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In a lepton storage ring of very high energy (e.g., in the eþe− Higgs factory) synchrotron radiation from
quadrupoles constrains transverse dynamic aperture even in the absence of any magnetic nonlinearities.
This was observed in tracking for LEP and the Future Circular eþe− Collider (FCC-ee). Here we describe a
new mechanism of instability created by modulation of the particle energy at the double betatron frequency
by synchrotron radiation in the quadrupoles. Energy modulation varies transverse focusing strength at the
same frequency and creates a parametric resonance of the betatron oscillations with unusual properties.
It occurs at arbitrary betatron frequency (the resonant detuning is always zero) and the magnitude of the
parameter modulation of the betatron oscillation (strength of the resonance driving term) depends on the
oscillation amplitude. Equilibrium between the radiation damping and the resonant excitation gives
the boundary of the stable motion. Starting from 6d equations of motion we derive and solve the relevant
differential equation describing the resonance, and show good agreement between analytical results and
numerical simulation.
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I. INTRODUCTION

Two future electron-positron colliders FCC-ee (CERN)
[1] and CEPC (IHEP, China) [2] are now under develop-
ment to carry experiments in the center-of-mass energy
range from 90 GeV to 350 GeV. In these projects strong
synchrotron radiation (power P ∝ E4) is a source of effects
negligible at low energy but essential at high energy, which
influence beam dynamics and collider performance. One
example is luminosity degradation caused by the particle
radiation in the collective field of the opposite bunch
(beamstrahlung [3]) either due to the particle loss [4] or
because of the beam energy spread increase [5]. Another
example is about reduction of the transverse dynamic
aperture due to synchrotron radiation from quadrupole
magnets. John Jowett is the first who pointed out this
effect in LEP collider with maximum beam energy about
100 GeV [6]. Switching on the radiation from quadrupoles
in the particle tracking decreased the stable betatron
amplitude as compared to the radiation from bending

magnets only. Jowett gave a description of this effect:
“Here I shall briefly describe a new effect which I propose
to call Radiative Beta-Synchrotron Coupling (RBSC). It is
a non-resonant effect. A particle with large betatron
amplitude makes an extra energy loss by radiation in
quadrupoles. If you imagine that its betatron amplitude
does not change much over a number of synchrotron
oscillations (that is not essential to the effect), you can
say that its effective stable phase angle will change to
reflect the greater energy loss. The particle will tend to
oscillate about a displaced fixed point in the synchrotron
phase plane. This results in a growth of the oscillation
amplitude which may eventually lead the particle outside
the stable region in synchrotron phase space.” Jowett
illustrates above assertion with synchrotron phase trajecto-
ries for two stable particles (denoted by P and Q in Fig. 1)
and one unstable (denoted by R) [7]. The tracking incor-
porates only radiation damping (quantum noise is absent)
from both bending and quadrupole magnets.
In [8] Jowett has mentioned that the RBSC rarely occurs

in isolation: “Most often some other effect limits the
dynamic aperture before the RBSC limit is reached. In
the standard (LEP) lattice the horizontal dynamic aperture
is limited by a rather strong shift of the vertical tune with
the horizontal action variable, bringing Qy down onto the
integer.”
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Our interests to the subject was inspired by the FCC-ee
lattice study. With the help of SAD accelerator design code
[9] K. Oide demonstrated FCC-ee transverse dynamic
aperture reduction due to radiation from quadrupoles [10],
“While the radiation loss in dipoles improves the aperture,
especially at tt̄, due to the strong damping, the radiation loss
in the quadrupoles for particles with large betatron ampli-
tudes reduces the dynamic aperture. This is due to the
induced synchrotron motion through the radiation loss.”
We crosschecked the simulation made by Oide using

MAD-X PTC [11] and the homemade software TracKing

[12] including SR from quadrupoles and found good
agreement between all three codes. Nevertheless, detailed
consideration has shown different nature of the particle loss
in horizontal and vertical planes. Radiation from quadru-
poles at large horizontal amplitude indeed greatly shifts the
synchronous phase, induces large synchrotron oscillation,
excites strong synchrobetatron resonances and, finally,
moves the horizontal tune toward the integer resonance
(due to the nonlinear chromatic and geometrical aberra-
tions) according to the mechanism described by Jowett and
Oide. However, in the vertical plane the picture of the
particle loss was quite different. The energy loss from
radiation in quadrupoles for the vertical plane is substan-
tially smaller than for the horizontal plane and does not
provide large displacement of the synchronous phase and
synchrotron oscillation. Instead, we found that increase
of the vertical betatron oscillation amplitude modifies the
vertical damping until, at some threshold, the damping
changes to rising and the particle gets lost.
This new effect is a parametric resonance in oscillations

with friction; radiation from quadrupoles modulates the
particle energy at the double betatron frequency; therefore,
quadrupole focusing strength also varies at the doubled
betatron frequency creating the resonant condition.
However, due to friction, resonance develops only if
oscillation amplitude is larger than a certain value. The
remarkable property of this resonance is that it occurs at
any betatron tune (not exactly at half-integer) and hence can
be labeled as “self-inducing parametric resonance.”
We will derive particle equations of motion in presence

of the radiation from quadrupoles, consider particle loss for
both transverse planes and compare results with computer
simulation.

II. PARAMETERS VALUES AND OBSERVATIONS
FROM TRACKING

For the FCC-ee lattice “FCCee_z_202_nosol_13.seq” at
45 GeV Fig. 2 shows dynamic aperture obtained byMADX
PTC [11] tracking with synchrotron radiation from all
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FIG. 2. Dynamic aperture: left—tracking by MADX PTC with synchrotron radiation from all magnetic elements, center—tracking by
MADX PTC without synchrotron radiation from all magnetic elements, right—tracking by homemade software with synchrotron
radiation from quadrupoles (blue) and without (magenta).

