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X-ray free-electron lasers (XFELs) are cutting-edge scientific instruments for a wide range of
disciplines. Conventionally, the narrow bandwidth is pursued in an XFEL. However, in recent years,
the large-bandwidth XFEL operation schemes are proposed for x-ray spectroscopy and x-ray crystallog-
raphy, in which overcompression is a promising scheme to produce broad-bandwidth XFEL pulses through
increasing the electron beam energy chirp. In this paper, combining with the beam yaw correction to
overcome the transverse slice misalignment caused by the coherent synchrotron radiation, finding out the
overcompression working point of the linac is treated as a many-objective (having four or more objectives)
optimization problem, thus the nondominated sorting genetic algorithm III (NSGA-III) is applied to the
beam dynamic optimization for the first time. Start-to-end simulations demonstrate a full bandwidth
of 4.79% for Shanghai soft x-ray free-electron laser user facility. Furthermore, the NSGA-III is found to be
very efficient by providing a set of reference points with preferences. This paves the way for applying this
algorithm to online optimization of a real machine.
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I. INTRODUCTION

X-ray free electron lasers (XFELs) are leading-edge
instruments in a wide range of research fields that can
provide short wavelength radiation with high brightness
and ultra-fast time structures [1]. Most worldwide XFEL
facilities [2–6] are based on self-amplified spontaneous
emission (SASE) [7]. The relative bandwidth of the SASE-
XFEL pulses at saturation is of the order of the Pierce
parameter [8], with values between 10−3 and 10−4. To
generate fully coherent XFEL pulses, several schemes [9]
have been proposed to further decrease the XFEL band-
width. In addition to narrow bandwidth XFEL pulses, the
large-bandwidth XFEL operation has attracted increasing
attention. Broad-bandwidth XFEL pulses are very useful in
many spectroscopy experiments [10,11], multi-wavelength
anomalous diffraction [12,13], and x-ray crystallography
[14,15]. Furthermore, in the large-bandwidth mode, the
XFEL wavelength can be adjusted by simply applying a
monochromator without changing any parameters on the
accelerator side.

According to the FEL resonance condition [8]:

λ ¼ λu
2γ2

�
1þ K2

2

�
; ð1Þ

where λ is the FEL wavelength, λu is the undulator period
length, γ is the mean Lorentz factor of the electrons, and K
is the undulator field parameter, the XFEL wavelength is
determined by the electron beam energy and the undulator
field parameters. In principle, properly sending the head-
tail transversely tilted electron bunches into a transverse
gradient undulator [16] or into a planar undulator with its
natural gradient [17] can make different parts of the bunch
experience different magnetic field, thus generating broad-
band FEL pulses. In addition, using electron beams with
time-energy correlation is a more natural way to obtain
broad-bandwidth FEL, which may be achieved without
additional hardware elements in currently existing facili-
ties. The simplest way to obtain the energy chirp is by off-
crest acceleration, while it is inefficient and at the cost of
reducing beam energy. Utilizing the longitudinal space
charge of a strongly compressed electron beam to increase
the correlated energy spread was proposed for the European
XFEL [18]. There is another special compression mode
named overcompression [19–22] that can be used to
generate a large energy chirp. In this scheme electron
beams are overcompressed in the bunch compressor, which
means the head and tail of the bunch will interchange their
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positions. The sign of the energy chirp will also be
changed. Thus, the beam energy chirp will be increased
by the wakefields of subsequent rf structures. In addition,
the corrugated structure insertion can be used to further
enhance the energy chirp [23]. The crucial issue of the
overcompression mode is to find an appropriate working
point of the linac where the electron beams have large
energy chirp while other beam qualities can be maintained.
The above process can be treated as a many-objective
(having four or more objectives) optimization problem in
which the energy chirp, peak current, energy spread,
current profile, and projected emittance of the electron
bunch are objectives.
It is a common strategy to transform multiple objectives

