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We consider a semi-infinite open-ended cylindrical waveguide with uniform dielectric filling placed into
collinear infinite vacuum waveguidewith larger radius. Electromagnetic field produced by a point charge or
Gaussian bunch moving along structure’s axis from the dielectric waveguide into the vacuum one is
investigated. We utilize the modified residue-calculus technique and obtain rigorous analytical solution of
the problem by determining coefficients of mode excitation in each subarea of the structure. The main
attention is paid to analysis of penetration of Cherenkov radiation into vacuum regions of the outer
waveguide. Numerical simulations in CST Particle Studio are also performed (for long enough bunch
exciting the first Cherenkov mode only) and an excellent agreement between analytical and simulated
results is shown. The discussed structure can be used for generation of Terahertz radiation by modulated
bunches (bunch trains) by means of high-order Cherenkov modes. In this case, due to high frequencies
numerical simulations become extremely difficult while the developed analytical technique still remains the
efficient approach for calculation of the radiation characteristics.
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I. INTRODUCTION

In recent years, an essential interest is observed in the
area of contemporary sources of Terahertz (THz) radiation
based on beam-driven waveguide structures loaded with
dielectric. Despite of the fact that both ordinary vacuum
THz devices (such as classical backward wave oscillator)
are widely available and other mechanisms for THz sources
are discussed (see, e.g., Refs. [1–4]), beam-driven sources
are still extremely attractive due to extraordinary THz
radiation peak power [5]. According to this idea,
Cherenkov radiation should be generated by well-
controlled electron bunch passed through a waveguide
structure with dielectric filling and open aperture [6,7].
The electron bunch should be modulated so that a high-
order Cherenkov frequency is excited, therefore allowing
the use of, for example, mm-sized waveguides for THz
generation. Another challenge here is efficient extraction of
the radiation from inside the structure into free space. The
possibilities for using the nonorthogonal end cut for this

purpose were theoretically estimated [8] and experimen-
tally confirmed [9,10]. Nevertheless, rigorous solution for
the electromagnetic (EM) field produced by a charged
particle bunch passing from the open-ended circular wave-
guide with dielectric filling is still missing even in the
case of orthogonal end cut. In particular, such a solution
is required for determination of the area of applicability
of the approximate technique used in [8] and it’s possible
improvement.
General theory for analysis of radiation from open-ended

waveguide structures was actively developed during several
preceding decades [11–13]. Typically, the theory of EM
processes for the discussed waveguide discontinuity (open
end) was constructed for vacuum case and excitation by
single waveguide mode, however, vacuum structures
excited by a moving charge were also partially investigated
[14–18]. It should be also noted here that analytical
approaches becomes essentially more complicated while
they deal with the structures containing dielectric inclusions
[12,19,20].
In a series of recent papers, we started rigorous inves-

tigation of the aforementioned problem on EM field in a
circular open-ended waveguide with orthogonal cut and
dielectric filling excited by the field of a moving charged
particle bunch [21–25]. In these publications, the semi-
infinite waveguide was placed (embedded) into collinear
infinite vacuum waveguide with larger radius. Therefore the
considered structure is further referred to as “embedded”
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structure. Based on a very good agreement between
analytical and simulated (using both COMSOL and CST)
results observed in the aforementioned papers one can
conclude that convenient analytical technique for solution
of the described problem was fully approved.
However, Cherenkov radiation which is responsible for

the aforementioned high-power THz emission and there-
fore is of most interest in the structure under consideration
was not described in details. In the present paper, we give
the detailed analytical solution for EM field generated by a
charged particle bunch in the “embedded” structure loaded
with dielectric. We apply the modified residue-calculus
technique [19] and describe penetration of Cherenkov
radiation into vacuum regions of the structure (this fact
explains the term “Cherenkov radiation” in the title). In the
case under consideration, the process of penetration occurs
due to the diffraction mechanism.
It should be noted that the considered closed geometry

(the “embedded” geometry) has several advantages com-
pared to the opened one for theory, simulations and possible
experiments. First, closed structure possesses discrete
mode spectrum, thus simplifying analytical consideration.
Second, finite area of EM field existence allows efficient
simulations without the need of extremely large amount of
computational resources.
Third, various vacuum “embedded” structures have been

investigated previously for a number of applications. For
example, one could mention extensive studies of various
inhomogeneities of the “liner” (the inner metallic pipe
shielding the outer cooled pipe from the parasitic heating of
synchrotron radiation) of the high current storage rings of
the superconducting colliders [26–42]. Some of these
structures are very close in geometry to the structure
discussed in the present paper (in the case without dielectric
loading), for example, [32,36,37]. Also similar vacuum
structures containing coaxial areas were considered in the
context of bunch diagnostic system developments (espe-
cially for a Cherenkov-based bunch position monitors)
[43–45] or efficient linac collimators [46]. A recent trend
for luminosity upgrade of LHC has resulted in investigation
of “crab cavities” [47,48] which are also partially related to
discussed structures with coaxial areas attached to the main
circular waveguide where a bunch propagates. Impedance
of a finite length cavity with dielectric filling are also
investigated [49].
Therefore, practical realization of the discussed

“embedded” structure does not lead to a principal limitations.
Moreover, at the contemporary accelerators, experiments on
bunch radiation are typically conducted in a vacuum cham-
ber. The outerwaveguide of our structure can be a convenient
model description of the chamber walls in the case of
collinear cylindrical chamber and large enough radius of
the outer waveguide.
The paper is organized as follows. After the Introduction

(Sec. I), we present rigorous solution of the problem

(Sec. II). Note that this section contains only final analytical
results while details of calculations and intermediate
derivations are placed into three appendices (Appendices
A, B and C) succeeding the main text. Section III presents
numerical results visualizing the obtained rigorous formu-
las, simulated results (via CST PS package) and comparison
between them. Section IV contains conclusions and dis-
cussions and finishes the paper.

II. ANALYTICAL RESULTS

Geometry of the problem under consideration is shown
in Fig. 1. A semi-infinite perfectly conducting circular
waveguide with radius b filled with a homogeneous
dielectric (ε > 1) is put into a concentric infinite waveguide
with radius a > b. The structure is excited by a point
charge q moving along z-axis with constant velocity V⃗ ¼
Ve⃗z ¼ βce⃗z (c is the light speed in vacuum). Comments on
limitations of the given model having no channel for a
charge passage through the dielectric will be given in
Sec. IV. Corresponding charge density ρ and current
density j⃗ ¼ je⃗z have the form

ρ ¼ qδðxÞδðyÞδðz − VtÞ; j ¼ Vρ: ð1Þ

Unless otherwise specified, analytical results presented
below correspond to the source (1). These results can be
easily generalized for the case of a bunch being infinitesi-
mally thin in xy-plane, similar to (1), but having arbitrary
charge distribution ηðz − VtÞ along z (longitudinal)
direction. In this case, charge and current densities, ρb
and j⃗b ¼ jbe⃗z are:

ρb ¼ qδðxÞδðyÞηðz − VtÞ; jb ¼ Vρb: ð2Þ

As can be easily shown, to obtain formulas related to the
case of the bunch (2) one should substitute

q → 2πqη̃ðω=VÞ; ð3Þ

where η̃ðω=VÞ is the Fourier transform

η̃ðξÞ ¼ ð2πÞ−1
Z þ∞

−∞
ηðζÞe−iξζdζ; ð4Þ

FIG. 1. Geometry of the problem and main notations. Lv and
Ld are lengths of vacuum and dielectric parts of the model,
correspondingly. They are infinite in theory and finite in
simulations.
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calculated for ξ ¼ ω=V. For example, in the case of
Gaussian bunch with the rms half-length σ,

ηGðz − VtÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp

�
−ðz − VtÞ2

2σ2

�
; ð5Þ

and one should substitute

q → q exp

�
−
ω2

ω2
σ

�
; ωσ ¼

ffiffiffi
2

p
V

σ
: ð6Þ

In this case, the largest essential frequency in the spectrum
ωmax is determined so that Gaussian exponential term in (6)
results in certain predetermined attenuation for ω ¼ ωmax.
Typical attenuation (for example, used in CST PS code by
default) is −20 dB, that is

20 lg ½1= exp ð−ω2
max=ω2

σÞ� ¼ −20: ð7Þ

This result in ωmax ¼ ωσ

ffiffiffiffiffiffiffiffiffiffi
ln 10

p
≈ 1.5ωσ.

In principle, the problem formulation can be extended
to a more realistic case of a three-dimensional bunch.
Simplest generalization can be done for bunches being
symmetrical with respect to z-axis, in this case the incident
field (Sec. II A) should be multiplied by the corresponding
form-factor [50], while the scattered field modal expansion
(Sec. II B) becomes the same since only symmetrical
(ϕ-independent) modes are excited. Consideration of
asymmetrical bunches is rather more complicated since
both the incident field and decomposition for the scattered
field should be reexamined essentially.
Further the cylindrical frame r, ϕ, z (associated with

the Cartesian frame shown in Fig. 1) is used. The problem
will be solved in the frequency domain, so that Fourier
harmonic Hωϕ will be determined. Other nonzero field
components are calculated as follows:

Eωr ¼ cðiωεÞ−1∂Hωϕ=∂z; ð8Þ

Eωz ¼ −cðiωεrÞ−1½Hωϕ þ r∂Hωϕ=∂r�: ð9Þ

Time-domain field dependencies are calculated using the
inverse Fourier transform formulas which can be trans-
formed to the following form [51,52]:

Hϕðr; z; tÞ ¼ 2Re
Z þ∞

0

Hωϕe−iωtdω: ð10Þ

On the basis of Eq. (10), it is sufficient to consider only
positive frequencies in the spectrum.

A. Incident field

Fourier harmonic of the magnetic component of the
incident field has the following form [53]:

HðiÞ
ωϕ ¼

(
Hði1Þ

ωϕ ; for z < 0;

Hði3Þ
ωϕ ; for z > 0:

ð11Þ

Here

Hði1Þ
ωϕ ¼ iqs

2c

�
Hð1Þ

1 ðrsÞ −Hð1Þ
0 ðbsÞ
J0ðbsÞ

J1ðrsÞ
�
e
iωz
V ; ð12Þ

sðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2V−2ðεβ2 − 1Þ

p
, Ims > 0,

Hði3Þ
ωϕ ¼ iqs0

2c

�
Hð1Þ

1 ðrs0Þ −
Hð1Þ

0 ðas0Þ
J0ðas0Þ

J1ðrs0Þ
�
e
iωz
V ; ð13Þ

s0ðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2V−2ðβ2 − 1Þ

p
, Ims0 > 0, J0;1 are Bessel func-

tions, Hð1Þ
0;1 are Hankel functions of the first order.

Equation (12) represents the total field of a point charge
(1) uniformly moving in regular waveguide of radius b
filled with dielectric ε. Equation (13) represents the total
field of the same charge moving in regular vacuum wave-
guide with radius a.
For εβ2 > 1, incident field in the inner dielectric wave-

guideHði1Þ
ωϕ contains field of Cherenkov radiation (so called

“wakefield”). Wakefield is the part of (12) with the discrete
frequency spectrum, namely the finite set of real
“Cherenkov frequencies” ωCh

l which correspond to real
positive poles of the expression (12). These poles are
determined by the following equation:

J0ðbsÞ ¼ 0 ⇒ sðωCh
l Þ ¼ j0l=b; ð14Þ

where j0l is the zero of the zero-order Bessel function,
J0ðj0lÞ ¼ 0, l ¼ 1; 2;…. It can be shown (for example, by
the limiting process from the case with dissipation taken
into account in dielectric) that the integration path in (10)
passes real “Cherenkov poles” from above. Therefore,
these poles contribute to the incident field only behind
the charge, i.e. for ζ ¼ z − Vt < 0. Contributions of these
poles (residues) can be calculated:

HChði1Þ
ϕ ðr; z; tÞ ¼

X∞
l¼1

HChði1Þ
ϕl ðr; z; tÞ; ð15Þ

where

HChði1Þ
ϕl ðr; z; tÞ ¼ 2Re½ð−2πiÞResωCh

l
Hði1Þ

ωϕ e
−iωCh

l t�

¼ 2Re

�
πqωCh

l

bc
Hð1Þ

0 ðj0lÞ
J1ðj0lÞ

J1ðrj0l=bÞeiωCh
l ζ=V

�
:

ð16Þ

In the case of Gaussian bunch (5) due to vanishing expo-
nential term (6) in the spectrum, high-order Cherenkov
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frequencies are strongly suppressed, therefore one can
obtain monochromatic Cherenkov radiation for long
enough bunch (this is also true for arbitrary finite length
bunch).
In the geometry under consideration (see Fig. 1), the

waveguide with dielectric filling has an open end, therefore
Cherenkov radiation generated inside the inner waveguide
will penetrate both coaxial part of the structure (area 2 in
Fig. 1) and wide vacuum part (area 3 in in Fig. 1). Note that
penetration of Cherenkov radiation through simple plane
infinite interface between two media accompanying gen-
eration of transition radiation was investigated previously
[52,54–56]. In the case under consideration, the process of
penetration occurs due to the diffraction mechanism. This
process is of main interest in this paper and it can be
described by the theory presented below.

