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We present a theory of coupled-bunch longitudinal instabilities that is based on the coupled set of Vlasov
equations governing the particle distribution function, and can be applied to arbitrary longitudinal
potentials. We find that the coupled-bunch growth rate is given by a dispersion relation that is parametrized
by the eigenvalues of the linear (harmonic) coupled-bunch matrix problem. Our theory therefore treats the
wakefield-driven source of the instability and the effect of Landau damping together and on equal footing,
and also indicates that the stabilizing effects of Landau damping can approximately be compared to the
instability growth rates in a harmonic potential that has the same bunch length. We then apply the theory to
a weakly nonlinear oscillator and to a quartic potential that is relevant for ultralow emittance storage
rings that employ bunch-lengthening systems. In the latter case we find that the theory compares quite
favorably with particle tracking simulations for the parameters of the planned upgrade of the Advanced
Photon Source.
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I. INTRODUCTION

Coupled-bunch instabilities, which may arise when
many bunches interact over many turns, can lead to
multibunch oscillations, an increase in effective emittance,
and a resulting reduction in storage ring performance.
Classic results regarding longitudinal coupled-bunch sta-
bility can be found in many references, most notably the
early works of [1,2] and the subsequent books [3,4].
However, these references (and the many cited therein)
are typically restricted to simple harmonic motion in all
three planes; in particular, most theoretical approaches
neglect the effects of Landau damping that arise when
the longitudinal motion is nonlinear. While this approxi-
mation is valid for short bunches in single rf systems as is
often the case, it does not describe multiple rf systems that
are used to lengthen the bunch and increase Landau
damping [5–11], and it fails for the extreme stretching
and highly nonlinear (possibly quartic) longitudinal poten-
tials planned for many ultralow emittance light sources
(see, e.g., [12]).
Early work describing multibunch stability in the pres-

ence of two rf systems tuned to a quartic potential was
described in Ref. [13], in which the beam response was

expanded via a Sacherer-like modal decomposition, and the
coupling between azimuthal modes was neglected. Very
general theories of collective instabilities in arbitrary poten-
tials were developed in Ref. [14] and later in Ref. [15]. Our
approach is similar in some respects to [14], but we have
restricted our attention to coupled-bunch instabilities and
long-rangewakefieldswhich, in our opinion,makes the final
results much easier to use. Our theory can also be thought of
as a generalization to the results of Thompson andRuth [16],
who showed how to formulate the coupled-bunch problem
as a simple matrix equation. Indeed, our final equation
involves the eigenvalues of the same coupling matrix, but
these eigenvalues enter as parameters of a dispersion relation
for the complex normal mode frequencies. Hence, we
incorporate the potentially unstable coupled-bunch motion
with the nonlinear effects of Landau damping in a unified
and self-consistent framework.
In this way our approach also differs from that of

Refs. [17,18], who determined stability by comparing
the usual coupled-bunch growth rate to a separately
calculated Landau damping rate for the longitudinal poten-
tial under consideration. Their resulting stability threshold
is generally in good agreement with our approach, but our
theory predicts some differences due to the fact that it is
self-consistent. We point out these differences for the case
where the multibunch instability is driven by a higher-order
rf cavity mode, and support these predictions with tracking
simulations.
We develop the theory in Sec. II, starting from the set of

coupled Vlasov equations and concluding with the coupled-
bunch dispersion relation (21).We then proceed in Sec. III to
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apply the theory to three potentials. First, we reproducewell-
known results when the force is linear and the motion is
simple harmonic. Next, we solve the dispersion relation for a
weakly nonlinear oscillator, finding that while the stability
limit is reasonably well described by subtracting the
corresponding Landau damping rate from the multibunch
growth rate, the shape of the growth rate curve is somewhat
changed and the effect of Landau damping decreases with
the strength of the instability. Our final example applies
the theory to a double rf system tuned to flatten the potential
into a quartic oscillator. In this case the general phenom-
enology is similar to that of the weakly nonlinear oscillator
of Sec. III B, but the effects are more pronounced. We then
show that the theoretical predictions closely match the
results of tracking simulations for the APS-U.

II. THEORY

Our theory investigates the longitudinal motion
in phase space, which we parametrize using the position
in the bunch z ¼ s − v0t and its conjugate momentum
pz ¼ −δ ¼ −ðγ − γ0Þ=γ0. Here, the co-moving coordinate
z is defined in terms of the independent variable along the
ring s, the particle arrival time t, and the reference velocity
v0 which is nearly the speed of light c, while pz is the
negative of the scaled energy deviation from the reference
Lorentz factor γ0; our definition of pz ¼ −δ ensures that the
Hamiltonian is positive for particles above transition.
We assume that the bunches in the storage ring are well-

separated from each other, so that the distribution function
Fðz; pz; sÞ of each bunch satisfies its own Vlasov equation.
Hence, we have

dFn

ds
¼ ∂Fn

∂s þ dz
ds

∂Fn

∂z þ dpz

ds
∂Fn

∂pz

¼ ∂Fn

∂s þ ∂H
∂pz

∂Fn

∂z −
∂H
∂z

∂Fn

∂pz
¼ 0 ð1Þ

for each n, where 0 ≤ n ≤ Nb − 1 and Nb is the number of
bunches in the ring. As indicated, the single particle
equations of motion can be obtained from the
Hamiltonian Hðz; pz; sÞ. We will take the Hamiltonian to
incorporate the longitudinal single bunch potential (includ-
ing rf focusing and, potentially, single-bunch collective
effects) and the long-range wakefields driven by, for
example, higher-order modes in the rf cavities. We write
the potential due to the former as V0ðzÞ and the latter as
Vwakeðz; sÞ, so that the Hamiltonian is

Hðz; pz; sÞ ¼
αc
2
p2
z þ V0ðzÞ þ Vwakeðz; sÞ; ð2Þ

where αc is the momentum compaction factor (for sim-
plicity we assume that the we are above transition and the
slip factor αc − 1=γ2 ≈ αc) and we will deal with V0ðzÞ
later. We describe the long-range potential Vwakeðz; sÞ via

the wakefield WkðzÞ, which quantifies the one-turn energy
loss of a test particle at z due to a drive particle at z ¼ 0. We
will use the fact that Wkðz > 0Þ ¼ 0, which is generally
true for ultrarelativistic particles due to causality but may
also apply for the long-range wakefield in a low energy
ring, and note that the total energy loss for any particle is
obtained by summing the contributions from all Nb
bunches in the ring over all previous turns.
To obtain an explicit expression for Vwakeðz; sÞ,

we normalize the distribution function Fn such thatR
dzdpzFn ¼ 1, express the number of particles in bunch

n as Npart
n , and write the equilibrium centroid spacing

between bunch n and j to be Ln;j, with Ln;j > 0 if j > n
and Ln;j ¼ −Lj;n if j ≤ n. Then, the potential acting at
position z in bunch n due to the other particles in bunch j is
given by

Vwake;jðz; sÞ ¼ −χj
Z

dẑdp̂z

X∞
l¼0

Fjðẑ; p̂z; s − lcT0Þ

×
Z

z
dz0Wk½z0 − ðẑþ lcT0 þ Ln;jÞ�: ð3Þ

Here, χj ¼ e2Npart
j =γmc3T0 is the coupling strength,withT0

the revolution time in the ring,m the particle mass, and e the
fundamental unit of charge. The sum over l gives the
contribution of the wakefield driven by Fj at all previous
turns, and the total long-range potential for bunch n is found
by summing over all bunches,

Vwakeðz; sÞ ¼
XNb−1

j¼0

Vwake;jðz; sÞ: ð4Þ

At this point our description of the multibunch dynamics
has been quite general, and we are still rather far from any
solution. To determine the stability of the Vlasov equa-
tion (1) under the influence of the long-range potential
(3)–(4) we will begin by making two important approxi-
mations: first, we will linearize the Vlasov equation about
its equilibrium; second, we will assume that the long-range
potential varies slowly over the length of one bunch. Both
of these approximations have been used extensively in the
literature, but we have found a novel way to apply them that
results in a set of equations that can be solved rather easily.
We linearize theVlasov equation bywritingFnðz; pz; sÞ ¼

F̄nðz; pzÞ þ fnðz; pz; sÞ, where F̄n is the equilibrium dis-
tribution that is independent of s (i.e., static), while fn is the
s-dependent (dynamic) perturbation, and in some sense
jfnj ≪ jF̄nj. Separating out the equilibrium and perturbed
distribution results in a similar division of the long-range
potential, so that we have