FIG. 1. The vertical RBSC instability in LEP at 90 GeV
projected into synchrotron phase space. Three lines show the
motion of three particles P, Q, and R with different initial
conditions. P starts with zero betatron amplitude and large
longitudinal deviation. It remains stable and damps to the
equilibrium synchrotron phase. Q and R start with longitudinal
coordinates corresponding to the closed orbit but with vertical
amplitude 5.5 mm and 6 mm respectively. Q is stable while Rs
amplitude grows in few turns until it is lost. A fourth particle has
been tracked with quantum emission to give the cloud of points
representing the core of the beam around the closed orbit.
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magnetic elements and without, and obtained by home-
made software (TracKing [12]) tracking with synchrotron
radiation from dipoles only and with radiation from dipoles
and quadrupoles. The observation point is interaction
point (IP).
Inclusion of synchrotron radiation in quadrupoles into

tracking software decreases dynamic aperture (i) in vertical
direction from Ry ¼ 142σy to Ry ¼ 57σy, (ii) in horizontal
direction from Rx ¼ 109σx to Rx ¼ 65σx.
FCC-ee lattice has two IPs and Table I gives the

parameters relevant to our study.
Table II lists total synchrotron radiation energy loss from

different type of magnets. For particles with vertical
amplitude energy loss in final focus (FF) quadrupoles
dominates the loss in the arc quadrupoles. For particles
with horizontal amplitude energy losses in FF and in the arc
quadrupoles are comparable and significantly larger than
for vertical amplitudes.
Averaged over betatron phases radiation from quadru-

poles is

Uq ¼
Cγ

2π
E4
0

I
K2

1ðx2 þ y2Þds

¼ E0ΓΠ½hK2
1βxiJx þ hK2

1βyiJy�; ð1Þ

where Γ ¼ Cγ

2π
E4
0

p0c
is radiation related factor, Γ ¼ 1.3 m at

E0 ¼ 45.6 GeV, Π is circumference, angular brackets
denote averaging over circumference h…i ¼ H

…ds=Π,
and

hK2
1βxi ¼ 4 × 10−3 m−3;

hK2
1βyi ¼ 1.4 × 10−1 m−3:

For understanding the reasons of particle loss, we studied
particle trajectories, obtained from tracking, in vicinity
of dynamic aperture border. Figure 3 shows phase and
time trajectories of the first unstable (with accuracy to our
step) particle with initial vertical coordinate y ¼ 58σy and
remaining five coordinates are zero. In the longitudinal
plane fPT; Tg synchrotron oscillations excited by addi-
tional power loss from quadrupoles are damped to zero but
suddenly something forces particle to walk away. Since, the
longitudinal oscillations are damped they cannot be the
source of instability, the most probable suspect is vertical
motion. In spite of initial horizontal coordinates being zero,

TABLE I. FCC-ee lattice parameters.

E0 [Gev] 45.6
tunes: νx=νy=νs 269.14=267.22=0.0413
damping times:
τx=τy=τσ [turns] 2600=2600=1300
IP: βx=βy [m] 0.15=0.001
εx=εy [m] 2.7 × 10−10=9.6 × 10−13

IP: σx=σy [m] 6.3 × 10−6=3.1 × 10−8

σδ 3.8 × 10−4
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FIG. 3. Phase and time trajectories of the first unstable particle
with initial conditions fx ¼ 0; y ¼ 58σy; px ¼ 0; py ¼ 0; σ ¼ 0;
pσ ¼ 0g.

TABLE II. Total energy loss from dipoles, final focus quadru-
poles QFF, focusing and defocusing arc quadrupoles QF and
QD.

Type N Uð50σxÞ, MeV Uð50σyÞ, MeV

Dipoles 2900 35.96
QFF 8 12 2
QF 1470 4.1 3.7 × 10−3

QD 1468 1.5 1.5 × 10−2
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FIG. 4. Time evolution of vertical oscillations for particles with
initial vertical coordinate y ¼ f50; 55; 57.5; 58g × σy, horizontal
coordinates are zero, longitudinal are adjusted for synchronous
point.
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horizontal motion is excited by nonlinear transverse cou-
pling, however the amplitude of stable motion is not large
(< 5σx top left plot on Fig. 3).
Unexpected observations come from Fig. 4 showing the

change of envelope evolution for particles with initial
vertical coordinate around the dynamic aperture boun-
dary y ¼ f50; 55; 57.5; 58g × σy, horizontal coordinates
are zero, longitudinal are chosen with respect to the new
synchronous point. For the small initial amplitudes, vertical
oscillations experience exponential damping, as expected,
but with increase of the initial vertical amplitude and
contribution of radiation power loss from quadrupoles,
the envelope changes shape (left bottom plot on Fig. 4)
until damping is replaced by excitation.
Figures 5 and 6 show phase and time trajectories of the

first unstable particle with initial horizontal coordinate
x ¼ 67.1σx and remaining five zero. There is no damping

and walking away in the longitudinal plane fPT; Tg as in
case of vertical initial conditions Fig. 3. On Fig. 6 notice the
right plot showing phase advance per turn with respect to
turn number; the particle action starts to grow after phase
advance per turn reaches an integer.
Before studying FCC-ee transverse dynamic aperture

