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A metallic metasurface-based laser-driven particle accelerator for subrelativistic particles is proposed
and studied theoretically. The metasurface consists of a nonperiodic array of nanoslits which focuses the
field of the driving laser, utilizing the phenomenon of extraordinary plasmonic transmission, to maximize
the acceleration gradient. In order to account for the actual change in the particles’ velocity during their
propagation through the structure, the separation between successive slits is not constant but rather
optimized according to the expected trajectory of the particles. The metasurface laser accelerator (MLA) is
designed for an ultrafast driving laser source operating at 2 μm wavelength. An approximate analytical
model verified by particle tracking simulations predicts a net average acceleration with a normalized
acceleration gradient of 1.34 times the incident laser field. Compared to other laser-driven accelerator
designs, the MLA provides substantially higher efficiency, due to the field enhancement associated with
nanoantennas, and relaxed fabrication challenges (especially for subrelativistic particles). It is found that
the output particle beam is microbunched, suggesting the possibility of using a short MLA structure as a
prebuncher to improve the initial capture efficiency in a subsequent longer MLA device. The impact of
space-charge effects is also studied, and the loaded gradient and optimal bunch charge are estimated.
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I. INTRODUCTION

Laser-driven particle accelerators are emerging as a
unique and powerful approach for obtaining very large
acceleration gradients, compared to conventional radio
frequency (rf) accelerators, by utilizing commercially
available ultrafast lasers and well-established nanofabrica-
tion methods. Acceleration gradients of several hundreds of
MeV=m have been demonstrated by dielectric laser accel-
erators (DLAs) employing SiO2 [1–5] and silicon [4,6–9]
gratings for both relativistic and nonrelativistic electrons.
More recently, it was shown theoretically that employing
plasmonic nanostructures to realize metasurface laser
accelerators (MLAs) could enable similarly high acceler-
ation gradients with improved efficiency [10].
The underlying concept of laser-driven structure-based

accelerators is to utilize the strong electric field of an
ultrafast laser pulse to excite a suitable electromagnetic

mode in a photonic structure in order to accelerate charged
particles. In order to synchronously accelerate a particle,
the phase velocity of the electromagnetic accelerating mode
must be matched to the instantaneous speed of the particle.
As discussed in Sec. II, for slab-symmetric side-driven
structures such as the one discussed here, the phase velocity
is set by the use of periodic features along the acceleration
axis fabricated into the structure. Achieving synchronism
for highly relativistic particles is relatively simple, as the
velocity of the particles does not change appreciably during
the acceleration process. As a result, the corresponding
periodicity (or unit cell length) is constant [4,11,12]. For
subrelativistic electrons, on the other hand, the particles
do change their velocity as they gain energy, thus neces-
sitating tapered structures where the local periodicity varies
gradually along the structure. The design of such tapered
structures is not obvious, as it requires solving for the
particles’ velocity profile along the accelerator simulta-
neously with the electromagnetic problem. In addition,
accelerating slower particles necessitates denser and
smaller feature sizes, rendering the fabrication of such
accelerators more challenging.
Although phase velocity tapering is a well-established

approach in contemporary rf-based accelerators [13,14], it
has been scarcely studied in the context of laser-driven
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accelerators. Breuer and Hommelhoff used a fused silica
grating structure for nonrelativistic electron acceleration
and discussed the possibility of cascading such (discrete)
structures with varying periodicity to improve synchronism
[6]. It should be noted, however, that this structure operated
at the third spatial harmonic of the fundamental mode,
which relaxes the fabrication challenges and allows for
subrelativistic phase velocity. Nevertheless, operating at a
higher harmonic reduces the accelerating gradient. More
recently, Niedermayer, Boine-Frankenheim, and Egenolf
proposed a silicon-based chirped accelerator structure
where the period is modified continuously according to
the expected trajectory of the accelerated particles [15].
In this paper, we present and study a new MLA concept

which is based on extraordinary transmission [16] through a
metasurface comprising a nonperiodic array of slot nano-
antennas. In contrast to most DLA and MLA structures
presented previously [1–10,12,15], the new design does not
attempt to control the phase profile of the field in order to
obtain net acceleration. Rather, the device produces a field
enhancement with a flat phase profile at the positions in
which the instantaneous vector of the electric field is aligned
with the electron velocity. Consequently, it is straightfor-
ward to optimize the design to any desired initial particle
energy and impinging field amplitude. Moreover, as shown
below, the design yields a net acceleration of the particles (in
contrast to energy modulation, which is commonly pre-
sented by laser-based accelerators) aswell asmicrobunching
of the particles due to the nonperiodic nature of the structure.
The tapering scheme presented here can be implemented

also in DLAs. Nevertheless, the MLA approach offers
several inherent advantages which render it highly attrac-
tive, especially for subrelativistic particle acceleration:
(i) ease of fabrication—metallic metasurfaces are ultrathin
(tens of nanometers) compared to their dielectric counter-
part and, consequently, the realization of the small features
needed for slower particles is less challenging; (ii) the field
enhancement property associated with metallic nanostruc-
tures provides a higher “structure factor”, or ratio of axial
gradient to the driving electric field strength, which
improves the efficiency of converting the power of an
incident laser field into particle energy.
The paper is organized as follows. In Sec. II, we present

an MLA structure utilizing a discrete phase velocity
matching approach and extract the field distribution and
acceleration gradient. In Sec. III, we present the background
theory of resonant acceleration to provide a heuristic model
of the longitudinal dynamics in theMLA. In Sec. IV, we use
particle tracking simulations to study the acceleration of
electron beams in the MLA structure in Sec. II and compare
the results to those of the continuous model described in
Sec. III. In Secs. V and VI, we study, respectively, micro-
bunching and space-charge effects, and in Sec. VII, we
summarize our results and present some concluding
remarks.

