
Since there is an infinite space of possible field shapes

bðsÞ, we need to apply reasonable assumptions for the
following search. For the field shape to be a physical
solution, it should be possible to create it as a perturbation
of a homogeneous bend, and it should thus be accessible by
local optimization, using the parameters of a homogeneous
bend as initial values.
The optimal shape can be approximated numerically by

discretising b̂ðsÞ into values bq (details in Appendix B 3).
We apply automatic differentiation [26,27] to obtain the
gradient of the objective function Fðb1;…bQÞ. The objec-
tive function and its gradient are used as input to the
limited-memory Broyden-Fletcher-Goldfarb-Shanno algo-
rithm with box constraints (L-BFGS-B) [28].
The optimization is carried out independently for each

point on a grid in the (ϕ, β0) plane. For all points with the
largest value of β0=L0 ¼ 1, the initial values are set to
bq ¼ 1, equivalent to a homogeneous bend. For all other
points, the optimized shape from the next-larger β0=L0

value at equal ϕ is used for initialization, requiring the
optimization loop along the β0 dimension to be carried out
in reverse order. To prevent the numerical discretization

of bðsÞ from influencing convergence at very high field
enhancement factors, we limit the scope of our optimiza-
tion study to 2ϕ ≤ 210°.
The results of this computation are shown in Figs. 6

and 7. Emittance in the (ϕ, β0) plane is always reduced
relative to the TME case (Fig. 3), and the achieved
emittance is robust regarding changes in β0: due to the
length-related quantities β, η in our model scaling with L0,
one can always find a similar F value when reducing β0 and
the s dimension of b̂ðsÞ simultaneously while keeping its
integral constant (“squeezing”). The optimization shows
this effect if lower values of F cannot be found by reducing
β0 and leads to reduced magnet lengths (see example
shapes in Fig. 6).

FIG. 6. TME emittance ratio F and example curvatures for free-form LGB cells with the constraint of positive curvature bðsÞ ≥ 0.
Left: F in dependence of β0, ϕ (see legend in Fig. 5). Colored markers denote the curvature examples in the right plot. Right: curvature
examples for setups marked in left plot.

FIG. 7. Comparison of minimum possible emittances for
HOM cells, optimized LGB cells with positive curvature,
and IDM cells.

LOW EMITTANCE LATTICE DESIGN FROM FIRST … PHYS. REV. ACCEL. BEAMS 22, 021601 (2019)

021601-7



On the one hand, significant emittance reduction is
possible for large phase advances, where high field
enhancement factors occur for the magnet shapes
(like for the IDM special case). On the other hand, within
our assumptions we observe that for sensible phase
advances 2ϕ < π, no optimized shape leads to a TME
emittance ratio F ≤ 2. In this regime, IDM shapes with
R ≤ 2 at their optimal β0 values actually yield a comparable
performance to the optimized LGB shapes (Fig. 7).

D. LGB example cell

As a continuation of the example of Sec. III C, a
longitudinal gradient bend is introduced by insertion of
the appropriate optimized field profile for given β0 and ϕ as
obtained in the last section. After insertion of the modified
bend, slight modifications of quadrupole strengths are
required to maintain ϕ, ϕy at their previous values (with
almost equal β0 ¼ 0.184 m, example parameters marked
in Fig. 6). The cell optics and magnet characteristics are
shown in Fig. 8. The LGB field possesses a moderate
enhancement factor of R ≈ 1.4 and leads to an emittance
ε ¼ 419 pm (or F ¼ 3.46) of this example LGB cell, which
is a marginal improvement by 7.7% relative to the HOM
example (this reduction is mainly produced by an increase
of I2 rather than reduction of I5, see Fig. 18). Both findings
are consistent with our model predictions regarding sen-
sible phase advances 2ϕ < π.

E. Optimized free-form LGBs with arbitrary curvature

Constraining the bend to possess only positive curva-
tures bðsÞ ≥ 0 and sensible phase advances 2ϕ < π causes
η0 > Vθ0L0 > 0 to have a finite, positive lower bound. In
consequence, the dispersion action HðsÞ in the bending
magnet also has a lower bound—enhancing the peak field
of an LGB can only minimize I5 and thus the emittance to a
given extent. To investigate this limit in the following, the
constraint bðsÞ ≥ 0, which has been applied in the previous
optimization of the free-form LGB shapes, is removed.
The full optimization procedure is again performed on

the curvature shapes using L-BFGS-B [28], but without
application of bounds on bq. We obtain significantly lower
emittances in the region 2ϕ < π compared to the case of
positive curvatures (compare Fig. 9 with Fig. 6)—indeed

FIG. 8. Example half cell with optimization of longitudinal
field variation (b ≥ 0) in its bend (see Fig. 4 for legend.)