Vwakeðz; sÞ ¼ V̄wakeðzÞ þ Ṽwakeðz; sÞ; ð5Þ
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where V̄wake and Ṽwake involve a sum over F̄j and fj,
respectively. To make further progress we employ our
second approximation that the wakefield varies slowly over
the length of the bunch by Taylor expanding Wk as [16]

Z
z
dz0 Wk½z − ðẑþ lcT0 þ Ln;jÞ�

¼
Z

z
dz0

�
WkðξÞ þ ðz − ẑÞ dWk

dξ
þ � � �

�
ξ¼−ðlcT0þLn;jÞ

≈
�
zWkðξÞ þ

�
1

2
z2 − zẑ

�
dWk
dξ

�
ξ¼−ðlcT0þLn;jÞ

: ð6Þ

If we insert the expansion (6) into the static potential
V̄wake, we find that the first and last terms give rise to an
additional energy loss of each bunch thatwe can compensate
for by adjusting the accelerating rf phase and/or voltage.
Meanwhile, the second term results in an additional longi-
tudinal focusing force that can be absorbed into V0 with an
appropriate redefinition of the synchrotron frequency.
On the other hand, because

R
dẑdp̂zfnðẑ; p̂z; sÞ ¼ 0,

only the third term from the expansion (6) contributes to
the perturbed potential Ṽwake. Hence, the long-range wake-
field due to the perturbation can be written as

Ṽwakeðz; sÞ ¼ z
XNb−1

j¼0

χj
X∞
l¼0

dWk
dξ

����
ξ¼−ðlcT0þLn;jÞ

×
Z

dẑdp̂z fjðẑ; p̂z; s − lcT0Þẑ: ð7Þ

Having absorbed the equilibrium wakefields V̄wakeðzÞ
into the definitions of V0ðzÞ, the Hamiltonian now reads

Hðz; pz; sÞ ¼
αc
2
p2
z þ V0ðzÞ þ Ṽwakeðz; sÞ

¼ H0ðz; pzÞ þ Ṽwakeðz; sÞ; ð8Þ

where Ṽwakeðz; sÞ is given by (7). Now, we assume
that we have solved the unperturbed problem, meaning that
we have found the canonical transformation from ðz; pzÞ
to the action-angle variables ðΦ; IÞ of the Hamiltonian
H0. Under this transformation H0ðz; pzÞ → H0ðIÞ and
F̄jðz; pzÞ → F̄jðIÞ, while the potential

Ṽwake ¼ zðΦ; IÞ
XNb−1

j¼0

χj
X∞
l¼0

dWk
dξ

����
ξ¼−ðlcT0þLn;jÞ

×
Z

dΦ̂dÎ fjðΦ̂; Î ; s − lcT0ÞẑðΦ̂; ÎÞ: ð9Þ

In terms of the action-angle variables, the set of linearized
Vlasov equations simplify to

∂fn
∂s þ ωðIÞ

c
∂fn
∂Φ −

∂Ṽwake

∂Φ
∂F̄n

∂I ¼ 0; ð10Þ

where the oscillation frequency ωðIÞ ¼ c∂H0=∂I.
Now that we have linearized the coupled Vlasov system,

we can isolate the time dependence by defining

fnðΦ; I ; sÞ ¼ f̃nðΦ; IÞe−iΩs=c ð11Þ

for complex Ω. In addition, we will eventually be interested
in a coupled set of equations for the centroid positions,
which we introduce with the notation

hzin ¼
Z

dΦdI f̃nðΦ; IÞzðΦ; IÞ: ð12Þ

Using the exponential time dependence (11), the cent-
roid definition (12), and the long-range potential (9), we
find that the Vlasov system (10) becomes

�
−
iΩ
c
þ ωðIÞ

c
∂
∂Φ

�
f̃nðΦ; IÞ

¼ ∂F̄n

∂I
∂z
∂Φ

XNb−1

j¼0

χjhzij
X∞
l¼0

eilΩT0
dWk
dξ

; ð13Þ

where it should be understood that the wakefield is to be
evaluated at ξ ¼ −ðlcT0 þ Ln;jÞ.
We solve the linearized Vlasov system (13) using a

method similar to that presented in [14,19,20], which we
apply by writing the left-hand side as

�
−
iΩ
c
þ ω

c
∂
∂Φ

�
f̃n ¼

ω

c
eiΩΦ=ω ∂

∂Φ ½e−iΩΦ=ωfn�: ð14Þ

Then, we multiply both sides by ce−iΩΦ=ω=ω and integrate
over Φ from Φ0 to Φ0 þ 2π. Since f̃nðΦþ 2π; IÞ ¼
f̃nðΦ; IÞ we find that

f̃nðΦ;IÞe−iΩΦ=ω½e−2πiΩ=ω − 1�

¼ ∂F̄n

∂I
XNb−1

j¼0

χjhzij
X∞
l¼0

eilΩT0
dWk
dξ

×
c

ωðIÞ
Z

Φþ2π

Φ
dΦ0 ∂z

∂Φ0 e
−iΩΦ0=ω: ð15Þ

To evaluate the right-hand-side we expand z as a Fourier
series in the angle Φ0, writing zðΦ0; IÞ ¼ P

m eimΦ0
zmðIÞ

with z−m ¼ z�m and z0 ¼ 0. In this case we can integrate
over Φ0, so that after cancelling common terms we obtain
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f̃nðΦ; IÞ ¼ ∂F̄n

∂I
XNb−1

j¼0

χjhzij
X∞
l¼0

eilΩT0
dWk
dξ

×
c

ωðIÞ
X
m≠0

2πmzmðIÞeimΦ

m − Ω=ωðIÞ : ð16Þ

Finally, we obtain a closed-form expression for the beam
centroids hzin by multiplying both sides of (16) by z and
integrating over all phase space. In doing this, we simplify
the right-hand-side using

Z
2π

0

dΦzðΦ; IÞ
X
m≠0

mzmðIÞeimΦ

m − Ω=ω

¼
Z

2π

0

dΦ
X
m;p

mzmðIÞzpðIÞ
m − Ω=ω

eiðmþpÞΦ

¼
X
m≠0

2πmjzmðIÞj2
m −Ω=ω

¼
X∞
m¼1

4πm2jzmðIÞj2
m2 − ðΩ=ωÞ2 : ð17Þ

Then, using χj ¼ e2Npart
j =γmc2T0 we find that

hzin ¼
4πe2

γmc2T0

XNb−1

j¼0

Npart
j hzij

X∞
l¼0

eilΩT0
dWk
dξ

×
Z

∞

0

dI
1

ωðIÞ
∂F̄n

∂I
X∞
m¼1

m2jzmðIÞj2
m2 − ½Ω=ωðIÞ�2 : ð18Þ

To arrive at (18), the only assumption we made beyond
linearization was that the long-range wakefield varies
slowly over the length of the bunch. The result is a system
of equations for the bunch centroids in terms of equilibrium
properties, so that any instability-driven shape distortions
are not included (in other words, we neglect any intra-
bunch coupled motion). This is often a good approximation
in rings where the bunch length is much shorter than the
rf-wavelength, but in other cases one could consider general-
izing our approach to include some number of the higher-
order moments hz2in, hz3in, etc., but with a commensurate
increase in the complexity of the resulting equations.
Now, we will make two additional approximations in

order to simplify the interbunch coupling into an easy-to-
solve matrix problem. To do this, we first assume that the
shape of the equilibrium distribution function is indepen-
dent of the bunch number, so that F̄n ¼ F̄ for all n. This
assumption allows us to cleanly separate the multibunch
coupling from the specifics of the longitudinal potential,
but also means that the following analysis may not describe
large variations in the bunch profile that can arise in
nonuniform fill patterns with passive harmonic systems
(for those interested, we indicate how to relax this restric-
tion in Appendix A). Second, we will assume that we can
consistently approximate eilΩT0 by eilhΩiT0, where hΩi is
real and with magnitude equal to the average synchrotron

frequency. This approximation is generally applicable to
instabilities near threshold, in which case the wakefield
results in a small perturbation to the longitudinal motion
and the predicted growth rates are much smaller than hΩi.
In addition, there are other situations when setting eilΩT0 ≈
eilhΩiT0 is valid because the matrix to be defined in Eq. (19)
turns out to be approximately independent of hΩi. This
occurs, for example, if the long-range wakefield is driven
by a higher-order rf cavity mode whose linewidth is much
larger than hΩi, as is the case for the APS-U example to be
treated and discussed further in Sec. III C 2.
Under the two approximations just mentioned, the

coupling between bunch centroids is given by a matrix
that can be diagonalized in the usual way. To connect our
approach to that of Ref. [16], which assumes a quadratic
potential for V0ðzÞ, we will introduce the matrix M whose
components are given by