II. TAPERED STRUCTURE DESIGN

The MLA concept is based on strong field enhancement
obtained at the plasmonic resonance wavelength of a
metasurface composed of slits in a 40-nm-thick metallic
film on a fused silica substrate, as shown in Fig. 1(a).
Figure 1(b) depicts the schematic of the assembled accel-
erator structure, which consists of two such metasurfaces
separated by a gap of width g (200 nm here) through which
the electron beam propagates (the vacuum chamber).
A pair of coherent driving laser pulses illuminates the

structure from the top and bottom symmetrically, propa-
gating through the substrate at normal incidence to the
particle acceleration axis. As discussed in more detail in
Sec. III, this symmetric illumination reduces transverse
deflection forces and produces a nearly uniform acceler-
ation force across the channel. If the dimensions of the slots
shown in Fig. 1(a) are set such that their resonance
wavelength is equal to the wavelength of the driving laser,
they can efficiently focus the impinging light through the
slits and generate a region of enhanced electric field in the
vacuum channel. This phenomenon is known as extraor-
dinary transmission [16]. The strong field obtained in the
vacuum channel is utilized for accelerating the particles.
Continuous tapering of such a structure to match its phase

velocity to the increasing energy of a subrelativistic beam is
extremely challenging, especially at optical frequencies.
A more realistic solution is to divide the accelerator into
several sections, as proposed in Refs. [7,17], with each
successive section optimized for the targeted particle energy
at that location. However, the change in particle velocity
within each section will cause the particles to slip in phase.
This slippage can be greatly reduced by tapering the
accelerator in steps of a single cell, leading to chirped
structures [15]. Consequently, γiþ1, the average Lorenz
factor of the beam in the iþ 1 cell, can be calculated
recursively from the ith cell factor (γi) and the energy gain in
each cell. By utilizing the definition of the acceleration
gradient at each cell, Gi, this relation corresponds to

γiþ1 ¼ γi þ
Giλp;i
mc2

; ð1Þ
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FIG. 1. (a) Schematic of a single row of slot antenna unit cells
in the metasurface; (b) schematic of the MLA formed by two
parallel metasurfaces, symmetrically driven by cophased laser
pulses incident from the top and bottom.

DORON BAR-LEV et al. PHYS. REV. ACCEL. BEAMS 22, 021303 (2019)

021303-2



where λp;i is the length of the ith cell which stems from the
synchronicity condition in that cell, i.e., λp;i ¼ βiλ, where λ

is the laser wavelength and βi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=γ2i

p
. FromEq. (1), a

recursive relation between the lengths of consecutive cells
can be calculated:

λp;iþ1 ¼ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
�
γi þ

Giλp;i
mc2

�−2
s

: ð2Þ

Figure 2 shows a color contour plot of the electric field
amplitude (normalized to incident field E0) along the axis
of a single cell of the multicell structure shown in Fig. 1.
The fields are calculated using a finite difference time
domain (FDTD) analysis. The chosen slot dimensions
(SW ¼ 600 nm and SH ¼ 200 nm) provide maximal field
enhancement at a wavelength λ ¼ 2 μm. It should be noted
that, for this plot, periodic boundary conditions in z and x
have been employed with periods of dx ¼ 1.1 μm and
λp ¼ 1.35 μm, respectively. The impact of the difference
between the adjacent cells of the tapered structure on the
resonance and field profile in each cell is negligible. On the
other hand, the impact of the tapering on the particle
trajectory is important as discussed further in Sec. III.
Extending this optimization to the multicell design in

Fig. 1 requires that the length of each cell be adjusted in order
to maintain continuous acceleration. The design of a tapered
MLA requires a determination of the optimal slit dimensions
and relative positions along the acceleration direction (z axis
in Fig. 1). The dimensions of the slits are optimized for
maximal field enhancement, and the z separations between
them are chosen to match the phase velocity of the accel-
erating mode in the channel to the energy of the resonant
particle. Because of the tapering of the “unit-cell” length, the
actual field enhancement may deviate from the values in
Fig. 2. However, due to the relatively small difference in the
length of the unit cells, the deviations are minor.
Figure 3 shows the unit-cell lengths and λp;i for a 17-cell

MLA designed for an initial kinetic energy of 79 keV and

incident laser electric field amplitude of E0 ¼ 0.5 GV=m
from each side (corresponding to an average acceleration
gradient of G ¼ 1.4 GeV=m). This incident field amplitude
was chosen based upon preliminary laser damage studies
conducted on a sequence of single-sided prototype MLA
arrays manufactured according to the target parameters
shown in Fig. 3 as described in Appendix C. A complete
table of the unit-cell dimensions and the corresponding
particle velocities and kinetic energies is found in Table I
in AppendixA.We note that the lengths of the unit cells, λp;i,
increase from 1 μm (corresponding to normalized particle
velocity β ¼ v=c ¼ 0.5) to 1.15 μm (corresponding to
β ¼ 0.575). The dimensions of the slits are identical for
all cells.
Figure 4 depicts the z component of the electric field at

the channel center of an enclosed (dual layer) MLA
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FIG. 2. Color contour plot of the electric field amplitude
normalized to that of the driving field as a function of the
wavelength and longitudinal position within a single unit cell.
Periodic boundary conditions in z and x have been assumed for
the calculation of the field.
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FIG. 3. Unit-cell length (blue, circles) and corresponding
kinetic energy (KE) (red, stars) for a 17-cell tapered MLA
designed for an initial energy of 79 keV and an incident field
amplitude of 0.5 GV=m.
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FIG. 4. Ez component of the field at the center of the enclosed
tapered MLA structure. Blue, magnitude; green, phase.
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structure comprising 17 cells, calculated by FDTD simu-
lations for a driving laser wavelength of 2 μm. As expected,
peak electric field intensity occurs at the positions of the
slits. The slight variations in the peak field intensity
between cells are attributed to edge effects due to the
finite size of the device.