FIG. 9. TME emittance ratio F and example curvatures for optimized LGB cells without sign constraints on bðsÞ (see Fig. 6 for
legend).
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emittances F < 2 and even F < 1 are possible, although
large field enhancement is required.
The interesting regions in Fig. 9 (left), where the phase

advance is sensible (2ϕ < π) and small emittance (F ∼ 1) is
obtained, are adjacent to the region where all phase advance
is contained inside the bend [gray shaded area defined by
Eq. (1)]. This means that the bend basically fills the cell. As
visible in Fig. 9 (right), the curvature switches sign—one
may interpret this behavior as the free-form LGB actually
splitting into a main bend of positive curvature and a
reverse bend (RB) of negative curvature. There is no
focusing element located between the bends, so that βðsÞ
behaves like in a drift space and is only refocused at the cell
end. The focusing element could be imagined as a thin
quadrupole as studied in [14]: in this idealized setup, βðsÞ
also behaves like in a drift space over the full cell length,
containing bends of opposite polarity.
The significant reduction at sensible phase advance is

due to a combined action of LGB and RB. With the RB at
the end of the cell, the phase advance between RB and main
bend is not much less than 90°, so a negative kick on
dispersion −Δη01 applied by the RB translates in a reduction
of η0, and with it H0, at the main bend center, which
enables the LGB to efficiently suppress emittance by
adjusting the curvature bðsÞ appropriately.
Unboundedness of bðsÞ means that V and thus η0 can be

chosen more or less freely for a given transfer matrix by
adjusting the RB acting as lever at the cell end (Fig. 10). We
also note from the optimized shapes in Fig. 9 that the
reverse-bend strength is largest near the magnet end, where
βðsÞ ∝ s2 reaches its maximum. This is reasonable as
perturbations in orbits and dispersion scale with

ffiffiffi
β

p
,

making adjustments there more effective.
At this point, we refer to the recent work [29], in which a

general numerical optimization of a periodic lattice cell is
performed using the different approach of parametrization

and optimization of distributed magnet strengths. Most
interestingly, using an emittance minimization objective,
the resulting dipole field shapes in [29] are qualitatively
similar to the bðsÞ shapes in Fig. 9. This increases our
confidence that reverse bending is an intrinsic feature of
low-emittance lattice design.

V. REVERSE-BEND CELLS

Since reverse bends naturally emerge from the optimiza-
tion of the free-form LGB and reveal the potential to realize
F < 2 emittance at sensible phase advance (2ϕ < π), we
proceed with a study of a modified unit half-cell composed
from two discrete magnets, which may possess opposite
polarities. Unit cells including reverse bends have been
considered for a wiggler storage ring [12], are an established
concept used for damping rings [13] and have recently been
suggested for use in modern synchrotron light sources [14].
A generalization of the dispersion matching condition

from Sec. II to cells with two bends allows to keep the fol-
lowing study free from the specification of focusing ele-
ments. A second bending magnet with full length 2L1 and a
total bending angle 2θ1 ≠ 0 is introduced at the opposite
half-cell end (see Fig. 11). We define the equivalent thin-kick
dispersion for the second bend in analogy to Eq. (3) as

η∧ ¼ η1 −
Z

L1

0

s · bðsÞds: ð34Þ

Then the condition for dispersion matching Eq. (5) modifies
to

B−1
1

�
η∧
−θ1

�
¼ RðϕÞB−1

0

�
η∨
θ0

�
; ð35Þ

so that Eq. (6) holds with a more general expression for

P⃗1 ¼
1ffiffiffiffiffi
β1

p
�

η∧
−θ1β1

�
: ð36Þ

FIG. 10. Behavior of dispersion in an LGB cell for constant β0
and ϕ < π=2 (and thus η∨ > 0) with only positive curvature
(black) and with alternating curvature (red). The reverse curvature
allows η0 < η∨. To keep the total bending angle constant
including negative curvature, the overall positive curvature is
increased.

FIG. 11. Dispersion η0, η1 and equivalent thin-dipole dispersion
η∨, η∧ for a half cell with unspecified interior and θ1 < 0
(compare to Fig. 1).
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The dispersion matching in this general cell is sketched
in Fig. 12 with the additional definition

ψ ¼ atan2ð−θ1β1; η∧Þ; ð37Þ

so that when denoting the cell phase advance from Eq. (7)
as ϕiso, we obtain modified phase advance and dispersion
expressions

ϕ ¼ ϕiso − ψ ; η∨ ¼ θ0β0 cotϕiso; ð38Þ

θ1
ffiffiffiffiffi
β1

p
¼ −

ffiffiffiffiffiffiffiffiffi
HBF

p
sinψ ; η∧ ¼ −θ1β1 cotψ : ð39Þ

The phase advance of a two-bend cell is reduced relative to
an single-bend cell with identical β0, η∨ values only if

