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One major concern in the design and operation of high-intensity rings is beam loss due to beam halo.
Another issue of importance in applications involving fixed targets is the uniformity of the beam energy
deposition on the target. Both of these issues could be favorably addressed by a hard-edged beam with
uniform transverse density. This paper presents a detailed feasibility study for painting such a beam into a
high-intensity proton ring. For the purposes of this paper, we define self-consistent beams to be ellipsoidal,
or elliptical in 2D, distributions that have uniform density and linear space charge force and that retain these
properties under all linear transformations. Because of their linear space charge forces and linear transport
properties, self-consistent distributions may undergo very little halo formation if realized in practice.
Because of their uniform density, they would have smaller maximum space charge tune shifts than peaked
density distributions, and they would be attractive for high-intensity fixed target applications. Self-
consistent distributions involve very special relationships between the phase space coordinates, making
them singular in some respects and difficult to realize experimentally. The most famous self-consistent
distribution is the Kapchinsky-Vladimirsky distribution, but now many other self-consistent distributions
have been discovered. One such, the 2D rotating distribution, can be painted as a coasting beam into a ring
having an appropriately designed and tuned lattice. For bunched beams, if the bunch length is sufficiently
long, it is expected that the coasting beam assumption will be a good approximation during painting.
However, it is unknown how robust self-consistent distributions will be under real world transport in the
presence of nonlinearities and collective effects. This paper studies these issues for a particular case of
interest by applying realistic detailed computational models to the simulation of painting a self-consistent
rotating beam into the Spallation Neutron Source (SNS) ring. As a result, we propose a case that can be
carried out with only a minor modification of the SNS hardware.
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I. INTRODUCTION

Our motivation in pursuing the work described in this
paper is to assess the possibility of injecting a uniform
elliptical beam distribution with linear space charge
forces into a high-intensity ring. By beam distribution,
we mean the coordinates of a collection of particles in
2N-dimensional phase spacewhich evolve according to the
Boltzmann equation, which in turn reduces to the Vlasov
equation in the Hamiltonian limit when collisions are
neglected [1]. Although all these distributions are defined
in 2N-dimensional phase space, we will refer to them by
their coordinate space dimensionality N here. Ideally, the
distribution that we want to inject is a 2D, meaning N ¼ 2,
function of two constants of the motion which correspond
to the energy and angular momentum for time-independent

Hamiltonians. It is characterized by an elliptical shapewith
uniform density and a sharp boundary in the transverse
plane and, consequently, by linear internal space charge
forces. Furthermore, this distribution retains these properties
under all linear transformations. Our interest in injecting such
a distribution is motivated by the possibility that its sharp
boundaries will lead to a small beam halo and consequent
beam loss and that its uniform density will result in low peak
beam deposition in fixed target applications.
The assumptions of an ellipsoidal shape and uniform

charge density have been used in many analytical and
computational studies in beamdynamics. Beamdistributions
satisfying and maintaining these constraints during transport
are an idealized construct. For the present purposes, we
will call such distributions self-consistent. The term “self-
consistent” is usually taken to include other distributions, such
as the Maxwell-Boltzmann, that are functions of invariants of
motion such as the Hamiltonian. However, because our
interest is in hard-edged, uniform density distributions with
linear space charge forces, we will use the more restrictive
definition given here. Self-consistent distributions are func-
tions of invariants of the motion and, for time-independent
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Hamiltonians, are equilibrium solutions of the Vlasov equa-
tion.We call invariants time dependent when they depend not
only on coordinates and momenta but also directly on time.
One example is the Courant-Snyder invariant, which is a
quadratic form of the coordinates and momenta with time-
dependent coefficients. In addition to linear space charge
forces that lead to analytic tractability, self-consistent distri-
butionsmanifest a number of desirable properties. In channels
where they are matched, their transport may lead to little halo
formation. Because they have uniform density, they would
have smaller maximum space charge tune shifts than peaked
density distributions, and they would be attractive for high-
intensity fixed target applications. Furthermore, some self-
consistent distributions can be manipulated to generate flat
beams. However, self-consistent beams are not easy to realize
in nature.
Kapchinsky and Vladimirsky obtained the first self-

consistent time-dependent space charge distribution (KV
distribution) in the two-dimensional case [2]. The KV
distribution depends on only one invariant function of
coordinates and momenta, which corresponds to a single
Hamiltonian when the focusing is time independent, and it
takes the form of a uniformly populated constant energy
shell in phase space. It was shown in Appendix A in
Ref. [3] that an extension of this model to three dimensions
is not possible. There is no distribution function in three
dimensions that depends on only one invariant (the
Hamiltonian in the time-independent case) and produces
linear space charge forces. Furthermore, it was shown in
Ref. [4] that the KV distribution can be unstable in linear
transport channels, and this could be a problem for other
self-consistent distributions, too.
Later, methods to obtain self-consistent time-independent

space charge distributions were developed for both the cases
of linear [5] and nonlinear [6] external focusing and space
charge forces. Interesting equations for nonlinear transport of
one-dimensional distributions with constant charge density
in phase space were analyzed in Ref. [7]. The generation of
self-consistent distributions for the general time-dependent
case is beyond the reach of modern theoretical mechanics.
Even single-particle motion under nonlinear time-dependent
forces is not analytically solvable. Exceptions occur in some
special cases of forces with symmetries, as in the case of
round beams with a special dependence of the force on the
time and coordinates (see [8] and references therein).
Round or spherical beams yield the first examples of