III. RESONANT PARTICLE MODEL

The longitudinal electromagnetic field in the accelerating
channel of a periodic dual-driven planar symmetric struc-
ture can be expressed in Floquet form as a superposition of
spatial harmonics (see also Appendix B). Adopting the
coordinate system in Fig. 1, where z is the propagation axis
of the particles (as well as the periodicity direction) and y is
the propagation direction of the driving laser (assuming
normal illumination), the nonvanishing electric and mag-
netic field components in the vacuum channel can be
written as

Ey ¼ −E0

X∞

n¼−∞
kn
Γn

an sinhðΓnyÞeiknze−iωt; ð3Þ

Ez ¼ −iE0

X∞

n¼−∞
an coshðΓnyÞeiknze−iωt; ð4Þ

Bx ¼ E0

X∞

n¼−∞
ω

c
1

Γn
an sinhðΓnyÞeiknze−iωt; ð5Þ

where E0 is the incident field amplitude, ω is the angular
frequency of the laser, an is a geometry-dependent coupling
coefficient, Γn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n − ðω=cÞ2

p
is the exponential decay

constant in the y direction, and kn ¼ k0 þ nkp is the
longitudinal wave number of the nth space harmonic,
kp ¼ 2π=λp, where λp is the longitudinal periodicity and
k0 is the projection of the incident laser field wave number
in the first Brillouin zone. A more detailed description is
given in Appendix B. For a laser field at normal incidence
to the x-z plane, k0 ¼ 0. It should be emphasized that the
structure discussed in Sec. II is not periodic but rather
consists of cells of increasing length. This is in order to
keep the accelerating particles in resonance with the driving
laser field. However, the length of the cells changes
adiabatically in z, and λpðzÞ should be considered as the
local periodicity of the structure.
A heuristic description of the longitudinal and transverse

dynamics (in the absence of wakes and space charge) in the
tapered MLA structure can be provided by the resonant
particle model adapted from conventional particle accel-
erators [18,19] and using the analytical formulation of the
fields in Eqs. (3)–(5). The unloaded acceleration gradient
G0 ¼ eE0ar of the resonant mode (n ¼ r) can be calculated
directly from Eq. (3), where e is the electron charge. The
hyperbolic cosine dependence of Ez can be seen to

approach unity (i.e., a uniform field) in the limit where
the vacuum gap g ≪ Γr

−1. In this limit, the Lorentz force
components (taking the real part of the fields) yield the
following simplified forms:

Fz ¼ G0 sinϕ; Fy ¼ G0ykrðββr − 1Þ cosϕ; ð6Þ

where ϕ ¼ krz − ωt is the phase of the particle (with
respect to the driving EM wave), satisfying dϕ=dz ¼
kr − ωðdt=dzÞ, and we have taken only the mode n ¼ r
which corresponds to the desired phase velocity βr (nor-
malized to speed of light c) for matching to the resonant
particle. The relativistic equations of motion can thus be
described by the following coupled differential equations:

dϕ
dz

¼ ω

c

�
1

βr
− 1

β

�
;

dγ
dz

¼ βr
β

ω

c
α0 sinϕ; ð7Þ

d2y
dz2

¼ kry
γβ2

ω

c
α0ðβ2r − 1Þ cosϕ-K2y; ð8Þ

where α0 ¼ G0c=ωmc2 is a unitless normalized acceler-
ation gradient and K is an assumed external focusing term
for particle confinement. Although the overall phase of the
fields is arbitrary, we have chosen the convention that a
phase of ϕ ¼ π=2 corresponds to the peak accelerating
force in z, for consistency with common usage in accel-
erator textbooks and seminal papers on rf photoinjector
physics. When utilizing a laser to accelerate charged
particles, the corresponding normalized energy gain per
laser period λ is of the order of α0 ≈ 0.001 for accelerating
gradients of the order of 1 GeV=m, consistent with
recent demonstrations of laser-driven acceleration [2,3,6,7].
This value of α0 is 3 orders of magnitude smaller than that
of a conventional radio frequency (rf) electron photo-
injector for which typically α0 ≈ 1. This is due to the 4
orders of magnitude reduction in the operating wavelength.
However, it is similar in magnitude to that of an rf proton
accelerator. Therefore, as is conventionally done in proton
linacs, maintaining phase synchronicity with the accelerat-
ing wave and capturing subrelativistic particles requires
that the fundamental structural wave number krðzÞ of the
laser accelerator will vary according to the particle trajec-
tory, resulting in a tapered structure [13,14].
Taking the resonant mode to be the fundamental (r ¼ 1),

the velocity of the resonant particle is related to the z-
varying wave number via krðzÞ ¼ k0=βrðzÞ ¼ 2π=λpðzÞ.
Assuming that the structure is designed for a constant
unloaded acceleration gradient G0 and that α0 ≪ 1 (as
expected for laser accelerators), the energy of the resonant
particle at position z is given by γrðzÞ ¼ γ0 þ γ0z, where γ0 is
the injection energy and γ0 ¼ k0α0 sinϕr. We can consider
this resonant particle for which β ¼ βr as the particle whose
velocity profile defines the design gradient and wave
number tapering of the structure. The synchronicity
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condition between the particle velocity and the driving laser
may be expressed as follows [5]:

β ¼ λp
nλ

≡ βr: ð9Þ

Typically, the dominant mode is the fundamental one
(n ¼ 1). In this case, the synchronicity condition corre-
sponds to λpðzÞ ¼ λβðzÞ, and thus, without the loss of
generality, this relation applies for the remainder of the
analysis.
As a concrete example, we consider the solutions of a

continuous model corresponding to the MLA structure
described in Sec. II. Figure 5 depicts the solutions to
Eqs. (7) and (8) for the propagation of a collection of
injected particles uniformly distributed over all phases and
over a vertical range Δy ¼ 100 nm, for two different
resonant phases ϕr ¼ π and 3π=4 on the left and right,
respectively. The initial energy of the particles is 79 keV,
and an external focusing force K2 ¼ 1 μm−2, consistent
with the prediction of Ref. [20] as required for the
confinement of a particle beam to an optical-scale accel-
erator, is employed in order to confine the particles in the y
dimension, as shown in Fig. 5(c). The left plots in Fig. 5
correspond to a nontapered structure and produce only an
energy modulation of the particles, whereas the right case

corresponds to a resonant acceleration with a reduced
bucket size shown by the red separatrix in Fig. 5(a). The
Hamiltonian for a resonantly tapered accelerator can be
written as Hðϕ;δÞ¼ ðβ2r=2γrÞδ2þα0½cosϕþϕsinϕrþ1�,
where δ ¼ ðγβ − γrβrÞ=γrβr is the fractional momentum
deviation. In Fig. 5(a), the Hamiltonian phase space level
sets are superimposed on the plot for comparison, showing
that for the nontapered structure (left column) the “accel-
erating bucket” inside the Hamiltonian separatrix shown in
red extends over all phases, whereas in the plots for the
tapered structure (right column), the separatrix corresponds
to a limited region of injection phases that produce net
acceleration.
Referring to the right column in Fig. 5(b), it is clearly

seen that particles with the initial phase in the segment
within the bucket region marked by the vertical dashed
lines gain substantial energy (T > 79 KeV). This segment
corresponds to the phase acceptance range of the structure.
As seen in Fig. 5(a), the maximal fractional energy gain is
attained when the synchronicity condition is met, meaning
that the final captured phase ϕ ¼ ϕr ¼ 3π=4. In Fig. 5(b),
which is plotted as a function of initial injection phase ϕ0,
we see that this maximum energy (∼100 keV) corresponds
to particles that were initially on the left side of the bucket
region (near ϕ0 ¼ 1). It should be emphasized that the
maximal energy loss (∼7 keV) for particles outside the
phase acceptance region is substantially smaller than
the maximal energy gain (∼20 keV). This effect is due
to the tapering of the structure and means that a particle
beam uniformly distributed in phase will exhibit net
acceleration. The tapering maintains synchronicity only
for particles in the vicinity of the resonance and renders the
deceleration process less efficient than the acceleration
process.
For the constant phase velocity case (βr ¼ 0.5) shown on

the left, the particles experience merely an energy modu-
lation. This scenario corresponds with most experiments
conducted to date using laser-driven microstructures of this
sort, in which the width of the resultant energy modulation
is then used to extrapolate the accelerating gradient G0. By
contrast, for the tapered phase velocity case in the right
column in Fig. 5, there is a distinct population of accel-
erated electrons within the Hamiltonian separatrix (in red)
representing the captured population.
We can use this simplified resonant particle model to

predict capture efficiency by defining a “trapping fraction”
as the fraction of particles within 10% of the final resonant
kinetic energy Tf ¼ mcðγf − 1Þ. By integrating the equa-
tions of motion for a particle distribution covering uni-
formly all possible injection phases ϕ0 ¼ ϕðz ¼ 0Þ from 0
to 2π and resonant phases ϕr from 0 to π, we obtain the
trapping fraction and kinetic energy distributions depicted
in Fig. 6. To obtain these results, we assume a device length
of L ¼ 17λp, the driving laser wavelength is λ ¼ 2 μm,
and the effective accelerating field is G0 ¼ 1.4 GV=m.

FIG. 5. Plots showing the (a) final longitudinal particle phase
space superimposed with the Hamiltonian separatrix (in red),
(b) energy spectrum as a function of the injection phase ϕ0 with a
stable accelerating region marked by vertical lines, and (c) trans-
verse position y vs injection phase. Plots on left and right
correspond to resonant phases ϕr ¼ π and ϕr ¼ 3π=4, respec-
tively. The left column corresponds to a nontapered structure,
while the right column corresponds to a tapered structure.
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The initial particle relative velocity is β0 ¼ 0.5 (corre-
sponds to an initial kinetic energy of T0 ¼ 79 KeV). As
can be seen in Fig. 6(a), the capture efficiency is minimal at
ϕr ¼ π=2, corresponding to the minimum bucket width.
Operating at other resonant phases away from π=2 can
increase the size of the accelerating bucket, thereby
improving the capture efficiency at the expense of the
accelerating gradient. Hence, when designing the laser
accelerator, there is a fundamental tradeoff between attain-
ing the maximal energy gain versus increasing the capture
efficiency.
We have considered the two resonant phase examples in

Fig. 5 for purely illustrative purposes. The MLA structure
in Sec. II is optimized for a resonant phase of ϕr ¼ π=2. As
seen in Fig. 6, this choice corresponds to the maximum
gradient and thus maximum energy gain, which may aid
anticipated future experimental demonstrations by provid-
ing a better energy contrast between accelerated and
nonaccelerated particles. In Secs. IV–VI, we study this
example with particle tracking studies and compare to the
resonant particle model of Eqs. (7) and (8).