ψ ∈�0; π½⇔ −θ1β1 > 0 ⇔ θ1 < 0 ð40Þ

so that the additional dipole magnet bends the beam in
opposite direction relative to the main bend. This setup is
known as a reverse-bend cell (or antibend cell) [14].
As transverse kicks scale with

ffiffiffi
β

p
, we expect a relation

between β1 and reverse bend angle jθ1j. For larger β1, the
reverse bend will become more effective, requiring less
bending angle and thus contributing less to the emittance,
which naturally makes optics settings with large β1
beneficial for reverse-bend cells. In general, however, the
parameter β1 is limited towards large values by optics
constraints (e.g., cell length, see also Sec. VI), which need
to be balanced with the available emittance reduction.
Furthermore, we mention that the linear momentum

compaction, proportional to the radiation integral

I1 ¼
Z

ηðsÞbðsÞds ð41Þ

is reduced for reverse-bend cells relative to cells with
bðsÞ > 0. This quantity should be considered in a realistic
lattice design and also depends on the particular field
shapes in each bend.

A. Relative length of bending magnets

As ηðsÞ and βðsÞ in the RB region are rather large and do
not vary much, the gain from a longitudinal field variation
would be negligible, and one can therefore assume the RB
to be homogeneous. In consequence, its radiation proper-
ties are fully characterized by Eq. (14) when replacing the
index 0 with 1,

hjb̂3jĤi1 ¼ hĤi1 with η1 ¼ η∧ þ 1

2
θ1L1: ð42Þ

Then the ratio of radiation integrals depends on the ratio of
bending magnet lengths,

Ið0Þ5 þ Ið1Þ5

Ið0Þ2 þ Ið1Þ2

¼ θ30
hjb̂3jĤi0 þ ðL0=L1Þjθ̂j5hĤi1

hb̂2i0 þ ðL0=L1Þθ̂2
;

with θ̂ ¼ θ1=θ0: ð43Þ

For simplicity we will assume that the RB has approx-
imately same field strength like a homogeneous main
bend, b ¼ θ0=L0, although eventually its length L1 may
be optimized with regard to minimum contribution to I5
(long RB) on one side and minimum cell length (short RB)
on the other side. Then,

L1=L0 ¼ jθ̂j: ð44Þ

To compare emittances of unit cells with two bends with
that of the TME cell, their half-cell bending angles should
be equal. Defining this angle as Θ ¼ θ0 þ θ1 for unit cells
with two bends, we use the relationΘ=θ0 ¼ 1þ θ̂ to obtain
the TME emittance ratio of a general unit cell with bend
lengths defined by Eq. (44) as

F ¼ 3
ffiffiffiffiffi
15

p

2

hjb̂3jĤi0 þ θ̂4hĤi1
ð1þ θ̂Þ3ðhb̂2i0 þ jθ̂jÞ ; with

θ̂4hĤi1 ¼
L0

β1

�
jθ̂j

�
η1

θ0L0

�
2

−
θ̂3

3

�
η1

θ0L0

�
þ jθ̂5j

20

�

þ jθ̂3j
3

β1
L0

: ð45Þ

B. Degrees of freedom and optimization

Besides the characteristics of the main bending magnet,
the emittance ratio F of the reverse-bend cell in Eq. (45) is
fully defined by β0, η0 at the main-bend center, β1, η1 at the
reverse-bend center (all lengths and angles in units of L0,
θ0), and θ̂. These five parameters are also sufficient to find
the half-cell phase advance ϕ. One degree of freedom is
absorbed by enforcing P⃗0 and P⃗1 to be located on a circle
(equal HBF, Fig. 12), so that four degrees of freedom
remain.

FIG. 12. Normalized phase space for dispersion in a two-bend
cell with θ0 > 0, θ1 < 0 (reverse-bend cell).

B. RIEMANN and A. STREUN PHYS. REV. ACCEL. BEAMS 22, 021601 (2019)

021601-10



To obtain some insight into the emittance properties of
the cell relative to cells with one bend, we choose the free
parameters as ðβ0;ϕ; β1; θ̂Þ. One may then numerically find
the optimal F for a given set of parameters ðβ0;ϕ; β1Þ with
the free parameter θ̂ using, e.g., direct search as performed
in the following cases, and show slices of the resulting
three-dimensional parameter space.