more general self-consistent time-dependent space charge
distributions with linear forces, where the dependence is
now on two invariants, one of which corresponds to the
angular momentum. Reference [9] shows how to construct
such distributions, including cases without special sym-
metries. This paper was primarily a mathematical exercise.
It demonstrated the existence, techniques for constructing,
and classification of numerous self-consistent distributions
in N dimensions. It described the mathematical form of the

distributions, which could be written as functions of
constants of the motion multiplied by products of delta
functions involving linear relationships between the gen-
eralized coordinates. It proved the preservation of self-
consistency in all linear transformations, and it constructed
envelope equations for self-consistent distributions in 2D
and 3D. This paper did not analyze the stability of the
newly described self-consistent distributions, but it did
pave the way for such studies and for the consideration of
practical applications of self-consistent beams in existing or
planned accelerators.

II. HOW TO PAINT A LONG-BUNCH
SELF-CONSISTENT BEAM

INTO A RING

An essential consideration for the practical application of
self-consistent beams is how to create them. Reference [10]
proposed a method to produce a 3D ellipsoidal uniform
density self-consistent distribution of electrons by uniform
expansion of a pancake distribution obtained by shining a
properly shaped femtosecond laser pulse on a photoemit-
ting cathode. This scheme was later carried out experi-
mentally with some success [11]. However, the generation
of a self-consistent distribution in a high-intensity proton
ring is a very different problem. In such machines, bunches
are typically long and for many purposes are more readily
visualized as coasting beams than as spherical distributions.
The beam dynamics can be separated into longitudinal
(synchrotron) and transverse (betatron) motion that occur
on very different timescales. Typically, betatron timescales
are orders of magnitude shorter than those for synchrotron
motion. In the Spallation Neutron Source (SNS), for exam-
ple, betatron tunes are approximately 6.2, while the synchro-
tron tune is about 7 × 10−4, a difference of 4 orders of
magnitude. Beam distributions are built up in high-intensity
proton rings over many turns by painting an incoming
H− beam into the circulating proton beam through stripper
foil injection. Desired beam distributions in the ring can be
obtained by programming the time dependence of the
injection parameters.
With all this inmind, an excellent candidate distribution for

painting into a ring was identified in Ref. [9]. Longitudinally,
the distribution is uniform, so that the distribution’s self-
consistency comes from its transverse properties. In the
nomenclature of Ref. [9], it was classified as a f2; 2g
distribution, meaning a 2D distribution (4D in transverse
phase space) with two linear relations between phase space
variables expressed as delta functions, one relating x to y0 and
the other relating y to x0. In this distribution, there are two
constants of motion, which reduce to the energy and angular
momentum in the time-independent case. The notation
fn;mg means n dimensions and m delta functions. The
f2; 2g distribution is commonly called a rotating distribution,
because the beam rotates in the transverse plane. The rotating
distribution can be painted as a coasting beam into a ring, but
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three conditions must be satisfied: (i) The painted horizontal
and vertical emittances must increase linearly in time from
initial values of zero to yield a constant charge density; (ii) the
painted horizontal and vertical phases need to differ by 90° to
obtain a rotating elliptical distribution in transverse space;
and (iii) the vertical and horizontal tunes have to be equal so
that the beam can rotate by maintaining a constant relation-
ship between the horizontal and vertical particle phases, at
least on a turn-by-turn basis. The first condition determines
the time dependence of a painting scheme in which

xinj − xCO ¼ xMax ×
ffiffiffiffiffiffiffiffiffiffiffiffi

t=tMax

p

mm;

x0inj − x0CO ¼ x0Max ×
ffiffiffiffiffiffiffiffiffiffiffiffi

t=tMax

p

mrad;

yinj − yCO ¼ yMax ×
ffiffiffiffiffiffiffiffiffiffiffiffi

t=tMax

p

mm;

y0inj − y0CO ¼ y0Max ×
ffiffiffiffiffiffiffiffiffiffiffiffi

t=tMax

p

mrad; ð1Þ

where the subscripts inj and CO refer to injection and closed
orbit, respectively. The second condition determines the
relative sizes of xMax and y0Max and separately of yMax and
x0Max. There is still a freedom of choice of phase that allows
different proportions of x-y0 and y-x0 to be painted. It is
important to note that, under the above self-consistent
painting scheme, the accumulating distribution is self-
consistent throughout the process, not just at the final time.
This painting scheme for the rotating distribution is quite

different from that used in most high-intensity rings. For
example, the scheme used in SNS production, which is
commonly called correlated painting, sets x0Max and y0Max to
zero and includes an initial offset so that

xinj − xCO ¼ ½ðxMax − x0Þ ×
ffiffiffiffiffiffiffiffiffiffiffiffi

t=tMax

p

þ x0� mm;

yinj − yCO ¼ ½ðyMax − y0Þ ×
ffiffiffiffiffiffiffiffiffiffiffiffi

t=tMax

p

þ y0� mm:

Correlated painting tends to create rectangular distribu-
tions in real space.

III. REALISTIC SIMULATIONS OF ROTATING
SELF-CONSISTENT BEAMS

A successful simulation of the injection of a 2D self-
consistent rotating distribution as a coasting beam, including
space charge, into a linearized SNS lattice was conducted
using the ORBIT code [12] and presented in Ref. [9]. The
simulation demonstrated that all three of the conditions for
self-consistent painting had to be satisfied to obtain a self-
consistent distribution. When we say that a beam in a
simulation is self-consistent, wemean that it has an elliptical
or ellipsoidal shape and uniform density and that any linear
relationships between phase space variables are propagated
through the lattice. A central question in the study of self-
consistent beams is their robustness under real transport
conditions including space charge, nonlinearities, imped-
ances, bunched beamproperties, andother lossmechanisms.