IV. LONGITUDINAL DYNAMICS FOR A LONG
BUNCH WITH NO SPACE CHARGE

Simulations of the MLA structure using a 3D FDTD
code were carried out to obtain a complete mapping of the
electromagnetic field in the structure. This field distribution
allows for simulating the trajectories of particles propagat-
ing through the structure. We use the particle tracking code
General Particle Tracer (GPT) to simulate the propagation
of a beam of electrons through the enclosed (dual-sided)
MLA configuration discussed in Sec. II.
The simulated beam contains 5 × 105 particles with an

initial energy of 79 keV, corresponding to an initial velocity
of β0 ¼ 0.5, with a Gaussian distribution over the aperture
of the structure with root-mean-square (rms) widths in x
and y of 32 nm and a normalized transverse emittance of
0.01 nm. The temporal rms duration of the beam is chosen
to be 50 fs, corresponding to a spatial length of 7.5 μm. The
beam parameters were chosen to mimic a stream of
particles from, e.g., an electron microscope test beam,
such as those employed in Refs. [6,7]. As the resulting
density of particles here greatly exceeds that of a realistic

electron microscope beam by orders of magnitude, space-
charge effects between particles are neglected in the
simulation (see Sec. VI for the impact of space-charge
effects). We note that simulations of a longer temporal
duration, low-density, beam such as would be used in a
demonstration experiment would greatly increase the
required simulation time without adding substantially
different physics.
Figure 7 depicts the calculated final phase space dis-

tribution of the beam after exiting the MLA structure
described in Sec. II, with the GPT simulations on the left,
and the resonant particle model, integrating Eqs. (7) and
(8), on the right. Figure 7(a) indicates that the longitudinal
phase space distribution of the beam has been severely
distorted into a nearly periodic arrangement spanning from
low to high energy. Bunches of particles at the top of the
plot correspond to the captured populations in successive
accelerating “buckets” or phase space periods of the
accelerating wave, giving rise to a sharp spike at the final
accelerated energy T ¼ 103 keV in the energy spectrum
plot in Fig. 7(c). To facilitate comparison with the solutions
of Eqs. (7), we focus in Fig. 7(b) on the final captured
particle population at the back end of the bunch just as it is
exiting from the accelerating field region. This range
extends from z ¼ L to z ¼ Lþ λp. The captured popula-
tion is plotted against the corresponding final phase

FIG. 6. Predicted trapping fraction (a) and total energy gain (b)
as functions of resonant phase ϕr in a tapered MLA structure.

FIG. 7. Final phase space distribution over one structure period
of a GPT simulated beam immediately after exiting the tapered
MLA including (a) the final beam energy vs phase distribution,
(b) the phase space plot superimposed with Hamiltonian level sets
and sepatratrix (in red), and (c) the corresponding energy
spectrum of the full beam with the initial energy marked in
red. Left column, GPT particle tracking results; right column,
resonant particle model from Sec. III.

DORON BAR-LEV et al. PHYS. REV. ACCEL. BEAMS 22, 021303 (2019)

021303-6



ϕ ¼ kpz, where λp and kp are evaluated at z ¼ L. The
resulting phase space plot and energy spectrum in Fig. 7(c)
on the left agree remarkably well with the predictions of the
analytic (continuous) model shown on the right. We note
that in Fig. 7 (left) we have included a transformation on the
final phase values of the form ϕ → ϕ − kpηδ, where η ¼
L=2γ2r and δ ¼ ðγ − γrÞ=γr to account in an approximate
way for the average longitudinal velocity bunching of the
particles. This produces a slight clockwise shearing of
the distribution, which aids comparison with the results of
the analytical calculation.

V. MICROBUNCHING

Velocity bunching produced by the energy difference
between the accelerated and decelerated particles results in
a lateral tilting of the longitudinal (T − z or δ-ϕ) phase
space distributions in successive buckets which increases
from the tail to the head of the bunch. In addition, particles
positioned at larger values of z have also propagated for a
longer time, thus extending the spatial separation between
the more energetic and the less energetic population. As
mentioned above, this effect was included in the results in
Fig. 7 (left) by an approximate phase space transforma-
tion on the phase variable ϕ. Consequently, there is an
intermediate value of z at which the population of the
corresponding phase space bucket is vertical and both the
low- and high-energy particles overlap spatially in z, thus
producing a strong longitudinal density modulation or
microbunching of the beam. This highlights that even an
initially nonbunched beam will be microbunched at the
structure periodicity. A prebuncher to inject a beam already
microbunched in this way could be used as a way to
improve the capture efficiency in the accelerator.
A common method of quantifying the microbunch-

ing effect is to calculate the Fourier coefficient of the
beam distribution that corresponds to the fundamental
period (λp). Defining the complex Fourier coefficients
cnðzÞ ¼ 1