C. Reverse-bend cells with homogeneous
main bend (HOM/RB cells)

For a homogeneous main bend, one can replace hjb̂3jĤi0
in Eq. (45) with hĤi0 from Eq. (14) and set hb̂2i0 ¼ 1,
obtaining a simplified emittance expression

F ¼ 3
ffiffiffiffiffi
15

p

2

hĤi0 þ θ̂4hĤi1
ð1þ θ̂Þ3ð1þ jθ̂jÞ : ð46Þ

Although hĤi1 > hĤi0, the θ̂4hĤi1 summand is small
relative to hĤi0. The major effect on the emittance is then
given by hĤi0, as in the TME cell, and the changes in
bending angle described by the denominator. Thus we can
expect that without constraints, the optimal values of β0, η0
will only slightly deviate from those of the TME cell.
The results of the numerical optimization for given

β0, ϕ0, β1 are presented in Fig. 13. The parameter space
splits into three regions with regard to θ1. A small region
with vanishing θ1 exists that is limited toward small
and large phase advances; the emittance in this region is
thus identical to that of a HOM cell. For large phase
advances, θ1 > 0, and the emittance reduces even below
F < 1. This behavior can be interpreted as the two-bend

cell approximating a double-period TME cell, which would
be reached at ϕ ¼ 2ϕTME, β0 ¼ βTME

0 and would result
in F ¼ 1=8.
For sensible phase advances 2ϕ < π, the bending angle

of the second bend is reversed as expected. Comparing to
the considered one-bend cells with positive curvature, the
F < 2 region now extends into the range of sensible phase
advance, so that lower emittances are feasible.
One can furthermore observe the found relation between

β1, θ1, and emittance: low jθ1j allows to reach lower
emittances, but requires large β1 values, while larger
absolute reverse-bend angles allow moderate β1 values at
less emittance reduction.
We conclude that at moderate reverse bending angles

jθ1j < θ0=5, significantly lower emittances than with an
LGB or HOM cell are possible for the interesting range of
phase advances due to prevention of optical mismatch at the
main bend, which is a clear advantage of this cell type.

D. HOM/RB example cell

Adding a small reverse bend of length L1 ¼ 0.05 m
(L1 ¼ L0=4) to the HOM example cell (Sec. III C)
increases its length, but effectively reduces the dispersion
at the main bend center, see Fig. 14. The reverse bend is
shifted from the half-cell end, allowing for the installation
of a sextupole magnet at that symmetry point and leading to
half-cell length of 1.2 m (Appendix A).
Here the RB angle was set to θ1 ¼ −0.2°, and the angle

of the main bend θ0 was increased by −θ1 to maintain the
total cell deflection (θ̂ ¼ 0.074). As a consequence the field
in the main bend is higher since its length was maintained.
At unchanged phase advances ϕ, ϕy (resulting in increased

FIG. 13. Emittance ratio F for RB cells (see legend in Fig. 3) with different values of β1 at the reverse-bend center. From left to right:
β1 ¼ 20L0, β1 ¼ 40L0, β1 ¼ 30L0. Red lines show θ1=θ0 for the respective cells in steps of 0.05. At large phase advances, two isolines
for θ1 ¼ 0 (actually �10−4) delimitate a “plateau” of vanishing reverse bending angle, the black dot marking the TME condition like
in Fig. 3.
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β0 ¼ 0.198 m), the emittance shrinks to ε ¼ 325 pm (or
F ¼ 2.69), which is a reduction of 28% relative to the
HOM cell example (Sec. III C).

E. Reverse-bend cells with IDM
as main bend (IDM/RB cells)

Lowering η0 by means of RBs eventually enables an
LGB as main bend to efficiently reduce the emittance: a
central peak of high field concentrates most bending and

quantum emission in a region of small H, while the decay
of field strength towards the edges compensates for the
inevitable growth of H, thus minimizing the radiation
integral I5.
When optimizing the LGB, two concerns have to be

taken into account: As the width of a magnetic field peak
cannot be significantly smaller than the magnet gap, such a
large field enhancement R does not correspond to a realistic
magnet design. Furthermore, the equilibrium energy dis-
tribution of particles [22],

σ2δ ∝
I3
I2

with I3 ¼
Z

jb3ðsÞjds; ð47Þ

may become too large for high peak field, as I3=I2
generally increases with R. Thus, a realistic model to be
investigated is a unit cell using an IDM with limited R as
main bend, and a homogeneous reverse bend.
The necessary computations have already been carried

out in Sec. IV, resulting in Eq. (24), Eq. (25), and at the
beginning of this section, resulting in Eq. (45). We again
use an IDM with field enhancement factor R ¼ 2 and insert
its parameters into the numerical optimization procedure
for RB cells.
The results of this procedure are shown in Fig. 15.

Like for HOM/RB cells, the region of low emittances is
extended into the range of phase advances 2ϕ < π by virtue
of the reverse-bend scheme.
As can be observed in comparison with Fig. 13, the

emittance of an IDM/RB cell can be significantly smaller
than that of a HOM/RB cell and potentially even reach
F ≤ 1.
We conclude that the figures of merit being low cell

phase advance, optics matching in the main bend and
exploitation of LGB characteristics cannot not be reached

FIG. 14. Example RB cell with homogeneous main bend,
utilizing a reverse bend for suppression of dispersion at main
bend (see Fig. 4 for legend.)

