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The longitudinal charge density of an electron beam in its equilibrium state is given by the solution of
the Haïssinski equation, which provides a stationary solution of the Vlasov-Fokker-Planck equation. The
physical input is the longitudinal wake potential. We formulate the Haïssinski equation as a nonlinear
integral equation with the normalization integral stated as a functional of the solution. This equation can be
solved in a simple way by the matrix version of Newtons’s iteration, beginning with the Gaussian as a first
guess. We illustrate for several quasirealistic wake potentials. Convergence is extremely robust, even at
currents much higher than nominal for the storage rings considered. The method overcomes limitations of
earlier procedures, and provides the convenience of automatic normalization of the solution.
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I. INTRODUCTION

The collective longitudinal motion of electrons or
positrons in a storage ring seems to be well described
by the Vlasov-Fokker-Planck (VFP) equation, in which the
collective force is described by a wake potential which
accounts for the electromagnetic environment due to the
vacuum chamber. The equation has solutions that are
stationary in time, which may or may not be stable under
perturbations, depending on the value of the beam current.
These are solutions of the Haïssinski equation [1], which
may be stated as a nonlinear integral equation or integro-
differential equation. To determine the threshold in current
for an instability to appear, one can linearize the Vlasov
equation about the Haïssinski solution. Alternatively, one
can integrate the VFP equation as an initial value problem
in time, with the Haïssinski equilibrium as the initial value
[2]. In either approach, computation of the Haïssinski
solution is an essential first step in determining the thresh-
old for an instability. (Admittedly, one can also get an idea
of stability by running a VFP integration from an arbitrary

initial value, say a Gaussian, but that will lead to a
somewhat ambiguous definition of the threshold.)
The method of solution presented here was worked out

by the first-named author twenty years ago, but was not
published except for a description in words in Ref. [2].
Although the method was adopted by a few colleagues, it
has not become a standard tool. Since it is quite simple and
avoids limitations of other methods, a belated publication
seems worthwhile.
The idea of the method will seem obvious to anyone

acquainted with ideas of functional analysis [3] and their
application in numerical methods [4]. The integral equation
for the charge density λ is viewed as an equation FðλÞ ¼ 0
on an appropriate function space. The equation is discre-
tized by a numerical quadrature rule for the integrals
involved, and then solved by the matrix version of
Newton’s method. An essential step is to define F so that
a solution is automatically normalized. We shall not be
concerned with a rigorous basis for discretization, but
methods to treat that issue are available [5].
What was not so obvious before implementation is the

extremely robust convergence of the Newton iterates. For
realistic wake potentials we have never seen a failure of
convergence to machine precision in a few iterations, even
at currents far beyond the threshold of instability. Here the
starting point for the Newton iteration was merely a
Gaussian, the zero current solution.
In this paper we include results for high current, in order

to explore the mathematical properties of the equation,
and to demonstrate the excellent convergence of the
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iteration. In many physical problems governed by nonlinear
equations one finds critical values of some strength param-
eter, for instance in the buckling of a column at a certain
value of the load [6], ([3], Chap. 4). As a function of the
parameter a solutionmay branch into two or more solutions,
or become complex, or simply cease to exist in one way or
another. It is then natural to look for critical points in the
current parameter in the Haïssinski equation. For the wake
potentials considered here we find no such points up to very
high currents. In fact, we can argue that our solutions are
locally unique in the function space considered, since
bifurcation can occur only at a singularity of the Jacobian
of the system [3]. Our Jacobian is always far from singu-
larity. The high current solutions represent unstable equi-
libria, and will not be realized in the laboratory.