B. Scattered field

The unknown additional (scattered) field propagating
from the boundary in the domains 1, 2 and 3 can be
presented as standard series over corresponding waveguide
modes [12]:

Hð1Þ
ωϕðr; zÞ ¼

X∞
m¼1

BmJ1ðrj0m=bÞeκ
ð1Þ
zmz; ð17Þ

Hð3Þ
ωϕðr; zÞ ¼

X∞
m¼1

AmJ1ðrj0m=aÞe−γ
ð3Þ
zmz; ð18Þ

Hð2Þ
ωϕðr; zÞ ¼ C0r−1e

γð2Þz0 z þ
X∞
m¼1

CmZmðrχmÞeγ
ð2Þ
zmz; ð19Þ

where fAmg, fBmg and fCng are unknown modal expan-
sion coefficients [12]. Note that the first term in the right-
hand side of (19) represents the TEM wave with Eωz ¼ 0,
in accordance with (9). Here

ZmðξÞ ¼ J1ðξÞ − N1ðξÞJ0ðaχmÞN−1
0 ðaχmÞ ð20Þ

is the transversal eigenfunction of the coaxial region (area 2
in Fig. 1), χm > 0 is the solution of the dispersion relation
for the area 2,

J0ðbχpÞN0ðaχpÞ − J0ðaχpÞN0ðbχpÞ ¼ 0; ð21Þ

N0 is the Neumann function. Propagation constants are

κð1Þzm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j20mb

−2 − εk20

q
; ð22Þ

γð3Þzm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j20ma

−2 − k20

q
; ð23Þ

γð2Þz0 ¼ −ik0; γð2Þzm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2m − k20

q
; ð24Þ

where k0 ¼ ω=c, Reκð1Þzm > 0, Reγð2;3Þzm > 0, m ¼ 1; 2;….
For readers’ convenience, below we discuss the way for

solving the problem under consideration just briefly and
present the main resulting formulas only. Rather cumber-
some details of calculations needed for deep understanding
of the used technique are moved into the Appendices.
Corresponding references are given in the text.
Performing matching of the components Hωϕ and Eωr

for z ¼ 0, and eliminating the r-dependence from the
resulting relations, after certain analytical transformations
we obtain infinite systems for unknown coefficients fAmg,
fBmg and fCng (n ¼ 0; 1; 2;…) of mode decompositions
(18), (17), and (19), correspondingly. This procedure is
explained in detail in Appendix A, where obtained systems
(A10), (A11), (A18), and (A19) are presented. Using the
modified residue-calculus technique [12,23], these systems
can be solved by constructing specific complex-valued
function fðwÞ. This procedure is described in detail in the
Appendix B. Finally, the coefficients can be expressed
through fðwÞ as follows:

Am ¼
Res

γð3Þzm
fðwÞ

J0ðbj0m=aÞj0m=a
; ð25Þ

Bm ¼ εγð1Þzm þ κð1Þzm

2bJ1ðj0mÞγð1Þzmκ
ð1Þ
zm

�
iq
2cb

ðRmF
þ
dm þ F−

dmÞ

−RmF−
vm − Fþ

vm − Rmfðγð1ÞzmÞ − fð−γð1ÞzmÞ
�
; ð26Þ

C0 ¼
fð−γð2Þz0 Þ

2γð2Þz0 lnða=bÞ
; ð27Þ

Cm ¼ fð−γð2ÞzmÞ
2γð2Þzm

h
a2Z2

mðaχmÞ
2bZmðbχmÞ −

b
2
ZmðbχmÞ

i : ð28Þ

Here

γð1Þzm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j20mb

−2 − k20

q
; Re γð1Þzm > 0 ð29Þ

is the propagation constant of the area 1 in the case of
ε ¼ 1,

Rm ¼ εγð1Þzm − κð1Þzm

εγð1Þzm þ κð1Þzm

; ð30Þ

F�
dm ¼ 2ij0p

πb

ω
iVε � γð1Þzm

s2 − ðj0m=bÞ2
; ð31Þ
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F�
vm ¼ 2ij0mðπbÞ−1

ω
iV � γð1Þzm

: ð32Þ

Function fðwÞ is determined as follows:

fðwÞ ¼ PgðwÞ
w − ω

iV

; ð33Þ

gðwÞ¼
ðw−γð2Þz0 Þ

Q∞
n¼1

�
1− w

γð2Þzn

�
Q∞

m¼1

�
1− w

γð3Þzm

� Y∞
s¼1

�
1−

w
Γs

�
QðwÞ; ð34Þ

QðwÞ¼ exp

�
−
w
π

�
b ln

�
b

a−b

�
þaln

�
a−b
a

���
; ð35Þ

P ¼ iq
2c

is20h0
gðω=ðiVÞÞ ; ð36Þ

h0 ¼ N0ðbs0Þ − N0ðas0ÞJ0ðbs0Þ=J0ðas0Þ: ð37Þ

The correct construction of the function fðwÞ (33) is the
key point of the residue-calculus technique. The details of
this procedure is described in detail in the Appendix B. In
particular, one should determine zeros fΓmg shifted with

respect to zeros of vacuum problem fγð1Þzmg:

Γm ¼ γð1Þzm þ π

b
Δm; ð38Þ

where the set fΔmg determines the unknown shifts. Shifted
zeros of fðwÞ are the distinguishing feature of the problem
with dielectric and this fact complicates significantly the
solution (compared to the vacuum case) because the set
fΓmg is determined for each distinct frequencyω. Since this
is connected with iterative solution of a certain complicated
nonlinear system [see Eq. (B14) in Appendix B], it is
difficult to obtain the field spectrum Hωϕ for significant
range of frequencies ½0;ωmax�. Therefore, it is difficult to
calculate full time dependencies for the field components
using inverse Fourier transform formulas (10).
However, the detailed analysis of the function fðwÞ

shows that it contains the same Cherenkov poles fωCh
l g

as the incident field (12) does (see the Appendix C).
Therefore, Cherenkov radiation penetrated all vacuum
areas of the structure which is described by contribution
of these poles (residues) can be easily calculated, similar to
Eq. (15). For example, Cherenkov radiation penetrated
areas 2 and 3 (which is of most interest) can be expressed as
follows:

HChðαÞ
ϕ ðr; z; tÞ ¼

X∞
l¼1

HChðαÞ
ϕl ðr; z; tÞ; ð39Þ

HChðαÞ
ϕl ðr; z; tÞ ¼ 2Re½−2πiResωCh

l
HðαÞ

ωϕe
−iωCh

l t�; ð40Þ

α ¼ 2, 3 (means corresponding subarea of the structure).
Note that each summand in Eq. (40) depends on Fourier

transform of the scattered field HðαÞ
ωϕ which is presented as

infinite series over waveguide modes [Eqs. (18) and (19)].
Since we suppose that (40) describes radiation, these series
should be truncated to contain only propagating modes for
given Cherenkov frequency.
Let us discuss the procedure to calculate the contribution

of ωCh
l for given l. Since fAmg and fCng have the pole for

ω ¼ ωCh
l , then

HðαÞ
ωϕ ≈

ResωCh
l
HðαÞ

ωϕ

ω − ωCh
l

; ω → ωCh
l : ð41Þ

Here, the term in the numerator is the residue to be found. If
we suppose that dielectric possesses some small dissipa-
tion, ε ¼ ε0 þ iε00, then Cherenkov pole also becomes
complex:

ωCh
l ¼ ωCh0

l þ iωCh00
l ; ωCh00

l < 0: ð42Þ

Using numerical procedure described in Appendix B, we

calculate HðαÞ
ωϕ for ω ¼ ωCh0

l , therefore

ResωCh
l
HðαÞ

ωϕ ¼ −iωCh00
l HðαÞ

ωϕjω¼ωCh0
l

ð43Þ

In this way one can calculate contributions of all the
essential Cherenkov poles relatively simple and fast.
Corresponding examples are represented below in Sec. III.