decreased by the radiation in the quadrupole magnets,
we looked at the dynamic aperture caused by the lattice
nonlinearities only. The transverse dynamic aperture is
limited by the sextupoles for linear chromaticity correction,
Maxwellian magnet fringe fields [13], and kinematic terms
reflecting nonparaxiallity of particle motion in the first
order. All chromatic sextupoles are combined in pairs with
the I optical transformation in between [10]. Such arrange-
ment cancels quadratic geometrical aberrations; therefore,
the leading terms of nonlinear perturbation are cubic ones.
The dynamic aperture is optimized by going through the
sextupole pairs setting with a downhill simplex method
scripted within SAD. It is assumed, that each sextupole pair
in the arcs has individual feeding; therefore, the total
optimization degrees of freedom are around 300.
Figure 7 shows betatron tunes as functions of initial

amplitude. Both tunes move toward the nearest integer
resonance νx ¼ 269, νy ¼ 267 with increase of initial
amplitude. However, due to the symmetry of the potential,
cubic nonlinearity does not produce integer resonance. The
shape of the phase trajectories on Fig. 8 indicates two
hyperbolic fixed points in the both plots and two resonant
islands in the horizontal plane, these are the signs of half-
integer resonances 2νx ¼ 538, 2νy ¼ 534, which are intrin-
sic resonances of the potential.
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III. EQUATIONS OF MOTION

We start from Hamiltonian

Hðx; σ; y; px; pσ; py; sÞ

¼ 1þ pσ þ K0xþ K2
0

x2

2
þ K1

x2 − y2

2
þ K2

x3 − 3xy2

6

− ð1þ K0xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ pσÞ2 − p2

x − p2
y

q
þ
�
−
eV0

p0c

�
λRF
2π

cos

�
ϕs þ

2πσ

λrf

�
δðs − s0Þ; ð2Þ

where c is the speed of light, p0 and E0 are the reference
momentum and energy, e is the electron charge, Bρ ¼
−e=p0c is the rigidity, K0 ¼ Byð0Þ=Bρ is the reference
orbit curvature, K1 ¼ ðdBy=dxÞ=Bρ is the normalized
quadrupole gradient, K2 ¼ ðd2By=dx2Þ=Bρ is the normal-
ized sextupole strength, pσ ¼ ΔE=p0c is the longitudinal
momentum, px;y ¼ Px;y=p0 are the normalized transverse
momenta, V0, λrf are the rf cavity voltage amplitude and
wave length, s is the azimuth along the orbit, σ ¼ s − ct is
the longitudinal coordinate conjugate to the longitudinal
momentum pσ , s0 is the position of point like RF cavity, ϕs
is the phase of rf field.
Radiation power with assumption of negligible electron

mass (β ¼ v=c ¼ 1; E ¼ pc) is

P ¼ c
Cγ

2π
e2E2B2

¼ c
Cγ

2π
E4
0ð1þ 2pσÞ½K2

0 þ 2K0K1xþ K2
1ðx2 þ y2Þ�

¼ c
Cγ

2π
E4
0½K2

0ð1þ 2pσÞ þ 2K0K1xþ K2
1ðx2 þ y2Þ�;

ð3Þ

where B2 ¼ ðBy þ xdBy=dxÞ2 þ y2ðdBy=dxÞ2 and we
dropped terms with p2

σ and 4K0K1xpσ , 2K2
1pσðx2 þ y2Þ.

The next step is to expand Hamiltonian (2) up to third
order in all variables, neglect the term K0xðp2

x þ p2
yÞ=2 due

to its smallness, and obtain equations of motion where
radiation is included by hand with the term describing the
change of momenta,

x0 ¼ px − pxpσ ð4Þ

p0
x ¼ K0pσ − xðK2

0 þK1Þ−K2

x2 − y2

2
− Γpx½K2

0ð1þ 2pσÞ
þ xð2K0K1 þK3

0Þ þK2
1ðx2 þ y2Þ� ð5Þ

y0 ¼ py − pypσ ð6Þ

p0
y ¼ yK1 þ K2xy − Γpy½K2

0ð1þ 2pσÞ þ xð2K0K1 þ K3
0Þ

þ K2
1ðx2 þ y2Þ� ð7Þ

σ0 ¼ −K0x −
p2
x

2
−
p2
y

2
ð8Þ

p0
σ ¼

�
−
eV0

p0c

��
sinϕs þ

2πσ

λRF
cosϕs

�
δðs − s0Þ

− Γ½K2
0ð1þ 2pσÞ þ xð2K0K1 þ K3

0Þ þ K2
1ðx2 þ y2Þ�;

ð9Þ

where Γ ¼ Cγ

2π
E4
0

p0c
, and we expanded rf related cosð…Þ to

first order of σ. Note, that radiation from quadrupoles
produces nonlinear terms ΓK2

1px;yx2, ΓK2
1px;yy2 in (5) and

(7) similar to the ones produced by quadrupole fringe [13].
However, their influence is small in our case and we
drop them.

IV. SOLUTION OF LONGITUDINAL
EQUATIONS OF MOTION

At first, we will solve longitudinal equations of motion
(8) and (9) considering motion in the vertical plane and
neglecting motion in the horizontal plane. Due to the fact
that longitudinal motion is much slower than transverse
(synchrotron oscillation frequency is lower than betatron),
we consider vertical oscillation amplitude independent
of time and solve decoupled equations. Splitting horizontal
motion into betatron part and dispersion part x ¼ xβ þ ηpσ,
px¼pxβþξpσ , neglecting betatron motion xβ¼0, pxβ ¼ 0

yields equations

σ0 ¼ −K0ηpσ − ξ2
p2
σ

2
−
p2
z

2
ð10Þ

p0
σ ¼

�
−
eV0

p0c

��
sinϕs þ

2πσ

λRF
cosϕs

�
δðs − s0Þ

− Γ½K2
0 þ pσð2K2

0 þ 2K0K1ηþ K3
0ηÞ

þ K2
1ðη2p2

σ þ y2Þ�: ð11Þ

Vertical motion through nonlinear coupling excites
horizontal oscillations (top left on Fig. 3), however small
(≈5σx for y0 ¼ 58σy), and, according to Table III (second