into one or two objectives by using the weighted method.
Nevertheless, not only it is difficult to determine weights in
this scenario, but it also loses the opportunity to analyze the
relationships between each objective. Multi-objective evolu-
tionary algorithms (MOEAs) [24], such as nondominated
sorting genetic algorithm II (NSGA-II) [25], have been
widely and successfully used in the accelerator community
[26–30] for optimization problems with two or three objec-
tives. However, in recent years, it has been pointed out that
Pareto-dominance based MOEAs will encounter some diffi-
culties in many-objective optimization problems (MaOPs)
[31,32]. With the number of objectives increases, the pro-
portion of nondominated elements in the population is close
to one,whichmakes it very difficult for thePareto-dominance
basedMOEAs to discriminate among solutions utilizing only
the dominance relation. Moreover, to approximate the entire
Pareto-optimal front properly, the number of solutions needs
to be increased exponentially with the number of objective
functions, which leads to longer execution time. Recently,
an improved NSGA-II procedure, which was termed
NSGA-III [33,34], has been proposed as an evolutionary
many-objective algorithm. NSGA-III maintains the diversity
among population members by supplying and adaptively
updating a set of well-spread reference points. It has been
demonstrated that NSGA-III is efficient in optimizing 2 to 15
objectives problems [35–37]. In this paper, using the
Shanghai soft x-ray free-electron laser (SXFEL) user facility
parameters, the overcompression process is optimized by
adjusting accelerator operation parameters with NSGA-III to
explore the maximum FEL bandwidth.
Improving efficiency is a common challenge of applying

evolutionary many-objective or multi-objective optimiza-
tion algorithms to online experiments. The main reason
is that online experiments cannot be run in parallel like
simulation, which leads to a lot of time to find the Pareto-
optimal front. One of the advantages of the NSGA-III
is that it can find part of the Pareto-optimal front rather
than the entire Pareto-optimal front by supplying reference
points with preferences, which makes this algorithm
very efficient. Therefore, the preference-based NSGA-III
is also used to optimize the large-bandwidth mode and

its performance is compared with the widely used
NSGA-II.
The paper is structured as follows. In Sec. II, the

optimization methods of the overcompression mode for
SXFEL user facility are described, including the optimi-
zation strategy and the algorithm used. The optimization
results of NSGA-III and three typical cases are shown in
Sec. III. Results of the NSGA-III with preferred reference
points are presented in Sec. IV. The conclusions and
outlook are summarized in Sec. V.

II. METHODS

A. Optimization strategy

To obtain high quality electron beams in the over
compression mode, electron bunch parameters that are
important for XFEL lasing including the peak current, slice
energy spread, energy chirp, current profile, and projected
emittance are selected as optimization objectives. In this
optimization, the start-to-end simulations are performed to
compute these optimization objectives and validate the large-
bandwidth XFEL generation in the undulator. ASTRA [38] is
used to track electron beams in the injector where the
transverse space charge forces are strong. Tracking simu-
lation in themain linac is performed by the ELEGANT [39] and
its parallel version PELEGANT [40] in which collective effects
like the coherent synchrotron radiation (CSR), longitudinal
space charge, andwakefields are considered. The calculation
of objectives is based on the PELEGANT simulation results.
Thus, to balance the calculation accuracy and time spent,
the PELEGANT simulation is performed with one hundred
thousand macroparticles during the optimization. GENESIS
[41] is used to verify the XFEL generation.
An electron bunch from the PELEGANT simulation result

is divided into 100 slices to calculate objective values. The
peak current Imax is defined as the maximum current value
of these slices. 2% of the Imax is chosen as a cutoff value.
The cutoff slices on two sides of a bunch are a and b
respectively. The objective value of the energy spread,
δmean, is defined as average slice energy spread of slices
between the two cutoff slices:

δmean ¼
P

b
a δi

b − aþ 1
; ð2Þ

where δi represents the energy spread of the ith slice. The
energy chirp is defined as the relative energy difference
between the two cutoff slices:

σd ¼
jγb − γaj
1

b−aþ1

P
b
a γi

; ð3Þ

where γi is the energy of the ith slice. To describe the
current profile of an electron beam, a profile factor, C, is
defined as the ratio of the sum of central 50 slice current to
the sum of total slice current:
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C ¼
P

75
26 IiP
100
1 Ii

: ð4Þ

It should be pointed out that the profile factor does not
describe a specific shape. This is to analyze the relationship
between the current profile and energy chirp during the
optimization. In order to consider the effect of CSR on
the bending plane, the projected emittance εx is defined as
the normalized horizontal emittance at the exit of the linac.
These optimization goals are not independent of each

other. For example, peak current and slice energy spread
are two inherently conflicting objectives. Besides that, the
current profile will influence the energy chirp brought by
longitudinal wakefields. Therefore, it is important for the
overcompression mode to optimize all the objectives at the
same time. As mentioned before, thosewidely usedMOEAs
are originally proposed for problems with two or three
objectives. In recent years, numerous evolutionary many-
objective optimization algorithms have been put forward to
handle those problems with more than three objectives. The
NSGA-III, one of the most frequently-used many-objective
optimization algorithm, is applied to optimize the over-
compression mode in SXFEL user facility. It is more
convenient for the algorithm when all the objectives have
the same optimization direction and sign. Thus, in the actual
optimization, −σd, −C, −δ−1mean, −Imax, and −ϵ−1x are treated
as the objective functions and simultaneously minimized.