III. NUMERICAL RESULTS

Here we present numerical results obtained via rigorous
formulas of the previous section and results of direct
numerical simulation in CST PS ® package (with the use
of wakefield solver). For simulation, we constructed the
model with finite Lv and Ld (see Fig. 1) and open boundary
conditions for z ¼ −Ld, z ¼ Lv. Also small finite thickness
of the inner waveguide wall dw ≪ a; b was taken into
account in simulations, i.e., we supposed that coaxial area 2
is determined by inequality bþ dw < r < a, z < 0. The
adaptive meshing procedure was utilized to obtain optimal
simulation parameters and stable results, this point will be
explained below using representative example (see Fig. 4).
First, we clarify the statement concerning the frequency

spectrum of the fields in vacuum areas of the structure.
Figure 2 shows position of the first seven shifted zeros Γm

and “unshifted” zeros γð1Þzm on the complex plane calculated
for three Cherenkov frequencies (14). These results are
supplemented by Table I where corresponding numerical

values (γð1Þzm=Γm) are presented with the 0.01 relative
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accuracy. Note that since a small dissipation in dielectric is
taken into account (ε00=ε0 ¼ 10−6), Cherenkov frequencies
are complex values, as Eq. (42) indicates. The discussed
calculations are performed for ω ¼ ωCh0

l .

As one can see from Fig. 2, the majority of presented Γm

are weakly shifted with respect to γð1Þzm excluding Γl (with
the number of Cherenkov frequency under consideration).
This Γl is shifted dramatically so that it becomes purely

imaginary while initial γð1Þzl was purely real. Moreover, one
can learn from Table I that the equality

ΓlðωCh
l Þ ≈ ωCh

l =ðiVÞ ð44Þ

is fulfilled with high accuracy, because

ωCh
1

iV
≈−3.21i;

ωCh
2

iV
≈−7.36i;

ωCh
5

iV
≈−19.91i: ð45Þ

Note that in Eq. (45) we present numerical values with 0.01
relative accuracy, similar to Table I.
As it is shown in Appendix B, Eq. (45) leads to

conclusion that all sets of unknown coefficients possess
poles for Cherenkov frequencies. Contribution of these
poles in vacuum areas of the structure can be calculated
using Eq. (43).

A. Single bunch field

Here we present numerical results illustrating the field
behavior in different subareas of the structure. For all
figures, radius of the inner waveguide is the same,
b ¼ 0.25 cm. The structure is excited by single relativistic
Gaussian bunch (5).
For Figs. 3–8, the bunch length σ is chosen so that

only the first Cherenkov frequency ωCh
1 lies within essential

part of frequency spectrum ½0;ωmax� (7) while higher
Cherenkov frequencies are suppressed by attenuating
Gaussian term (6). In this case we expect monochromatic
both Cherenkov radiation in the inner waveguide and
Cherenkov radiation penetrating areas 2 and 3.
Figure 3 shows transverse electric field Er from the

probe located in the inner waveguide for the case of
relatively large permittivity, ε ¼ 10, and a ¼ 0.5 cm.
The part of the signal enclosed in the dashed line rectangle
(0.4 ns < t < 1.1 ns) should be interpreted as the field of
Cherenkov radiation. The Fourier spectrum of this part
of the signal shown in the inset of Fig. 3 has a strong peak

TABLE I. Comparison between shifted and “unshifted” zeros (γð1Þzm=Γm) for m ¼ 1; 2;…7 and three Cherenkov
frequencies ωCh

l , l ¼ 1, 2, 5.

m ωCh
1 ωCh

2 ωCh
5

1 9.07= − 3.21i 6.19=4.31 − 0.45i −17.43i= − 2.01 − 18.18i
2 21.85=22.53 − 0.08i 20.82= − 7.36i 9.55=7.11þ 0.54i
3 34.47=35.38 − 0.08i 33.82=34.17 − 0.05i 28.32=27.76þ 0.16i
4 47.06=48.10 − 0.07i 46.59=47.13 − 0.06i 42.76=42.55þ 0.06i
5 59.64=60.77 − 0.06i 59.27=59.95 − 0.06i 56.31= − 19.91i
6 72.21=73.41 − 0.05i 71.91=72.69 − 0.05i 69.49=69.63 − 0.04i
7 84.79=86.03 − 0.05i 84.53=85.38 − 0.05i 82.48=82.73 − 0.06i

FIG. 2. Comparison between shifted and “unshifted” zeros

γð1Þzmðcm−1Þ and Γmðcm−1Þ, m ¼ 1; 2;…7 for three frequencies of
Cherenkov radiation ω ¼ ωCh0

l , l ¼ 1, 2, 5. Structure parameters
are: b ¼ 0.25 cm, a ¼ 0.9 cm, ε ¼ 10þ i10−5.
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for frequency 15.45 GHz, this is Cherenkov radiation
frequency obtained in the numerical experiment. For short-
ness, this result for simulated frequency will be referred to
as “experimental” result throughout this section.
It should be noted that mentioned peak is used for

adaptive meshing procedure in CST simulation: mesh is
refined (number of lines per wavelength is increased) until
the position of the peak becomes stable, i.e., relative
difference in position is less than 0.002 for two consequent
passes. Figure 4 illustrates this procedure. It shows typical
dependence of the experimental Cherenkov frequency on
the number of mesh lines per wavelength (this is standard
parameter defining mesh density in CST; wavelength is

understood as the minimal wavelength which corresponds
to ωmax). As one can see, for rare mesh the experimental
frequency is considerably larger compared to the theoreti-
cal value (15.31 GHz). For 60 lines per wavelength the
relative difference is sufficiently small therefore procedure
is stopped, the obtained frequency differs from the theo-
retical by less then one percent. Comparison between first
Cherenkov frequencies, theoretical, and experimental, for
all structures discussed below is shown in Table II.
Theoretical value of Cherenkov frequency does not depend
on radius of the outer waveguide a, but this is not the case
for simulations due to the change in mesh with change in a.
In all considered cases, relative difference between theo-
retical and experimental values is around 1 percent. As one
can see below, this small difference matters in comparison
of the field behavior.
Figure 5 shows CST simulated signal from the probe

located in area 2 of the structure with ε ¼ 10 and
a ¼ 0.5 cm. Solid (green) line corresponds to the field
obtained via simulation in CST PS ® code. According to the
CST curve, with an increase in time t, a strong peak
corresponding to the “image” of the bunch can be seen
first (this effect was discussed in details in the case of similar
vacuum structure in Ref. [25]). After that, some transition
process connected with diffraction radiation occurs. For
large enough time (t≳ 0.5 ns) we see the stationary
harmonic process. Top inset in Fig. 5 shows magnified
part of the CST curve compared with theoretical curve

FIG. 3. Behavior of the electric field Er over time (CST result)
on the probe in the inner waveguide: z ¼ −1 cm, r ¼ 0.125 cm.
Time t ¼ 0 corresponds to the moment when bunch center is in
the plane z ¼ 0. Structure parameters: b ¼ 0.25 cm, a ¼ 0.5 cm,
ε ¼ 10, Ld ¼ 35 cm, Lv ¼ 50 cm, inner waveguide wall thick-
ness is 0.001 cm. Gaussian bunch parameters: q ¼ 1 nC,
β ¼ 0.9999, σ ¼ 0.5 cm.