II. SOLUTION OF THE VLASOV-FOKKER-
PLANCK EQUATION FOR THE

EQUILIBRIUM STATE

We are concerned with longitudinal motion within a
single bunch of particles in an electron storage ring. The
linearized motion without collective effects is described in
terms of the slip factor η, the dimensionless constant which
relates the first order change in revolution frequency ωr to a
change in momentum P:

η ¼ −
P0

ω0

�
dωr

dP

�
P0

¼ α −
1

γ20
: ð1Þ

Here ω0 and P0 are the nominal values of revolution
frequency and momentum (those for a particle synchroniz-
ing with the rf), γ0 is the nominal Lorentz factor, and α is
the momentum compaction factor. (Some authors define η
with the opposite sign, and some call η the momentum
compaction factor.)
The dynamical variables of longitudinal motion are often

taken to be Δϕ and ΔE, where Δϕ is the deviation of the rf
phase from its synchronous value at the time the particle
encounters the rf field, and ΔE is the deviation of the
energy from the nominal value E0 [7]. We prefer to work
with equivalent dimensionless variables q and p, normal-
ized to be of order 1, and a corresponding dimensionless τ,
equivalent to the time [8]. We define

q ¼ z
σz

; p ¼ −sgnðηÞE − E0

σE
; τ ¼ ωst: ð2Þ

Here z ¼ s − s0 ¼ s − β0ct is the distance (in arc length s
on the reference orbit) to the synchronous particle at s ¼ s0,
thus positive for a leading particle, and sgnðηÞ is the signum
function, equal to 1 for η > 0 and −1 for η < 0. The
constant ωs ¼ 2πfs is the circular synchrotron frequency.
At first we think of σz and σE as some positive constants to
render q and p dimensionless and of order 1, leaving to
later a specific choice of their values. One can show that

Δϕ ¼ −hz=R, where h is the harmonic number and
R ¼ C=2π, where C is the circumference of the reference
orbit followed by the synchronous particle. From this we
can write the differential equations [7] (which approximate
a discrete map) in terms of the new variables as follows,

dq
dτ

¼ p
a
;

dp
dτ

¼ −aq; a ¼ β0ωsσz
c

E0

jηjσE
: ð3Þ

The corresponding Hamiltonian is

Hðq; pÞ ¼ a
q2

2
þ 1

a
p2

2
: ð4Þ

In a storage ring with normal equilibration from syn-
chrotron radiation, in which effects of diffusion balance
effects of dissipation, the phase space density in the limit of
small beam current is

f0ðq; pÞ ¼ A exp½−Hðq; pÞ�; ð5Þ

where A is a constant for normalization. Hence we can
interpret σz and σE as the r.m.s. bunch length and energy
spread for weak current, provided that a ¼ 1 or

β0ωsσz
c

¼ jηjσE
E0

: ð6Þ

Henceforth we choose σz and σE to satisfy (6), whatever
their interpretation.
The probability density in phase space, normalized to 1,

is denoted by fðq; p; τÞ, and the spatial probability density
by λðq; τÞ, thus
Z

∞

−∞

Z
∞

−∞
fðq;p;τÞdqdp¼1; λðq;τÞ¼

Z
∞

−∞
fðq;p;τÞdp:

ð7Þ

The Vlasov-Fokker-Planck (VFP) equation to determine
f is

∂f
∂τ þ

dq
dτ

∂f
∂qþ dp

dτ
∂f
∂p ¼ 2

ωstd

∂
∂p

�
p
∂f
∂pþ ∂f

∂p
�
; ð8Þ

where td is the longitudinal damping time.
The single-particle equations of motion, modified to

include the Vlasov collective force, are

dq
dτ

¼ p;
dp
dτ

¼ −q − Fðq; fð·; τÞÞ; ð9Þ

where −q is the linear force from rf and −F is the collective
force. Here F is a functional of the distribution f which is
assumed to have the form
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Fðq; fð·; τÞÞ ¼ I
Z

∞

−∞
Wðq − q0Þλðq0; τÞdq0

¼ I
Z

∞

−∞
Wðq − q0Þ

�Z
∞

−∞
fðq0; p; τÞdp

�
dq0:

ð10Þ

The wake potentialW is defined to have the dimension of a
potential per unit charge, and to be positive where it causes
an energy gain. It follows that the normalized current I has
the form