TABLE III. Synchronous point and amplitude of synchrotron
oscillations for different transverse initial conditions.

fX0; Y0g f67σx; 0g f0; 58σyg
pσ;max=σδ 4 0.29
pσ;syn=σδ −2.5 −0.025
σsyn=σs 3.1 0.29
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column, multiplying by ð5=67Þ2 ≈ 6 × 10−3), excited by
horizontal motion longitudinal oscillations are by order of
magnitude smaller than the ones produced by vertical
motion directly. Hence, we omit horizontal betatron oscil-
lations in this section. This consideration and latter
numerical oscillations will prove validity of our approxi-
mation in neglecting the nonlinear transverse coupling.
Averaging of the obtained equations over the revolution

period (as usually done for synchrotron motion) introduces
familiar quantities: momentum compaction

α ¼ hK0ηi ¼
1

Π

I
K0ηds; ð12Þ

the relative energy loss from dipoles per turn

1

Π
U0

p0c
¼ ΓhK2

0i; ð13Þ

wave vector of synchrotron oscillations

k2s ¼
α

Π

�
−
eV0

p0c

�
2π

λrf
cosϕs ¼

�
νs
R

�
2

; ð14Þ

longitudinal damping decrement

2ασ½m−1� ¼ Γhð2K2
0 þ 2K0K1ηþ K3

0ηÞi

¼ U0

Πp0c

�
2þ

H ð2K0K1ηþ K3
0ηÞdsH

K2
0ds

�

¼ U0

Πp0c

�
2þ I4

I2

�
; ð15Þ

where Π ¼ 2πR is he ring circumference, R is the average
radius, angular brackets denote averaging over circumference
h…i ¼ H

…ds=Π, νs is the synchrotron oscillations tune, the
rf field phase is chosen according to ð−eV0Þ sinϕs ¼ U0, I4
and I2 are the synchrotron integrals [14].
The factors hξ2i and hK2

1η
2i are small, and multiplication

by p2
σ makes them even smaller; therefore, we neglect

them.
In order to deal with the terms y2 and p2

y, we use the
principal solution of the vertical motion equation [15]

y ¼ Ayfy þ A�
yf�y

py ¼ Ayf0y þ A�
yf�0y ; ð16Þ

where constant amplitude Ay depends on initial conditions,
fy is Floquet function with following properties

fy ¼
ffiffiffiffiffi
βy

q
eiψy ; ð17Þ

ψyðsÞ ¼
Z

s

0

dτ
βyðτÞ

; ð18Þ

fyf�0y − f0yf�y ¼ −2i; ð19Þ

f0y ¼
1ffiffiffiffiffi
βy

p �
β0y
2
þ i

�
eiψy ; ð20Þ

f0yf�0y ¼ 1

βy

��
β0y
2

�
2

þ 1

�
¼ γy; ð21Þ

f02y ¼ 1

βy

��
β0y
2

�
2

− 1þ iβ0y

�
ei2ψy ; ð22Þ

where i is imaginary unit, βy is beta function, ψy is betatron
phase advance. Hence,

y2 ¼ ðAyfy þ A�
yf�yÞ2 ¼ Jyβy þ A2

yf2y þ A�2
y f�2y ;

p2
y ¼ ðAyf0y þ A�

yf�0y Þ2 ¼ Jyγy þ A2
yf02y þ A�2

y f�02y ; ð23Þ

where action relates to amplitudes as Jy ¼ 2AyA�
y, Twiss

parameter gamma is γy ¼ ð1þ α2yÞ=βy, αy ¼ −β0y=2 and
the subscript prime 0 denotes d=ds.
In order to use Krylov-Bogolyubov averaging method

we expand p2
y and ΓK2

1y
2 into Fourier series:

ΓK2
1y

2 ¼ ΓK2
1βyJy þ ΓA2

yei2kys
X∞
n¼−∞

Fy;nein
s
R

þ ΓA�2
y e−i2kys

X∞
n¼−∞

F�
y;ne−in

s
R; ð24Þ

p2
y ¼ Jyγy þ A2

yei2kys
X∞
n¼−∞

Py;nein
s
R

þ A�2
y e−i2kys

X∞
n¼−∞

P�
y;ne−in

s
R; ð25Þ

where ky ¼ 2πνy=Π ¼ νy=R is a wave vector of vertical
betatron oscillations with tune νy,

Fy;n ¼
1

Π

Z
Π

0

K2
1ðsÞf2yðsÞe−i2kys−in

s
Rds

¼ 1

Π

Z
Π

0

K2
1ðsÞβyðsÞeið2ψyðsÞ−2νy sR−ns

RÞds; ð26Þ
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Py;n ¼
1

Π

Z
Π

0

f02y ðsÞe−i2kys−ins
Rds

¼ 1

Π

Z
Π

0

1

βyðsÞ
��

β0yðsÞ
2

�
2

− 1þ iβ0yðsÞ
�

× eið2ψyðsÞ−2νy sR−ns
RÞds: ð27Þ

Applying averaging method and keeping constant and
slowly oscillating terms (Jowett kept constant, but omitted
oscillating terms in [16]) yields equations of motion

σ0 ¼ −αpσ − Jy
hγyi
2

−
A2
y

2
Py;nei

s
Rð2νyþnÞ

−
A�2
y

2
P�
y;ne−i

s
Rð2νyþnÞ; ð28Þ

p0
σ ¼

k2s
α
σ − 2ασpσ − ΓhK2

1βyiJy − ΓA2
yFy;nei

s
Rð2νyþnÞ

− ΓA�2
y F�

y;ne−i
s
Rð2νyþnÞ; ð29Þ

where n ¼ −½2νy� is the negative integer part of the double
betatron tune and is the only slow oscillating harmonic.