Mn;j ≡ e2σtN
part
j

2γmcT0σδ

X∞
l¼0

eilhΩiT0
dWk
dξ

����
ξ¼−lcT0−Ln;j

; ð19Þ

where σδ is the rms energy spread, σz is the rms bunch
length, and σt ¼ σz=c. At present the prefactor above may
seem somewhat arbitrary, but it has been chosen so that M
may be computed using codes developed for single rf
systems. At any rate, using these assumptions and defi-
nitions we can write the set of equations for the centroid
positions (18) as

hzin ¼
2σt
αcσδ

XNb−1

j¼0

Mn;jhzij

×
Z

∞

0

dI
4πcαcσ2δ
ωðIÞ

∂F̄
∂I

X∞
m¼1

m2jzmðIÞ=σzj2
m2 − ½Ω=ωðIÞ�2 : ð20Þ

The second line in (20) is a dimensionless complex
function of Ω that contains the dependence on the longi-
tudinal potential. This part will describe the effects of
Landau damping when the dynamics is nonlinear and
the oscillation frequency depends on amplitude (action).
On the other hand, the first line encompasses the coupling
between bunches as given by M. This part only depends on
V0 via the fixed characteristic frequency hΩi, so that it can
be treated using the usual methods developed for harmonic
potentials. In particular, diagonalizing the matrix M will
result in an uncoupled set of equations for the multibunch
normal modes. It turns out that this diagonalization
can be done analytically for a “uniform fill” in which
each bunch has the same number of particles and is equally
spaced throughout the ring (i.e., when Npart

j and Lj;jþ1 are
independent of j). If this is not the case, one can
proceed with a usual eigensolver or with a program like
CLINCHOR [21]. Either way, the diagonalization entails
finding a matrix U such that UMU−1 is diagonal, so that
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ðUMU−1Þn;j ¼ λnδn;j with δn;j the usual Kronecker delta.
The coupled-bunch eigenvector τ then has components
τn ¼

P
j Un;jhzij, and for each associated eigenvalue λn we

get the following equation for the complex frequency Ω:

1¼ 2λnσt
αcσδ

Z
∞

0

dI
4πcαcσ2δ
ωðIÞ

∂F̄
∂I

X∞
m¼1

m2jzmðIÞ=σzj2
m2− ½Ω=ωðIÞ�2 : ð21Þ

III. APPLICATIONS TO SPECIFIC
LONGITUDINAL POTENTIALS

In this section we will apply the theory developed in
Sec. II to several specific longitudinal potentials. To do this
in a uniform and concrete manner, we will assume that the
equilibrium distribution is exponential in the energyH0ðIÞ
so that

F̄ðIÞ ∝ exp
�
−
H0ðIÞ
αcσ

2
δ

�
: ð22Þ

In electron storage rings the damping and diffusion due to
synchrotron emission naturally drives F̄ to be a Gaussian
function of pz, while this assumption must be evaluated
more carefully for proton machines. The exponential-in-
energy equilibrium Eq. (22) implies that

∂F̄
∂I ¼ −

∂H0

∂I
F̄ðIÞ
αcσ

2
δ

¼ −
ωðIÞ
cαcσ2δ

F̄ðIÞ; ð23Þ

and our dispersion relation (21) simplifies to

1 ¼ 2σtλn
αcσδ

Z
∞

0

dI 4πF̄ðIÞ
X∞
m¼1

m2jzmðIÞ=σzj2
½Ω=ωðIÞ�2 −m2

: ð24Þ

A. Harmonic potential of a single rf system

For the first example we will assume that the longitudinal
potential is given by the lowest-order harmonic potential of
a single rf system, so that V0ðzÞ ¼ ω2

sz2=c2, and the
transformation to action-angle variables is given in any
number of books (e.g., [22,23]) as

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Iαcc
ωs

s
cosΦ pz ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
2Iωs

αcc

s
sinΦ: ð25Þ

Making the transformation (25) results in the unper-
turbed Hamilonian H0ðIÞ ¼ ωsI=c, which in turn implies
that the oscillation frequency is independent of action and
that the unperturbed distribution function is an exponential
function of I ,

ωðIÞ ¼ ωs ¼
αcσδ
σt

F̄ðIÞ ¼ e−I=hIi

2πhIi ; ð26Þ

with the average action is given by hIi ¼ σzσδ. In addition,
the only nonzero Fourier coefficients of the longitudinal
position are z1ðIÞ ¼ z−1ðIÞ ¼ σz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I=2hIip

, and the inte-
gration over action in the dispersion relation (24) can be
computed as

Z
∞

0

dI 4πF̄ðIÞ
X∞
m¼1

m2jzmðIÞ=σzj2
½Ω=ωðIÞ�2 −m2

¼
Z

∞

0

dI
hIi e

−I=hIi I=hIi
Ω2=ω2

s − 1
¼ ω2

s

Ω2 − ω2
s
: ð27Þ

Then, we find that the dispersion relation (24) simplifies
to Ω2 − ω2

s ¼ 2λnωs. To convert this into the usual expres-
sion, we note that for small growth rates we have
Ω ≈ hΩi ¼ �ωs. Taking the positive sign implies that
Ω2 − ω2

s ¼ ðΩþ ωsÞðΩ − ωsÞ ≈ 2ωsðΩ − ωsÞ, so the com-
plex frequency

Ω ≈ ωs þ λn: ð28Þ
Hence, the nth coupled bunch mode is unstable if

ℑðλnÞ > 0. Note that if we had chosen hΩi¼−ωs the matrix
M → M� and wewould have found thatΩ ≈ −ðωs þ λ�nÞ. In
other words, the complex frequency has the same imaginary
part (growth rate) as that in Eq. (28), but the real part ofΩ is
of opposite sign. This reflects the fact that the centroid
position is a real number, but otherwise gives no additional
physics, so in what follows we will focus on solutions
with ℜðΩÞ > 0.

B. Weakly nonlinear potential

In this example we will expand on our previous results
by perturbing the harmonic potential of Sec. III A as

H0ðIÞ ¼
ωs

c

�
I þ b

2hIi I
2

�
: ð29Þ

We will assume that the quadratic-in-action term is small,
so that the dimensionless parameter jbj ≪ 1. This nonlinear
term could come from a higher-harmonic rf system
employed to introduce additional Landau damping, or
could simply originate from the next-order term in the
expansion of the pendulum-like rf potential. Our approach
here will be to add the new physics of Landau damping
which arise when b ≠ 0 in the simplest manner possible. In
particular, theH0 of (29) implies that the particle frequency
ωðIÞ ¼ ωsð1þ bI=hIiÞ, and the dominant new effect
comes from the addition of two poles in the dispersion
relation at

I� ¼ hIi�Ω − ωs

bωs
: ð30Þ

The pole at I� is relevant, meaning that it can cross the
integration contour along I ≥ 0, when ℜðΩÞ ≈�ωs,
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respectively. As argued previously we need only investigate
the case with ℜðΩÞ > 0, so that in what follows we only
consider the pole Iþ. When jbj ≪ 1 the longitudinal
physics other than the frequency’s dependence on I can
be approximated by the b → 0 limit, and we take

F̄ðIÞ ≈ e−I=hIi

2πhIi z1 ¼ z−1 ≈ σz

ffiffiffiffiffiffiffiffiffiffi
I

2hIi

s
: ð31Þ

Inserting (31) and ωðIÞ ¼ ωsð1þ bI=hIiÞ into the
dispersion relation (24) results in the following integration:

Z
∞

0

dI
8πF̄jzlðIÞ=σzj2
½Ω=ωðIÞ�2−1

≈
Z

∞

0

dx
2xe−x

Ω2=ω2
s−1−2bx

≈
Z

∞

0

dx
xe−x

ðΩ=ωs−1Þ−bx
: ð32Þ

In the first line we have dropped all b ≠ 0 corrections
except that which gives the pole at Iþ and the associated
new physics of Landau damping, while the final Eq. (32)
comes from the expectation that Ω ≈ ωs so that Ω2 − ω2

s ≈
2ωsðΩ − ωsÞ. If we now define ζ ≡ ðΩ=ωs − 1Þ=b, we find
that

1 ¼ −
λn
bωs

Z
∞

0

dx
xe−x

x − ζ
: ð33Þ

Equation (33) defines the dispersion relation of the
complex coupled bunch frequency Ω as a function of
the eigenvalue λn. However, evaluating the integral is
complicated by the singularity at x ¼ ζ; in particular,
integrating along the real line as indicated in (33) results
in a dispersion relation that is discontinuous as ζ goes from
having a slightly positive to negative imaginary part, a fact
that can be seen from the Sokhotski-Plemelj theorem

lim
ϵ→0

Z
b

a
dx

fðxÞ
x ∓ iϵ

¼ P
Z

b

a
dx

fðxÞ
x

� πifð0Þ ð34Þ

for a < 0 < b with P denoting the principal value. The
resulting jump by 2πiζe−ζ in Eq. (33) is unphysical, since
the dispersion relation should define a smooth complex
function of ζ in terms of λn. This seeming paradox was
resolved by Landau [24], who noted that for a well-posed
initial-value problem the Laplace transform is naturally
convergent provided ℑðΩÞ > 0, so that as written the
dispersion relation (33) must also have ℑðζÞ > 0. Landau
then showed that to make sense of Eq. (33) for arbitrary
complex ζ requires analytically continuing the integral to
ℑðζÞ < 0. Operationally, this means that one must deform
the integration contour in Eq. (33) to be always below the
pole at x ¼ ζ, in which case the dispersion relation is a
smooth function of ζ. The preceding discussion has been a
brief presentation of the mathematics behind Landau

damping as it applies to multibunch instabilities; good
accounts of the physics of Landau damping can be found
in, e.g., [3,25].
Once the Landau contour for the integration has been

specified, the dispersion integral in Eq. (33) can be
evaluated in terms of the exponential integral EiðζÞ as

1 ¼ −
λn
bωs

f1 − ζe−ζ½EiðζÞ − iπ�g: ð35Þ

We expect that Landau damping will be unable to contain
the coupled bunch instability when the growth rate is larger
than the frequency spread, ℑðλnÞ > jbωsj, in which case we
will generally also have jΩ − ωsj > jbωsj. When the
instability is in some sense strong these inequalities will
be well-satisfied, so that expanding (35) for jζj ≫ 1 yields

1 ¼ −
λn
bωs

�
1 −

�
1þ 1

ζ
þ 2

ζ2
þOðζ−3Þ

�	

≈
λn

bωsζ

�
1þ 2

ζ

�
¼ λn

Ω − ωs

�
1þ 2bωs

Ω − ωs

�
: ð36Þ

Solving the resulting quadratic equation for Ω − ωs implies
that

Ω ≈ ωs þ λn þ 2bωs if

���� λn
bωs

���� ≫ 1: ð37Þ

Hence, we find that when the instability is strong the
coupled-bunch mode frequency is shifted by both ℜðλnÞ
and the nonlinear term ∼bωs, while the growth rate is given
by ℑðλnÞ. If we had solved Eq. (35) to next order in
jbωs=λnj we would have found that the reduction in the
growth rate due to the nonlinearity scales as jbωs=λnj; in
other words, the effect of Landau damping actually
decreases as the coupled-bunch matrix growth rate
increases. While this particular fact may be somewhat
surprising, it is not surprising that Landau damping is
irrelevant to Eq. (37), since the general prescription is that
Landau damping can only counter instabilities whose
growth rate is of the order of the nonlinear frequency
spread jbωsj.
To investigate the dynamics when Landau damping

plays an important role, we now consider the case when
Landau damping just balances the destabilizing long-range
wakefields, so that the coupled bunch mode frequency Ω is
purely real and ℑðζÞ ¼ 0. Then, we can identify the Landau
damping rate by the imaginary part of λn for which Eq. (35)
is satisfied when ζ is real. We start by assuming that the
eigenvalue λn would give pure growth for a simple
harmonic potential, λn ¼ iν with ν real and greater than
zero. Then, solving the imaginary part of Eq. (35) implies
that 1 ¼ ζ0e−ζ0Eiðζ0Þ or ζ0 ≈ 1.347. This in turn means that
the collective bunch motion oscillates with a frequency
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Ω ≈ ωsð1þ 1.347bÞ; ð38Þ

while plugging ζ0 into the real part of (35) shows that
Landau damping counteracts the matrix growth rate

ν ¼ λn
i
¼ eζ0

πζ0
bωs ≈ 0.9089bωs: ð39Þ

Equation (39) agrees with the physical intuition that the
Landau damping rate is of order the frequency spread
jbωsj. Interestingly, it is also about 12% larger than that of
Ref. [26,27].
Further analysis requires a more complete model of λn;

for this purpose we will assume that the multibunch
instability is driven by a single higher order mode
(HOM) with resonant frequency ωHOM and quality
factor Q. For simplicity we also assume that ωs ≪
ωHOM=2Q ≪ ω0 ¼ 2π=T0; the first condition implies that
the width of the resonance is much larger than the
synchrotron frequency, while the second means that the
HOM damping time is much longer than the revolution
time so that the HOM overlaps with only one revolution
harmonic. In this case the unstable matrix eigenvalue can be
approximated by

λn ≈ ν
iþϖ

1þϖ2
; ð40Þ

where the dimensionless frequency difference from a
revolution harmonic is ϖ ¼ ðωHOM − Nω0Þð2Q=ωHOMÞ
for integer N. The strength of the instability is proportional
to the total beam current Itot and the HOM shunt impedance
Rs, being characterized by the growth rate

ν ¼ eItot
2γmc2

RsωHOMσt
σδT0

e−ω
2
HOMσ

2
t : ð41Þ

We can now use Eqs. (35) and (40) to investigate
multibunch stability as a function of the HOM parameters
ωHOM and Rs. In Fig. 1(a) we plot the coupled-bunch
growth rate as a function of the HOM frequency difference
from a revolution harmonic for four values of the HOM
strength as characterized by the maximum matrix growth
rate ν. When the matrix growth rate equals the character-
istic nonlinear frequency shift, ν ¼ bωs, the magenta line in
Fig. 1(a) shows that the curve of ℑðΩÞ just barely crosses
the instability threshold near jϖj ≈ 0, which is consistent
with Eq. (39). As the matrix growth rate (i.e., HOM
strength Rs) increases, the coupled bunch mode is unstable
over a wider range of ωHOM and with a larger growth rate,
as expected. Interestingly, the instability curve is not
symmetric about the revolution harmonic, and is instead
skewed toward HOM frequencies just below Nω0. This
differs from the usual case of a quadratic potential, which
has a maximum growth rate when ωHOM ¼ Nω0 þ ωs;
since we have assumed that ωs ≪ ωHOM=2Q this small

upward shift satisfies 0 < ϖ ≪ 1 and is not noticeable on
Fig. 1(a).
To further emphasize these points, Fig. 1(b) compares

the weakly nonlinear instability curves with ν ¼ 4bωs (red)
and ν ¼ 2bωs (dark blue) to predictions for the same matrix
growth rate ν but in a purely quadratic potential (magenta
and cyan lines, respectively). The latter simple harmonic
oscillator (SHO) curves are nearly symmetric about
ωHOM ¼ Nω0 and have a maximum growth rate ℑðΩÞ ¼
ν whenϖ ≈ 0. This is in clear contrast to the case when the
oscillation frequency depends on amplitude. For example,
when ν ¼ 2bωs the nonlinearity completely stabilizes the
coupled bunch mode when ϖ ≳ 1, but provides much less
effective damping whenϖ < 0. At the revolution harmonic
ϖ ¼ 0, the nonlinear growth rate is approximately 0.6bωs
lower than that of the quadratic potential SHO 2, which is a
somewhat smaller reduction than the Landau damping rate
of 0.9bωs predicted in Eq. (39). The Landau damping at
ϖ ¼ 0 is even less effective when the matrix growth rate

FIG. 1. Theoretical coupled-bunch growth rate as a function of
the HOM frequency difference from a revolution harmonic.
(a) plots the theoretical growth rate as we increase the matrix
growth rate λ from being equal to the nonlinearity to four times
that. (b) shows the effect of Landau damping by comparing two
cases from panel (a) to those os a simple harmonic oscillator.
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doubles to 4bωs: Fig. 1(b) indicates that in this case the
nonlinearity only reduces the growth rate by about 0.4bωs.
These findings are consistent with the discussion following
Eq. (37), in which we noted that the effective Landau
damping rate becomes less as ν increases.
In summary, Fig. 1 shows that the coupled bunch growth

rate in a nonlinear potential cannot be strictly reduced to a
single Landau damping rate; the nonlinearity reduces the
growth rate much more significantly when ωHOM > Nω0,
and becomes less effective as the strength of the instability
grows. Nevertheless, we find that the usual method to
assess stability by subtracting the Landau damping rate
from the predicted matrix growth rate ν does appear to
provide a useful quantitative estimate when the predicted
instability growth rates are small.