B. Algorithm

In general, Pareto-dominance based MOEAs manipulate
a set of solutions (a population) toward the Pareto-optimal
front through a set of typical operations including selection,
crossover, and mutation. The selection operation applies the
evolution pressure by selecting the best solutions in the
iteration. The crossover operation combines existing sol-
utions to generate new solutions. The mutation operation
produces new solutions by altering the existing solutions.
For each iteration (called generation), the crossover or
mutation operation creates a new population of equal size
(called offspring population) from the existing population
with a certain probability. The NSGA-III that used in this
study is an improved version of the NSGA-II for MaOPs.
The basic framework of NSGA-III is similar to the NSGA-II
[25] but the selection operation is quite different. The main
procedure ofNSGA-III is briefly described as follows. In the
beginning, N solutions called the initial population are
randomly generated, where N is the population size. The
following steps are continuously iterated until the stop
criterion is reached. Take the t-th generation as an example.
Assume the population isQt. After the tournament selection,
polynomial mutation [42], and simulated binary crossover
[43], an offspringPt is generated fromQtwith the same size.
Thereafter, the Qt and Pt are merged to Rt, and the best N
members need to be selected from the Rt for the next
generation. Before the selection, the population Rt is sorted

into multiple nondominated fronts based on the Pareto
dominance [25]. Then, each nondominated fronts is selected
one at a time to construct a new population St, starting from
the first nondominated fronts, until the size of St is larger
than or equal to the population size. The last front included is
defined as theM-th Pareto-optimal front. Solutions fromone
to (M − 1) fronts will be selected for the next generation and
the rest individuals are chosen from theMth Pareto-optimal
front one by one, until the size of next generation population
is equal to N. In NSGA-II, solutions with large crowding
distancewill be chosen. The crowding distance of a solution
is defined as the average distance of its surrounding
solutions, which is not working well for the MaOPs [44].
In NSGA-III, a new selection mechanism based on a set of
supplied reference points is proposed to analyze solutions in
the Mth Pareto-optimal front more systematically.
The reference points used in the NSGA-III are prede-

fined to ensure the diversity of the population. These
reference points can either be generated in a structured
manner or chosen based on any preference information.
In the selection, objectives and the reference points are
normalized to be in the same range. After the normaliza-
tion, the zero vector is treated as the ideal point of the St and
the reference lines are defined by joining the ideal point
with reference points. Thereafter, the perpendicular dis-
tances between a solution and each reference line are
calculated. Every population member in the St is associated
with a reference point corresponding to the minimum
perpendicular distance. Then, the number of solutions
associated with each reference point is treated as the niche
count. Some solutions from the Mth Pareto-optimal front
of the St are included into the next population based on
the reference point niche count. More details about the
NSGA-III can be found in [33].
The Das and Dennis’s [45] systematic approach used in

the original NSGA-III paper [33] is also used to generate
reference points in this optimization. The reference points
generated by this method incline to all objectives equally.

FIG. 1. The distribution of the reference points of a five-
objective problem with p ¼ 2 in the space constituted by any
three of the five objective functions.
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If p divisions are considered for each objective in an K-
objective problem, the total number of reference points H
is given by: H ¼ CK−1

pþK−1. For example, in a five-objective
problem, two divisions (p ¼ 2) are chosen for each objec-
tive axis, 15 reference points will be created. Figure 1 shows
the distribution of these reference points in the space
constituted by any three of the five objective functions.
In this optimization, the p is chosen to be 7 to handle the 5
objectives so the total number of reference points is 330.

III. RESULTS OF SXFEL USER FACILITY

A. The SXFEL user facility

As the first x-ray FEL in China, the SXFEL user facility
is under construction at Shanghai [46]. The SXFEL user
facility will be equipped with two undulator lines. One
is the two-stage seeded FEL line to generate 3 nm fully
coherent FEL pulses, and the other is the SASE line aimed
at 2 nm using an in-vacuum undulator. The scope of the
optimization in this study is to design the large-bandwidth
operation mode for the SASE line.
In the baseline design of the SXFEL user facility, 0.5 nC