A. Synchronous phase

Equating the right parts of the Eqs. (28) and (29) to zero
and eliminating the oscillating terms results in synchronous
longitudinal point

σ ¼ −
ασ
k2s

hγyiJy þ
α

k2s
ΓhK2

1βyiJy ð30Þ

pσ ¼ −
1

2α
hγyiJy; ð31Þ

where the term with Γ corresponds to additional energy loss
from radiation in quadrupoles, the other terms come from
lengthening of particle trajectory. Jowett obtained similar
equations in [6,17].
Particles with not adjusted initial conditions will develop

synchrotron oscillations with respect to the new synchro-
nous point. Using the longitudinal invariant

σ2 þ α2

k2s
p2
σ ¼ const ð32Þ

yields maximum energy deviation

pσ;max ¼ Jy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
−
ασhγyi
ksα

þ ΓhK2
1βyi
ks

�
2

þ hγyi2
4α2

s
ð33Þ

B. Solution without oscillating terms

Solution of Eqs. (28) and (29) without oscillating terms
is known and consists of the constant term describing the

shift of synchronous energy, and two terms describing
damping synchrotron oscillations (only for pσ)

pσ ¼ −
hγyi
2α

Jy þ B1e−ασs cos
�
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s − α2σ

q �
þ B2e−ασs sin

�
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s − α2σ

q �
: ð34Þ

C. Particular solution

Introducing æy ¼ ð2νy þ nÞ=R and transforming the
system of first order differential equations (28) and (29)
into the second order equation gives

p00
σ þ k2spσ þ 2ασp0

σ ¼ −A2
y

�
k2s
2α

Py;n þ iΓæyFy;n

�
eiæys

− A�2
y

�
k2s
2α

P�
y;n − iΓæyF�

y;n

�
e−iæys:

ð35Þ

The particular solution of (35) is

pσ ¼ −
A2
yðk

2
s

2αPy;n þ iΓæyFy;nÞ
k2s − æ2

y þ i2æyασ
eiæys

−
A�2
y ðk2s

2αP
�
y;n − iΓæyF�

y;nÞ
k2s − æ2

y − i2æyασ
e−iæys: ð36Þ

Since

æy ≫ ks ≫ ασ; ð37Þ

ΓæyjFy;nj ≫
k2s
2α

jPy;nj ð38Þ

we can rewrite solution as

pσ ≈ iA2
y
ΓFy;n

æy
eiæys − iA�2

y
ΓF�

y;n

æy
e−iæys: ð39Þ

Apparently, solutions (36) and (39) should not depend on
the initial betatron phase φy, because in the averaging over
the revolution period we lose all the information regarding
particle initial transverse phase. Therefore, we replace
complex betatron amplitude Ay ¼ jAyj expðiφyÞ with its
absolute value jAyj. Putting it in the form comfortable for
the future use we have

pσ ¼ cnjAyj2eiæys þ c�njAyj2e−iæys

¼ jcnjJy cos ðæysþ χ0Þ; ð40Þ

where
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cn ¼ −
ðk2s
2αPy;n þ iΓæyFy;nÞ
k2s − æ2

y þ i2æyασ
≈ i

ΓFy;n

æy
ð41Þ

and χ0 ¼ argðcnÞ.

V. SOLUTION OF VERTICAL EQUATIONS
OF MOTION

With the same assumptions as in the previous paragraph
Eqs. (6) and (7) are

y0 ¼ py − pypσ; ð42Þ

p0
y ¼ K1yþ K2ηpσy − Γpy½K2

0 þ pσDþ K2
1y

2�; ð43Þ

where D ¼ 2K2
0 þ 2K0K1ηþ K3

0η and for machines with
separate functions magnets is negligible, we neglected the
small term ΓpyK2

1η
2p2

σ. We may apply Krylov-Bogolyubov
averaging method directly to Eqs. (42), (43), but it is more
illustrative to apply it to y00 equation. During derivation of
y00 equation we neglect the terms containing p0

σ, because it
either oscillates with synchrotron tune or with double
fractional part of betatron frequency, and after derivation
will receive a small factor. The desired equation is

y00−ðK1−ðK1−K2ηÞpσÞyþΓðK2
0þK2

1y
2Þy0 ¼0: ð44Þ

This is an equation of parametric oscillator with friction;
the second term depends on pσ which contains terms
oscillating at fractional double betatron frequency (40). It is
also a Van der Pol oscillator (nonlinear friction, the third
term). Jowett obtained Van der Pol equation for nonlinear
wiggler (combined quadrupole and sextupole) in [17]. We
did not find large influence of nonlinear friction (Van der
Pol oscillator) and, therefore, omitted it.
Substituting expression for pσ, we neglect the constant

shift and damped synchrotron oscillations (34), and keep
only particular solution (40) oscillating on fractional part of
double betatron frequency, i.e., we consider only para-
metric resonance. Substituting principal solution for y (16),
averaging and keeping only slowly oscillating terms yields
equation for amplitude evolution

ð−2iÞA0
y ¼ AyhΓK2

0ð−αy þ iÞi
þ jAyj2A�

yjcnjhðK1 − K2ηÞβyeið−2ψyþæysþχ0Þi
− 3A2

yA�
yhΓK2

1βyαyi þ iA2
yA�

yhΓK2
1βyi: ð45Þ

The terms hΓK2
1βyαyi and hΓK2

1βyi are small and we
neglect them, obtaining

A0
y ¼ −

1

2
hΓK2

0ð1þ iαyÞiAy

þ i
2
jcnjhðK1 − K2ηÞβyeið−2ψyþæysþχ0ÞijAyj2A�

y

¼ −B1Ay þ iB2jAyj2A�
y: ð46Þ

The real part of the obtained equation describes evolution
of the jAyj (e.g., damping), the imaginary part describes the
change of the betatron tune. In order to solve equation (46)
we introduced coefficients