C. Quartic potential of a double harmonic rf system
designed for bunch lengthening

We now conclude our examples by calculating the
multibunch growth rates for a quartic longitudinal potential,
V0ðzÞ ∝ z4, and by comparing the theory to tracking
simulations. The motion in a quartic potential is funda-
mentally nonlinear, in that as the amplitude decreases to
zero so too does the oscillation frequency. Nevertheless, we
will find that the multibunch stability in a quartic potential
shares the main features with the weakly nonlinear one that
we discussed in the previous section: the growth rate curves
are skewed toward negative detunings ϖ < 0, and the
effects of Landau damping decrease as the strength of the
instability increases. Here, however, these effects can no
longer be considered as a perturbation of the usual
harmonic oscillator.

1. Instability theory in a quartic potential

A quartic potential may arise in a storage ring by
employing an rf system with two or more frequencies.
In the simplest example we imagine having two rf systems,
with a main cavity at the fundamental frequency ωrf, and a
harmonic cavity at frequency hωrf for some integer h. Then,
the total potential is

V0ðzÞ ¼ V1 sinðωrfz=cþ ϕ1Þ
þ Vh sinðhωrfz=cþ ϕhÞ: ð42Þ

We Taylor expand (42) assuming jhωrfz=cj ≪ 1, and
obtain a quartic potential by choosing the parameters
Vh=V1, ϕ1, and ϕh for a given V1 such that the quadratic
and cubic terms vanish while the linear term just cancels the
equilibrium energy loss. The resulting z4 potential is of
particular importance for next generation ultralow emit-
tance storage rings including MAX-IV [28] and the APS-U
[28,29], which rely on harmonic rf systems to increase
lifetime and decrease emittance growth due to intrabeam
scattering by stretching the bunch length.

Having made an appropriate choice of parameters such
that the linear, quadratic, and cubic terms in the Taylor
expansion of Eq. (42) have been removed, we now have
V0ðzÞ ∝ z4. We will find it convenient to parametrize the
resulting quartic oscillator in terms of the rms bunch length
σz and energy spread σδ as follows:

H0ðz; pzÞ ¼
αc
2
p2
z þ

αcσ
2
δΓð3=4Þ2

σ4zΓð1=4Þ2
z4 ð43Þ

¼ αcσ
2
δ

� ffiffiffi
π

p
Γð3=4Þ3=2ffiffiffi

2
p

Γð1=4Þ3=2
3I
σδσz

�
4=3

: ð44Þ

Here, ΓðxÞ is the usual Gamma function, and the second
line expresses the potential in terms of the longitudinal
action I (for details see Appendix B). Using the
Hamiltonian (44) we find that

ωðIÞ ¼ c
∂H0

∂I ¼ 4αcσδ
σt

�
Γð3=4Þ
Γð1=4Þ

�
2
�
3π2I
4σδσz

�
1=3

; ð45Þ

so that the longitudinal frequency scales with the oscillation
amplitude to the one-third power.
The dynamics of a quartic oscillator is fundamentally

nonlinear, since the oscillation frequency is proportional to a
power of the oscillation amplitude. For this reason it is less
obvious what multibunch growth rates are reduced by the
effects of Landau damping. From a facility perspective, it is
natural to compare the coupled bunch growth rates of the
quartic potential due to the double rf systemwith those of the
usual quadratic potential obtained when only the main rf
cavities operate (i.e., to compare the dynamics of a double rf
system to that of (42)withVh ¼ 0). However, in this case the
benefits of Landau damping are countered by the smaller
mean synchrotron frequency in the quartic potential, so that
the growth rates in a double rf systemwith flattenedV0ðzÞ are
typically larger than thosewhen the harmonic cavity is turned
off. On the other hand, we have shown that thematrix growth
rate that enters Eq. (24) is derived from a harmonic potential
whose equilibrium bunch length is the same as that of the
combined main and harmonic systems. Hence, if one wants
to understand the coupled dynamics in terms of a growth rate
that is reduced by Landau damping, the appropriate theo-
retical comparison is between the quartic oscillator and this
fictitious harmonic potential with identical σz.
Now, we proceed to calculate the dispersion equa-

tion (24) associated with multibunch stability in a quartic
longitudinal potential. Doing so requires two more quan-
tities beyond the Hamiltonian (44) and the amplitude-
dependent frequency (45), namely, the unperturbed distri-
bution function F̄ðIÞ, and the Fourier coefficients of
longitudinal position z. The first of these merely requires
finding the appropriate normalization for the exponential-
in-energy F̄ given in Eq. (22); as we show in Appendix B,
requiring

R
dΦdIF̄ðIÞ ¼ 1 implies that
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F̄ðIÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γð3=4Þp

ffiffiffi
π

p
Γð1=4Þ3=2σδσz

exp

�
−
H0ðIÞ
αcσ

2
δ

�
; ð46Þ

while the Appendix also shows that to a good approxima-
tion we need only the lowest Fourier coefficient of z
given by

z1ðIÞ ¼ σz

�
3

ffiffiffi
π

p
Iffiffiffi

2
p

σδσz

�
1=3 4

ffiffiffi
π

p
Γð3=4Þe−π=2

Γð1=4Þð1þ e−πÞ : ð47Þ

Now we insert the quartic quantities (45)–(47) into the
dispersion relation (24) and simplify. In particular, we
improve matters by changing the integration variable to

x ¼ π1=3Γð3=4Þ
21=3Γð1=4Þ

�
3I
σδσz

�
2=3

ð48Þ

and by introducing the dimensionless frequency

ζ ¼ Γð1=4Þ
25=4Γð3=4Þ2

Ωσt
αcσδ

≈ 1.015
Ωσt
αcσδ

: ð49Þ

In equilibrium the synchrotron frequency for a harmonic
potential satisfies ωs ¼ αcσδ=σt, so that ζ ≈Ω=ωs for this
ωs. Using (48) and (49) we find that the multibunch
dispersion relation for the quartic potential associated with
a double rf system is

1¼ λnσt
αcσδ

128πe−π

Γð1=4Þð1þe−πÞ2
�Z

∞

0

dx
x5=2e−x

2

ζ2−x
−BðζÞ

�
; ð50Þ

where BðζÞ comes from analytically continuing the
dispersion relation along the Landau contour, and is
given by

BðζÞ ¼

8>><
>>:

0 if ℑðζÞ > 0

πiζ5e−ζ
4

if ℑðζÞ ¼ 0

2πiζ5e−ζ
4

if ℑðζÞ < 0

: ð51Þ

A similar dispersion relation was also derived in [14].
The procedure for determining multibunch stability is

essentially the same as that detailed previously: we first
determine the matrix growth rate λ by solving the coupled-
bunch eigenvalue problem for a (fictious) harmonic poten-
tial whose bunch length σt is the same as that of the quartic
potential under consideration; then, we insert the λ with
largest imaginary part into Eq. (50) and numerically solve
the dispersion integral to find ζ ¼ Ωσt=αcσδ; the coupled
bunch growth rate is given by the imaginary part of Ω, with
ℑðΩÞ > 0 indicating instability. In the next subsection we
turn to illustrating and validating this theory using an
example from the APS-U, in which we compare predictions
of Eq. (50) to those of tracking simulations.