FIG. 4. Dependence of the simulated first Cherenkov frequency
ωCh
1 =ð2πÞ (GHz) on number of lines per wavelength (l.p.w.).

Problem parameters are the same as in Fig. 3.

TABLE II. Comparison between analytical and experimental
(CST) first Cherenkov frequency ωCh

1 (Analytical/Experimental)
for b ¼ 0.25 cm.

ε ¼ 10 ε ¼ 2

a ¼ 0.5 cm 15.31 GHz/15.45 GHz 45.9 GHz/46.13 GHz
a ¼ 0.9 cm 15.31 GHz/15.48 GHz 45.9 GHz/46.27 GHz

FIG. 5. Behavior of the electric field (Er) over time on the probe
in the coaxial area: z ¼ −1 cm, r ¼ 0.35 cm. Structure and
bunch parameters are the same as in Fig. 3.
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corresponding to contribution of the first Cherenkov pole,
i.e., summand with l ¼ 1 and α ¼ 2 in (39) (red line).
Magnitudes correlate well but due to the difference in
frequency the curves diverge for large enough time. If we
manually adjust the frequency in analytical formulas, i.e.,
substitute the analytical Cherenkov frequency with the
experimental one (see Table II), we will obtain an excellent
coincidence between the curves shown in the bottom inset in
Fig. 5. The described frequency substitution is further called
“frequency adjustment.” Based on presented comparison
and the tendency for experimental Cherenkov frequency
(see Fig. 4) one can conclude on both correctness of the
used analytical approach and stable operation of the
simulation code for fine enough mesh.
Figure 6 shows similar comparison (for the same

structure) but for probe located in the area 3 (wide vacuum
waveguide). Again, after the frequency adjustment applied
the curves correlate very well. Further for all figures the
frequency adjustment will be used by default. Note that for
given a even the first mode in area 3 is evanescent therefore
magnitude of Cherenkov radiation is extremely small.
Figure 7 illustrates the case of ε ¼ 10 and larger radius
of the outer waveguide, a ¼ 0.9 cm. In this case,
Cherenkov radiation penetrated area 3 is more expressed
and again it is described very well by analytical formulas.
Figure 8, shows signals from symmetrical probes in

coaxial and vacuum waveguide areas for the structure
with lower permittivity (ε ¼ 2) and correspondingly higher
Cherenkov frequency. Again, one can see that pole con-
tribution calculated theoretically describes Cherenkov radi-
ation penetrated vacuum parts of the structure very well.

B. Bunch train field

Here we illustrate the possibilities of the described
approach for calculation of Cherenkov radiation at high-
order modes. According to the idea of beam-driven THz

source described in Sec. I, THz frequencies can be
generated in mm- or sub-mm-sized waveguides by charged
particle bunches with proper charge modulation, i.e. by
bunch trains [7]. If we denote by η̃G the Fourier spectrum
of a single Gaussian bunch ηG (5), we obtain from (4):

η̃GðξÞ ¼ ð2πÞ−1 exp ð−ξ2σ2=2Þ: ð46Þ

The sequence of 2M þ 1 identical Gaussian bunches
spaced by L and carrying the same total charge has the
following longitudinal charge distribution:

ηSeqðz − VtÞ ¼ 1

2M þ 1

XM
m¼−M

ηGðz − VtþmLÞ; ð47Þ

FIG. 6. Behavior of the electric field (Er) over time on the
probe in the wide vacuum waveguide: z ¼ 1 cm, r ¼ 0.35 cm.
Structure and bunch parameters are the same as in Fig. 3.

FIG. 7. Behavior of the electric field (Er) over time on the probe
in the wide vacuum waveguide: z ¼ 1 cm, r ¼ 0.35 cm. Outer
waveguide radius a ¼ 0.9 cm, other parameters are the same as
in Fig. 3.

FIG. 8. Behavior of the electric field Er over time on the
symmetrical probes in areas 2 and 3: z ¼ �1 cm, r ¼ 0.35 cm.
Permittivity ε ¼ 2, other parameters are the same as in Fig. 3.
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and the following spectrum, in accordance with (4):

η̃SeqðξÞ¼
η̃GðξÞ
2Mþ1

×

�
1þ2cos

�
ξLðMþ1Þ

2

�
sinðξLM=2Þ
sinðξL=2Þ

�
: ð48Þ

Figure 9 shows comparison of a single Gaussian bunch
Fourier spectrum (46) with the spectrum of a bunch train (48)

of 15 (M ¼ 7) identical bunches with spacing L > 2σ. Both
functions are calculated for ξ ¼ ω=V. Cherenkov frequencies
(14) for a mm-sized waveguide are also shown. Parameters σ
and L are chosen so that the bunch train spectrum has the
expressed maximum exactly at Cherenkov frequency ωCh

5 .
Therefore, this bunch train excites effectively the 5th
Cherenkov mode with the frequency around 0.1 THz falling
in the sub-THz range. In the same manner, other Cherenkov
frequencies can be generated separately.
It should be noted that simulation of EM field produced

by such bunch trains is rather complicated in CST PS

package. In particular, according to Fig. 4, number of
mesh lines per wavelength required for adequate conver-
gence should be increased considerably. Another issue here
is the need for manual determination of bunch profile.
These issues will be discussed below in more details. On
the contrary, the presented analytical technique allows
computation of the EM field properties relatively simple
and fast which is illustrated below by Figs. 10 and 11.
Figures 10 and 11 show behavior of Er component of

Cherenkov radiation at high-order Cherenkov frequency in
vacuum regions of the structure. Recall that this radiation is
generated in the inner waveguide and penetrated vacuum
sections of the structure by means of diffraction mecha-
nism. Figure 10 illustrates the case of mm-sized structure
resulting in sub-THz Cherenkov radiation at 5th Cherenkov
frequency, ωCh

5 ≈ 2π · 95 GHz. Figure 10(a) shows Er field
in three cross sections of the coaxial region (area 2 in
Fig. 1) while Fig. 10(b) shows Er field in three cross

FIG. 9. Fourier spectrum of a single Gaussian bunch and that of
a 15-bunches train with L > 2σ spacing. Black markers show
Cherenkov frequencies ωCh

l . Bunches parameters: q ¼ 1 nC,
β ¼ 0.9999, σ ¼ 0.05 cm, L ¼ 6.3σ. Cherenkov frequencies
are calculated for the inner waveguide with b ¼ 0.25 cm filled
with dielectric with ε ¼ 10.