electron bunches with 130MeVare generated in the injector
section which includes two S-band accelerating structures
and a laser heater. Downstream of the injector is the main
linac with three accelerating sections and two bunch
compressors. Electron beams are accelerated at the off-crest
phase of a S-band accelerating section to create an energy
chirp and an X-band rf cavity is used to linearize the chirp.
Following this, electron beams with 256 MeV are com-
pressed in the first magnetic chicane. There are two C-band
linac accelerators are used to further increase the beam
energy to 1.5GeV. The second bunch compressor is between
the two C-band accelerating sections to further compress
electron beams and obtain peak currents larger than 700 A.
Finally, electron bunches are sent to the two FEL lines.
In the overcompression mode, energy chirp is increased
by the longitudinal wakefields after the overcompression.
Therefore, it is more appropriate to make the electron beam
be overcompressed in the first bunch compressor and turn
off the second bunch compressor to utilizemore longitudinal
wakefields. Layout of the main linac with a single-stage
bunch compressor and the SASE line are shown in Fig. 2.
The angle of the first bunch compressor (θBC1), voltages

and phases of the S-band accelerating section (V1, φ1) and

the X-band linearizer (Vx, φx) are selected as optimization
variables. The ranges of these variables are decided by the
limits of related hardware. In addition, overcompressed
electron bunches have gone through full compression status
in chicane where the CSR becomes quite strong [47]. The
strong CSR brings electron bunches with a longitudinally
dependent energy loss which will be turned into slice
misalignment called beam yaw and increase the projected
emittance of the bending plane. When there is no additional
correction, the beam yaw will be further increased in the
subsequent accelerating sections due to the transverse
wakefields. Recently, the dispersion section based beam
yaw correction has been proposed and experimentally
verified [48,49]. This scheme removes the beam yaw by
sending energy chirped electron beams into well-controlled
dispersion sections. In the SXFEL user facility, there are
two quadrupoles in the first magnetic chicane that can be
used to correct the first order beam yaw. To maximize the
energy chirp and eliminate the beam yaw caused by the
CSR simultaneously, the strength of the two quadrupoles in
the first bunch compressors is added to optimization
variables. The second order beam yaw correction needs
additional sextupole magnets, which is not considered in
this optimization.
As mentioned earlier, in the many-objective optimization

problem, a large number of solutions are needed to describe
the entire Pareto-optimal front. Therefore it is necessary to
concentrate the entire population in the region of interest.
Rejecting infeasible solutions during the optimization, such
as artificially altering their objective values, is the most
effective way to handle constraints and has been widely
used in beam dynamic optimization. However, it should be
noted that rejecting a lot of solutions may lead to the loss of
population diversity and make the algorithm prone to be
trapped in local optima [50]. Hence, setting objective
constraints usually requires some trials in advance to avoid
rejecting too many solutions. In this optimization, consid-
ering the single-stage bunch compression, those solutions
with a peak current more than 2000 A or less than 700 A are
artificially given the worst objective values. In addition, in
order to focus the optimization on finding the optimal
solutions in the overcompression region, those electron
bunches which are not overcompressed, i.e., the tail of the
electron bunch with larger energy than the head, will also
be given the worst objective values.

FIG. 2. Layout of the SXFEL user facility linac, with the injector section, S-band sections (L1), one X-band linearizer (LX), C-band
sections (L2, L3), and two bunch compressor chicanes (BC1, BC2). Angle of the BC1, voltages, and phases of L1 and LX are optimized
for the large-bandwidth operation mode. The second bunch compressor is turned off to utilize more longitudinal wakefields.
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Since only the parameters in the main accelerator are
optimized, the time required to run an optimization is
mainly determined by the runtime of the PELEGANT.
Suppose the PELEGANT runs once for t, the population
size i.e., the number of solutions in each generation is N,
the crossover probability is pc, the mutation probability is
pm, and the algorithm runs k generations, then the total
execution time T is estimated as:

T ¼ t · N · ðpc · kþ pm · kþ 1Þ: ð5Þ

This is the sum of the calculation time of the initial
population and each generation. Since there is no unified
theory to determine the crossover and mutation probability,
the crossover probability of 0.8 to 1 and the mutation
probability of 0.1 to 0.3 have been tried in advance. These
experiments show that the probabilities of crossover and
mutation within the given ranges have little effect on the
optimization results and mainly affect the convergence
speed of the algorithm. Based on the results of these
experiments, pc and pm are finally set to 1 and 0.2 in the
optimization, respectively. The original NSGA-III paper
[33] suggests setting the value of N close to the number of
reference points. In this optimization, the population size is
set to 300 which is sufficient to depict the Pareto-optimal
front and the k is set to 100 to ensure convergence.
A workstation with two E5-2687W v3 processors and
ten cores per processor is used to run this optimization. The
execution time of this optimization is about seven days.
This execution timewill decrease when computing power is
increased.