2. Comparing theory to tracking for the APS-U

To fully understand how we compare simulation results
to theory, we begin with an introductory description of the
APS-U parameters and our tracking simulation tech-
niques, and then proceed to compare the growth rates
predicted from theory to those found in simulation. The
APS-U plans to retain twelve 352 MHz main rf cavities
that are presently in operation at the APS. These cavities
have been extensively characterized, and five HOMs per
cavity have been identified that may drive coupled-bunch
instabilities. We list these HOMs and their parameters in
Table I. In general, the precise values of fHOM are not
known and may differ between cavities by amounts
greater than the revolution frequency f0 ¼ 1=T0, so that
a conservative stability analysis of the full system
typically randomizes the values of fHOM for each cavity
over the range of one revolution harmonic [30,31]. Doing
this for the full contingent of 5 × 12 ¼ 60 HOMs leads to
a forest of unstable conditions depending upon the
overlap of possibly several HOMs that have T0fHOM
close to an integer [32]; here, for clarity we will assume
that only one 921 MHz cavity HOM is close enough to a
revolution harmonic to drive an instability.
The APS-U lattice is a seven-bend achromat based

upon the hybrid design of Ref. [33], which was first
scaled to fit the APS footprint, then modified to
incorporate reverse/anti-bends to lower the emittance
[34,35], and finally extensively optimized [36]. The
longitudinal lattice and rf parameters used in the sim-
ulations are listed in Table II; while the APS-U lattice
has continued to evolve, the present (and we expect
final) parameters are very similar. Note in particular that
the list include a bunch-lengthening rf cavity operating at
the fourth harmonic (fh ≈ 1.4 GHz), and that the main
and harmonic parameters are chosen to flatten the
longitudinal potential to z4.
We simulate the APS-U ring by tracking 50 000 particles

per bunch in 48 equally-spaced bunches through a number of
elements using the tracking code ELEGANT [37]. Particle
coordinates are advanced around the ring via the ILMATRIX

element, which allows for fast, symplectic particle tracking

TABLE I. Parameters of the five potentially problematic HOMs
for the APS-U. Note that all of these HOMs satisfy
fHOM=2Q ≫ hfsi, so that in a single rf system the matrix growth
rate is given by (40) and the strongest instability occurs when
fHOM is a harmonic of the revolution period.

fHOM
(MHz)

Rs
(kΩ) Q=103

1=T0

(kHz)
fHOM=2Q
(kHz)

fs (kHz)
w=o HHC

hfsi (kHz)
w=HHC

921 620 106 272 4.3 0.53 ∼0.15
1205 495 94 272 6.4 0.53 ∼0.15
1500 396 89 272 8.4 0.53 ∼0.15
1645 236 24 272 34 0.53 ∼0.15
1700 300 37 272 23 0.53 ∼0.15
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through a periodic cell including chromatic and
amplitude-dependent tunes, beta functions, dispersion,
and path-length. ILMATRIX does this by computing a
linear matrix for each particle that is determined from
the initial particle coordinates and user-supplied param-
eters including the Twiss parameters, tunes, dispersion,
etc, and how these quantities depend on the particle energy
(giving chromatic effects through third order in pz) and
on the transverse coordinates (modeling the amplitude-
dependent tunes and path length). For our purposes here
the transverse dynamics are largely irrelevant and are
retained only for completeness, while the primary quantity
of interest is the momentum compaction αc (the second
order momentum compaction is also included in the
simulations, but does not affect the results).
In addition, the ELEGANT simulations model the rf

acceleration and focusing via two prescribed RFCA ele-
ments that are tuned as listed in Table II. This is a
simplification of the passive (beam-driven) higher-
harmonic cavity planned for the APS-U, although this
approximation should not significantly affect the instability
physics. Finally, the 48 equally-spaced bunches commu-
nicate with each other to possibly drive multi-bunch
instabilities via the long-range RFMODE element, which
models a single 921 MHz HOM with parameters listed in
Table I using the fundamental theorem of beam loading and
phasor rotation. In the simulation we first wait 5000 turns
for the beam to approach an equilibrium, and then slowly
introduce the HOM by ramping Rs from zero to its given
value over 5000 turns. We then simulate the dynamics for
an additional 15 000 to 50 000 turns to see if an instability
develops, and fit the growth in energy centroid oscillations
to an exponential. We originally also tried to fit a “Landau
damping rate” by exciting the coupled-bunch motion and
then letting it damp, but were unable to drive the marginally
stable coupled-bunch oscillation without also reducing
the synchrotron tune spread and, hence, the effects of
Landau damping.

Having set the stage, it’s now time to compare results
from our ELEGANT simulations to theoretical predictions
for the APS-U. We will make these comparisons using
simulations that both omit and then include the damping
and diffusion due to synchrotron emission. To ensure that
all simulations have the same longitudinal distribution and
synchronous phase for identical rf cavity settings, those
without damping and diffusion replace the physics of
synchrotron emission with a uniform energy loss U0 for
all particles once per turn. Furthermore, since our theory
was derived from the Vlasov equation it does not strictly
apply when synchrotron emission is included; we will find
that approximating the effects of synchrotron radiation by a
simple damping works well if the predicted growth rate is
relatively large, but becomes less good near threshold when
the instability growth rate is comparable to the radiation
damping rate.
Our first example compares the theoretical coupled-

bunch instability threshold for a single HOM to that found
in ELEGANT simulations with no synchrotron emission. We
vary the strength of the instability by changing the shunt
impedance Rs, but otherwise use the parameters of the
HOM from Table I whose frequency fHOM is close to
3389f0 ≈ 920.6 MHz; as indicated by Table I, this HOM
satisfies fHOM=2Q ≫ hfsi, so that the corresponding
coupling matrix M is approximately independent of hΩi.
To validate the theory we will compare the simulated and
theoretically predicted threshold ℑðλthreshÞ, defined to be
the minimum value of the growth rate associated with the
HOM λ given in Eqs. (40)–(41). This ℑðλthreshÞ can be
interpreted as the effective Landau damping rate, since it
corresponds to the expected growth rate for a simple
harmonic potential with the same bunch length σt. We
determine λthresh from the simulations by slowly increasing
the shunt impedance in steps, and noting the value of Rs for
which a coupled-bunch instability is first observed.
The results for this “Landau damping rate” are summa-

rized in Fig. 2(a), where we have scaled ℑðλthreshÞ by the
quantity αcσδ=σt ≈ 1.24h2πfsi to make this comparison in
terms of dimensionless parameters. We see that the theory
well predicts the instability threshold over a wide range of
HOM detuning when there is no synchrotron damping.
Furthermore, Fig. 2(a) shows that the effects of Landau
damping decrease at large detunings and are not symmetric
about ϖ ¼ 0; on resonance the theory predicts an insta-
bility threshold of 0.19 αcσδ=σt, which agrees reasonably
well with the Landau damping rate of 0.176 αcσδ=σt that is
given by Bosch et al. [18].
We continue our comparisons of theory to simulation

in Fig. 2(b) with more traditional plots of the predicted
growth rate as a function of the detuning from resonance
ϖ ¼ ð2Q=ωHOMÞðωHOM − Nω0Þ, with Nf0 ¼ N=T0 ¼
3389f0 ≈ 920.6 MHz. For this we again apply no synchro-
tron radiation damping and use the 921 MHz HOM
parameters of Table I (with fixed Rs). Figure 2(b) shows

TABLE II. Longitudinal lattice and rf parameters for the
APS-U multibunch simulations.

Parameter Symbol Value

Momentum compaction αc 3.96 × 10−5

Bunch length σt 51.3 ps
Energy spread σδ 0.127%
Energy loss/turn U0 2.74 MeV
Revolution time T0 3.68 μs
Damping time τz 20.1 ms
Main rf frequency ωrf=2π 352 MHz
Main rf voltage V1 4.43 MV
Main rf phase ϕ1 138.7°
Harmonic rf voltage V4 0.852 MV
Harmonic rf phase ϕ4 347.6°
Total current Itot 200 mA
Number of bunches Nb 48
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that the theory and simulation agree quite well over the
entire range of instability, and that the predicted growth
rates are consistently lower than those of the fictitious
simple harmonic oscillator (SHO) with matching bunch
length σt ≈ 51 ps which was used to compute the matrix
growth rate λ. Furthermore, Fig. 2(b) also shows that the
growth rate curves in the quartic potential are skewed
toward negative frequency detunings, much like the weakly
nonlinear example of the previous section. In particular, the
maximum growth rate occurs when fHOM is below the
revolution harmonic such that ϖ ≈ −1=5, which is signifi-
cantly larger than the average synchrotron frequency
hfsi ≈ 0.035ðfHOM=2QÞ. Furthermore, the frequency shift

with the largest growth rate is in the opposite direction to
that in a simple harmonic potential, since ℑðΩÞ is maxi-
mized in an SHO when fHOM ¼ Nf0 þ fs for integer N.
Finally, we close by comparing the simulated and

theoretical growth rate curves in the case where we include
synchrotron emission in the simulations and theory, the
latter of which we model by subtracting the synchrotron
damping rate of 49 1=s from the computed growth rate.
This is not strictly valid since the physics of synchrotron
emission involve damping and diffusion that are described
by a Fokker-Planck rather than Vlasov equation, and we

FIG. 2. Comparison of theory (blue) to ELEGANT simulations
(red) of the predicted and observed multi-bunch growth rate for
no synchrotron radiation damping and longitudinal potential
V0 ∝ z4. Panel (a) illustrates the effective Landau damping by
plotting the threshold matrix growth rate as a function of
normalized HOM detuning; the Landau damping rate is
∼ðαcσδ=σtÞ=10 ∼ hfsi. Panel (b) plots the simulated and theo-
retical growth rate for the 921 MHz HOM in Table I, and
compares them to the theory of a simple harmonic oscillator
(SHO) of same bunch duration σt ≈ 51 ps.