FIG. 15. Emittance ratio F for LGB/RB cells with IDM magnet at R ¼ 2 (see legend in Fig. 13) with different values of β1 at the
reverse-bend center. From left to right: β1 ¼ 20L0, β1 ¼ 40L0, β1 ¼ 30L0.
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simultaneously using HOM, LGB (b ≥ 0), and HOM/RB
cells, and that the LGB/RB cell type (as a generalization
of IDM/RB cells) yields superior performance to the other
investigated cell types. To apply further boundary con-
ditions on the cell design, we need to assume specific
properties on the quadrupole array in the cell interior (see
also Appendix C for an elementary procedure using thin
lenses).

F. LGB/RB and IDM/RB example cells

With an RB providing the means to suppress the
dispersion (and with it the dispersion action H) at the
main bend center, optimization of the field variation
now efficiently suppresses the fifth radiation integral by
pushing the central field peak to very high values (LGB/RB
example, Fig. 16). LGB profile and RB angle were
optimized in common, since a high field peak calls for
central dispersion close to zero, resulting in θ1 ¼ −0.275°.
At unchanged tunes ϕ, ϕy, the emittance is reduced to
165 pm (or F ¼ 1.36), which is only 36% of the HOM cell
example (Sec. III C).

The problem of large field enhancement (see Sec. V E)
is partially circumvented by using an IDM as main bend
(IDM/RB example, Fig. 16). The emittance ε ¼ 200 pm
(or F ¼ 1.65) is still only 45% of the value for the HOM
cell—actually this ratio is smaller than the product
of emittance ratios using only LGB without RB (92%,
Sec. III C) and using only RB without LGB (HOM/RB,
72%, Sec. V D). Still, a moderate field enhancement factor
R ¼ 2 corresponds to a peak field Bmax ≈ 4 T in our
example cell.
As Bmax ∝ 1=L0 for fixed field enhancement, the main

bend length would need to be doubled to obtain similar
emittances using a normal-conducting magnet, also ben-
eficially reducing β0 < L0=2. To maintain the focusing
constraints of the considered example cell, the main bend
would be required to spatially overlap with the adjacent
vertically focusing quadrupole.

VI. THE SLS 2.0 UNIT CELL

In the previous sections, unit cells made of separate-
function magnets have been considered, optimizing the
emittance using the radiation integrals I5 (which only
affects transverse emittance) and I2.
In this section, we release the constraint of using

separate-function magnets, which was required for our
simplified dispersion matching and emittance model
(where βðsÞ in bending magnets propagates like in a drift
space). This opens up the possibility of further manipu-
lating the emittance via the horizontal damping partition
Jx ¼ 1 − I4=I2, as is explained in more detail e.g. in
[1,6,14]. The emittance then proportional to

F∝
I5
I2Jx

¼ I5
I2−I4

with I4¼
Z

ηbðb2þ2kÞds; ð48Þ

where k ¼ db=dx is the normalized transverse gradient,
k > 0 resulting in horizontal focusing.
It is thus possible to decrease F by introducing simulta-

neous bending and focusing so that ηb · k < 0. For positive
dispersion, this requires vertical focusing in the main bend
and horizontal focusing in the reverse bend; conveniently
the gradients perform the function of a quadrupole doublet
as required for focusing at sensible phase advances 2ϕ < π.
In addition, the combination of the LGB with a quadru-

pole effectively increases L0 and thus allows high field
enhancement at lower absolute curvatures (see Sec. V F).
The transverse gradient is included near the magnet ends
with lower curvatures, where it is technically feasible.
Eventually, a real lattice cell based on the aforemen-

tioned combined-function magnets is shown in Fig. 17: it is
the unit cell of the new storage ring for the upgrade of
the Swiss Light Source SLS, named “SLS 2.0” [16–18].
Here the tunes were slightly shifted to Qx ¼ 0.4285 ≈ 3=7
and Qy ¼ 0.1429 ≈ 1=7 for optimal cancellation of sextu-
pole and octupole resonances over an arc made of seven