FIG. 10. Cherenkov radiation field (Er component) at 5th Cherenkov frequency, ωCh
5 ≈ 2π · 95 GHz, in vacuum regions of the

structure: in the coaxial area (a) and in wide vacuum waveguide (b). Each thin (green) curve shows the ECh
r as a function of r at given

time moment t and given z. In total, each plot contains 151 curves covering the 1.5 ns time range with 0.01 ns interval. Solid (red) curve
corresponds to the global field maximum over the cross section. Parameters of the structure and the bunch train are the same as in Fig. 9
so that the 5th Cherenkov frequency is effectively generated.
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sections of the wide vacuum waveguide (area 3 in Fig. 1).
Each thin (green) curve shows the ECh

r as a function of r at
a given time moment t and given z. In total, each plot
contains 151 curves covering the 1.5 ns time range with
0.01 ns interval. The highlighted solid (red) curve is the
curve which provides the maximum field magnitude over
the cross section. Since at the given Cherenkov frequency
both coaxial waveguide and wide vacuum waveguide
supports 5 propagating modes, field behavior is rather
complicated. As one can see, maximum field in coaxial
region is always on the inner waveguide wall. In the wide
waveguide, global field maximum is typically at the first or
second local maximum.
Figure 11 illustrates the case of sub-mm inner waveguide

(its size and dielectric filling corresponds to one of the
structures used in [5]) resulting in Cherenkov radiation in
the lower THz range (about 0.39 THz). Compared to the
Fig. 10, field magnitude is about 1 order larger in this case
while aforementioned properties of field distribution are
mainly the same.
It should be underlined that simulation time consumed by

CST Particle Studio strongly depends on mesh density. As
Fig. 4 illustrates, the reasonable agreement in frequency of
Cherenkov radiation (for the first Cherenkov frequency
around 15 GHz) is achieved for approximately 60 lines per
wavelength. For this mesh density, calculation of the model
(with parameters corresponding to those used in Figs. 3, 5, 6,
7, and 8) typically takes about 20 hours at PC with Intel®
Core i7 processor and 32 Gb memory (with memory usage
about 100%). On the other hand, our MATLAB code based on
analytical formulas typically takes around 1minute to obtain

the curves presented in these figures. Consequently, the
analytical approach is approximately 20 × 60 times faster.
Moreover, for the case of a bunch train generating a high-

order Cherenkov frequency (around 100 GHz for the case
shown in Fig. 10 and around 0.4 THz for the case shown in
Fig. 11) there is a number of problems with CST simu-
lations. First, there is no standard option to launch a bunch
train into the structure. Second, the amount of memory
required for realization of appropriate mesh is far beyond
typical 32 Gb of personal computers: 6 times decrease in
minimal wavelength results in 63 times increase in number
of mesh cells. Therefore, the presented analytical approach
can be considered as preferable method for analysis of
Cherenkov radiation field across the structure.

IV. CONCLUSION AND DISCUSSION

First, we have considered radiation produced by single
Gaussian bunch exiting the open end of a cylindrical
waveguide with uniform dielectric filling in the case where
this waveguide is put into concentric vacuum infinite
waveguide of larger radius (“embedded” structure).
Based on residue-calculus technique, we have constructed
the rigorous theory of the electromagnetic process in this
structure. Based on this theory, Cherenkov radiation exiting
from dielectric waveguide into vacuum parts of the struc-
ture, which is of essential interest in the context of beam
driven radiation sources, can be calculated easily and fast.
We also have performed numerical simulation of the
process in CST PS code for long enough bunch generating
the first Cherenkov frequency only. It has been shown that
simulated Cherenkov radiation spectral peak has correct
frequency for only dense enough mesh. In this case,
numerical and analytical results for Cherenkov radiation
coincided very well therefore proving both the correctness
of rigorous approach and good convergence of numerical
procedure. However, the code based on analytical formulas
shows about 1000 times faster performance.
Second, using the aforementioned analytical approach,we

have considered generation of high-order Cherenkov modes
by modulated bunches (bunch trains) in vacuum regions of
the structure. Since trains of short bunches generate relatively
high frequencies, correct numerical simulations in CST PS

becomes extremely difficult. In this case, the presented
rigorous approach allowing convenient and fast analysis
of the EM field across the structure will be the preferred (and
probably the only reliable) method of investigation.
Typically, the structure should have a vacuum channel

for passage of the bunch. In the present paper, we have
considered the case without channel mainly for the sake of
results simplicity. Moreover, as it is known, if channel
radius is relatively small (in particular, it should be much
smaller then wavelength, see [53] for details), Cherenkov
radiation outside the channel is practically the same as in
the case without channel. However, for THz radiation this
requirement is difficult to satisfy and the problem with

FIG. 11. Cherenkov radiation field (Er component) at the 3-rd
Cherenkov frequency, ωCh

3 ≈ 2π · 386 GHz, in vacuum regions of
the structure: in the coaxial area (a) and in wide vacuum
waveguide (b). Curves notations are the same as in Fig. 10.
Parameters of the structure: b ¼ 0.064 cm, a ¼ 0.25 cm, ε ¼ 3.8
(b and ε correspond to ones used in [5]). Bunch train parameters
q ¼ 1 nC, β ¼ 0.9999, σ ¼ 0.012 cm, L ¼ 6.45σ are chosen so
that the 3rd Cherenkov frequency is effectively generated.
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finite vacuum channel taken into account should be
considered. The presented approach can be generalized
for this case without principal difficulties (though the
formulas will become more cumbersome).
For possible experiments, for the inner waveguide

of the “embedded” structure (Fig. 1) one can use dielectric
structures similar to those used in Refs. [5,9,10]. For
example, in Ref. [5] these were SiO2 capillaries (ε ¼ 3.8)
coated with metal and having outer diameter 400 or
640 microns and lengths up to 15 cm. The inner diameter
was 300 or 450 microns, therefore requiring analytical
consideration for the case with channel, as discussed
above. The bunch with around 3 pC charge was focused
to approximately 30 × 30 microns in transverse directions
allowing passage through the mentioned structures without
significant beam losses.
The outer waveguide can represent the walls of the

beamline or experimental vacuum chamber, or other more
sophisticated solutions mentioned in Sec. I can be realized.
One important advantage here is that one can detect the
diffracted Cherenkov radiation in the coaxial part of the
structure located downstream the particle bunch.
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APPENDIX A: INFINITE SYSTEMS FOR
MODE DECOMPOSITION COEFFICIENTS

fAmg, fBmg, AND fCng
Boundary conditions in the plane z ¼ 0 result in the

following relations:

Hð1Þ
ωϕðr; 0Þ ¼ Hð3Þ

ωϕðr; 0Þ for 0 ≤ r ≤ b; ðA1Þ

Hð2Þ
ωϕðr; 0Þ ¼ Hð3Þ

ωϕðr; 0Þ for b ≤ r ≤ a; ðA2Þ

∂Hð1Þ
ωϕðr; zÞ
ε∂z ¼ ∂Hð3Þ

ωϕðr; zÞ
∂z

				
z¼0

for 0 ≤ r ≤ b; ðA3Þ

∂Hð2Þ
ωϕðr; zÞ
∂z ¼ ∂Hð3Þ

ωϕðr; zÞ
∂z

				
z¼0

for b ≤ r ≤ a: ðA4Þ

To eliminate dependence on r, we substitute (17) and (18)
into (A1) and (A3), integrate obtained relations over
0 < r < b with the weight function rJ1ðrj0p=bÞ, p ¼
1; 2;… and utilize the following properties [57]:

Z
b

0

rJ1

�
rj0p
b

�
J1

�
rj0m
b

�
dr ¼ b2J21ðj0pÞδpm

2
; ðA5Þ

(here δpm is the Kronecker symbol, m ¼ 1; 2;…),

Z
b

0

rJ1

�
rj0p
b

�
Hð0Þ

1 ðrs̃Þdr ¼
2ij0p
πbs̃ − bs̃Hð1Þ

0 ðbs̃ÞJ1ðj0pÞ
s̃2 − ðj0p=bÞ2

;

