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The physics involving the emission of coherent undulator radiation from a bunch of correlated electrons
wiggling inside an undulator has been very well established in the frequency domain. With the aim of
describing the process of emission of coherent undulator radiation in time domain while incorporating the
effect of hyperbolic field profile of the undulator and various electron beam parameters, we present a time-
domain analysis which can serve as a complimentary formulation to the frequency-domain analysis of the
coherent undulator radiation. The formulation requires revisiting the equation of motion of an electron
moving inside a planar undulator. An electron beam with substantial spread along the direction of the
magnetic field will undergo betatron oscillations due to the hyperbolic profile of the undulator fields. We
show that the betatron motion can be conveniently expressed in terms of Mathieu functions. The new set of
equations of motion have been used to study the effect of betatron motion on the emitted undulator
radiation. The single-particle time-domain analysis is then easily extended to multiparticle systems by
correctly accounting for the phase-difference between the individual electromagnetic waves emitted by
different electrons occupying different phase-space in the bunch.
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I. INTRODUCTION

The interest in studying electromagnetic radiation emit-
ted by energetic charged particles using particle acceler-
ators dates back to the early 1940s. As early as in 1944,
Iwanenko and Pomeranchuk showed that the radiative
energy loss due to accelerated electrons would impose
restrictions on the maximum achievable energy [1].
Although the loss of electron beam energy in form of
radiation was considered to be an unwanted process yet
Schwinger at General Electric synchrotron facility inves-
tigated the properties of synchrotron radiation and devel-
oped the formulation for characteristics of the emitted
radiation like instantaneous power, angular and spectral
distribution etc. by a single electron [2]. A few years later,
Ginsburg developed the theory to evaluate coherent and
incoherent radiation from oscillating electrons [3]. Soon,
the characteristics of the radiation emitted by relativistic
particles moving inside periodic array of magnets (undu-
lator) was discussed by Motz and he analytically showed
that the coherent radiation in the millimeter regime may be
obtained from a few MeVelectrons provided that the bunch
length of the electrons is smaller as compared to the

wavelength of the radiation emitted by electrons [4]. In
1953, he discussed the design of a practical undulator and
experimentally demonstrated the generation of millimeter
waves from 3 MeV electron beam [5]. In 1971, Madey
realized that the classical formalism of coherent undulator
radiation presented by Motz does not account for the
stimulated emission processes that can take place due to
the interaction between the radiation field and the electron
beam. He then proposed the idea of free electron lasers
(FEL) based on stimulated emission of bremsstrahlung in
undulators [6] and successfully demonstrated the operation
of the proposed FEL in 1977 [7].
Gevorgian et al. used the spectrum of the coherent short-

wave radiation pulses to obtain the distribution of electrons in
an electron bunch and showed that finite length electron
buncheswould increase the FELprocess efficiency [8]. In the
same year, Michel pointed out that intense coherent syn-
chrotron radiation from “superbunched” electron beamcould
be obtained from storage rings also [9]. Coherent synchro-
tron radiation from short bunches was later observed for the
first time by Nakazato and his group at Tohoku University,
Japan in 1989 [10]. The theoretical formulation of the
multiparticle coherent enhancement of the synchrotron
radiation was laid down by Hirschmugl [11]. She showed
that the extent of enhancement of spontaneous synchrotron
radiation depends on the form-factor of the electron bunch;
which gives a measure of how tightly the particles in the
bunch are packed around its center of mass as compared to
the wavelength of the emitted radiation. She derived the
equation for radiated power as:
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d2I
dωdΩ