FIG. 16. Top: Field variation in a longitudinal gradient bend
efficiently exploits the suppression of dispersion enabled by the
reverse bend (see Fig. 4 for legend.) Bottom: Magnetic field of an
LGB/RB example cell utilizing an IDM with R ¼ 2.
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cells [30]. The RB is merged with the horizontally focusing
quadrupole—essentially the RB is a horizontally shifted
quadrupole. The LGB is a permanent magnet with mod-
erate peak field. The low field in the end pieces provides
margin to introduce a transverse gradient for vertical
focusing. The bending angles are θ0 ¼ 1.93°þ 1.2° (cen-
tral half LGBþ end piece) and θ1 ¼ −0.63° (RB), giving
5° deflection for the complete unit cell.
Since time-of-flight effects in main and reverse bends

compensate to some extent, LGB/RB cells become almost
isochronous when tuned to the minimum emittance for
given phase advance, which to some extent could be an
attractive feature for damping rings. In light sources,
however, longer bunches are required to provide adequate
beam lifetime and instability thresholds. Therefore the RB
angle in the SLS 2.0 cell is increased beyond its optimum
value in order to realize a sufficiently large negative
momentum compaction factor while accepting the emit-
tance to be 9% larger than its possible minimum value.
A comparison of I2 and I5 radiation integrals for all

considered example cells is shown in Fig. 18. The fraction
of radiation integrals I5=I2 of the SLS 2.0 unit cell is
located between that of the LGB/RB and IDM/RB
examples. Both radiation integrals are lower in the SLS
2.0 case, since the fields on average are lower due to the
increased effective length L0 of the main bend. Thus, in
comparison to the example cells, the major emittance
reduction in terms of I5=I2 is due to reduction of I5, which
is beneficial as this integral only affects transverse
emittances.

The final emittance of this unit cell is further reduced
through the increased damping partition number Jx. A
positive transverse gradient in the RB and a negative
gradient in the main bend both shift the damping partition
in favor of the horizontal dimension resulting in Jx ¼
1.795, whereas jJx − 1j < 2 × 10−3 in all previous example
cases (see drift-space assumption, Sec. II).
After application of all described optimizations and

design choices, a unit cell emittance of ε ¼ 99 pm is
obtained for a beam energy of 2.4 GeV, which corresponds
to a TME emittance ratio F ¼ 0.82.

VII. CONCLUSION

1. We reviewed the commonly known fact that the TME
condition is not realized in MBA unit cells due its high
phase advance 2ϕ > π. Instead, HOM cells with sensible
phase advances 2ϕ < π are used. The resulting optical
mismatch in the bend causes an emittance increase of such
cells (F > 2.45). 2. We demonstrated that LGB shapes [9]
exist which provide significant emittance reduction at their
optimal, very high phase advances ϕ > ϕTME, but which
actually provide only marginal emittance reduction com-
pared to a a HOM cell for sensible phase advances. Even
without specification of any particular shape, there seems
to exist a principal limit F > 2 of achievable emittance
reduction by LGBs for sensible phase advances. 3. Free-
form optimization of LGB curvatures without constraints
on curvature polarity results in two regimes: positive
curvatures in the magnet center and negative curvature at
its ends, i.e., the bend naturally splits up into a main bend
and a reverse bend. 4. The concept of the reverse-bend cell
[14] has been revisited. It has been shown that for sensible
phase advances, the reverse-bend cell is able to provide
significantly lower emittances than HOM cells through

FIG. 17. The unit cell of the SLS upgrade lattice “SLS 2.0”
represents a fully optimized, real LGB/RB cell (see Fig. 4 for
legend).

FIG. 18. Comparison of radiation integrals I5 and I2 for the
example half-cells including SLS 2.0. The area of the respective
rectangles is proportional to the emittance when approximating
Jx ¼ 1.

B. RIEMANN and A. STREUN PHYS. REV. ACCEL. BEAMS 22, 021601 (2019)

021601-14



suppression of dispersion in the main bend center (F < 2 is
possible for 2ϕ < π). 5. When combining a reverse bend
with an LGB (LGB/RB cell), its potential in emittance
reduction can be fully exploited and even lower emittance
values F < 1 are also possible for sensible phase advances
2ϕ < π: a central peak of high field concentrates most
bending in the region of suppressed dispersion, while
decay of field strength toward the edges compensates for
the inevitable growth of dispersion, thus minimizing the
quantum excitation integral.
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APPENDIX A: EXAMPLE CELL
CHARACTERISTICS

All example half-cells but the SLS 2.0 cell start with the
following sequence (1) main half-bend (length L0 ¼ 0.2 m,
bending angle θ0 ¼ 2.5°). (2) drift space (length 0.05 m).
(3) defocusing quadrupole (length 0.15 m, focusing
strength kD). (4) drift space (length 0.45 m). This space
is sufficient for a defocusing sextupole magnet. In our
example, the magnet starts 0.05 m from the beginning of
the drift and is 0.1 m long. (5) focusing quadrupole (length
0.15 m, focusing strength kF).
If no reverse bend is included, the sequence is concluded

with (6a) drift space (length 0.1 m). This drift space is
sufficient for a focusing sextupole with 0.1 m length,
centered in the symmetry point. The total length of this
half-cell is 1.1 m. For the HOM cell, the main bend is
homogeneous by definition. For the LGB cell, the opti-
mized main bend can be described in good approximation
by the field

BðsÞ ¼ 2.695T −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.1T2 þ 75 ðT=mÞ2s2

q
: ðA1Þ

With a reverse bend, the mentioned main half-bend is
modified so that its angle is θ0 − θ1. The sequence

TABLE I. Focusing strengths k, natural chromaticities ξnat,
and required integrated sextupole strengths m to compensate
chromaticities to zero, for four example cells.