ðA6Þ

Z
b

0

rJ1

�
rj0p
b

�
J1

�
rj0m
a

�
dr ¼ b j0m

a J0ðbj0ma ÞJ1ðj0pÞ
ðj0p=bÞ2 − ðj0m=aÞ2

;

ðA7Þ

s̃ ¼ s or s̃ ¼ s0. Taking into account that

ðj0p=bÞ2 − ðj0m=aÞ2 ¼ ðγð1Þzp Þ2 − ðγð3ÞzmÞ2; ðA8Þ

s20 − ðj0p=bÞ2 ¼ ðiω=VÞ2 − ðγð1Þzp Þ2; ðA9Þ

one can obtain after algebraic manipulations:

X∞
m¼1

"
Ãm

γð3Þzm − γð1Þzp

þ ÃmRp

γð3Þzm þ γð1Þzp

#
þ

iq
2cb

J1ðj0pÞ
��

πb2s20h0J1ðj0pÞ
2j0p

− 1

�
ðF−

vp þ RpFþ
vpÞ þ Fþ

dp þ RpF−
dp

�
¼ 0; ðA10Þ

X∞
m¼1

"
Ãm

γð3Þzm þ γð1Þzp

þ ÃmRp

γð3Þzm − γð1Þzp

#
þ

iq
2cb

J1ðj0pÞ
��

πb2s20h0J1ðj0pÞ
2j0p

−1

�
ðRpF−

vpþFþ
vpÞþRpF

þ
dpþF−

dp

�
¼ 4γð1Þzp κ

ð1Þ
zp B̃p

κð1Þzp þ εγð1Þzp

; ðA11Þ

where h0 is given by Eq. (37),

Ãm ¼ Amj0mJ0ðbj0m=aÞ=a; ðA12Þ

B̃p ¼ BpbJ1ðj0pÞ=2; ðA13Þ
Rp, F�

dp and F�
vp are given by Eqs. (30), (31), and (32),

correspondingly.

In a similar way, we substitute (18) and (19) into (A2)
and (A4), integrate these relations over the interval b <
r < a with the weight function rZpðrχpÞ and utilize the
property

Z
a

b
rZmðrχmÞZpðrχpÞdr ¼ δpmIp; ðA14Þ
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Ip ¼ a2

2
Z2
pðaχpÞ −

b2

2
Z2
pðbχpÞ; ðA15Þ

and formulas analogous to (A6) and (A7). Taking into
account that

ðj0m=aÞ2 − χ2p ¼ ðγð3ÞzmÞ2 − ðγð2Þzp Þ2; ðA16Þ

s20 − χ2p ¼ ðiω=VÞ2 − ðγð2Þzp Þ2; ðA17Þ

after a series of algebraic manipulations one obtains

X∞
m¼1

Ãm

γð3Þzm − γð2Þzn

þ iq
2c

is20h0
ω
iV − γð2Þzn

¼ 0; ðA18Þ

X∞
m¼1

Ãm

γð3Þzm þ γð2Þzn

þ iq
2c

is20h0
ω
iV þ γð2Þzn

¼ −2γð2Þzp C̃n; ðA19Þ

where n ¼ 0; 1;…,

C̃0 ¼ C0 lnða=bÞ; C̃p ¼ CpIp½bZpðbχpÞ�−1: ðA20Þ

Note that the case n ¼ 0 is obtained by integration of (A2)
and (A4) over b < r < a without any weight function.
In the issue, we obtain four infinite systems (A10),

(A11), (A18), and (A19). These systems can be solved
simultaneously using the residue-calculus technique
[12,23–25]. This procedure is described in Appendix B.

APPENDIX B: CONSTRUCTING THE FUNCTION
f(w) AND SOLVING INFINITE SYSTEMS

In accordance with the residue-calculus technique, to
solve systems (A10), (A11), (A18), and (A19), let us
consider the following Cauchy-type integrals over the
infinite radius circle C∞:I
C∞

�
fðwÞ

w ∓ γð1Þzp

þ RpfðwÞ
w� γð1Þzp

�
dw ¼

I
C∞

fðwÞdw
w ∓ γð2Þzn

¼ 0; ðB1Þ

where fðwÞ is a complex-valued function that should be
found. These integrals equal zero because we suppose that
fðwÞ vanishes for jwj → ∞. Next step is constructing fðwÞ
so that it has certain specific zeros, poles, and behavior for
jwj → ∞. To solve this problem, it is useful to have in mind

the infinite systems and their solution for the corresponding
vacuum problem (with the same geometry and permittivity
ε ¼ 1 [25]) and point out the differences. First, in the case
under consideration, systems (A10) and (A11) are more
complicated while systems (A18) and (A19) are the same.
Second, the singularity of the longitudinal electric field
near the sharp edge r ¼ b, z → þ0,

Eð3Þ
ωz ∼ 1=z1=2−τ; sin πτ ¼ ðε − 1Þ=ð2εþ 2Þ; ðB2Þ

becomes weaker in the presence of dielectric [12,23] (see
Fig. 12) compared to the vacuum case where we have

Eð3Þ
ωz ∼ z−1=2 near this edge.
Taking into account these points, one should construct

fðwÞ so that: (i) fðwÞ is regular in complex plane w

excluding first-order poles w ¼ γð3Þzp and a pole w¼−iω=V;
(ii) fðwÞ has first-order zeros w ¼ γð2Þzn and w¼Γm,

Γm ≠ γð1Þzm ; (iii) the residue Res−iω=VfðwÞ ¼ −qs20h0=ð2cÞ;
(iv) fðwÞ !

jwj→∞
w−ðτþ1=2Þ, where sinðπτÞ ¼ ε−1

2εþ2
. Afore-

mentioned differences from vacuum case are taken into
account by items (ii) and (iv). In the issue, one can write:

fðwÞ ¼ P

�
w− γð2Þz0

�Q∞
s¼1

�
1− w

γð2Þzs

�Q∞
p¼1

�
1− w

Γp

�
ðw− ω

iVÞ
Q∞

m¼1

�
1− w

γð3Þzm

� QðwÞ:

ðB3Þ

Here P is unknown constant and QðwÞ is some regular
function providing algebraic (instead of exponential) behav-
ior of fðwÞ for jwj → ∞. It can be chosen in the same way
as in the vacuum case, in accordance with Eq. (35).