I ¼ sgnðηÞe2N
2πνsσE

; ð11Þ

where N is the number of particles and νs ¼ ωs=ωr is the
synchrotron tune. The notation Fðq; fð·; τÞÞ is intended to
indicate that F depends on all values of f over phase space
at time τ. In some models the wake potential is zero in front
of the bunch (q > 0) but that is not assumed in the
following.
Although the formula (10) usually goes unquestioned, it

is in fact not the most general form of the collective force
for a time dependent charge density. For a bunch on a
curved orbit it does not account for the charge density being
different at the retarded time from what it is at the current
time [9,10].
In view of (9) the VFP equation takes the form

∂f
∂τ þp

∂f
∂q− ½qþFðq;fð·; τÞÞ� ∂f∂p¼ 2β

∂
∂p

�
p
∂f
∂pþ ∂f

∂p
�
;

ð12Þ

where β ¼ ðωstdÞ−1, with td being the longitudinal damp-
ing time. The Fokker-Planck terms on the right-hand side
account for damping and diffusion due to incoherent
synchrotron radiation.
We are interested in an equilibrium, a time-independent

solution of (12), denoted by f0ðq; pÞ. We seek such a
solution in the Maxwell-Boltzmann form

f0ðq; pÞ ¼
1ffiffiffiffiffiffi
2π

p expð−p2=2ÞλðqÞ;
Z

∞

−∞
λðqÞdq ¼ 1:

ð13Þ

The Fokker-Planck terms add up to zero for this Gaussian
function of p, owing to compensation of diffusion by
damping. Thus f0 will be an equilibrium solution provided
that the spatial density λ satisfies

dλ
dq

þ ½qþ Fðq; λð·ÞÞ�λ ¼ 0;

Fðq; λð·ÞÞ ¼ I
Z

∞

−∞
Wðq − q0Þλðq0Þdq0: ð14Þ

Any solution of (14) may be represented as follows:

λðqÞ ¼ A exp½−Vðq; λð·ÞÞ�;

Vðq; λð·ÞÞ ¼ q2

2
− I

Z
∞

q
dq0

Z
∞

−∞
Wðq0 − q00Þλðq00Þdq00;

ð15Þ

where the constant A is chosen to enforce the normali-
zation of (13). This follows from separation of variables
[dλ=λ ¼ −ðqþ FÞdq] and integration. Now it is conven-
ient to reverse the order of integrations, after introducing
the integrated wake potential S, where

Sðq − q00Þ ¼
Z

∞

q
Wðq0 − q00Þdq0 ¼

Z
∞

q−q00
WðrÞdr; ð16Þ

thus

Vðq; λð·ÞÞ ¼ q2

2
− I

Z
∞

−∞
Sðq − q0Þλðq0Þdq0: ð17Þ

The kernels Wðq − q0Þ and Sðq − q0Þ may be viewed as
giving the response to a delta function source and a step
function source, respectively [11].
It follows from (15) and (17) that a normalized solution

of (14) must satisfy

λðqÞ ¼ exp½−q2=2þ I
R
Sðq − q0Þλðq0Þdq0�R

exp½−q02=2þ I
R
Sðq0 − q00Þλðq00Þdq00�dq0 ð18Þ

This nonlinear integral equation (18) is our main object
of study. It is convenient to rewrite it as

Fðφ; IÞ ¼ 0; ð19Þ

where φðqÞ ¼ IλðqÞ and

Fðφ;IÞ¼φðqÞ
Z

exp

�
−q02=2þ

Z
Sðq0−q00Þφðq00Þdq00

�
dq0

−Iexp

�
−q2=2þ

Z
Sðq−q0Þφðq0Þdq0

�
; ð20Þ

with all integrations on ð−∞;∞Þ.

III. PREVIOUS METHODS OF SOLVING THE
HAÏSSINSKI EQUATION

To motivate our method we briefly review techniques in
common use, and point out limitations that are avoided by
our algorithm.