2π

R
2π
0 ρðϕ; zÞe−inϕdϕ, the fundamental component

corresponds to n ¼ 1. Here ρðϕ; zÞ is the computed
longitudinal density of the bunch at phase ϕ after propa-
gating a distance z. Figure 8(a) depicts the longitudinal
phase space distribution of the particles at an intermediate
position inside the MLA such that the particle distribution
spans the length of the accelerator from z ¼ 0 to
z ¼ L ≈ 18 μm. The magnitude of the normalized bunch-
ing coefficient jc1=c0j obtained from the solutions of
Eq. (7) is shown in blue in Fig. 8(b) as a function of the
longitudinal coordinate z. Note that, based on the resonant
particle model, it is expected that the microbunching effect
would be maximal around z ¼ 8 μm. The longitudinal
number density dN=dz of the beam (normalized to the total
number of particles in the simulation Nb) obtained from the
distribution in Fig. 8(a) is superimposed in red in Fig. 8(b).
The prediction of the optimal bunching point is confirmed

by the GPT simulations, which show the strongest and
narrowest density peaks near the peak value of the bunch-
ing coefficient, with a minimum full width at half maxi-
mum (FWHM) bunch duration of approximately 500 as.
A comparison with Fig. 8(a) indicates that the optimal
bunching point corresponds to an overlap of the low- and
high-energy parts of the distribution within a single period.
Note that the appearance of a secondary bunching peak in
Fig. 8(b) between z ¼ 12 and z ¼ 15 μm is caused by
overlapping of low-energy particles from a preceding
bucket with high-energy particles belonging to the follow-
ing one. These secondary peaks are also responsible for the
spurious increase in the bunching factor (blue) in Fig. 8(b)
for z > 14 μm. The formation of this effect can be seen in
the rightmost bunches in Fig. 8(a). As the bunches continue
to propagate, the lower-energy (uncaptured) particles flow
into the phase space regions of adjacent buckets as was also
seen in Fig. 7(a), and the modulation of the beam density is
eventually washed out. This suggests the possibility of
using a shorter section of MLA structure, which terminates
at the point of optimal bunching, as a prebuncher to
improve the initial capture efficiency in a subsequent
longer MLA device.

VI. BEAM LOADING EFFICIENCY

The characteristic impedance of the structure can be
defined as ZC ¼ G2

0λ
2=P, where P ¼ E2

0λD=2Z0 is the
peak laser power over a single optical period, assuming a
Gaussian laser beam profile with free space impedance
Z0 ¼ 377 Ω. Relative to the coordinates in Fig. 1, D is the
illumination size in x, which is transverse to the electron
axis z. The resulting coupling efficiency will thus depend
upon the laser focal spot size at the structure. Combining
these expressions gives

ZC ¼ 2Z0κ
2
λ

D
; ð10Þ

where κ ¼ G0=E0 is the so-called “structure factor.” To
allow the full illumination of a single transverse period, we

FIG. 8. Plots of the (a) longitudinal phase space distribution
from GPT tracking of a long (50 fs) uniformly distributed bunch;
(b) bunching factor (blue) predicted from the resonant particle
model and the corresponding density profile (red) of the
distribution from (a) as a function of propagation distance z.
The bounds of the plots in z correspond to the entrance and exit of
the tapered MLA.
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take D ¼ λ as a reasonable value. The optimal bunch
charge and efficiency of the accelerator may then be written
[21] as qopt ¼ G0=ð2cZH=λ2Þ and ηopt ¼ LZC=ð4cτZHÞ,
respectively, where ZH is the Cherenkov wake impedance,
which is a function of the structure’s material properties and
geometry, and τ is the laser pulse duration. A conservative
estimate of ZH can be obtained from Ref. [22] for a flat (2D
planar) geometry: ZH ¼ πZ0λ

2=ð16a2Þ. Here a is the half
width of the channel. From the form of Eq. (10), we see
that, for a given structure length and pulse duration, the
efficiency of the accelerator scales as κ2. For the MLA
structure design considered here, κ ¼ 1.34. By comparison,
κ is lower than unity for other laser-driven structure
topologies that have been considered [1,7]. The plasmonic
field enhancement of the MLA thus potentially allows for
increased efficiency compared with some other approaches.
For a wavelength of λ ¼ 2 μm, 100 fs FWHM laser
pulse duration (corresponding to τ ¼ 75 fs), and a channel
width a ¼ 100 nm, we obtain a characteristic impedance
ZC ¼ 1313 Ω. For the gradient assumed in our calculations
above, G0 ¼ 1.4 GeV=m, the corresponding optimal
charge and efficiency are qopt ¼ 0.3 fC (1970 electrons)
and ηopt ¼ 1.6%, respectively, for single-bunch operation.
For multibunch operation, the efficiency can be increased
to several tens of percent [21]. In the following section, we
calculate the transport and external focusing requirements
for confinement to the channel of half width a ¼ 100 nm
for a bunched electron beam of this charge.