A computational approach is an effectiveway to address this
question, with an emphasis on systematically introducing
increasingly realistic effects: chromaticity and nonlinear-
ities, fringe fields, foil scattering and collimation, imped-
ances, bunched beams, and real injection (as opposed to
artificial bumps). When realistic physics is included, we
expect self-consistent properties to be blurred to some
extent, and it is necessary to determine the degree of self-
consistency in the resulting distribution. To do this, the
distribution shape and density in phase space can be
examined; beam profiles can be compared with mathemati-
cally self-consistent profiles; average incoherent tunes in the
transverse plane can be calculated and compared; and
correlations between different phase space variables can
be calculated. The correlation coefficient between two
variables u and v is defined by

cuv ¼
hðu − huiÞ � ðv − hviÞi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðu − huiÞ2ihðv − hviÞ2i
p ; ð2Þ

where the brackets denote averages over the distribution.
The values of coefficients of uncorrelated variables are near
zero, and strongly correlated variables have coefficients
approaching �1 depending on a positive or negative slope.
All of these properties are easy to test in simulations, and
we do so routinely in our studies. We now discuss self-
consistency when realistic physical effects are included in
the calculations.
As stated above, it is possible to paint a coasting self-

consistent rotating beam into a linearized lattice, either with
or without space charge. The introduction of nonlinearities,
including chromaticity, multipoles, and fringe fields, was
found to destroy rotating beam self-consistency by cou-
pling degenerate eigensolutions, whose superposition is not
self-consistent (Fig. 1, left). In a linear x − y decoupled
lattice having equal tunes, there are four independent
degenerate rotating beam eigenfunctions. Two solutions
correspond to beams rotating clockwise, and the other two
correspond to beams rotating counterclockwise. The two
independent eigenfunctions corresponding to either direc-
tion of rotation differ only in phase. While these corotating
eigenfunctions can be superposed to yield a rotating self-
consistent beam, the superposition of oppositely rotating
eigenfunctions destroys self-consistency, as the resulting
distribution is no longer a function of angular momentum.
The solution is to break the rotating or counterrotating

degeneracy. To do this, solenoid magnets can be introduced
in order to defocus one of the rotating eigenfunctions and to
focus the counterrotating beam, thus splitting their respec-
tive tunes. The presence of the solenoids leads to two pairs
of complex conjugate eigenfunctions, each with its own
pair of complex conjugate eigenvalues, for the ring transfer
matrix in transverse phase space. It is possible to paint a
self-consistent rotating distribution to the real part, the
imaginary part, or any linear combination thereof, for either
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of the eigenfunction pairs (Fig. 1, right, and Fig. 2).
Figure 2 illustrates the splitting of the tunes of the rotating
and counterrotating beams (left) together with the ability to
paint into a chosen eigenfunction (right). In summary,
solenoid magnets can be used to maintain self-consistency
when there are nonlinearities by splitting the tunes of the
rotating and counterrotating beams, thus allowing injection
into either of the two eigenfunction pairs.
Another important issue is the effect of bunched beams.

Most high-intensity rings are not operated with coasting
beams. If the bunch is sufficiently long that transverse beam
properties change slowly along the longitudinal direction, it
might be expected that a coasting beam will be closely
approximated. For example, in the SNS, the length of the
beam in the ring is more than 150 m, and the coasting beam
approximation should be acceptable as long as the longi-
tudinal density is kept uniform. Even though the synchro-
tron tune is typically orders of magnitude less than the

betatron tunes, the longitudinal evolution of a bunch during
accumulation, acceleration, and storage is significant. As a
computational experiment, we carried out two bunched
beam simulations using the SNS lattice. In one, we used the
design voltages of the SNS dual harmonic bunchers. In the
other, we replaced the dual harmonic rf cavities by barrier
cavities, which maintain a nearly constant density longi-
tudinal profile. Simulations with the barrier cavities showed
that it is possible to inject a chopped rotating self-consistent
beam into the SNS ring. This was not true when the design
voltages of the SNS cavities were employed. The design
dual harmonic and assumed barrier cavity waveforms are
shown in the left-hand plot in Fig. 3, and the resulting beam
current profiles following full design-intensity injection
simulations are shown in the right-hand plot. The barrier
cavity current profile is much flatter than the current profile
from the dual harmonic case. The important information
that these simulations provided is that it is possible to paint
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a rotating distribution into a bunched beam if the longi-
tudinal distribution is kept uniform but that failure to do so
can make this impossible. The results of the computational
work described above have been published in conference
proceedings [13–16].
At 40 and 20 kV first and second harmonic voltages,

respectively, the design rf bunching in the SNS ring is very
strong. Today, the ring rf maintains the beam gap with
much smaller voltages than the design values, well under
10 kV in both the first and second harmonics. Such low
voltages should lead to much less distortion of the
longitudinal current profile than occurs at the design values.
In order to study a bunched beam injection intermediate to
those with barrier cavities and with the SNS design values,
we have carried out the same injection simulation but now
using the dual harmonic rf with settings of 4 kV in both the
first and second harmonics. These values are in the range of