B1 ¼
1

2
hΓK2

0ð1þ iαyÞi ð47Þ

B2 ¼
1

2
cnhðK1 − K2ηÞβyeið−2ψyþæysÞi; ð48Þ

where expression in angular brackets of B2 is local
chromaticity, which does not vanish when global chroma-
ticity is compensated.
Distinguishing modulus and argument of amplitude

Ay ¼ ayeiφy , B1 ¼ jB1jeiφ1 , B2 ¼ jB2jeiφ2 and substituting
in (46) results in two equations

a0y ¼ −ayjB1j cosðφ1Þ − a3yjB2j sinð−2φy þ φ2Þ; ð49Þ
φ0
y ¼ −jB1j sinðφ1Þ þ a2yjB2j cosð−2φy þ φ2Þ; ð50Þ

where jB1j sinðφ1Þ ¼ ImðB1Þ ¼ 1
2
hΓK2

0αyi ≈ 0 is small
and describes the change of vertical betatron tune because
of damping; this is equivalent to φ1 ¼ 0. The second
term in (50) describes tune dependence on amplitude.
Equations (49) and (50) have complex topology in
fay;φyg space (see Appendix A–C), which has two stable
points providing φ0

y ¼ 0

φy ¼
φ2

2
� π

4
þ πn; ð51Þ

where n is integer. At these points the modulus of
amplitude is

ayðsÞ ¼
ay;0e−jB1jsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2y;0
jB2j
jB1j ð1 − e−jB1jsÞ

q ; ð52Þ

and using Jy ¼ 2AyA�
y ¼ 2a2y gives action

JyðsÞ ¼
Jy;0e−2jB1js

1� Jy;0
jB2j
2jB1j ð1 − e−2jB1jsÞ

: ð53Þ

The plus sign describes always damping amplitudes (sta-
ble), the minus sign, depending on initial action, describes
either damping solutions (stable) or rising (unstable). This
boundary action defines the border of dynamic aperture
and is
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Jy;lim ¼ 2jB1j
�jB2j

: ð54Þ

Existence of initial amplitudes with stable motion at para-
metric resonance is due to the friction (radiation damping).

VI. LONGITUDINAL ANDHORIZONTALMOTION

Equations of coupled horizontal and longitudinal motion
(4), (5), (8), (9) with y ¼ 0 and py ¼ 0 are similar to
vertical and longitudinal (6) (7) with xβ ¼ 0 pxβ ¼ 0. The
unique for horizontal motion terms K0pσ in (5) responsible
for dispersion and −K0xβ in (8) will produce a synchro-
betatron resonance at νx � νs ¼ integer. This resonance
plays an important role, but is out of the scope of our work.
Table III shows that the shift of synchronous point and
amplitude of synchrotron oscillations are significantly
larger for horizontal oscillations (second column) than
for vertical (third column) at the boundary of dynamic
aperture, if initial longitudinal coordinates are not adjusted
to the new synchronous point. Observation of phase
advance per turn (right) on Fig. 6 suggests that a particle
is lost when phase advance reaches an integer (turn 65) and
it happens when pσ ¼ 7σδ. Using the detuning coefficient
and its chromaticity with given initial conditions we
calculated the shift of the tune from each term Table IV.
The sum of the last three lines is exactly zero, which means
that the tune is equal to an integer.

VII. COMPARISON WITH TRACKING AND
NUMERICAL ESTIMATIONS

A. Vertical motion

For given vertical tune harmonic number is n ¼ −534,
æy ¼ 2.8 × 10−5 m−1, ks ¼ 2.6 × 10−6 m−1. The harmon-
ics (26), (27), and (41) are

Fy;n ¼ ð−0.14; 3 × 10−5Þ m−3 jFy;nj ¼ 0.14 m−3

Py;n ¼ ð−0.13; 0.0006Þ m−1 jPy;nj ¼ 0.13 m−1

cn ¼ ð−42.11;−6474.19Þ m−1 jcnj ¼ 6474.33 m−1;

where the expression in brackets (,) designates real and
imaginary part of the value respectfully. The numbers prove
the inequality (38)

ΓæyjFy;nj ¼ 5.13 × 10−6

k2s
2α

jPy;nj ¼ 3.22 × 10−8:

Coefficients (47) and (48) are

B1 ¼ ð4.03 × 10−9;−2.76 × 10−10Þ m−1

jB1j ¼ 4.04 × 10−9 m−1

B2 ¼ ð10.35; 6.43Þ m−2

jB2j ¼ 12.18 m−2:

The border of dynamic aperture (54) is

Ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jy;limβy

q
¼ 37.2σy; ð55Þ

which needs to be compared with the tracking result
Ry ¼ 57σy. Scrutiny of tracking results showed that
transverse nonlinear coupling decreases effective ampli-
tude of vertical motion; therefore, the amplitude of
longitudinal harmonic producing parametric resonance
is about two times smaller than our predictions.
Consideration of this correction increases dynamic aper-
ture Ry ≈ 37.2 ×

ffiffiffi
2

p
σy ¼ 52.6σy, which corresponds well

to tracking results.
Resemblance of longitudinal phase trajectories on

Figs. 3 and 9 proves our approach in solving longitudinal
equations (28) and (29). Figure 9 presents numerical
solution of the longitudinal equations (28) and (29) with
vertical action in the form (53) corresponding to initial
condition y ¼ 58σy.

TABLE IV. Tune shift contribution from detuning and detuning
chromaticity.