VII. BUNCHED BEAM WITH SPACE CHARGE

We consider now the case where a prebunched beam is
injected into the MLA. We assume a single bunch with a
rms bunch duration of 100 as, which corresponds to 5.4° of
laser phase and is similar in order of magnitude to achieved
optical scale bunching techniques [23]. A round beam is
assumed that is Gaussian in the transverse and longitudinal
profile with a rms size of σx;y ¼ 32 nm and initial nor-
malized transverse emittances ϵnx;y ¼ 0.1 nm, consistent
with achievable emittances of compatible tip-based field
emission sources [24]. In accordance with the beam loading
efficiency argument in Sec. VI, we assume an optimal
bunch charge of 2000 electrons. As compared with the
long-bunch case considered in Sec. IV, such a micro-
bunched beam experiences significant internal space-
charge forces which lead to substantial emittance growth
and must be mitigated by some form of external focusing.
In the GPT tracking simulation, we assume an external
solenoid field with a peak normalized field strength given
by K2 ¼ eB=ð2mcβγÞ, where B is the peak magnetic field
on axis.
As seen in Fig. 9, the emittance is nearly compensated

for by a focusing strength of K ¼ 2 × 10−6 m−1, at which
point the number of transmitted particles reaches 100%. We
note that the emittance values on the far left inf Fig. 9(a)

display sharp peaks due to the fact that very few electrons
are transmitted when the focusing strength is near zero,
making the emittance calculation statistically noisy. The
focusing required for emittance preservation is a factor of 4
higher than the value of K2 ¼ 1 μm−2 estimated using the
simple analytical model for the long-bunch space-charge-
free case in Sec. III. We note that this focusing corresponds
to a peak axial magnetic field value of 4 kT, which is well
beyond the capability of conventional solenoid magnets. In
practice, focusing of this magnitude in the MLA or another
optical-scale accelerator requires the implementation of
focusing techniques where the laser field itself provides a
compensating transverse electromagnetic force. Schemes
for accomplishing this using harmonic focusing and alter-
nating phase focusing have been proposed in Refs. [25,26]
and are currently being implemented in various laser-driven
accelerator designs.

VIII. CONCLUSIONS

We have proposed a design for a laser-driven accelerator
with a tapered phase velocity for matching to a subrela-
tivistic electron beam. The proposed structure utilizes a pair
of parallel plasmonic metasurfaces for focusing the driving
laser field and generating a series of accelerating “hot
spots” inside of a narrow vacuum gap between the plates.
We have presented an electromagnetic design for a 17-cell
structure for 79 keV injected electrons which supports a
gradient of 1.4 GeV=m under dual illumination by lasers
with a 0.5 GV=m incident field, consistent with laser
preliminary damage measurements conducted on prototype
devices fabricated with gold layers onto fused silica. We
have conducted particle tracking studies through a simu-
lated 3D field map of the tapered device. We find that, for a
long-bunch scenario with no space charge, the phase space
dynamics are well explained by a standard resonant particle
model of the beam dynamics using linearized fields in
the accelerating channel and provide a prediction of the
external focusing required for transverse confinement. We
also observe microbunching of the initially nonbunched
beam in the longitudinal phase space that is consistent with

FIG. 9. Plots of the (a) normalized emittance and (b) transmitted
fraction of particles from GPT tracking of a short (100 as)
Gaussian bunch with 2000 electrons, as a function of focusing
strength parameter K corresponding to a solenoidal field centered
on the tapered MLA.

DORON BAR-LEV et al. PHYS. REV. ACCEL. BEAMS 22, 021303 (2019)

021303-8



predictions based on the bunching factor obtained from
the resonant particle model. However, for a prebunched
beam that occupies only a few degrees of optical phase
and contains 2000 electrons (corresponding to the esti-
mated optimal beam-loaded charge), the space-charge
forces within the beam are found to be substantial and
require approximately 4 times larger focusing strength
than for the nonbunched case. We note, however, that,
although the optimal beam-loaded charge is assumed for
evaluation of the space-charge effect, wakes in the
structure are not explicitly modeled in the tracking code.
In reality, for bunched operation, the beam-loaded gra-
dient would need to be built into the tapered structure
design and wakefields appropriately included in the
tracking code. A detailed evaluation of wake effects in
laser-driven microstructure accelerators is beyond the
scope of the present paper but remains an important
subject for future studies.
Compared to equivalent dielectric laser-driven accel-

erators, the proposed MLA structure exhibits two impor-
tant advantages: (i) the plasmonic metasurfaces are thin
(∼30–40 nm) and can be relatively easily patterned with
the subwavelength features needed for operating at the
fundamental spatial harmonic of the driving field; (ii) the
metasurface’s ability to create a plasmonic field enhance-
ment increases the efficiency of the acceleration process
and renders the design simpler. Although the maximal
acceleration gradient that can be obtained by the MLA is
not necessarily greater that those of DLA structures
(this is determined primarily by the material damage
threshold), the MLA is more efficient and exhibits a
larger normalized acceleration gradient, or structure
factor. Combined with the relatively simple fabrication
requirements, these properties render the proposed
MLA structure highly attractive for a compact and
efficient accelerator system, especially for subrelativistic
particles.
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APPENDIX A: MLA UNIT-CELLS DESIGN AND
PARAMETERS

Table 1 lists the unit-cell and the slit nanoantenna
dimensions of the MLA structure design, based on
Eq. (2). The table also lists the corresponding values of
the resonant particle relativistic velocity and kinetic energy
according to Eq. (1). This structure was used for the GPT
simulations described in Secs. IV–VI.