A. Solution by simple iteration

An obvious approach is to generate a sequence of
functions fλð0Þ; λð1Þ; � � �g by the rule

NUMERICAL SOLUTION OF THE HAÏSSINSKI… PHYS. REV. ACCEL. BEAMS 21, 124401 (2018)

124401-3



λðkþ1ÞðqÞ ¼ A exp

�
−q2=2þ

Z
Sðq − q0ÞλðkÞðq0Þdq0

�
;

ð21Þ

where λð0Þ is the normalized Gaussian and A has some trial
value, say 1=

ffiffiffiffiffiffi
2π

p
. If the sequence converges, try again with

different values of A, searching for a value of A such that
the final iterate is normalized to adequate precision. This
could be made more convenient by normalizing every
iterate; in other words, just apply simple iteration to our
Eq. (18) with embedded normalization, so that

λðkþ1ÞðqÞ ¼ exp½−q2=2þ I
R
Sðq − q0ÞλðkÞðq0Þdq0�R

exp½−q02=2þ I
R
Sðq0 − q00ÞλðkÞðq00Þdq00�dq0

ð22Þ

Unfortunately, in numerical experience this sequence
or (21) fails to converge at larger I, including values of
practical interest. Rather, the iterates eventually oscillate
between one pattern and another. This failure has no
physical significance, as is shown by successful continu-
ation of the solution to large I by other methods, for
instance the one we advocate.

B. Solution of the equation in integro-differential form

This method aims to solve the Haïssinski equation
expressed as the integro-differential equation of (14).
This can be done in a simple way only if WðqÞ ¼ 0 for
q > 0, a condition that is not strictly true for numerically
determined wake potentials for real storage rings. In fact
such potentials are nonzero in a small region 0 < q < a.
A more serious violation of the condition can occur in the
case of coherent synchrotron radiation. Depending on
circumstances, it may happen that WðqÞ will be non-zero
over a large range of positive q
We seek a numerical solution which is strictly Gaussian

for q ≥ κ, approximating the actual solution which is
asymptotic to a Gaussian. We write λðqÞ ¼ A expð−q2=2Þ;
q ≥ κ. Then with the above mentioned restriction on W
the integro-differential equation to solve is

dλ
dq

¼ −
�
qþ

Z
∞

q
Wðq − q0Þλðq0Þdq0

�
λðqÞ: ð23Þ

The idea is to start at q ¼ κ, where the right-hand side is
known, then integrate backwards in 2N steps of −Δq ¼
−κ=N to q ¼ −κ. If we apply Euler’s method, the first two
integration steps are as follows:

λðκÞ − λðκ − ΔqÞ
Δq

¼ −
�
κ þ I

Z
∞

κ
Wðκ − qÞλðqÞdq

�
λðκÞ;

ð24Þ

λðκ −ΔqÞ− λðκ − 2ΔqÞ
Δq

¼ −
�
κ −Δqþ I

Z
∞

κ
Wðκ −Δq− qÞλðqÞdq

�
λðκ −ΔqÞ

− Iλðκ −ΔqÞ
Z

κ

κ−Δq
Wðκ −Δq− qÞλðqÞdq: ð25Þ

The integral in the last term in (25) can be approximated by
the trapezoidal rule as

Δq
2

½Wð0Þλðκ − ΔqÞ þWð−ΔqÞλðκÞ�: ð26Þ

Thus λðκ − ΔqÞ and λðκ − 2ΔqÞ are determined by (24),
(25) and (26). Continuing in a similar way we build up
the discretized solution λðκ − iΔqÞ; i ¼ 0;…; 2N, which
depends on the constant A in the initial condition. The
process must be repeated to search for an A such that the
solution is normalized.
The solution, unnormalized in general, is well defined

for any current I, so if normalization can be achieved we
have overcome the restriction to small current required in
the iterative method. Unfortunately we see no simple way
to automate the normalization. The awkwardness in nor-
malization, and the requirement that WðqÞ vanish for
q > 0, are two undesirable features of this method that
we wish to avoid.

C. Solution by time-domain integration
of the Vlasov-Fokker-Planck equation

Another possibility is to integrate the full VFP equa-
tion (12) as an initial-value problem, using the method of
local characteristics [2]. With fðq;p;0Þ¼expðq2þp2Þ=2π
as the initial value, the solution is expected to converge to
the Haïssinski solution at large τ, provided that the current
is below the threshold for instability. The disadvantage of
this approach is that is does not allow the study of currents
above threshold, and it takes much more computer time.
It does provide, however, a useful check of the VFP
solution algorithm, given a Haïssinski solution from
another method.