present production voltages and are sufficient tomaintain the
beam gap. The resulting longitudinal beam profile following
full-intensity injection was somewhat more peaked than that
obtained with barrier cavities but still quite broad and
uniform when compared to that resulting from the design
rf voltages. Figure 4 summarizes the longitudinal behavior
for three rf scenarios: dual harmonic rf at the design voltages
of 40 kV first harmonic and 20 kV second harmonic (in red),
the barrier cavity waveform shown in Fig. 3 (in green), and
dual harmonic rf with 4 kVin both harmonics (in blue). In the
transverse plane, the injected distribution retained its self-
consistency using the 4 kV rf settings. Therefore, we have
adopted the 4 kV rf settings for all subsequent calculations
using the SNS lattice, including those in this paper.
The results presented above utilize an artificial bump

method to carry out the injection painting. In ORBIT’s
artificial bump method, the injection kickers are treated as
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drifts, and the closed orbit passes through the centers of all
lattice elements. The injected beam is added at the
azimuthal location of the stripper foil with the correct
transverse coordinates relative to the closed orbit. With the
full injection painting scheme, the beam is kicked at the
actual kicker locations and settings including the appro-
priate time dependence of the painting scheme, and the
injected beam is added at the actual foil location in both
planes. The main difference between these two schemes is
that, in the injection straight section the closed orbit passes
through the element centers in the artificial bump model,
but it encounters the elements off center in the real kicker
model. There are two main consequences of using the real
kicker model, and both are a result of the off-axis beam
transport. The first consequence regards fringe field effects.
We consider these here in the context of the SNS lattice,
but similar considerations are certainly present in other
machines. In the SNS ring, there are two quadrupole
doublets in the injection straight section, and the kicked
beam encounters those magnets well off center. When
quadrupole fringe fields are included in the calculations,
their effects could become significant, because the strength
of their contribution increases off axis. In order to assess the
limitations associated with the hard-edge fringe field
approximation in the injection region and to more correctly
evaluate the effects of the fringe fields on the off-axis beam,
we developed an extended fringe model based on the
assumption that the quadrupole field strength varies along
the magnet axis. According to this model, the vector
potential of a quadrupole magnet can be represented as

Ax ¼ −k0=12�ðx3 þ 3xy2Þ − k0s=6�y3 þOð4Þ;
Ay ¼ þk0=12�ð3x2yþ y3Þ − k0s=6�x3 þOð4Þ;
As ¼ k=2�ðy2-x2Þ − ksxyþOð5Þ; ð3Þ

where the quadrupole and skew quadrupole strengths k and
ks are functions of the beam line coordinate s, the prime
symbols denote differentiation with respect to s, and the
“O” symbols denote the order of the omitted terms in the
transverse phase space coordinates. While the usual quad-
rupole “body” terms appear in the longitudinal component
As, the fringe field terms constitute the contributions to the
transverse components Ax and Ay. In the hard-edge model,
it is assumed that the quadrupole strengths can be repre-
sented by step functions, so that the k0 terms are delta
functions. The symplectic integration of these terms in the
hard-edge fringe field model in ORBIT is taken from the
treatment in Ref. [17]. In order to carry out the integration
for extended fringe fields, we conceptually replace the step
function descriptions of k and ks by smooth curves such
that the integrated area under the curves gives the total
integrated field strength, as shown in red in the left-hand
plot in Fig. 5. The implementation of extended fringe fields
in ORBIT replaces this smooth representation of k by a sliced
“staircase” model, shown in blue in Fig. 5, in which the
evaluation of the body fields on each slice is alternated with
a hard-edge fringe field evaluation at each step between
slices. This allows for the use of the same algorithms that
are employed in the hard-edge model. In the ORBIT

extended fringe field model, used here for the quadrupole
doublet magnets in the injection straight section, the
function k is taken from the OPERA3D/TOSCA [18] calcu-
lations in Ref. [19]. A comparison of results obtained using
the extended and hard-edge fringe field models in ORBIT is
shown in the right-hand plot in Fig. 5. The plot shows, for
one particular self-consistent case, the distributions of y0

versus x and x0 versus y at the end of injection, both of
which should be linearly related in an ideal self-consistent
beam. Real effects, including finite injected beam size,
lattice nonlinearities, collective effects, ring rf bunching,
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and foil scattering broaden the distributions into bars. The
figure shows that the effect of the extended fringe fields is
to reduce the broadening somewhat without causing any
major qualitative changes. Henceforth, the results presented
here are calculated using extended fringe fields for the
doublet magnets in the injection region.
The second consequence of off-axis beam transport is the

possibility of beam scraping and resulting beam loss. We
again consider this issue in the context of the SNS lattice.
In simulations with artificial bumps, the beam traverses the
center of the beam pipe and losses are generally acceptable,
but with off-axis beam transport beam loss can increase
because of scraping. In order to address this issue, the
simulations incorporate a detailed description of the
machine geometry, including element offsets and apertures,
throughout the ring and especially in the injection region.
In the SNS, there are two readily available “knobs” that can
be applied to minimize beam loss in injection.
One possibility would be to steer the injected beam

coming from the linac to a point on the stripper foil closer
to the central axis of the injection chicane. By moving this
point by 5 mm in both the horizontal and vertical directions,
about the maximum extent possible, simulations predict a
significant reduction in the loss rate. However, shifting the
injection point by this amount would necessitate a reeval-
uation and possible redesign of the incompletely stripped
waste beam trajectories to the injection dump. These
trajectories are very sensitive to the settings of the injection
chicane magnets and to the location of the injected beam,
and it is not clear that a shift of 5 mm can be easily
accommodated.
Another possible remedy that requires no change to the