APPENDIX B: FILED PROFILE IN A PERIODIC
MLA STRUCTURE

We consider a planar symmetric geometry in a fixed
Cartesian reference frame that is invariant in the x coor-
dinate, periodic in z with periodicity u ¼ λp̂z, and with
varying dielectric constant ϵðy; zÞ. Under illumination by a
plane wave of amplitude E0 propagating with wave number
ki in the y-z plane, a set of longitudinal Floquet modes are
permitted with wave numbers kn ¼ k0 þ nkp, where k0 ¼
jki · uj ¼ ðω=cÞ ffiffiffiffi

ϵi
p

cos θ is the projection of the incident
plane wave onto the fundamental periodicity, kp ¼ 2π=λp,
ϵi is the dielectric constant in the region of the incident
field, and θ is the incidence angle of the laser.
For a P-polarized field (i.e., E0 lies in the y-z plane)

incident from the regiony < 0 and propagating in thepositive
y direction onto such a periodic structure occupying the upper
half-space (y > 0), the nonvanishing electric field compo-
nents in the vacuum region y < 0 are given by [27]

Ey ¼ −E0

X

n

kn
Λn

½δn;0eiΛny − rne−iΛny�eiknz; ðB1Þ

Ez ¼ E0

X

n

½δn;0eiΛny þ rne−iΛny�eiknz; ðB2Þ

where δ is the Kronecker delta function, rn and Λn are the
reflection coefficient and transverse wave number, respec-
tively, for Floquet mode n, and we suppress the explicit
harmonic time dependence for convenience. We note that the
delta function term corresponds to the incident plane wave
E0eiki·r with the association ki ¼ Λ0ŷ þ k0ẑ. With the
addition of a second identical periodic structure in the lower
(y < 0) half-space but mirror reversed about y ¼ 0 and
the introduction of a symmetric vacuum gap region between

TABLE I. Optimized dimensions for a 17-cell MLA.

Cell λp [μm] SH [nm] SW [nm] β KE [keV]

1 1.00 200 600 0.501 79.0
2 1.01 200 600 0.506 80.9
3 1.02 200 600 0.510 82.8
4 1.03 200 600 0.515 84.7
5 1.04 200 600 0.520 86.7
6 1.05 200 600 0.524 88.7
7 1.06 200 600 0.529 90.7
8 1.07 200 600 0.534 92.8
9 1.08 200 600 0.538 94.9
10 1.09 200 600 0.543 97.0
11 1.09 200 600 0.547 99.2
12 1.10 200 600 0.552 101.4
13 1.11 200 600 0.557 103.6
14 1.12 200 600 0.561 105.9
15 1.13 200 600 0.566 108.2
16 1.14 200 600 0.570 110.6
17 1.15 200 600 0.575 112.9
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the two periodic structures, the transverse propagating
waves in (B1) and (B2) will experience infinitely many
internal reflections within the vacuum region, giving rise to
general coefficients Cn and Dn for the forward and reverse
components:

Ey ¼ −E0

X

n

kn
Λn

½CneiΛny −Dne−iΛny�eiknz; ðB3Þ

Ez ¼ E0

X

n

½CneiΛny þDne−iΛny�eiknz: ðB4Þ

Because of the symmetry of the geometry about the
x-z plane, an identical laser incident from above (same
incidence angle and amplitude) and propagating toward
the negative y direction gives rise to an identical mode but
with the reflection coefficients interchanged (Cn ↔ Dn).
Adding this solution to that above and noting that for
longitudinal phase velocities lower than the speed of
light the transverse wave number Λn is imaginary, we make
the substitution Γn ≡ iΛn and define an ≡ 2ðCn þDnÞ. The
transverse (y) exponential terms then add to form hyper-
bolic functions, and the form of Eqs. (3)–(5) is immediately
obtained, with the inclusion of an arbitrary phase factor
of −i. The magnetic field component [Eq. (5)] can be
directly derived from the electric field using Faraday’s law
in a source-free region with harmonic time depend-
ence: ∇ × E ¼ iðω=cÞB.

APPENDIX C: LASER INDUCED DAMAGE
TESTS IN MLA STRUCTURES

In order to gauge a reasonable incident field level E0 for
the simulations of Secs. IV–VI, laser-induced damage was
measured on a series of single-sided MLA arrays. The
samples were fabricated by depositing a 40-nm-thick gold
layer onto a fused silica substrate and then etching the gold
using a focused ion beam (FIB) in a sequence of patterned
arrays based upon the geometrical design outlined in Sec. II.
Damagewas induced using a pulsed laser with awavelength
of 2 μm, a 35 μm spot (1=e2 diameter), a pulse duration of
250 fs, and a repetition rate of 100 kHz. Successive MLA
arrays were exposed at increasing pulse energies for 100 s
(corresponding to 10 million shots) per damage site.
The samples were analyzed by inspection with an

optical microscope. Several examples are shown in
Fig. 10, with increasing pulse energy from left to right
and corresponding incident field intensity detailed in the
caption. Because of the operational range of the laser
power meter used, the lowest reliably measured pulse
energy was that in Fig. 10(b), which corresponds to an
incident field E0 ¼ 0.54 GV=m, corresponding to a flu-
ence of 10 mJ=cm2. Since some scattered damage was still
observed at this intensity, it provides only an upper limit on
the observed damage threshold. However, we note that,
since the damage fluence is relatively insensitive to pulse
duration τ in this pulse length regime, in principle, a shorter

laser pulse would increase the corresponding sustainable
incident field as τ−1=2. Consequently, using a 50 fs pulse
instead could increase the sustainable E0 by a factor of
2.23. It has recently been shown that, even with such short
pulses, acceleration in an optical structure over hundreds of
periods can be achieved by tilting the laser pulse [28].
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