B. Optimization results

Based on the reference points generated by Das and
Dennis’s systematic approach, the results of the NSGA-III
optimization are shown in Figs. 3 and 4. In the last
generation of the NSGA-III optimization, all 300 solutions

are on the Pareto-optimal front. Figure 3 shows the 50
solutions with the largest energy chirp and the 50 solutions
with the largest current profile factor on the Pareto-optimal
front obtained in the last generation, where all the solutions
are normalized as follows:

fnij ¼
fij −minðfiÞ

maxðfiÞ −minðfiÞ
; ð6Þ

in which fij is the ith objective value of the jth solution,
maxðfiÞ and minðfiÞ are the maximum and minimum
values of the i-th objective in this generation. The Pareto-
optimal front shows that there is a strong correlation
between some goals. In order to better show these relation-
ships, the projection of the Pareto-optimal front on several
planes formed by different objectives is presented in Fig. 4.
As Fig. 4 (top left) shows, current profile of the electron
bunch has a large impact on the maximum available
energy chirp. In general, a worse profile factor can achieve
a larger energy chirp. Therefore, the trade-off between the
energy chirp and current profile is very important. For those
solutions that have the same peak current but a larger
profile factor, their average slice current is usually higher,
which results in a larger average slice energy spread. Thus,
as shown in Fig. 4 (top right) and Fig. 4 (bottom left), an
increase in the value of current profile factor or peak current
will result in an increase in the average slice energy
spread. As presented in Fig. 4 (bottom right), since the
large energy chirp corresponds to the poor profile factor,
it also corresponds to a small average slice energy spread.
In addition to these relationships, there is no clear corre-
lation between other objectives. The beam yaw of most
solutions has been well optimized in the last generation.
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FIG. 3. Parallel coordinate plots of the 50 solutions with the
largest energy chirp (dashed lines) and the 50 solutions with the
largest current profile factor (solid lines) in the last generation.
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FIG. 4. Projection of the Pareto-optimal front obtained by the
NSGA-III on different planes. The three blue dots are three
typical solutions whose current profiles and longitudinal phase
spaces are presented in Fig. 5.
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From the prospective of the current shape, solutions can
be divided into three categories. There are three typical
cases from the three kinds of current profile are given in
Fig. 4 with blue dots. Fig. 5 shows the current profile and
longitudinal phase space of the three cases based on the
PELEGANT simulation with one million macroparticles. The
objective function values based on one million macro-
particles are only slightly different from the values based on
one hundred thousand macroparticles. The first kind of
electron beams are those with profile factor lower than 0.5,
which have a high-current leading peak and a long tail like
the case 1 in Fig. 5(a). The sharp single-horn of this kind of
electron beam is due to the nonlinear bunch compression.
The maximum energy chirp available in this type of
electron beams is 5%. Although the energy chirp is large,
the low-current tail of such kind of electron beams will not
contribute to the broad-bandwidth FEL lasing. Therefore,
this kind of electron beam is not suitable for the large-
bandwidth operation mode. The second kind is those
electron beams with profile factor between 0.5 and 0.7.
This kind of electron bunch has a quasi-triangular current
profile like the case 2 in Fig. 5(b) with a profile factor of
0.54. Similar to the first kind of electron beams, the low-
current tail does not contribute to the FEL lasing which
causes the final FEL bandwidth to be much smaller than the
theoretical value, i.e., the twice of the energy chirp. In
addition, this kind of current shape also leads to a poor
uniformity of the power profile. Thus, this kind of electron
bunch is not the best choice for producing broad-bandwidth
XFEL pulses either.

Those electron beams with a profile factor more than
0.7 are treated as the third kind. The current shape of this
kind of electron bunches is more or less flat-top or
Gaussian shape, which is suitable for generating large-
bandwidth FEL pulses to most users. In this kind, electron
beams with peak currents between 700 and 2000 A and
similar energy chirp values can be obtained. For those
electron beams with peak currents between 700 and
800 A, the beam tilt caused by the CSR is negligible.
With the increase of the peak current, the influence of
CSR on beam yaw will also increase. Benefit from the
beam yaw correction, electron beams with larger peak
current can also be used to generate large-bandwidth
XFEL pulses. After taking into account the impact of
multiple objectives, the case 3 [see Fig. 5(c)] with a peak
current of 1150 A is selected for the large-bandwidth
mode of the SXFEL user facility. The energy chirp,
normalized horizontal emittance, and profile factor of
the chosen electron bunch are 2.61%, 1.45mm · mrad,
and 0.80. Start-to-end simulations with one million macro-
particles have been performed based on the rf parameters
of this case. If the quadrupoles in the chicane are not used,
there is a clear beam yaw in the horizontal phase space as
shown in Fig. 6 (top). As Fig. 6 (bottom) shows, the first
order beam yaw in the horizontal phase space has been
well corrected. To verify the large-bandwidth generation,
the GENESIS simulation runs 20 times with different seeds
and the results are shown in Fig. 7. The pulse energy and
XFEL bandwidth are 525� 15 μJ and 4.79� 0.07%
(including a 2% cut). As shown in Fig. 7 (left), there is
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FIG. 5. Current profile (upper) and longitudinal phase space (lower) of the three typical electron bunches selected from the Pareto-
optimal front.
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a low radiation power part near 50 μm of the XFEL pulse,
which is caused by the high-order beam yaw.
To analyze the effects of the voltages and timing jitters in