injected beam position is to take advantage of the freedom of
choice in the phase of the rotating beam at the injection
point. For example, we could paint with a linear relationship

between x-y0 while holding y-x0 constant, or vice versa.
This corresponds to setting either yMax and x0Max or xMax
and y0Max to zero in Eq. (1), respectively. We could also
paint to the counterrotating eigenfunction, again with
freedom of choice of the phase. There are an infinite
number of possibilities. We experimented with several of
these and found that losses could vary from nearly 100%
when painting purely in y-x0 to almost zero when painting
purely in x-y0. This is illustrated in Fig. 6, which shows the
initial and final bumped closed orbits through the injection
region for two different painting phase choices. The x-y0
painting scheme shown on the right leads to much lower
beam loss than the scheme shown on the left, which has
comparable portions of x-y0 and y-x0 painting. With the
exception of the painting waveforms, the lattice settings
were the same in all these cases, which led to comparable
beam sizes. The variation in beam losses results from
steering the beam either closer to or further from the beam
pipe and not from a variation in the beam size. The losses
in all these painting schemes occur at the focusing
quadrupole in either the upstream or downstream doublet,
where the horizontal beam offset is large (see Fig. 6, and
see also Fig. 10 for the locations of the kickers and the
quadrupole doublets). This situation is exacerbated when
x0 is varied in the painting scheme. For this reason, the x-y0
painting scheme is most favorable with respect to losses so
that yMax and x0Max are set to zero in Eq. (1). Another
advantage of the x-y0 painting scheme, specific to the
SNS, is that a reasonable beam size can be obtained
without any injection kicker power supplies changing
sign. For these reasons, we use the x-y0 painting scheme
for rotating beam injection studies in the SNS.
Although the calculations presented here have been

specific to the SNS, similar issues will need to be addressed
in considering the injection of a self-consistent beam into
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any ring. The specific solutions to the issues considered
will be machine specific, and it is quite likely that more
optimal answers can be found if one were to design a
machine for self-consistent injection rather than adapt an
existing machine. The important point to be stressed is
that simulations using a sophisticated computational rep-
resentation of an existing machine suggest that it is
possible to paint a self-consistent beam into that machine
with the addition of solenoid magnets into the lattice. The
computational studies now incorporate the full physics
modeling capabilities of the ORBIT code together with a
detailed description of the SNS accumulator ring lattice.
Specifically, the calculations employ symplectic single-
particle tracking with fringe fields for all magnets, includ-
ing extended fringe field models for two doublet pairs in
the injection straight section that are traversed by the beam
off axis; detailed models for the injection painting with
time-dependent waveforms for all kickers; bunched beams
with realistic voltages for the ring rf bunchers; a 2.5D
sliced model for longitudinal and transverse space charge;
the dominant longitudinal and transverse impedances of
the extraction kickers; a realistic parameterization of the
injected beam distribution at the stripper foil; scattering of
the injected and circulating beams due to the stripper foil;
and an extensive set of apertures to model beam losses
around the ring.

IV. SENSITIVITY STUDIES: ROBUSTNESS
OF SELF-CONSISTENCY

Having shown that it is possible to paint a self-consistent
distribution into a high-intensity ring with realistic simu-
lations, it is of interest to determine how robust self-
consistency is with respect to a number of parameters.
Among these are the strength and placement of the solenoid
magnets. The initial studies, using a linearized SNS lattice,

incorporated two solenoids of length 0.5 m and strength
1.4 T that were placed symmetrically at locations of equal
vertical and horizontal beta functions in the rf straight
section of the ring. In order to assess the possibility of
reducing the magnetic field in the solenoids, we carried out
identical calculations with two 0.5 m solenoids, varying
only the solenoid field strength. The results are shown in
Fig. 7. The left-hand plot shows the magnitudes of the x-y0
(in red) and y-x0 (in blue) correlation coefficients at the
completion of injection as a function of the solenoid field
strength. On the horizontal axis, the value 0.25 m−1
corresponds to a magnetic field of 1.41 T at a beam energy
of 1.0 GeV. We see that the correlations indicating self-
consistency remain quite strong down to field strengths of
0.1 m−1. Just for the sake of comparison, the left-hand
plot in Fig. 7 also shows the x-y0 and y-x0 correlation
coefficients following injection for the production SNS
correlated painting scheme. As expected, the values are
very close to zero. The right-hand plot in Fig. 7 shows the
x-y0 correlation coefficients as functions of the turn number
during storage of a previously injected beam for an addi-
tional 1000 turns. The calculations are identical except for
the solenoid strength. The same initial distribution was
used in all three cases. The figure shows that the correla-
tions adjust to levels at which they remain fairly constant
and that the correlations decrease with a decreasing
solenoid strength. Even though the correlations remain
substantial at 0.075 m−1, we have chosen to use a some-
what more conservative value of 0.15 m−1 for the solenoid
field strength in the studies presented here. For results at a
lower energy, a fixed solenoid field strength means that
the corresponding field scales proportionally to the beam
momentum.
In order to determine the sensitivity to the number and

position of the solenoid magnets, a variety of calculations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Solenoid Strength {1/m}

Self-Consistent Painting, X vs Y’
Correlated Painting, X vs Y’

Self-Consistent Painting, Y vs X’
Correlated Painting, Y vs X’

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Turn

Solenoid Strength = 0.15/m
Solenoid Strength = 0.075/m

Solenoid Strength = 0/m

FIG. 7. (Left) Correlation coefficients following injection for x-y0 and y-x0 versus solenoid strength for self-consistent painting (red
and blue curves) and for correlated painting (green and pink points). On the horizontal scale, a solenoid strength of 0.25 m corresponds
to a magnetic field of 1.414 T at 1.0 GeV. (Right) Correlation coefficients in x-y0 for different solenoid strengths as functions of the turn
number during storage of a previously injected beam for an additional 1000 turns.