¼ ½N þ NðN − 1ÞfðωÞ�PðωÞ ð1Þ

where ω is the radiation frequency, PðωÞ is the power
radiated by a single electron, N is the total number of
electrons in the bunch and fðωÞ is its form factor. The form
factor of an electron bunch is defined as [11]:

fðωÞ ¼ 1

NðN − 1Þ
XN

j;k¼1ðj≠kÞ
expðiωðrj − rkÞ=cÞ ð2Þ

where ri represents the position of ith electronwith respect to
the center ofmass of the bunch.Amoregeneralized approach
to derive the average spectral distribution of coherent
radiation, irrespective of the emission process is given in
[12]. It is easily deducible from Eq. (1) that fðωÞ ¼ 0
corresponds to the incoherent limit (the radiation power
scales linearly with N) while fðωÞ ¼ 1 corresponds to the
coherent limit of the emitted radiation (the radiation power
scales quadratically with N). Using this definition of form
factor, an electron beam bunch is said to be superradiant if
fðωÞ → 1. Generally, this condition is satisfied if the electron
beam bunch is much smaller than the radiation to be
generated. However, Gevorgyan et al. showed that the
transverse distribution of the electron beam bunch also have
a significant effect on the coherence of the emitted radiation
[13]. The radiation intensity can be further enhanced by
injecting a train of superradiant microbunches (separated by
exactly one radiation wavelength) into the undulator. The
form factor for a train of microbunches and the process of
radiation enhancement has been explained elsewhere [14].
Although the above formulation allows us to understand

the enhancement of a particular radiation mode (ω) by
accounting for the phase-space volume occupied by the
electrons in the bunch; but the picture of the radiation
emission process is incomplete without the time-domain
theory of the same. In 1994, Gover et al. provided a
quantitative theoretical description of the temporal behav-
ior of the coherent radiation wave-packet emitted by an
electron bunch inside a waveguide free electron laser [15].
The time-domain theory to explain the self-amplified
spontaneous emission (SASE) process inside a helical
undulator and to find the temporal and angular character-
istics of the emitted radiation is given in [16]. In this article,
we present a qualitative description of the enhancement of
undulator radiation due to strong correlation between the
radiators, i.e., electrons in a bunch while neglecting the
interaction between the radiation field and the particles.
The presented method may be used to study the influence
of electron beam phase space (x; y; z; x0; y0; z0) on the
trajectory as well as the coherence of the emitted radiation
in the time domain. It is based on calculating the waveform
(temporal profile) of the emitted radiation as a super-
position of waves (with different amplitudes and phases)
emitted by different electrons in the bunch. The phase of the

electro-magnetic wave arriving at the observer at time t due
to the ith particle is calculated with respect to the phase of
the wave emitted by an electron moving along the center of
mass of the bunch. This phase-difference is because of the
relative separation between the electron moving at the
center of mass of the bunch and at random position within
the bunch.
The formulation to compute the temporal profile of the

coherent undulator radiation has been presented in the
paper in following manner. In Sec. II, the trajectory of a
single electron has been calculated in presence of the
hyperbolic fields of the undulator to incorporate the effect
of betatron motion. In Sec. III, the Liénard-Wiechert fields
have been solved using equation of motion obtained in
Sec. II in retarded time to obtain the analytical expression
of the emitted radiation. It is shown that the betatron motion
of the electron would result in emission of additional higher
frequency components. In Sec. IV, the analytical expres-
sions obtained for a single electron has been used to extend
the formulation to multiparticle systems. As a case study,
the dependency of the intensity of the emitted electromag-
netic radiation on the electron beam bunch length has been
studied.

II. EQUATION OF MOTION

We consider a planar undulator having period λu and
peak field along the axis of the undulator as B0. The field in
the region between the arrays of the undulator magnet can
be defined using the scalar potential

V ¼ B0

ku
sinhðkuyÞ sinðkuzÞ ð3Þ

where ku ¼ 2π=λu is the undulator wave number and
K ¼ 0.934B0λu is called as undulator parameter [17].
The magnetic fields along the three axes of the undulator
are given by

Bx ¼ 0

By ¼ −B0 coshðkuyÞ sinðkuzÞ
Bz ¼ −B0 sinhðkuyÞ cosðkuzÞ: ð4Þ

The coupled equation of motion of an electron (energy γ
and speed βc) having initial phase-space coordinates
ðx0; y0; 0; v0x; v0y; βcÞ injected into the undulator are found
using the Lorentz force formula:

_v ¼ −
e

γme
ðv ×BÞ: ð5Þ

From Eq. (5), we get three coupled equations:
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ẍ ¼ eB0

γme
ðvy sinh ðkuyÞ cos ðkuzÞ − vz cosh ðkuyÞ sin ðkuzÞÞ

ÿ ¼ −
eB0

γme
vx sinh ðkuyÞ cos ðkuzÞ

̈z ¼ eB0

γme
vx cosh ðkuyÞ sin ðkuzÞ: ð6Þ

The equation of motion in x can be simplified by defining

ψ ¼ B0 cosðkuzÞ coshðkuyÞ ð7Þ

which results in

ẍ ¼ e
γme

1

ku

dψ
dt

: ð8Þ

Integrating Eq. (8) we get:

vx ¼
eB0

γme

1

ku
cosðkuzÞ coshðkuyÞ þ constant: ð9Þ

Using the initial conditions in Eq. (8) we can find the
constant term as constant ¼ v0x −

eB0

γme

1
ku
coshðkuy0Þ. Upon

integration of Eq. (9), it can be seen that the effect of the
constant term will be to cause a linear drift of the electron
away or towards from the axis depending on the slope of
the constant term. However; this effect is fully compensated
for electron injected at ðx ¼ 0; y ¼ 0; z ¼ 0Þ and partially
compensated at the undulator’s entrance and exit for
particles injected off-axis by steering the electron beam
through a combination of dipoles having strength 1

4
th, 3

4
th of

the peak magnetic field. We assume that this effect is fully
compensated for all the particles irrespective of their initial
coordinates.
To proceed further, we obtain the first order solution of

electron motion in z-axis by observing that the electron is
moving at ultrarelativistic speed along the z-axis and the
magnetic field of the undulator deflects the electron along
x-axis with a speed vx ≪ βc. Therefore, the velocity and
the trajectory of electron in longitudinal direction can be
considered to be vz ≡ βc and z ¼ βct respectively. It must
be noted that z ¼ βct is a valid approximation only if the
considered undulator is a weak undulator, i.e., Kγ → 0 or the
electron beam is ultrarelativistic, so that any higher order
terms may be neglected. We also assume that the undulator
period λu is much longer than the beam size in y, i.e.,
y=λu → 0, which allows us to make two approximations
near y ¼ 0:

coshðkuyÞ → 1 and sinhðkuyÞ → kuy:

These two approximations reduces the transverse electron
motion to following set of two equations:

_x ¼ eB0

γme

1

ku
cosðkuβctÞ ð10Þ

ÿ ¼ −
1

2

�
eB0

γme

�
2

ð1þ cosð2kuβctÞÞy: ð11Þ

Integrating Eq. (10) and sustituting intial values, we get the
equation of motion along x-axis:

x − x0 ¼
K

γβku
sinðkuβctÞ ð12Þ

where K ¼ eB0

mecku
is called the undulator parameter. The

equation of motion along the y-axis described by Eq. (11)
belongs to a class of second-order differential equations
known as Mathieu differential equation [18]. The canonical
form of the Mathieu’s differential equation is

d2y
dτ2

¼ −ða − 2q cosð2τÞÞy: ð13Þ

The solution of Eq. (13) is expressed in terms of linear
combination of Mathieu odd and even functions. Odd
Mathieu functions represented by Sða; q; zÞ are also known
as Mathieu sine function with characteristic value a and
parameter q while Even Mathieu functions represented by
Cða; q; zÞ are also called Mathieu cosine functions. Upon
substituting τ ¼ kuβct, Eq. (11) becomes:

d2y
dτ2

¼ −
1

2

�
K
γβ

�
2

ð1þ cosð2τÞÞy: ð14Þ

Equation (14) is a special case of Eq. (13) with

a ¼ 1

2

�
K
γβ

�
2

q ¼ −0.5a:

Therefore, the solution of Eq. (11) can be represented as a
linear combination of Mathieu functions as:

yðtÞ ¼ c1C

�
a;−

a
2
; kuβct

�
þ c2S

�
a;−

a
2
; kuβct

�
ð15Þ

and the velocity is given by its derivative as:

_yðtÞ ¼ kuβc

�
c1C0

�
a;−

a
2
; kuβct

�
þ c2S0

�
a;
a
2
; kuβct

��

ð16Þ

where C0ða;−a=2; kuβctÞ and S0ða;−a=2; kuβctÞ are
the derivatives of the Mathieu functions. The coefficients
c1 and c2 can be obtained by applying the initial conditions
to Eq. (15) and (16). The coefficients are then given by:
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c1 ¼
y0

Cða;−0.5a; 0Þ

c2 ¼
v0y

kuβcS0ða;−0.5a; 0Þ
ð17Þ

The benefit of writing the equation of motion along y-axis
in the form of Eq. (15) is that the betatron motion of the
electron can be easily accounted for as a function of z or t
without averaging over the length of the undulator. As an
example, we consider an electron injected 0.5 mm off-axis
in y and look at its motion over the length of an undulator
with Nu ¼ 42, λu ¼ 0.048 mm and variable undulator
parameter K (Fig. 1). As it is expected, the focusing
strength of the undulator and the number of oscillations
of the electron increases with undulator parameter K [19].
The region in which the obtained solutions are valid (region
where linear approximation agrees well with hyperbolic
field) is shown in Fig. 2. Note that a similar expression for
the trajectory has been mentioned in [20].
It is important to note that the first order solution for

motion along z-axis is applicable strictly for weak

undulators i.e., K=γ → 0 or for ultrarelativistic particles
and a more general solution is given by following set of
equations [17]:

zðtÞ ¼ ṽzt −
K2

8γ2ku
sinð2ωutÞ ð18aÞ

vzðtÞ ¼
�
1 −

1

2γ2

�
1þ K2

2

��
c −

cK2

4γ2
cosð2ωutÞ ð18bÞ

where ωu ¼ kuβ̃c is the undulator angular frequency and β̃
is the average longitudinal velocity given by:

β̃ ¼
�
1 −

1

2γ2

�
1þ K2

2

��
: ð19Þ

Therefore, the motion of an electron moving inside an
undulator is defined by following equations:

rsðtÞ¼
�
x0þ

K
γβku

sinðkuβctÞ;c1C
�
a;−

a
2
;kuβct

�
þc2S

�
a;−

a
2
;kuβct

�
;

�
1−

1

2γ2

�
1þK2

2

��
ct−

K2

8γ2ku
sinð2ωutÞ

�

βðtÞ¼
�
K
γ
cosðkuβctÞcoshðkuyÞ;kuβc1C0

�
a;−

a
2
;kuβct

�
þkuβc2S0

�
a;
a
2
;kuβct

�
;1−

1

2γ2

�
1þK2

2

�
−
K2β

4γ2
cosð2ωutÞ

�

_βðtÞ¼eB0

γme

�
βy sinhðkuyÞcosðkuβctÞ−βcoshðkuyÞsinðkuβctÞ;−

1

2

Kku
γ

ð1þcosð2kuβctÞÞy;βxcoshðkuyÞsinðkuβctÞ
�
: ð20Þ

III. UNDULATOR RADIATION FROM
SINGLE PARTICLE

In the literature, the temporal profile of the electric field
of the emitted undulator radiation is obtained for electron

moving close to undulator axis (y → 0) [21]. In the
previous section, the equation of motion of an electron
injected with arbitrary initial coordinates was derived in a
different way enabling us to include the effect of betatron
motion. In this section, we utilize the new set of equation of

FIG. 1. Betatron motion of an electron (E ¼ 8 MeV) injected
0.5 mm off-axis for different K.