the rf structure, 1000 ELEGANT runs are performed with
randomized voltages and phases of the first accelerating
section and linearizer. Phase jitters of the S-band and
X-band are 0.1 and 0.4 deg. Voltage jitters in both sections
are 0.04%. The impacts of these jitters on the optimization
targets are calculated. The rms jitters of the peak current,
profile factor, and energy chirp are 14.18%, 2.56%, and
0.90%. The jitter analyses indicate that the FEL bandwidth
is stable in the overcompression mode and the peak power
may have some fluctuations due to the peak current jitter
which is in an acceptable range.

IV. EFFICIENT OPTIMIZATION BASED ON
PREFERRED REFERENCE POINTS

In Sec. III, the method proposed by Das and Dennis is
used to generate reference points for the NSGA-III. These
reference points are equal for all objectives and are well
distributed in the five-dimensional objective space to find

the entire Pareto-optimal front and analyze the correlation
between the objectives. However, finding the whole Pareto-
optimal front is usually inefficient and unnecessary, espe-
cially for the online optimization of a real machine. For
example, to find the entire Pareto-optimal front, solutions
that have small energy spread but poor energy chirp and
current profile may be retained in the population until the
end. Such solutions obviously have no meaning for the
large-bandwidth mode and result in longer execution time
of the algorithm.
In this study, optimizing the energy chirp and current

profile is the most important task while other objectives are
also expected to be optimized simultaneously. A feasible
way to increase the effect of the values of the energy chirp
and profile factor in the optimization is to use only the
reference points on the plane formed by the energy chirp
and profile factor to guide the optimization. In this case,
those solutions with poor energy chirp and profile factor
are difficult to preserve in the optimization. Thus, as shown
in Fig. 8 (left), only 66 reference points on the plane
consisting of energy chirp and profile factor are selected
from the reference points generated by the Das and
Dennis’s method with 10 divisions as a set of preferred
reference points. As mentioned before, −σd, −C, −δ−1mean,
−Imax, and −ϵ−1x are treated as actual objective functions
and they are normalized to a range of 0 to 1 during the
optimization. This indicates that the reference point with a
smaller value corresponds to the better solution in the
optimization. For the other three objectives, the values of
these reference points are 0, i.e., the optimal value. To
compare the performance of the NSGA-III with preferred
reference points [NSGA-III (P)] with other algorithms, the
NSGA-II and the single-objective genetic algorithm
(SOGA) are also used to optimize this problem. In the
SOGA, the objective is defined as:

FS¼c1 ·σdþc2 ·Imaxþc3 ·δ−1meanþc4 ·Cþc5 ·ε−1x ; ð7Þ

where c is the weight of each subgoal and all these sub-
goals are normalized according to Eq. (6). The maximum
and minimum values of each subgoal in Eq. (6) are
approximated by the maximum and minimum values of
each objective function in the last generation of NSGA-III.
The weight of all sub-goals is set to 1 and the objective

-150 -100 -50 0 50 100 150
Z ( m)

-0.4

-0.2

0

0.2

0.4
X

 (
m

m
)

-150 -100 -50 0 50 100 150
Z ( m)

-100

-50

0

50

100

X
p 

(
ra

d)

-150 -100 -50 0 50 100 150
Z ( m)

-0.4

-0.2

0

0.2

0.4

X
 (

m
m

)

-150 -100 -50 0 50 100 150
Z ( m)