HOLMES, GORLOV, EVANS, PLUM, and COUSINEAU PHYS. REV. ACCEL. BEAMS 21, 124403 (2018)

124403-8



were carried out. In these calculations, the magnets were
moved upstream and downstream in various combinations,
moved to totally different locations, and finally replaced by
solenoids in different numbers, lengths, and locations while
maintaining a fixed integrated field strength. The results in
all these cases were virtually identical, showing that self-
consistency is sensitive mainly to the total integrated
solenoid field strength rather than to the exact configuration
of the solenoids.
Another question of interest is the sensitivity of self-

consistency to the x‐y tune separation. As stated above, a
requirement for painting a rotating self-consistent beam is
equality of the horizontal and vertical tunes. In order to
determine how precisely this condition must be satisfied by
the bare tunes, we carried out a series of injection
calculations for 600 turns with horizontal bare tune
Qx ¼ 6.18, identical except for the vertical tune setting.
In this study, the vertical bare tune ranged from

6.13 ≤ Qy ≤ 6.23. The absolute values of the resulting
x-y0 and y-x0 correlation coefficients following injection
are plotted versus the bare tune Qy in Fig. 8. These results
show a very strong correlation for tunes above about 6.16,
with a decreasing correlation at lower tunes. Some insight
into this behavior can be gained by examining the average
incoherent tunes of the particles in these cases. The left-
hand side in Fig. 9 shows the average horizontal and
vertical tunes, plotted versus Qy both at 240 turns and at
600 turns, for these cases. For a perfectly self-consistent
rotating beam, these tunes should be equal to each other at
all times, and the present results are nearly so for Qy above
about 6.16. Note that the average tunes do not equal the
bare tunes due to nonlinear and collective effects. On the
right-hand side, the difference between average tunes,
hQyi-hQxi, is plotted at 240 turns and at 600 turns.
Figure 9 shows that the average horizontal and vertical
tunes display very similar behavior when the bare tune Qy

is greater than about 6.16, but at lower vertical bare tunes
they deviate, as can be seen in the right-hand plot of
hQyi-hQxi in Fig. 9. Note that the range in which the
average tunes differ corresponds to the range in which
the self-consistent correlations decrease, indicating the
absence of a rotating beam.
The likely explanation for the observed behavior is that,

for bare tunes Qy greater than about 6.16, the beam
configuration adjusts to maintain equal incoherent tunes
and strong self-consistent correlation, even when Qx ≠ Qy.
At smaller values of Qy, the beam is moving into the stop
band of the half-integer resonance at Qy ¼ 6, and this
becomes the dominant factor in determining the beam
configuration. Beam broadening caused by the half-integer
resonance at Qy ¼ 6 is well known and has been studied in
Refs. [3,20–22]. In any case, the Qy scan demonstrates that
there is a comfortable range of tunes around Qx ¼ Qy in
which self-consistent beams can be painted.
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V. DETAILED CASE FOR PROPOSED
EXPERIMENT

The above results suggest that a rotating self-consistent
beam can be painted into a ring, using the SNS as an
example, if the longitudinal variation along the bunches is
slow in space and in time and if the conditions for injection
painting are satisfied. Furthermore, the results suggest that
beam self-consistency is achievable over a range of con-
ditions such as solenoid strength and configuration and
bare tune settings. Because we are about to propose a case
to be realized experimentally in the SNS, we now provide a
description of the machine. The SNS ring has a length of
248 m. It consists of four achromatic arcs separated by four
straight sections which are used for injection, collimation,
extraction, and rf focusing, respectively. In production, a
1 GeV H− beam is injected through a stripper foil into the
ring and accumulated for more than 1000 turns, or about
1 ms, until the beam intensity exceeds 1014 protons. When
the desired beam intensity is achieved, the beam is
extracted in a single turn and delivered to the target.
Longitudinally, a uniform beam having a length of more
than 150 m is injected into the ring, leaving a gap of less
than 100 m, which is maintained by four rf cavities during
accumulation, to allow for extraction. In comparison, the
transverse beam size is a few centimeters. In order to
accumulate such an intense beam with low losses, the SNS
has four horizontal and four vertical kicker magnets in the
injection straight section to carry out detailed transverse
beam painting. Proper programming of the waveforms of
these kicker magnets is essential to paint a self-consistent,
or any other, beam distribution into the SNS ring.
The remaining question for painting a self-consistent