IV. NUMERICAL SOLUTION OF THE
NONLINEAR INTEGRAL EQUATION BY

NEWTON’S METHOD

We discretize the equation (19) on a uniform mesh of n
points qi, running from −κ to κ:

qi ¼ −κ þ ði − 1ÞΔq; Δq ¼ κ=m;

i ¼ 1; 2;…; n ¼ 2mþ 1: ð27Þ

We write φi for the numerical approximation to φðqiÞ, and
Si−j for Sðqi − qjÞ. We discretize the integrals by some
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quadrature rule with weights wi. Then the discretized form
of (19) is

Fiðφ; IÞ ¼ φi

X
j

wj exp
�
−q2j=2þ

X
k

wkSj−kφk

�

− I exp

�
−q2i =2þ

X
j

wjSi−jφj

�
¼ 0;

i ¼ 1;…; n: ð28Þ

Newton’s method defines a sequence of approximations
by successive linearizations of the equation. If φðpÞ is the
pth approximate solution, then φðpþ1Þ is obtained from the
first order Taylor development about φðpÞ:

FiðφðpÞ; IÞ þ
X
j

∂FiðφðpÞ; IÞ
∂φj

ðφðpþ1Þ
j − φðpÞ

j Þ ¼ 0;

i ¼ 1;…; n: ð29Þ

An initial guess φð0Þ, sufficiently close to the desired
solution, is required. The Jacobian matrix element com-
puted from (28) is

∂Fiðφ; IÞ
∂φj

¼
X
k

wkðδij þφiwjSk−jÞ

× exp

�
−q2k=2þ

X
l

wlSk−lφl

�

− IwjSi−j exp

�
−q2i =2þ

X
k

wkSi−kφk

�
: ð30Þ

Given φðpÞ, we compute FðφðpÞ; IÞ and ∂FðφðpÞ; IÞ=∂φ
from (28) and (30) and then solve the system (29) of n
linear equations for x ¼ φðpþ1Þ − φðpÞ to find the
update φðpþ1Þ ¼ xþ φðpÞ.
A convenient criterion for convergence may be stated in

terms of a vector norm, for instance

kφk ¼
Xn
i¼1

jφij: ð31Þ

We judge convergence by the quantity

r ¼ kφðpþ1Þ − φðpÞk
kφðpÞk ; ð32Þ

demanding that it reach a small value, say 10−14, as p
increases. Of course, one must also check convergence
under refinement of the mesh (27). We normally do that just
by graphical comparisons, but it could be done more
quantitatively.

At sufficiently small current the Gaussian should be a
suitable first guess, φð0Þ ¼ I expð−q2=2Þ= ffiffiffiffiffiffi

2π
p

. In practice
this choice is good for realistic currents with reasonable
wake potentials, in fact at currents considerably higher than
realistic. On the other hand, to understand the mathematical
properties of the equation it may be useful to go to much
higher currents.
An obvious approach to high current is to begin with the

Gaussian and increase I in steps, taking a solution at I as
the first guess for an attempted solution at I þ ΔI. An
improvement to this idea can be achieved at little cost by
instead using a linear extrapolation in I:

φðI þ ΔIÞ ≈ φðIÞ þ dφðIÞ
dI

ΔI: ð33Þ

The derivative is found by differentiating the I-dependent
equation with respect to I:

FðφðIÞ; IÞ ¼ 0;
X
j

∂Fi

∂φj

dφj

dI
þ ∂Fi

∂I ¼ 0: ð34Þ

At the end of the Newton iteration for current I we have
in hand both the Jacobian ∂FðIÞ=∂φ and the quantity
∂FðIÞ=∂I (from the second term of (28). Thus it takes only
one solution of the linear system (34) to produce the
required derivative dφðIÞ=dI for (33).
A convenient way to arrange the code is to make this

method of advancing I always available, and so that the
case of a single I is merely a special case. Thus one
specifies the initial and final values of I, and the number of
intermediate values, taken to be evenly spaced. This is
convenient for plotting I-dependent quantities such as the
centroid position or the r.m.s. bunch length of the
Haïssinski distribution, and also for exploring the high
current regime.