FIG. 3. Comparison of theory (blue) to ELEGANT simulations
(red) of the predicted and observed multibunch growth rate
including synchrotron radiation. Panel (a) plots the results for
the 921 MHz HOM using parameters from Tables I and II, i.e.,
is identical to Fig. 2(b) but for the inclusion of synchrotron
emission, which we model in the theory by simply subtracting
off the synchrotron damping rate of 49 1=s. The agreement
is quite good. Panel (b) shows that the agreement becomes
less impressive as one approaches the instability threshold.
The red line shows that halving the shunt impedance (and,
hence λ) agrees reasonably well; on the other hand, while
subtracting the damping time from the theory predicts stability
when Rs is cut by one-third, the simulations show an
instability near resonance.
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will find that the agreement between theory and simulation
suffers somewhat as the synchrotron damping rate becomes
comparable to theoretical growth rate.
We plot the growth rate curves including synchrotron

emission in Fig. 3. Figure 3(a) plots the growth rate curves
from theory and simulation for theHOMparameters listed in
Table I, showing very good agreement between the two.
Hence, we predict that the APS-U will have to contend
with longitudinal coupled-bunch instabilities driven by
cavity HOMs whose growth rates may approach 450 1=s.
Presently, the APS-U plans to deal with this instability using
a combination of a longitudinal feedback system and cavity
temperature tuning, in which the rf cavity temperature is
adjusted to shift fHOM away from a revolution harmonic. In
addition, Fig. 3(a) shows that the physics of synchrotron
emission can be approximated by the damping term e−s=cτz
when theoretical growth rate is much larger than 1=τz.
In contrast to this, panel (b) of Fig. 3 indicates that the

simple damping approximation becomes less appropriate as
the theoretical growth rate becomes comparable to 1=τz.
The red and magenta lines plot the growth rates obtained
from ELEGANT when λ is decreased by reducing the shunt
impedance Rs by a factor of 2 and 3, respectively, while
keeping Rs=Q constant. In the former case when Rs →
Rs=2 the agreement to the blue theory line is still adequate,
but when the Rs → Rs=3 ELEGANT predicts an instability
growth rate near resonance of ℑðΩÞ ≈ 1=τz ≈ 50 1=s. This
implies that the effects of Landau and synchrotron damping
are not additive near the instability threshold, and that
accurately predicting the growth rate requires a more
sophisticated theory.

IV. CONCLUSIONS

We have derived a theoretical description of longitudinal
coupled-bunch instabilities for arbitrary longitudinal poten-
tials. We find that the coupled-bunch growth rateΩ is given
by the dispersion relation (24), where λ is the matrix growth
rate of an associated harmonic potential having the same
bunch length. Hence, the theory combines the wakefield-
driven multibunch instability with the effects of Landau
damping in a uniform and self-consistent manner. In the
limit of simple harmonic motion Eq. (24) reduces to the
usual, well-known formula, while for more general poten-
tials its solution agrees reasonably well with the usual
approach that separately calculates growth and damping,
provided the former growth rate is computed using the
same bunch length. We applied the theory to HOM-driven
coupled-bunch instabilities, and showed that in a nonlinear
potential the growth rate is an asymmetric function of the
HOM frequency difference from a revolution harmonic,
being skewed towards negative frequency detuning in
contrast to the usual simple harmonic theory. Finally, we
applied the theory to a quartic potential relevant for the
bunch-lengthening at the APS-U, and showed that its

predictions agree well with simulations using the tracking
code ELEGANT.
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APPENDIX A: EXTENSION TO CERTAIN
NONUNIFORM FILLS

Our theory as presented becomes seemingly intractable
if the background distribution varies across bunches: in
general finding Ω requires solving an Nb × Nb matrix
dispersion integral. Here, we use methods developed in
Ref. [38] to show that a rather simple generalization to the
dispersion relation (21) is possible if the ring is filled with
two or more essentially identical trains of bunches. Within
each bunch train the background F̄nðIÞ can vary according
to bunch number, but the approximate periodicity permits
analytic calculation of the matrix eigenvalues λ. Such
bunch patterns may arise due to rf transients in the main
and harmonic cavities when gaps are introduced to combat
ion instabilities. For this calculation, we let 1=ðMT0Þ be the
minimum spacing between bunches (equispaced bunches
have M ¼ Nb), and define

DnðΩÞ ¼
Z

∞

0

dI
4πcαcσ2δ
ωðIÞ

∂F̄n

∂I
X∞
m¼1

m2jzm=σzj2
m2 − ðΩ=ωÞ2 : ðA1Þ

Then, Eq. (18) can be written as

hzin
Dn

¼ 4πe2

γmc2T0

XM−1

j¼0

Npart
j Dj

X∞
l¼0

eilhΩiT0
dWk
dξ

����
ξ¼−cT0½lþðj−nÞ=M�

:

ðA2Þ

Next, we introduce the coupled-bunch modes

τμ ¼
XM−1

n¼0

hzin
Dn

e−2πinμ=Me−inhΩiT0 ðA3Þ

hzin
Dn

¼ einhΩiT0

M

XM−1

μ¼0

τμe2πiμn=M; ðA4Þ

in terms of which Eq. (A2) can be written as
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τμ ¼
4πe2

γmc2T0

XM−1

n;j;μ0¼0

Npart
j Dj

M
e2πijðμ0−μÞ=Mτμ0

×
X∞
l¼0

�
e−iðhΩiþ2πμ=T0Þξ=c dWk

dξ

�
ξ¼−cT0½lþðj−nÞ=M�

¼ 4πe2

γmc2T0

XM
j;μ0¼0

Npart
j Dj

M
e2πijðμ0−μÞ=Mτμ0

×
X∞
k¼0

eikð2πμþhΩiT0Þ=MdWk
dξ

����
ξ¼−kcT0=M

: ðA5Þ

The second equality comes from replacing the summation
indices n and l with k as suggested by [38]. Then, we
separate the sum over μ0 to find that

τμ¼
4πe2

γmc2T0

XM
j¼0

Npart
j Djτμ

X∞
k¼0

eikð2πμþhΩiT0Þ=MdWk
dξ

����
ξ¼−kcT0=M

þ 4πe2

γmc2T0

XM
j¼0

XM
μ0≠μ

Npart
j Dj

M
e2πijðμ0−μÞ=Mτμ0

×
X∞
k¼0

eikð2πμþhΩiT0Þ=MdWk
dξ

����
ξ¼−kcT0=M

: ðA6Þ

The first two lines represent the diagonal part of the matrix,
while the last two lines give the coupling between modes
τμ. If the bunch pattern is comprised of two or more
approximately identical bunch trains, then the sum over j in
the coupling vanishes, and stability is given setting the
weighted sum of dispersion integrals from the top lines of
(A6) equal to unity.