beam into the SNS is whether the injection kickers are
capable of providing the necessary waveforms. The SNS
injection scheme employs eight unipolar injection kickers:
four in the horizontal plane and four in the vertical plane.
We have already stated that the x-y0 painting scheme allows
a reasonable beam size to be painted without any kicker
waveforms changing sign. However, it is still necessary to
determine whether the kickers can provide sufficiently
large kicks to create the required waveform throughout
injection. The limiting factor turns out to be the second
vertical injection kicker. In order to paint the necessary y0
waveform at the stripper foil, it must provide a strong
downward kick, as shown in the right-hand plot in Fig. 6.
This kicker as installed is incapable of painting a sizable
self-consistent beam using the x-y0 painting scheme at the
production energy of 1.0 GeV.
Fortunately, there are two further measures that can be

taken to alleviate the constraint. The first is to lower the
beam energy. The SNS has been operated with energies as
low as 0.6 GeV, and at this energy a substantially larger
kick can be achieved. The second is to create a closed orbit
bump which is chosen to assist the second kicker to provide
the necessary kick. The injection straight section in the SNS

ring has a pair of orbit corrector dipoles located near the
ends of the straight section and another pair located just
outside the quadrupole doublets (see Fig. 10). These can be
used to create a closed bump in y that moves the closed
orbit closer to the stripper foil and also provides some of the
negative slope in y0 that is required in the x-y0 painting
scheme. Such a closed orbit bump modifies the injection
kicker settings required to achieve a given value of y0. This
is illustrated in Fig. 10, which shows a vertical closed
bump from the dipole corrector magnets in red together
with the overall initial and final closed orbits in green and
blue, respectively. This bump is totally achievable with the
existing corrector magnets. Also shown in Fig. 10 are the
locations of the injection kickers, the orbit corrector
magnets, and the quadrupole doublet magnets. The stripper
foil is located at the crossing point of the initial and final
closed orbits.
If the injection energy is lowered to 0.6 GeV and an

appropriate closed orbit bump is used, it is possible to paint
to a value of y0Max ¼ 1.58 mr. Based on the resulting beam
size and production parameters, this would correspond to
an intensity of about 0.90 × 1014 protons at a beam energy
of 1.0 GeV. However, at 0.6 GeV, space charge forces are
more intense, and so we propose to inject 0.35 × 1014

protons at this energy. Consequently, the case that we
now consider adopts this corrector-aided painting scheme
with a maximum kick of y0 ¼ 1.58 mr at the stripper foil.
We propose to inject an 0.6 GeV beam for 300 turns to
accumulate a maximum of 0.35 × 1014 protons. We carry
out this simulation using a pair of 0.5 m solenoid magnets
set to 0.6 T magnetic field. The parameters for this case are
summarized in Table I.
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We now describe the results of this simulation. We found
that, following an initial offset due to the finite injected
beam size, the rms transverse emittances increase linearly
in time, as they should for self-consistent painting.
Figure 11 shows the horizontal and vertical beam profiles
at the injection point taken after 120 (left) and 300 turns

(right). On top of the simulated beams, we have overlaid
mathematical profiles for self-consistent beams. The results
show that the cores of the simulated beams adhere very well
to the self-consistent form, but the simulated profiles
display wings that arise from nonlinearities, collective
effects, finite injection spot size, and rf bunching. It is
worth pointing out again that self-consistent beams have
the desirable properties of uniform transverse density and
small tune shift and tune spread. The agreement between
the simulated and ideal self-consistent profiles at different
times supports the argument that the painted beam is self-
consistent throughout injection.
Another check on self-consistency over time is shown in

Fig. 12. The left-hand plot shows the averaged incoherent
horizontal and vertical tunes as functions of the turn
number. The near equality of these quantities over time
is a good indicator of self-consistency. The right-hand plot
shows the correlation coefficients of x versus y0 and y
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TABLE I. Parameters for proposed self-consistent injection
experiment.

Tunes ðQx;QyÞ ¼ ð6.18; 6.18Þ
Beam energy EK ¼ 0.6 GeV
Injection 0.35 × 1014 protons in

300 turns
Solenoid field 0.6 T
Dipole corrector kick Maximum ¼ 1.5 mrad
Maximum painting xMax ¼ 34.4 mm,

y0Max ¼ 1.58 mrad in Eq. (1)
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versus x0 taken at the injection location as functions of
the turn number. Figure 12 shows that the correlations
between x and y0 and between y and x0 become very strong
after about 50 turns. By comparison, the correlation
coefficients between all other transverse variables in this
calculation have absolute values less than 0.15, and a
similar calculation carried out using the standard SNS
correlated (non-self-consistent) painting yields transverse
correlation coefficient absolute values less than 0.07. The
reason that results are displayed at 120 turns and at 300
turns in Fig. 11 is that, during the process of painting a
self-consistent beam, the beam must be self-consistent
throughout the process and not just at the end. This can
be seen by comparing the profiles in Fig. 11 at 120 turns
with those at 300 turns. It can also be seen in the results that
are plotted in Fig. 12. Finally, we note that this case is
within the capabilities of the present SNS ring, assuming
the solenoid magnets have been installed.