HOM LGB HOM/RB IDM/RB

kD [m−2] −5.2707 −5.3384 −5.1781 −5.2445
kF ½m−2� 7.7810 7.7860 7.7528 7.7567
ξxnat −1.0908 −1.0899 −1.0090 −1.0046
ξynat −0.3063 −0.3063 −0.3418 −0.3427
mD [m−2] −20.300 −20.291 −21.807 −22.624
mF [m−2] 13.009 13.000 13.288 13.409

FIG. 19. Dispersion in normalized phasespace (black lines) for
four example cells; the line thickness corresponds to local field
strength. Markers indicate P⃗0 (blue) and P⃗1 (orange). Dashed
lines mark the betatron phase at the exit of the main bend (blue)
and the entrance of the reverse bend (orange). Thus the angle
between solid and dashed line of the same color is the phase
advance inside the respective half-bend. The angle included in the
shaded arc (limited by P⃗0, P⃗1) is the half-cell phase advance
ϕ (77.4° for shown examples).

LOW EMITTANCE LATTICE DESIGN FROM FIRST … PHYS. REV. ACCEL. BEAMS 22, 021601 (2019)

021601-15



continues as (6b) drift space (length 0.05 m). (7) reverse
half-bend (length L1¼0.05m, bending angle θ1 ¼ −0.2°).
(8) drift space (length 0.1 m). As this is the last element
of the sequence, the drift space is sufficient to install a
focusing sextupole with 0.1 m length, centered in the
symmetry point. The half-length of such a cell is 1.2 m.
While the main bend of the HOM/RB example cell is again
homogeneous, the main bend of the IDM/RB example cell
obviously is an IDM with field enhancement factor R ¼ 2
(Sec. IV B).
The parameters and resulting natural chromaticities

of four example cells are listed in Table I. Figure 19
shows their dispersion trajectories in the normalized
phase space.

APPENDIX B: EMITTANCE COEFFICIENTS
FOR MAGNETS

With the drift-space assumption βðsÞ ¼ β0 þ s2=β0 and
Eq. (2), and omitting the indices of Lq, θq for convenience,
the normalized dispersion action of Eqs. (12) and Eq. (13)
evaluates to (see [9])

Ĥ ¼ H
Lθ2

¼ L
βq

��
ηq
θL

�
2

− 2
ηq
θL

vðsÞ þ v2ðsÞ
�
þ βq

L

�
η0ðsÞ
θ

�
2

:

ðB1Þ

where we introduced the lever function

vðsÞ ¼ 1

θL

�
sη0ðsÞ −

Z
s

0

η0ðs̃Þds̃
�

¼ 1

θL

Z
s

0

s̃bðs̃Þds̃:

ðB2Þ

Multiplication of Eq. (B1) and averaging results in
hjb̂3jĤi. The prefactor of βq=L modifies to

C ¼
�
jb̂3j

�
η0

θ

�
2
�
; ðB3Þ

while the prefactor of L=βq modifies to

hjb̂3ji
�
η0
θL

�
2

− 2hjb̂3jvi
�
η0
θL

�
þ hjb̂3jv2i: ðB4Þ

These remaining four averages in hjb̂3jĤi only depend
on b̂ðsÞ.
To furthermore compute the phase advance for any

magnet, a relation between η∨ and η0 (or η∧ and η1) is
established by the thin-dipole dispersion difference

η0 ¼ η∨ þ Vθ0L0 with V ¼ vðL0Þ: ðB5Þ

For magnets with positive orbit curvature, b, η0, v are all
positive; in this case, the lever function and its final value
are related as V ¼ vðL0Þ ¼ max vðsÞ. For Eq. (28) positive
curvature thus implies

Ã ¼ 2ðhjb̂3jiV − hjb̂3jviÞ ¼ 2hjb̂3jðV − vÞi > 0: ðB6Þ

1. Homogeneous magnet

For this magnet type, extending from 0 < s < L,

b̂ðsÞ ¼ 1;
η0ðsÞ
θ

¼ s
L
; vðsÞ ¼ 1

2

�
s
L

�
2

: ðB7Þ

Note that the sign of bending angle is normalized out
of b̂, so that it can also be used for reverse bends. This
results in

hjb̂3ji ¼ 1; hjb̂3jvi ¼ 1

6
; hjb̂3jv2i ¼ 1

20
;

hb̂2i ¼ 1; V ¼ 1

2
; C ¼ 1

3
: ðB8Þ

2. Inverse-distance scaling magnet (IDM)

Using the inverse distance wðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðs=hÞ2

p
, the

dispersion-related functions of the IDM are obtained as

η0ðsÞ
θ

¼ arsinhðs=hÞ
arsinhðL=hÞ ; vðsÞ ¼ Rðh=LÞ2ðwðsÞ − 1Þ;