Considering integrals (B1) and calculating them using (B3) and the residue theorem, we obtain:

X∞
m¼1

"
Res

γð3Þzm
fðwÞ

γð3Þzm − γð1Þzp

þ
Res

γð3Þzm
fðwÞRp

γð3Þzm þ γð1Þzp

#
þ
"
Resω

iV
fðwÞ

ω
iV − γð1Þzp

þ Resω
iV
fðwÞRp

ω
iV þ γð1Þzp

#
þ fðγð1Þzp Þ þ fð−γð1Þzp ÞRp ¼ 0; ðB4Þ

FIG. 12. Correct physical behavior of the longitudinal electric
field near the sharp edge r ¼ b, z → þ0 (Meixner edge con-
dition), τ ¼ π−1asin ε−1

2εþ2
.
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X∞
m¼1

"
Res

γð3Þzm
fðwÞ

γð3Þzm þ γð1Þzp

þ
Res

γð3Þzm
fðwÞRp

γð3Þzm − γð1Þzp

#
þ
"
Resω

iV
fðwÞ

ω
iV þ γð1Þzp

þ Resω
iV
fðwÞRp

ω
iV − γð1Þzp

#
þ fð−γð1Þzp Þ þ fðγð1Þzp ÞRp ¼ 0: ðB5Þ

X∞
m¼1

Res
γð3Þzm

fðwÞ
γð3Þzm − γð2Þzn

þ Resω
iV
fðwÞ

ω
iV − γð2Þzn

¼ 0; ðB6Þ

X∞
m¼1

Res
γð3Þzm

fðwÞ
γð3Þzm þ γð2Þzn

þ Resω
iV
fðwÞ

ω
iV þ γð2Þzn

þ fð−γð2Þzn Þ ¼ 0; ðB7Þ

Note that

Resω
iV
fðwÞ ¼ Pg

�
ω

iV

�
; ðB8Þ

where gðwÞ is given by (34). Let us compare our systems
(A10), (A11), (A18), and (A19) with relations (B4), (B5),
(B6), and (B7), correspondingly. We put

Res
γð3Þzm

fðwÞ ¼ Ãm; ðB9Þ

and determine coefficient P so that (iii) is fulfilled, i.e.

P ¼ iq
2c

is20h0
gðωiVÞ

: ðB10Þ

At this step system (A18) is formally fulfilled. Next, we put

C̃n ¼ fð−γð2Þzn Þ½2γð2Þzn �−1; ðB11Þ

−
iq

2cbJ1ðj0pÞ
½RpF−

vp þ Fþ
vp − RpF

þ
dp − F−

dp�

−
4γð1Þzp κ

ð1Þ
zp B̃p

κð1Þzp þ εγð1Þzp

¼ fð−γð1Þzp Þ þ fðγð1Þzp ÞRp; ðB12Þ

and systems (A19) and (A11) are formally fulfilled as
well. Equation (26) follows from Eqs. (B12) and (A13),
Eqs. (27) and (28) follow from (B11) and (A20). Finally,
we put

−
iq

2cbJ1ðj0pÞ
½F−

vp þ Fþ
vpRp − Fþ

dp − F−
dpRp�

¼ fðγð1Þzp Þ þ fð−γð1Þzp ÞRp; ðB13Þ

and the system (A10) is also fulfilled. Equation (B13) is the
relation for determination of unknown zeros Γp (38). After
algebraic transformations it can be rewritten in the follow-
ing form:

ΔpðfΔmgÞ ¼
b
π

Gpup½Γp − ω=ðiVÞ� − 2γð1Þzp Rp

υpþ þ Rpυp−
; ðB14Þ

where

upðfΔmgÞ ¼
gðwÞ
1 − w

Γp

					
w¼ω

iV

; ðB15Þ

υp�ðfΔmgÞ ¼
fðwÞ=P
1 − w

Γp

					
w¼�γð1Þzp

; ðB16Þ

Gp ¼ Fþ
dp þ RpF−

dp − F−
vp − RpFþ

vp

bJ1ðj0pÞs20h0
: ðB17Þ

Equation (B14) is complicated nonlinear system for Δp

because expression in the right-hand side depends on all
unknown fΔmg through up and υp�, this fact is underlined
by the argument fΔmg of Δp, up and υp�. This system can
be solved numerically using iteration procedure. Possibility
to control the convergence of this procedure is connected
with Meixner edge condition (B2).
As it was shown in [21,23], condition (B2) dictates

the following asymptotic behavior of coefficient Ap for
p → ∞:

Ap ∼ p−ð1þτÞ; Ãp ∼ p−ð1=2þτÞ: ðB18Þ

This in turn results in the asymptotic behavior of fðwÞ
determined by condition (iv). Since asymptotic of fðwÞ is
determined by asymptotic of Γp, γ

ð2Þ
zn and γð3Þzm for large

numbers, the asymptotic of γð2Þzn and γð3Þzm can be easily
learned from their definitions (24) and (23), Γp should
behave as follows for p → ∞:

Γp ∼
π

b
ðp − 1=4þ τÞ; Δp ∼ τ: ðB19Þ

Therefore, the iteration process for solving (B14) is
organized as follows. We fix quantity N of Δm, m ¼
1; 2;…N to be found. For zero-order approximation, we
put Δm ¼ τ for all m in the right-hand side of (B14) and
calculate first-order approximation for Δp, p ¼ 1; 2;…N.
Then we substitute these calculated fΔmg in the right-hand
side of (B14) and calculate second-order approximation,
etc. After these iterations have converged (relative differ-
ence in ΔN for two consequent steps is within the
accuracy), we compare ΔN with τ: if ΔN ≈ τ within
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accepted accuracy, process is stopped, otherwise N and/or
accuracy of calculations is changed and procedure repeats.

APPENDIX C: FREQUENCY SPECTRUM
OF THE SCATTERED FIELD

According to (17), (18), and (19), spectrum of the
scattered field is determined by spectrum of coefficients
fAmg, fBmg and fCng. Here we present analytical proving
that real spectrum of these coefficients contains the same
Cherenkov poles as the incident field in the inner dielectric
waveguide. For example, let us consider coefficient Ãp.
In accordance with (25) or (B9), we obtain:

Ãp ¼P
ðγð3Þzp − γð2Þz0 Þ

Q∞
n¼1

�
1− γð3Þzp

γð2Þzn

�Q∞
s¼1

�
1− γð3Þzp

Γs

�
�

ω
iV

γð3Þzp
− 1

�Q∞
m¼1
m≠p

�
1− γð3Þzp

γð3Þzm

� Qðγð3Þzp Þ:

ðC1Þ

None of the terms in denominator can be zero for real
frequencies, therefore only coefficient P can have poles.
Definition of P (36) or (B10) can be rewritten as follows:

P ¼
−qs20h0

Q∞
m¼1

�
1 −

ω
iV

γð3Þzm

�
Qð− ω

iVÞ
2cðωiV − γð2Þz0 Þ

Q∞
n¼1

�
1 −

ω
iV

γð2Þzn

�Q∞
s¼1

�
1 −

ω
iV
Γs

� : ðC2Þ

In the denominator, the first term does not equal zero for
real ω and β ≠ 1, the first product does not equal zero for

real ω as well because ω=ðiVÞ ≠ γð2Þzn , therefore only the
second product is a candidate to have real zeros responsible
for poles of P. As our numerical results indicate, zeros Γs
are specifically shifted in the complex plane so that Eq. (44)
is fulfilled with high accuracy. Therefore, coefficient P has
poles for Cherenkov frequencies (14). Since fAmg, fBmg
and fCng are all proportional to P, the scattered field
spectrum contains the same Cherenkov poles ωCh

l as the
incident field in the area 1, which has to be proved.
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