VI. OBSERVATION AND CONFIRMATION OF
A SELF-CONSISTENT BEAM

The above results demonstrate that it should be possible
to paint a self-consistent rotating distribution into a high-
intensity ring. However, there is little point in doing so
unless the self-consistency can be confirmed. The results
presented above were all derived from evaluations per-
formed at the location of injection, where the correlations
between x-y0 and y-x0 hold. Unfortunately, in the case of
the SNS, observations cannot be made at this location.
The diagnostics in the SNS that can be used to observe
injected beams include five wire scanners and a multiwire
profile monitor (harp) in the ring to target beam transport
line (RTBT), which carries the extracted beam from the
ring to the target, and an electron scanner in the ring
[23–25], which can be used to make non-destructive profile

measurements during accumulation. Although the details
of the correlations that are associated with self-consistency
change as the beam is transported through channels where
the vertical and horizontal phase advances differ, the beam
will remain self-consistent in the limit of all linear transport.
This implies that the beam should remain elliptical with a
constant density, meaning that the beam profiles should
display self-consistent behavior. Also, because the correla-
tions are transported with the beam, it should be possible to
observe strong correlations in various transverse quantities,
with the details depending on the location. Figure 13 shows
horizontal and vertical profiles for an accumulated beam
transported to the location of the electron scanner (left) in
the ring and alternatively transported to the wire scanner
WS20 (right) in the RTBT. In both cases, a comparison
shows that the simulated results agree with superimposed
self-consistent profiles. It is a straightforward task to
measure these profiles experimentally.
The point raised above regarding correlations is illus-

trated in Table II. The table shows the correlation coef-
ficients for x-y, x-y0, y-x0, and x0-y0 at the locations of
the foil (ring), the electron scanner (ring), wire scanners
WS02, WS20, WS21, WS23, and WS24, and the harp (all
in the RTBT). The coefficients cxx0 and cyy0 are not shown,
because these are simply related to the Courant-Snyder α
parameters and are, therefore, not very useful. Table II
shows that these quantities vary from strongly to weakly
correlated depending on the relationship of the horizontal
and vertical phases at the location where they are observed.
The measurement of these correlations in addition to the
beam profiles will provide strong evidence that the beam is
self-consistent.
With horizontal, vertical, and diagonal wire scanners,

such as those available in the RTBT, several quadrupole
scans can be used to reconstruct the full 4D sigma matrix
even in the absence of coupling elements [26]. From the
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sigma matrix, one can extract the correlation coefficients to
compare with those shown in Table II. This technique was
developed further [27], optimizing the measurement by
using several quadrupoles for more complete control over
the phase advance. We are currently investigating the
RTBT optics that will be used for this measurement.
We have demonstrated that, in the SNS, it is possible to

conduct measurements that will strongly determine whether
a beam is self-consistent. The analysis suggests that the
injection of a self-consistent beam into the SNS ring can be
accomplished with only the addition of solenoids having
an integrated strength of ∼0.6 T-m. These solenoid mag-
nets can be installed in the rf straight section of the ring
symmetrically at locations having roughly equal horizontal
and vertical beta functions, although there is considerable
flexibility on the exact configuration and positioning of
the magnets. We plan to study experimentally the case
described here to demonstrate the painting of a self-
consistent beam in the SNS.

VII. SUMMARY

This paper has presented the results of extensive com-
putational studies performed to demonstrate the feasibility
of painting a rotating uniform-density self-consistent beam
into a high-intensity ring, using the SNS accumulator as
an example. The calculations were performed using real-
istic physics models and a detailed representation of the
ring configuration. In particular, we employed symplectic
transport with fringe fields, space charge, transverse and
longitudinal impedances, injection and foil scattering, rf
focusing, and beam loss due to a complete set of apertures
and collimators. We demonstrated that, if solenoids are
present to break the rotating and counterrotating beam
degeneracy, then nonlinearities and collective effects do
not destroy self-consistency. If the rf can supply a uniform
longitudinal beam profile, then the coasting beam
assumption necessary for painting a rotating distribution
is valid. We developed an extended fringe field tracking
model that was used for the quadrupole doublets in the
injection straight section, which are traversed well off axis
by the circulating beam during painting. We examined a

variety of possible painting scenarios to determine whether
they would lead to acceptable losses. For the SNS, this led
to the adoption of an x-y0 painting scheme that was applied
to all following work.
To determine the robustness of the self-consistent paint-

ing, we studied sensitivity to the solenoid field strength and
placement and to the lattice tune separation. Results of
these calculations show that there is not a great sensitivity
to any of these factors that would impact the possibility of
painting a rotating beam.
We next considered the prospect of painting a rotating

beam into the SNS accumulator ring. Although the achiev-
able strength of the second vertical kicker is a limiting
factor, we found that, by lowering the beam energy and
utilizing orbit corrector dipoles in the injection straight
section, it is possible to paint a self-consistent rotating
distribution into the SNS ring.
We also discussed what measurements can be made to

validate the self-consistency of the painted beam. In the
SNS, the existing diagnostic hardware, consisting of wire
scanners and a multiwire profile monitor in the RTBT
transport line and an electron scanner located in the ring,
can be used to provide profile measurements and correla-
tion functions between transverse variables that will
strongly support the demonstration of self-consistency.
The only hardware change that we envision in order to

carry out the proposed experiment is the installation of
solenoid magnets of integrated field strength of ∼0.6 T-m
in the straight sections of the ring. As a result, we conclude
that it is feasible to paint a rotating self-consistent dis-
tribution into the SNS ring. Even though nonlinear effects
and a finite painted beam size distort the profiles from ideal
mathematical self-consistency at the edges, the computa-
tional results yield beams of more uniform and lower
transverse density than are found for the present correlated
SNS painting scheme. Such beams are very desirable for
high-intensity, fixed target accelerators such as the SNS.
Finally, even though the work presented here was closely

tied to the specifics of the SNS ring, the issues considered
will be confronted in any effort to paint a self-consistent
beam into a ring, and we believe it is useful to present these
considerations as illustrations of the process.
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