V ¼ Rðh=LÞ2ðW − 1Þ with W ¼ wðLÞ: ðB9Þ

Most emittance coefficients can be expressed via aver-
ages of the form hw−mi with positive integer m,

hb̂2i ¼ R2hw−2i; hjb̂3ji ¼ R3hw−3i;
hjb̂3jvi ¼ R4ðh=LÞ2ðhw−2i − hw−3iÞ;
hjb̂3jv2i ¼ R5ðh=LÞ4ðhw−1i − 2hw−2i þ hw−3iÞ: ðB10Þ

The case m ¼ 1 of this average evaluates to hw−1i ¼
arsinhðL=hÞ · h=L. For larger m, one may use the sub-
stitution u ¼ arctanðs=hÞ so that the integrand transforms
to cosm−2 u; the integral is then solved by recursive
application of the cosine reduction formula.
The remaining coefficient for the emittance is

C ¼ R3

arsinh2ðL=hÞ
�
arsinh2ðs=hÞ

w3

�
: ðB11Þ
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Introducing the abbreviation a ¼ arsinhðL=hÞ, the average
harsinh2ðs=hÞ=w3i evaluates to

h
L

�
dilogð1þ e−2aÞþa2

L=h−W
W

−2a lnð1þ e−2aÞþ π2

12

�

with the dilogarithm dilog z¼
Z

z

0

ln t
1− t

dt: ðB12Þ

3. Free-form LGB shapes

For numerical integration, we split bðsÞ into a piece-wise
constant function with Q pieces

b̂ðsÞ ¼ bq for sq−1 < s < sq; ðB13Þ

with s0 ¼ 0, sQ ¼ L, and the values sq being equidistant
with Δs ¼ L=Q. In that case, η0ðsÞ is a piece-wise linear
function with

η0ðspÞ
θ

¼ 1

Q

Xp
q¼1

bq ðB14Þ

being a cumulative sum (0 < p ≤ Q). The lever function
Eq. (B2) follows as

vðspÞ ¼
1

Q

Xp
q¼1

sq þ sq−1
2L

bq: ðB15Þ

The emittance coefficients have more complicated depend-
encies on the bq values, and one may compute them
using the numerical average in good approximation,
subsequently calculating F using Eq. (28).
Note that all described calculations (also including the

normalization requirement η0ðLÞ ¼ θ) are differentiable
transformations of the parameters bq, which allows us to
compute the gradient of the discretized functional dF=dbq
for all q.

APPENDIX C: MATCHING THE BEND-FREE
REGION FOR GIVEN PARAMETERS

Of the four free parameters of a reverse-bend cell ϕ, β0,
β1, θ1=θ0, the former three parameters define the half-cell
transfer matrix T via Eq. (4), and the ratio θ1=θ0 defines the
magnet lengths L0, L1 via Eq. (44). The magnet transfer
matrices are assumed as drift spaces D0, D1. In conse-
quence, the horizontal transfer matrix of the bend-free
region can be calculated as

M ¼ D−1
1 B1RðϕÞB−1

0 D−1
0

¼ 1ffiffiffiffiffiffiffiffiffi
β0β1

p
�
β1 −L1

0 1

�
RðϕÞ

�
1 −L0

0 β0

�
: ðC1Þ

To obtain a half-cell for given ϕ; β0; β1, the transfer matrix
M of the bend-free region must thus be matched by a given
array of quadrupoles, while also guaranteeing vertical
stability. This naturally requires two or more quadrupoles,
separated by drift spaces.
The conceptually simplest example is a Galilean tele-

scope, modeled using two thin lenses with focal lengths of
different signs f0, f1 directly attached to the ends of the
bending magnets, and an intermediate drift space of length
d. As the transfer matrix of this telescope must be M, one
obtains

d ¼ M12;
d
f0

¼ 1 −M11;
d
f1

¼ 1 −M22: ðC2Þ

The sign of f0 is given by the calculation of M11 from
Eq. (C1)

M11 ¼
ffiffiffiffiffi
β1
β0

s
cosϕþ L1ffiffiffiffiffiffiffiffiffi

β0β1
p sinϕ: ðC3Þ

For the interesting range of phase advances ϕ < π=2 and
under the assumption β1=β0 ≫ 1, we conclude that the
focal length of the main-bend lens f0 is negative.
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