FIG. 2. Variation of magnetic field along y near the region of
approximation kuy → 0Bz → kuy cosðkuzÞ.
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motion to solve Lienard-Wiechert Fields in retarded time
(tr) and relate tr to the observer time to find the temporal
profile of the detected wave. The radiation part of the
Lienard-Wiechert fields is given as [22]:

Eðr; tÞ ¼ q
4πϵ0c

�
n̂ × ððn̂ − βÞ × _βÞ
jRjð1 − n̂ · βÞ3

�
tr

ð21Þ

where R ¼ r − rs is the separation between the observer
(r) and the electron (rs) and n̂ ¼ R

R is the normal vector

pointing from the electron to the observer. β and _β are the
normalized velocity and acceleration of the electron at
time tr.
If we assume that the observer is placed extremely far

from the region where the electron performed its wiggling
motion, i.e., r ≫ rs, then R ≃ r and n̂ ¼ r̂. The radiation
emitted by the electron at position rsðtrÞ is detected by an
observer placed at R at time t, whose coordinates in
spherical system are given by:

R ¼ rðsin θ cosϕ; sin θ sinϕ; cos θÞ
n̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ: ð22Þ

Using Eq. (II) and (22), the solution of Eq. (21) is given as
the following:

Eðr; tÞ ¼ −e
4πϵ0cr

�
1

ð1 − n̂ · βÞ3 ðEx; Ey; EzÞ
�
tr

where

1 − n̂ · β ¼ 1 − β cos θ − βx cosϕ sin θ − βy sinϕ sin θ

ð23aÞ

Ex ¼ _βxcos2θ þ cos θð_βzβx − _βxβ − _βz cosϕ sin θÞ
þ sinϕ sin θð _βyβx − _βxβy − _βy cosϕ sin θ

þ _βx sin θ sinϕÞ ð23bÞ

Ey ¼ _βycos2θ þ cosϕ sin θð− _βyβx þ _βxβy

þ _βy cosϕ sin θ − _βx sinϕ sin θÞ
þ cos θð _βzβy − _βyβ − _βz sinϕ sin θÞ ð23cÞ

Ez ¼ sin θðcosϕð−_βzβx þ _βxβ − _βx cos θÞ
þ ð−_βzβy þ _βyβ − _βy cos θ sinϕþ _βz sin θÞÞ: ð23dÞ

It is important to note that Eq. (23) corresponds to
solution in the retarded time. The retarded time and the
observer time are related by a simple equation:

t ¼ tr þ
jr − rsðtrÞj

c
: ð24Þ

As an application of the theory presented in this section,
we discuss two cases. In the first case, we choose
x0 ¼ 0; y0 ¼ 0; v0y ¼ 0; θ ¼ 0, and ϕ ¼ 0, and show that
Eq. (23) reduces to the case when observer is located along
the axis of the undulator:

Eðr; tÞ ¼ −e
4πϵ0cr

�
_βx

ð1 − βÞ2 þ
_βzβx

ð1 − βÞ3 ; 0; 0
�

tr

: ð25Þ

In the second case, we choose x0¼0;y0≠0;v0y¼0;θ¼0;ϕ¼0

and show how the emitted undulator radiation is affected
due to betatron oscillations. In this case, Eq. (23) becomes
following:

FIG. 3. Temporal profile and spectrum of radiation emitted by an electron injected on-axis of an undulator with K ¼ 0.5.
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Eðr; tÞ ¼ −e
4πϵ0cr

�
_βx

ð1 − βÞ2 þ
_βzβx

ð1 − βÞ3 ;
_βy

ð1 − βÞ2 þ
_βzβy

ð1 − βÞ3 ; 0
�

tr

: ð26Þ

Equation (24), Eq. (25), and Eq. (26) have been analyzed
using the Wolfram Alpha [23] mathematical tool to find the
variation of electric field with time and its spectrum for
8 MeV electron injected into a 42 period undulator with
period length 48 mm and K ¼ 0.5. Figures 3 and 4 show
the results obtained for radiation emitted by electron
injected on-axis and off-axis respectively. It is observed
that the electron injected along the axis of the undulator has
only x-component; however it is not true for the electron
injected off-axis. The radiation emitted by second electron
has both Ex and Ey components and the amplitude of the
radiation fluctuates due to betatron oscillations performed
by the electron.