-100

-50

0

50

100

X
p 

(
ra

d)
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phase space of the case 3 at the entrance of the undulator.
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value is maximized in the optimization. For a fair com-
parison, all algorithms use the same initial population and
operation parameters like the mutation and crossover
probability. The execution time of NSGA-II and SOGA
can still be calculated using Eq. (5). Since the population
size and operation parameters of these algorithms are the
same, the execution time required can be compared by
comparing the generations needed for the convergence of
these algorithms.
First, the population size of 300 is considered and the

initial population generated in the Sec. III is also used here.
The optimization results show that NSGA-II and NSGA-III
without preference converge at around the 70th generation
and NSGA-III (P) converges at around the 30th generation.
The projection of the Pareto-optimal front obtained by the
NSGA-III without preference, NSGA-III (P), and NSGA-II
on the plane formed by the energy chirp and profile factor
in different generations are shown in Fig. 9 and Fig. 10.
As shown in Fig. 9, the energy chirp obtained by the
NSGA-III (P) is similar to that obtained by the NSGA-III
without preference, while the NSGA-III (P) converges
faster in regions with good current profile factor.
Figure 10 shows that the energy chirp obtained by the
NSGA-II in the 100th generation, when the algorithm has
converged, is still not as good as that obtained by the
NSGA-III (P) in the 30th generation, especially in areas
with good current profile factor. As shown in Fig. 10
(bottom right), NSGA-II can obtain some solutions with
profile factor very close to 1 and small energy chirp.
However, when the profile factor of the solution is in the
range of more than 0.7, the value of the profile factor is not
the larger the better for the broadband FEL lasing. In this
case, the value of energy chirp is much more important. In
addition, the projection of the Pareto-optimal front obtained
by the NSGA-III (P) and NSGA-II on other planes are

similar to that obtained by NSGA-III without preference.
Therefore, using only the reference points on the plane
formed by the energy chirp and profile factor makes the
NSGA-III converge faster on the energy chirp and profile
factor while the other objective values are not affected. In
order to quantitatively compare the results of these algo-
rithms, the average energy chirp of the solutions with a
profile factor larger than 0.7 in the last generation of each
algorithm is calculated as an evaluation value. In the 30th
generation of NSGA-III (P) and the 100th generation of
NSGA-III and NSGA-II, the average energy chirp of the
solutions with profile factor larger than 0.7 is 2.48%,
2.42%, and 2.21%, respectively. The SOGA converges
at around the 40th generation and its optimal value for each
generation is on the Pareto-optimal front obtained by the
NSGA-III. Moreover, the values of the energy chirp and
profile factor of the optimal solution obtained by the
SOGA are basically unchanged from the 10th generation.
However, the position of the optimal value of the SOGA on
the Pareto-optimal front is determined by the weights of the
subgoals in the algorithm, which are difficult to determine
in advance.
To explore a more efficient optimization, a smaller

population size is considered. Here 100 solutions are
randomly generated as the initial population and the other
parameters in the algorithm are not changed. The results
show that NSGA-III (P) and NSGA-II still converge at
about the 30th and 70th generation, respectively. In
addition, NSGA-II converges to the entire Pareto-optimal
front more slowly in the case of small population size. As
shown in Fig. 11, NSGA-III (P) converges at around the
30th generation, at this time NSGA-II does not even find a
solution with a large current profile factor. The average
energy chirp of the solutions having profile factors larger
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FIG. 9. Projection of the Pareto-optimal front obtained by the
NSGA-III and NSGA-III (P) with a population size of 300 in
different generations.
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than 0.7 in the 30th generation of NSGA-III (P) and the
100th generation of NSGA-II is 2.56% and 2.43%, respec-
tively. However, when the population size is small, the
required part of the Pareto-optimal front, such as a range
with a large current profile factor and a specific peak
current, there may be only a few solutions for the users to
choose from. By further setting constraints on the objec-
tives, more solutions can be concentrated on the preferred
area. However, since only a few solutions in previous
generations have good profile factors, rejecting solutions
with poor profile factors may result in loss of population
diversity. In this case, the solution obtained by NSGA-III
can be concentrated on the preferred region of the Pareto-
optimal front by further changing the reference points. In
order to achieve this, as presented in Fig. 8 (right), only the
upper part of the reference point in Fig. 8 (left) is retained.
This is to eliminate the reference points that correspond
to solutions with poor profile factors. Therefore, solutions
with poor profile factor will not be preserved during the
optimization process. To compare with the NSGA-III with
the second kind of reference points [NSGA-III (P2)], those
solutions with values of profile factor less than 0.7 in the
NSGA-II are artificially given the worst objective values.
In the optimization, the NSGA-III (P2) and NSGA-II still
utilize the same initial population and operation parame-
ters. The corresponding optimization results are presented
in Figs. 12 and 13.
The results show that NSGA-III (P2) converges at about