∂νx∂Jx −5 × 104

∂2νx∂Jx∂δ −6.8 × 107

Jx 672εx=2
pσ 7σδ
Δνx ¼ ∂νx∂Jx Jx −0.03

Δνx ¼ ∂2νx∂Jx∂δ Jxpσ −0.11
νxðJx ¼ 0; pσ ¼ 0Þ 0.14

–4 –2 0 2 4 6

–4

–2

0

2

4

/

p
/

FIG. 9. Longitudinal phase trajectories from numerical solution
of (28) and (29) with vertical action in the form (53) correspond-
ing to initial condition y ¼ 58σy. The last 200 turns are shown in
red. Compare with bottom right plot of Fig. 3.
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Figure 10 compares results of tracking and calculations
of longitudinal coordinate evolution (synchronous phase)
when initial longitudinal conditions were adjusted accord-
ing to (31) and (30) in order to eliminate synchrotron
oscillations, for two particles with y ¼ 50σy and y ¼ 58σy.
Figure 11 shows spectra of vertical and longitudinal

motion, proving existence of fractional part of double
betatron frequency in longitudinal motion. The double
frequency harmonic amplitude according to (40) is
pσ ¼ 2.8 × 10−2σδ, which closely corresponds to the value
pσ ¼ 2.4 × 10−2σδ on the right plot of Fig. 11.
Figures 12 and 13 compare vertical action evolution

from tracking and calculation with (53). The boundary of
stable motion is 57.5σy from tracking and 52.6σy from
calculations by (54).

B. Horizontal motion

For given horizontal tune harmonic number is n ¼ −538,
æx ¼ 1.8 × 10−5 m−1, ks ¼ 2.6 × 10−6 m−1. The harmon-
ics (26), (27), and (41) are

Fx;n ¼ ð−0.003;−1.5× 10−5Þ m−3 jFx;nj ¼ 0.003 m−3

Px;n ¼ ð−0.004;−5× 10−4Þ m−1 jPx;nj ¼ 0.004 m−1

cn ¼ ð−2.15;−214Þ m−1 jcnj ¼ 214 m−1:

The harmonic jcnj for horizontal motion is about 30 times
smaller than for vertical; therefore, modulation of the
longitudinal motion happens at larger amplitudes, which

are already unstable due to nonlinear dynamics. This is
proven by spectra of horizontal and vertical motion for
particle with initial condition x ¼ 95.5σx on Fig. 14.
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Turnturn
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T

/

FIG. 10. Evolution of longitudinal coordinate from tracking
(left) and from calculations by (30) and (31) (right) corresponding
to initial conditions y ¼ 50σy and y ¼ 58σy and adjusted longi-
tudinal initial conditions (30) and (31).
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FIG. 12. Evolution of normalized square root of vertical action
from tracking corresponding to initial conditions y ¼ 50σy,
y ¼ 57.5σy, y ¼ 58σy, and adjusted longitudinal initial condi-
tions (30) and (31).

FIG. 13. Evolution of normalized square root of vertical action
from tracking corresponding to initial conditions y ¼ 28σy,
y ¼ 50σy, y ¼ 58σy.
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FIG. 11. Spectrum of vertical (left) and longitudinal (right)
motion from tracking corresponding to initial condition y ¼
58σy, and adjusted longitudinal initial conditions (30) and (31).
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FIG. 14. Spectrum of horizontal (left) and longitudinal (right)
motion from tracking corresponding to initial condition
x ¼ 95.5σx, and adjusted longitudinal initial conditions. The
longitudinal harmonic at double betatron frequency is too small
to be observed.
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VIII. CONCLUSION

In horizontal plane, additional energy loss due to
radiation in quadrupoles, shifts synchronous point and
develops large synchrotron oscillations. Horizontal beta-
tron tune dependence on amplitude and chromaticity of
this detuning shift the tune toward the integer resonance
resulting in particle loss. This is similar to radiative
betasynchrotron coupling (RBSC) proposed by Jowett [6].
Dynamic aperture reduction in the vertical plane with

inclusion of synchrotron radiation in quadrupoles in FCC-
ee is due to parametric resonance with modulation ampli-
tude dependent on the square of oscillation amplitude.
Radiation from quadrupoles modulates the particle energy
at the double betatron frequency; therefore, quadrupole
focusing strength also varies at the doubled betatron
frequency creating the resonant condition. However, due
to friction, resonance develops only if oscillation amplitude
is larger than a certain value. The remarkable property of
this resonance is that it occurs at any betatron tune (not
exactly at half-integer) and, hence, can be labeled as “self-
inducing parametric resonance.” Our calculations give the
border of dynamic aperture Ry ¼ 52.6σy, which corre-
sponds well to the tracking result Ry ¼ 57σy.
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APPENDIX A: PARAMETRIC RESONANCE
WITHOUT DAMPING AND AMPLITUDE

INDEPENDENT MODULATION

Considering truncated Eq. (44) without damping

y00 − ðK1 − ðK1 − K2ηÞpσÞy ¼ 0; ðA1Þ

where modulation does not depends on the amplitude

pσ ¼ gneiæys þ g�ne−iæys ¼ 2jgnj cos ðæysþ χ0Þ; ðA2Þ

and χ0¼argðgnÞ, gn¼cnð50 ffiffiffiffi
εy

p =2Þ2¼const. Now, Eq. (A1)
describes a usual parametric resonance with exact resonance
condition æy ¼ f2νyg. The averaged equations are