It is interesting to see the effect of increasing the
undulator field strength. As K is increased, the betatron
motion becomes more pronounced, resulting in increase in
the amplitude of the Ey component (Fig. 5). The effect of
the large value of undulator parameter is that the spectrum
is populated with higher harmonics of the fundamental [17]
and the effect of injecting electron off-axis (y ≠ 0) in an
undulator with large K is that the frequencies correspond-
ing to the betatron motion are also observed.

IV. MULTIPARTICLE ANALYSIS

In the last two sections, preliminary calculations required
to extend the single particle time domain theory for the case
of many particles present inside an electron bunch has been
presented. Generalized set of equations were required so as
to include the effect of hyperbolic field profiles on the
particle trajectory as well as the emitted radiation. The
formulation to extend the analysis to multiparticle systems

FIG. 4. Temporal profile and spectrum of radiation emitted by an electron injected off-axis of an undulator with K ¼ 0.5.

FIG. 5. Temporal profile and spectrum of radiation emitted by an electron injected off-axis in an undulator with K ¼ 2.5.
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is set in the following manner (schematic shown in Fig. 6).
Let us consider a monoenergetic electron bunch consisting
ofNe electrons. The radiation emitted by different electrons
at the retarded time tr will reach the observer at different
times because of the finite size of the electron bunch.
Therefore, the emitted radiation is detected by an observer
placed at r in a time duration t� δt. Let us assume that the
radiation emitted by ith particle and by the particle at
the center of mass of the bunch at retarded time tr reach the
observer at time t − δti and t respectively. If at the time of
emission, the spatial coordinate of the ith electron is
represented by riðtrÞ and the spatial coordinate of the
center of mass is represented by rcomðtrÞ, then the total path
length traveled by the two waves is given by:

cðt − δti − trÞ ¼ jr − riðtrÞj ð27Þ

cðt − trÞ ¼ jr − rcomðtrÞj: ð28Þ

The path-difference between the radiation emitted by the
ith particle and the particle at center of mass is given by the
difference between Eq. (28) and Eq. (27).

cδti ¼ jr − rcomðtrÞj − jr − riðtrÞj ð29Þ

Let us assume that the observer is situated very far from
the source of the radiation, i.e., the bunch of electrons
(jrj ≫ jrij and jrj ≫ jrcomj). Under this approximation, we

can assume that jrij
jrj → 0 and jrcomj

jrj → 0. Therefore,

jr − rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r · r − 2r · ri þ ri · ri

p

¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

n̂ · ri
r

þ ri · ri
r2

r

≈ r
�
1 −

n̂ · ri
r

þ r2i
2r2

�
: ð30Þ

Similarly,

jr − rcomj ≈ r

�
1 −

n̂ · rcom
r

þ r2com
2r2

�
: ð31Þ

Using the result obtained in Eq. (30) and Eq. (31) in
Eq. (29). we get:

cδti ¼ n̂ · ðri − rcomÞ þ
1

2r
ðr2com − r2i Þ: ð32Þ

The following remarks can be made about the two terms
appearing in Eq. (32):
(1) n̂ · ðri − rcomÞ: The path difference between the

radiation wave packets emitted by any two electrons
of a particular bunch depends on the relative
separation between the electrons (which may vary
as the electron bunch traverse through the insertion

device) along the direction of the observer. This
means that if the observer is located along the axis of
the insertion device, the path-difference because of
this term would be solely dependent on the longi-
tudinal separation between the electrons. Therefore,
the on-axis radiation is primarily affected by the
longitudinal distribution of the electron bunch only.
However, if we move off-axis, the transverse beam
distribution of the electron bunch starts becoming
important.

(2) 1
2r ðr2com − r2i Þ: This term brings out the fact that the
size of the electron beam becomes irrelevant if
the observer is placed extremely far from the
entire trajectory of the electron beam. However, as
the observer moves closer to the electron beam, the
emitted waves can no longer be considered as the
plane wave and path-difference due to curvature of
the spherical waves starts becoming important. It
must also be noted that if only the on-axis radiation
is considered, then contribution to path-difference
from transverse beam distribution is negligible.
Thus, the effect of transverse beam distribution on
the emitted radiation is a second order effect and
decays rapidly with the observer distance.