V. TESTS OF THE METHOD FOR
QUASIREALISTIC WAKE POTENTIALS

We consider examples of the wake potential, obtained by
solving Maxwell’s equations with a quasirealistic model of
the vacuum chamber providing the boundary conditions on
metallic walls. The ideal wake potentialW0ðqÞ, often called
the delta wake, would be the longitudinal field Eðq; sÞ at a
fixed normalized distance q from a point charge circulating
on the ideal orbit, averaged in the position s over one turn.
In practice the point charge is replaced by a short Gaussian
charge distribution (a “driving bunch”) to provide the
approximated wake potential WðqÞ. This smooth function
could be called a “pseudo-Green function” to distinguish it
from a true Green function which cannot be smooth. If
curvature of the orbit is neglected, W0ðqÞ displays “cau-
sality”, in that it vanishes in front of the point charge
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(q > 0). In contrast WðqÞ will be nonzero for small q > 0,
but will fall off quickly with increasing q.
Pioneering simulations of wake potentials were

carried out for the damping rings of the Stanford Linear
Collider (SLC). The model was axially symmetric, with
the fields being computed by Weiland’s code TBCI [12].
The boundary conditions were for infinite conductivity of
the chamber walls. There were two calculations, one for the
original vacuum chamber [11], and one for a new vacuum
chamber designed to have smoother walls [13]. The latter
replaced the original in an attempt to gain a higher
threshold in current for a bunch instability.
Computer power and codes for electromagnetics have

been greatly improved since the work for the SLC, and the
physical model for newer storage rings has necessarily been
extended to include coherent synchrotron radiation from
curved orbits. A shorter driving bunch was needed, owing
to shorter bunches in the new rings, and better electro-
magnetic codes allowed the inclusion of three-dimensional
structures. An example of this more modern effort is a
calculation for the low energy ring (LER) of KEKB (which
is now out of service) [14]. The model included CSR and
resistive wall contributions as well as geometric wake
fields. This ring allowed a configuration with negative
momentum compaction [15], so we want to include that
case in the Haïssinski solutions.
A rather different example of an ambitious calculation

was for the positron ring of DAFNE at Frascati [16,17].
There CSR was not important owing to the large bunch
length, but the geometric structures were modeled very
carefully. An overview of the SLC and DAFNE cases may
be found in Ref. [18].
For each of the examples mentioned we make a cubic

spline interpolation of the wake potential data from the
relevant simulation, then integrate the spline analytically to
make a smooth representation of the integrated potential
SðqÞ for input to the integral equation (18).
For a qualitative comparison of the various cases it is

useful to see how much the collective force −F resembles
that from a linear combination of purely inductive and

purely resistive components. The corresponding wake
potentials are WðqÞ ¼ aδ0ðqÞ (inductive) and WðqÞ ¼
−bδðqÞ (resistive), where a and b are dimensionless
positive constants. The corresponding force components
are proportional to

Z
δ0ðq − q0Þλðq0Þdq0 ¼ λ0ðqÞ;

−
Z

δðq − q0Þλðq0Þdq0 ¼ −λðqÞ: ð35Þ

Signs are determined by the requirement that there be
energy loss from particles at the front of the bunch. We
make a weighted least-squares fit to the actual F by
minimizing the following integral with respect to a and b:

Z
λðqÞ

�
I
Z

Wðq − q0Þλðq0Þdq0 − aλ0ðqÞ þ bλðqÞ
�
2

dq:

ð36Þ

Another way to make a qualitative comparison of cases
is to plot the bunch centroid and the r.m.s. bunch length as a
function of current. Such plots, along with the fit to the
inductive plus resistive wake, will be given for each of
our examples.