Ay ¼ iB2A�
y; ðA3Þ

a0y ¼ −ayjB2j sinð−2φy þ φ2Þ; ðA4Þ

φ0
y ¼ jB2j cosð−2φy þ φ2Þ; ðA5Þ

where

B2 ¼
1

2
gnhðK1 − K2ηÞβyeið−2ψyþæysÞi; ðA6Þ

and Ay ¼ ayeiφy , B2 ¼ jB2jeiφ2 . Equations (A4) and (A5)
have two stable points with φ0

y ¼ 0

φy ¼
φ2

2
� π

4
þ πn; ðA7Þ

where n is integer. At these points the modulus of the
amplitude is

ayðsÞ ¼ ay;0e�jB2js: ðA8Þ
The Fig. 15 shows numerical solution of Eqs. (A4) and (A5)
on the plane of the average particle trajectories y=σy ¼
2jAyj cosðφyÞ= ffiffiffiffi

εy
p and py=σpy ¼ 2jAyj sinðφyÞ= ffiffiffiffi

εy
p ,

where initial conditions were ayð0Þ ¼ 50
ffiffiffiffi
εy

p =2 and φy is
uniformly distributed between ð0; 2πÞ. As expected, all
trajectories are diverging.

APPENDIX B: PARAMETRIC RESONANCE
WITH DAMPING AND AMPLITUDE

INDEPENDENT MODULATION

Adding the damping term in the equation of the vertical
motion yields

y00 − ðK1 − ðK1 − K2ηÞpσÞyþ ΓK2
0y

0 ¼ 0: ðB1Þ
The averaged equations are

Ay ¼ −B1Ay þ iB2A�
y; ðB2Þ

–100 –50 0 50 100
–100

–50

0

50

100

FIG. 15. Evolution of the average particle trajectories, solu-
tion of Eqs. (A4) and (A5) with the same initial ampli-
tude and different initial phases. Initial amplitude corresponds
to y0ðφy ¼ 0Þ ¼ 50σy.
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a0y ¼ −ayjB1j cosðφ1Þ − ayjB2j sinð−2φy þ φ2Þ; ðB3Þ

φ0
y ¼ −jB1j sinðφ1Þ þ jB2j cosð−2φy þ φ2Þ; ðB4Þ

where

B1 ¼
1

2
hΓK2

0ð1þ iαyÞi ðB5Þ

B2 ¼
1

2
gnhðK1 − K2ηÞβyeið−2ψyþæysÞi; ðB6Þ

and Ay ¼ ayeiφy , B1 ¼ jB1jeiφ1 , B2 ¼ jB2jeiφ2 . Neglecting
jB1j sinðφ1Þ Eqs. (B3) and (B4) have the same two stable
points with φy

0 ¼ 0

φy ¼
φ2

2
� π

4
þ πn; ðB7Þ

where n is an integer. At these points the modulus of the
amplitude is

ayðsÞ ¼ ay;0e−jB1j cosðφ1Þ�jB2js: ðB8Þ
The Figs. 16 and 17 show numerical solution of Eqs. (B3)
and (B4) on the plane of the average particle trajectories
y=σy ¼ 2jAyj cosðφyÞ= ffiffiffiffi

εy
p and py=σpy ¼ 2jAyj sinðφyÞ=ffiffiffiffi

εy
p , where initial conditions were ayð0Þ ¼ 50

ffiffiffiffi
εy

p =2
and φy is uniformly distributed between ð0; 2πÞ. Because
of damping we have different behavior depending the
strength of the modulation amplitude: if modulation ampli-
tude is small then all trajectories are stable (Fig. 16), if
modulation amplitude is large then all trajectories are
diverging (Fig. 17).

APPENDIX C: PARAMETRIC RESONANCE
WITH DAMPING AND AMPLITUDE

DEPENDENT MODULATION

In the realistic case of Eq. (44) with coefficients (47) and
(48), the modulation amplitude depends on the square of
the oscillation amplitude. Therefore, depending on initial
amplitude either all trajectories are stable, or some are
stable and others are unstable, or all unstable. Figures 18
(all trajectories are stable), 19 (some trajectories are

–100 –50 0 50 100
–100

–50

0

50

100

FIG. 16. Evolution of the average particle trajectories, solu-
tion of Eqs. (A4) and (A5) with the same initial amplitude
and different initial phases. Initial amplitude corresponds to
y0ðφy ¼ 0Þ ¼ 50σy, with small modulation amplitude.
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FIG. 17. Evolution of the average particle trajectories, solu-
tion of Eqs. (A4) and (A5) with the same initial amplitude
and different initial phases. Initial amplitude corresponds to
y0ðφy ¼ 0Þ ¼ 50σy, with large modulation amplitude.

FIG. 18. Evolution of the average particle trajectories, solu-
tion of Eqs. (49) and (50) with the same initial amplitude
and different initial phases. Initial amplitude corresponds to
y0ðφy ¼ 0Þ ¼ 37σy.
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unstable) and 20 (majority of trajectories are unstable)
show numerical solution of Eqs. (49) and (50) on the plane
of the average particle trajectories y=σy ¼ 2jAyj cosðφyÞ=ffiffiffiffi
εy

p and py=σpy ¼ 2jAyj sinðφyÞ= ffiffiffiffi
εy

p , with three different
initial amplitudes and uniformly distributed φy between

ð0; 2πÞ. All trajectories are stable for y0ðφy ¼ 0Þ ¼ 37σy,
and with larger initial amplitude number of unstable
trajectories increases.
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FIG. 19. Evolution of the average particle trajectories, solu-
tion of Eqs. (49) and (50) with the same initial amplitude
and different initial phases. Initial amplitude corresponds
to y0ðφy ¼ 0Þ ¼ 40σy.

FIG. 20. Evolution of the average particle trajectories, solu-
tion of Eqs. (49) and (50) with the same initial amplitude
and different initial phases. Initial amplitude corresponds
to y0ðφy ¼ 0Þ ¼ 58σy.
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