Equation (32) can also be used to find the phase-
difference between the waves detected by an observer if
the wavelength of the emitted wave is known. The wave-
length λn of the nth harmonic of the radiation emitted by a
wiggling electron is given by [17]:

λn ¼
λu

2nγ2

�
1.0þ K2

2
þ γ2θ2

�
: ð33Þ

The phase-difference is then given by:

δΦi ¼ 2πc
δti
λn

: ð34Þ

The temporal profile of the undulator radiation emitted by
the bunch of electrons is then simply given by the super-
position of waves emitted by individual electrons in the
bunch:

Eðr; tÞ ¼
XNe

i¼1

Eiðr; tþ δtiÞ ð35Þ

where Eiðr; tÞ is found using Eq. (23) and Eq. (24). Let us
now consider the case of an ultrarelativistic (γ ≫ 1)
electron bunch wiggling inside a planar weak undulator
(K ≈ 1). For such a system, the maximum deflection of the
electron beam from its axis is extremely small, i.e., K

kuγ
→ 0

[Eq. (II)] and therefore higher order terms can be neglected.
The trajectory of the particle at the center of mass of the
electron bunch inside the undulator is given by [17]:
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rcomðtrÞ ¼
�

K
γβku

sinðωutrÞ; 0; β̃ctr
�
: ð36Þ

If the initial coordinates of the ith particle with respect to
center of mass were ðδxi; δyi; δziÞ, then its trajectory is given

by riðtr þ δzi=βcÞ. We use Eq. (36) and Eq. (20) in Eq. (32)
to find the equation for path-difference between the radiation
emitted by particle located at the center of mass of the bunch
and ith particle. IfR ¼ r½sin θ cosϕ; sin θ sinϕ; cos θ�, then
the first term of Eq. (32) can be written as:

1: n̂ · ðri − rcomÞ ¼ δzi cos θ þ sinϕ sin θ

�
c1C

�
a;−

a
2
; kuβc

�
tþ δzi

βc

��
þ c2S

�
a;−

a
2
; kuβc

�
tþ δzi

βc

��

þ cosϕ sin θ

�
x0 þ

2K
γβku

cos

�
ωu

�
δzi
2βc

þ tr

��
sin

�
ωuδzi
2βc

��

and the second term (ignoring all terms with K2=γ2) as:

2:
−1
2r

ðr2com − r2i Þ ¼
1

2r

�
ðδx2i þ δz2i Þ þ 2βctrδzi þ

2Kδxi
γβku

sin

�
ωu

�
tr þ

δzi
βc

��
þ
�
c1C

�
a;−

a
2
; kuβct

�

þ c2S

�
a;−

a
2
; kuβct

��
2
�
:

The above two equations can be used to evaluate the path-
difference occurring due to different electron beam param-
eters. Let us consider a very simple case to check the validity
of the presented method. It is well known that the radiation
emitted along the axis of the undulator slips ahead of the
electron by one radiation wavelength per undulator period.
Therefore; if we inject two electrons separated by λr, then the
radiation emitted along the axis of the undulator by trailing
electron will constructively interfere with the radiation
emitted by the leading electron. It can be shown using
Eq. (37) that the phase difference of the radiation emitted by
any of the two electronswill have a phase difference ofπwith
the radiation emitted by an electron moving along center of
mass. Therefore, the phase difference between the radiation
emitted by these two electrons will be 2π. It is interesting to
observe that the phase difference between the radiation

emitted along the axis of the undulator by an electron in a
bunch longitudinally separated fromcenter ofmass by δzwill
be equal to thephase difference between the radiation emitted
by electrons separated along x-axis by

ffiffiffiffiffiffiffiffiffi
2rδz

p
. This means

that transverse beam size can be much larger in x-dimension
than the longitudinal beam size; subjected to the condition
that the beam size in x-dimension is small enough to avoid
the “roll-off” effects. This logic is not applicable along the y-
axis because of the presence of hyperbolic fields, which will
not allow the electron to follow a stable trajectory through the
undulator.
As an example of application to multi-particle systems,

let us assume that a bunch of Ne electrons having γm0c2 ¼
8.511; σx ¼ 0.5 mm; σy ¼ 0.5 mm with variable σz is tra-
versing inside an undulator having K ≃ 0.5; λu ¼ 48 mm.
It is important to realize that the electron beam is traveling