the 30th generation while NSGA-II converges at about the
50th generation. Figure 12 shows the projection of the
Pareto-optimal front obtained by the NSGA-III (P2) and
NSGA-II on the plane formed by the energy chirp and
current profile in different generations. The projection of
the Pareto-optimal front obtained by the NSGA-III (P2) and
NSGA-II on some other planes is presented in Fig. 13. As

shown in Fig. 12 (top left), only a few solutions on the
Pareto-optimal front obtained by NSGA-II in the 10th
generation, which means that solutions with a profile factor
less than 0.7 account for a high proportion of the population
and they are all rejected. The solutions obtained by
NSGA-II in the 100th generation are not only inferior to
the solutions obtained by NSGA-III (P2) in the 30th gene-
ration, but also worse than that obtained by itself without
the current profile factor limitation. The average energy
chirp of the solutions with a profile factor larger than 0.7 in
the 30th generation of NSGA-III (P2) and the 100th gene-
ration of NSGA-II is 2.54% and 2.31%, respectively. The
main reason for the deterioration of the NSGA-II optimi-
zation results is that a large number of solutions are rejected
due to the limitation of the current profile factor, which
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NSGA-II and NSGA-III (P) with a population size of 100 in
different generations.
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makes the algorithm falls into local optima. Therefore,
when infeasible solutions constitute a large proportion of
the entire search space, setting reference points with
preferences is more efficient than artificially changing
the objective values of those undesired solutions. It should
be noted that setting reference points with preference
usually only determines the optimization tendency rather
than a clear range, so there are some solutions obtained by
NSGA-III (P2) with profile factor less than 0.7. In addition,
limiting the peak current to a certain range and rejecting
electron beams that lack of overcompression still depends
on artificially changing the corresponding objective values
in this optimization. How to concentrate the entire pop-
ulation in a specific area by setting only special reference
points requires further exploration.
From the perspective of online experiments, the execu-

tion time of this optimization strategy can also be estimated
according to the Eq. (5). And the simulation time of
PELEGANT in the equation is replaced by the operation
time of the real machine. Since the measurement of the
projection emittance in the experiment is very time-
consuming, the projection emittance is not taken into
consideration in the online optimization at first. The beam
yaw correction is performed after other objectives are well
optimized. The other four objective values can be obtained
very quickly by reconstructing the longitudinal phase space
of the electron bunch with a transverse deflecting structure.
The most time-consuming part of this optimization on the
SXFEL user facility is to adjust the voltage of the
accelerator sections, which takes about 15 seconds each
time. If the NSGA-III (P2) is used (the population size is set
to 100 and runs for 30 generations) and various accidents
such as the rf breakdown are not considered, it takes about
15.4 hours to perform this optimization.

V. CONCLUSIONS AND OUTLOOK

In this paper, an evolutionary many-objective optimiza-
tion algorithm has been applied to optimize the over-
compression mode in the linac for producing large-
bandwidth XFEL pulses. Benefiting from its ability that
can optimize more than three goals simultaneously, objec-
tives including the energy chirp, slice energy spread, peak
current, current profile, and horizontal projected emittance
are all considered in the optimization. In the case of SXFEL
user facility, simulations show that the current profile of
the electron bunch has a large impact on the maximum
available energy chirp. A maximum energy chirp of 5% can
be obtained when the electron beam is of poor current
uniformity. Considering the broadband FEL lasing and the
dependencies between these objectives, our results indicate
that the electron beam with 2.61% energy chirp generates
a 2 nm FEL pulse with full bandwidth of 4.79%.
Furthermore, the preference-based NSGA-III is found to
be very efficient at finding preferred parts of the Pareto-
optimal front. Therefore, this algorithm can be utilized not

only for simulation-based design but also for online
experiments.
The accuracy of the optimization result largely depends

on the definition and calculation method of the optimiza-
tion objectives. In this paper, the 1D CSR model of the
ELEGANT may not be accurate enough for the simulation
of compressing electron bunches to large peak currents
with single-stage compression. This requires further
investigation with more complicated 3D CSR simulations.
Moreover, it is also possible to optimize the problem based
on the GENESIS simulation results when the computing
power is sufficient.
This optimization strategy can be easily extended to

other problems, especially for various XFEL operation
modes that need to find the optimal working point of the
linac, such as the twin bunch operation mode [51] and
nonlinear compression mode [52,53]. In addition, this
optimization strategy can also be used for the electron
bunch shaping using the entire accelerator, such as gen-
erating a triangular electron beam to improve the trans-
former ratio in the beam-driven collinear wakefield
accelerators [54,55].
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