APPENDIX B: ACTION-ANGLE VARIABLES
AND RELATED CALCULATIONS
FOR A QUARTIC OSCILLATOR

We begin with the flattened Hamiltonian governing the
synchrotron motion,

H0ðz; pzÞ ¼
αc
2
p2
z þ

κ

4
z4; ðB1Þ

where κ characterizes the strength of the quartic potential.
In equilibrium the distribution function is a Gaussian
function in the energy, so that

F̄ðz; pzÞ ¼
ðκ=αcÞ1=4ffiffiffi
π

p
σ3=2δ Γð1=4Þ

exp

�
−
H0ðz; pzÞ
αcσ

2
δ

�
; ðB2Þ

and the normalization is set so that integrating F̄ over all
phase space equals unity; this can be verified as follows:

Z
dzdpz F̄ ¼

Z
∞

−∞
dzdpz

ðκ=αcÞ1=4e−p2
z=2σ2δe−κz

4=4αcσ2δffiffiffi
π

p
σ3=2δ Γð1=4Þ

¼ 2ð4κ=αcÞ1=4
σ1=2δ Γð1=4Þ

Z
∞

0

dz e−κz
4=4αcσ2δ

¼ 1

Γð1=4Þ
Z

∞

0

dx
e−x

x3=4
¼ 1: ðB3Þ

Now, we would like to parametrize the Hamiltonian by
the equilibrium bunch length and energy spread. For this
purpose we calculate

σ2z ¼
Z

dzdpz z2F̄ðz; pzÞ

¼ ð4κ=αcÞ1=4
σ1=2δ Γð1=4Þ

Z
∞

−∞
dz z2 exp

�
−

κz4

4αcσ
2
δ

�

¼
�

4κ

αcσ
2
δ

�
1=4

�
4αcσ

2
δ

κ

�
3=4 1

2Γð1=4Þ
Z

∞

0

dx
e−x

x1=4

¼
�
4αcσ

2
δ

κ

�
1=2 Γð3=4Þ

Γð1=4Þ : ðB4Þ

Hence, the potential strength κ can be eliminated by

κ ¼
�
Γð3=4Þ
Γð1=4Þ

�
2 4αcσ

2
δ

σ4z
; ðB5Þ

and we have

F̄ðz; pÞ ¼
�
2Γð3=4Þ
πΓð1=4Þ

�
1=2 1

Γð1=4Þσδσz
× exp

�
−

p2

2σ2δ
−
�
Γð3=4Þ
Γð1=4Þ

�
2 z4

σ4z

	
: ðB6Þ

Now, we introduce the action-angle variables associated
with H0ðz; pzÞ. The action is easy enough to find; for a
particle whose energy isH (i.e., on its trajectory the value of
H0 isH), we apply the standard definition (see, e.g., [22,23])

IðHÞ ¼ 1

2π

I
dzpzðz;HÞ

¼ 2

π

Z ð4H=κÞ1=4

0

dz

ffiffiffiffiffiffiffi
2H
αc

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

κz4

4H

r

¼ 2

π

�
16H3

κα2c

�
1=4 Z 1

0

dq
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q4

q

¼ Γð1=4Þ
3Γð3=4Þ

�
16H3

π2κα2c

�
1=4

: ðB7Þ

Note that there are several ways to write (B7) in terms of the
Gamma function and the complete elliptic function of the
second kind due to the identities [39]
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Kð1=2Þ ¼ Γð1=4Þ2
4

ffiffiffi
π

p ; Γð1=4ÞΓð3=4Þ ¼
ffiffiffi
2

p
π: ðB8Þ

Here, the elliptic function of parameter m is defined as
KðmÞ ¼ R π=2

0 dθ½1 −m sin2 θ�−1=2; this definition is used
by, e.g., Mathematica [40], and is consistent with our
subsequent use of the Jacobi elliptic functions. However,
many reference books define the elliptic functions using the
modulus k ¼ ffiffiffiffi

m
p

.
Solving Eq. (B7) for H shows that the Hamiltonian is

proportional to the action to the four-thirds power; in
particular, we eliminate κ using (B5) to find that

H0ðIÞ ¼ αc

�
Γð3=4Þ
Γð1=4Þ

�
2
�
π2σ2δ
4

�
3I
σz

�
4
�
1=3

¼ αcσ
2
δ

� ffiffiffi
π

p
Γð3=4Þ3=2ffiffiffi

2
p

Γð1=4Þ3=2
3I
σδσz

�
4=3

: ðB9Þ

Since the transformation ðz; pzÞ → ðΦ; IÞ is canonical,
dzdpz ¼ dΦdI and F̄ðIÞ is given by (B2) with
H0ðz; pzÞ → H0ðIÞ:

F̄ðIÞ ¼
�
2Γð3=4Þ
πΓð1=4Þ

�
1=2 1

Γð1=4Þσδσz
× exp

�
−
� ffiffiffi

π
p

Γð3=4Þ3=2ffiffiffi
2

p
Γð1=4Þ3=2

3I
σδσz

�
4=3	

: ðB10Þ

Again, because of the identities (B8) there are many
equivalent expressions for H0ðIÞ, F̄ðIÞ, and other quan-
tities to be calculated.
Computing the coordinate zðΦ; IÞ is a bit more involved,

but not by too much. For this we will use the Hamilton-
Jacobi equation for the generating functionWðz;IÞ, where
we recall (or find in, e.g., [22,23]) that W defines the
transformation ðz; pzÞ → ðΦ; IÞ between canonical coor-
dinates via pz ¼ ∂W=∂z and Φ ¼ ∂W=∂I . Inserting the
former of these into the Hamiltonian (B1) results in the
Hamilton-Jacobi equation for the generating function
Wðz;IÞ

αc
2

�∂W
∂z

�
2

þ κ

4
z4 ¼H

⇒Wðz;IÞ¼
ffiffiffiffiffi
2

αc

s Z
z
dz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðIÞ−κz04=4

q
: ðB11Þ

In terms of the integration variable q ¼ ðκ=4HÞ1=4z0, the
angle is therefore

Φ ¼ ∂W
∂I ¼ ∂H=∂Iffiffiffiffiffiffiffiffiffiffiffi

2αcH
p

�
4H
κ

�
1=4

Z
Z
dq

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q4

p
¼ 4

3

�
H3

α2cκI4

�
1=4 Z Z

dq
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − q4
p

¼ πffiffiffi
2

p
Kð1=2Þ

Z
Z
dq

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q4

p ðB12Þ

where Z ¼ zðκ=4HÞ1=4. To proceed, we again change
integration variable using q ¼ − cos θ, with

dqffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q4

p ¼ sin θdθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cos2θÞð1 − cos2θÞ

p
¼ dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − sin2θ
p ¼ dθ=

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

2
sin2θ

q : ðB13Þ

Then, we have

Φ ¼ π

2Kð1=2Þ
Z

cos−1Z
dθ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

2
sin2θ

q ðB14Þ

⇒ Z ¼
�

κ

4H

�
1=4

z ¼ cn

�
2Kð1=2Þ

π
Φ;

1

2

�
; ðB15Þ

where cnðx; 1=2Þ is the Jacobi elliptic function of parameter
1=2. Rearranging and inserting expressions for H and κ
gives

zðΦ; IÞ ¼ σz

�
3

ffiffiffi
π

p
Iffiffiffi

2
p

σδσz

�
1=3

cn
�
2Kð1=2Þ

π
Φ;

1

2

�
: ðB16Þ

Finally, we get the Fourier coefficients of z by inserting
the Fourier expansion of the Jacobi elliptic function as
follows

zðΦ; IÞ ¼ σz

�
3

ffiffiffi
π

p
Iffiffiffi

2
p

σδσz

�
1=3

cn

�
2Kð1=2Þ

π
Φ;

1

2

�

¼ σz

�
3

ffiffiffi
π

p
Iffiffiffi

2
p

σδσz

�
1=3 8

ffiffiffi
π

p
Γð3=4Þ

Γð1=4Þ

×
X∞
l¼0

e−ð2lþ1Þπ=2

1þ e−ð2lþ1Þπ cos½ð2lþ 1ÞΦ�: ðB17Þ

The coefficients znðIÞ can now be computed by multiply-
ing by e−imΦ=2π and integrating over Φ from 0 to 2π. Note
that the magnitude of the coefficients jzmj decrease expo-
nentially with m, jz3j ≈ 0.045jz1j, and we can reasonably
retain only the single term

RYAN R. LINDBERG PHYS. REV. ACCEL. BEAMS 21, 124402 (2018)

124402-14



z1ðIÞ ¼ σz

�
3

ffiffiffi
π

p
Iffiffiffi

2
p

σδσz

�
1=3 4

ffiffiffi
π

p
Γð3=4Þe−π=2

Γð1=4Þð1þ e−πÞ ðB18Þ

in the sum of the dispersion relation (24).
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