FIG. 6. Radiation emitted by electrons positioned at rcomðtrÞ and riðtrÞ reaches the observer situated atR at t − δt and t respectively.
The overall profile of the radiation is superposition of waves emitted by all electrons with respect to the center of mass with “time-delay”
accounted for as a phase-difference.
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towards the observer; therefore; the longitudinal distribu-
tion is expanded by a combined Lorentz and Doppler
factors (to perform the calculation in retarded time) by a
factor 2.0γ2=ð1þ K2=2þ γ2θ2Þ. We consider only the on-
axis radiation, i.e., ðθ ¼ 0;ϕ ¼ 0Þ which is detected by an
observer at a distance of Robs ¼ 10.0 m from the undu-
lator’s entrance. The temporal profile and the spectrum of
the radiation emitted for this case is shown in Fig. 7. The
results shown in Fig. 7 agrees with the fact that as the beam
bunch length is reduced to much below the radiation
wavelength (σz → 50 fs), the emitted radiation approaches
the coherent limit and achieves the maximum possible
intensity. In Fig. 7(a), the radiation obtained for the case of
σz ¼ 50 fs is considered to be fully coherent. Therefore, the
amplitudes of the electric field obtained for all the cases
have been normalized to this value. Normalization of the
field amplitudes help in estimating the bunching factor by

directly looking at the Fourier Transform of the temporal
profile [shown in Fig. 7(b)]. This means that the form factor
of the bunches with bunch length 50 fs, 75 fs, 100 fs, 150 fs
has values 1,0.7,0.2, and 0.1, respectively.

V. CONCLUSION

The extent of the coherence of the radiation emitted by
an accelerated electron bunch is usually understood in
terms of the form-factor of the electron bunch. The form-
factor provides a direct information about the power
radiated into a particular radiation mode ω while account-
ing for the distribution of the electrons around the center
of mass of the bunch. Although the frequency domain
approach is much straightforward; a time-domain approach
to understand the process of emission of radiation from a
bunch provides a deeper insight. The effect of the trajectory
followed by an electron inside the undulator is directly
observable via the variation of the envelope of the electric
field with time. Fourier transform of the temporal profile
helps in extracting and understanding the spectrum of the
emitted radiation. The accuracy of the obtained results
depends on the analytical model used to define the
trajectory of the electron. For example, the betatron motion
of an electron was expressed in time-domain in terms of the
Mathieu functions which allowed in understanding its
effects on the radiation temporal profile and the spectrum.
We showed that the single particle analysis can be extended
to multiparticle systems by correctly accounting for the
phase difference between the radiation emitted by different
electrons. It was realized that the phase difference is
dependent on both, i.e., the distribution of the electrons
around the center of mass of the bunch and the angle at
which the radiation is detected by an observer. For the case
of on-axis radiation, the effect of the transverse beam size is
only second-order and can be neglected if the observer is
extremely far from the undulator. However, for the case of
off-axis radiation, the transverse beam distribution cannot
be neglected and the phase-difference arising due to relative
separation between the electrons and the center of mass in
the transverse plane must be correctly evaluated. Using the
presented formulation, we evaluated the temporal profile of
the radiation emitted by electron bunches with different
longitudinal distribution and obtained their form factors by
normalizing the amplitudes with respect to the case of a
superradiant electron bunch.
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FIG. 7. Variation of temporal profile and spectrum of radiation
emitted by an electron beam with bunch length. The values are
normalized to the peak field obtained for the case of σz ¼ 50 fs
electron bunch.
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