A. SLC damping ring with the original
vacuum chamber

For details of this example see Ref. [11]. For an rf
voltage of 800 KeV the relevant parameters are as follows:

νs ¼ 0.0117; σE ¼ 0.805 MeV;

σz ¼ 4.95 mm; I=N ¼ 2.71 × 10−12 pC=V: ð37Þ

For a typical bunch population of N ¼ 5 × 1010 the
normalized current is I ¼ 0.136 pC=V.
The wake potential WðqÞ computed with a Gaussian

driving bunch with σ ¼ 0.5 mm is shown in Fig. 1 (left).

FIG. 1. Results for the SLC damping ring with its original vacuum chamber. Left: Wake potential WðqÞ; Right: Equilibrium charge
density for N ¼ 5 × 1010 (blue) and in the limit of zero current (red).
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The finite extent of the driving bunch accounts for the
potential not being zero at small positive q.
For solution of the integral equation we choose the

weights wi for numerical quadrature to be those for
Simpson’s method; namely fwig ¼ ðΔq=3Þð1; 4; 2;…;
2; 4; 1Þ.. In the present and following examples we define
the mesh in (27) with κ ¼ 6 for a mesh extending to 6σz, and
m ¼ 400 for 801 mesh points. We take r ¼ 10−14 in (32) as
the criterion for convergence. For a bunch population of
N ¼ 5 × 1010, roughly the maximum that was stored in the
ring, we get the Haïssinski solution shown in Fig. 1 (right).
For comparison we show the Gaussian solution for zero
current. The iteration to achieve this solution, beginning
with the Gaussian, converged in 11 steps.
The good convergence is found to persist at much higher

currents. In Fig. 2 (left) we compare solutions for
N ¼ ð5; 10; 20; 30Þ × 1010. These solutions all started with
the Gaussian as first guess, but the extent of the mesh had to
be increased (taking κ ¼ 10) because of the increased

bunch lengthening. At the highest current, 39 iterations
were required. It is interesting to find that the value of r at
the first iterate is always rather large, say 0.25, even at very
small current. The same sequence of solutions is obtained
by applying the method of continuation in I presented
in Sec. IV. After a small step in I very few iterations are
needed for convergence.
The very pronounced bunch lengthening in this example

corresponds to a flat bottom in the distorted potentialwell. The
well as given by (17) is shown in Fig. 2 (right), for the same
sequence of currents. Since log λðqÞ ¼ −VðqÞ − logA, the
wavymodulations in λ at high current must have a counterpart
in VðqÞ. Taking the logarithm makes the modulations too
small to be apparent on the scale of the graph of VðqÞ.
The fit to a sum of purely inductive and resistive wakes,

plotted in Fig. 3 (right), shows that the inductive character
is dominant within the bunch distribution: a=b ¼ 3.47.
A purely inductive wake lengthens the bunch while keeping
it symmetric about q ¼ 0, while a purely resistive wake

FIG. 2. Haïssinski charge density for SLC damping ring with original vacuum chamber, for N ¼ ð5; 10; 20; 30Þ × 1010 (left) and
corresponding distorted potential well (right).

FIG. 3. Left: Bunch centroid hqi and r.m.s. length σq as a function of normalized current, for SLC damping ring with original vacuum
chamber. For N ¼ 5 × 1010 the value of I is 0.136 pC=V. Right: A fit to FðqÞ by a linear combination of resistive and inductive terms,
with a ¼ 24.5 and b ¼ 7.07, at N ¼ 5 × 1010.
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makes the bunch lean forward with little change in its
length. Accordingly, the bunch form overlayed in Fig. 3
shows relatively little leaning.
In Fig. 3 (left) we show the evolution with current of the

normalized bunch length and centroid position. For N ¼
5 × 1010 the normalized current is I ¼ 0.136 pC=V. Both
σq and hqi show a steady increase, almost linear at high I.
The computations were done by a FORTRAN code using

standard software for the linear algebra to solve for Newton
iterates. The latter provides an estimate of the condition
number of the Jacobian matrix, which turned out to be
acceptably small, ranging from 10 at nominal current to 86
at six times nominal. Thus the iterates are numerically
well defined. The computation time was negligible. In the
following examples, the convergence and condition num-
bers were noworse than in the present case, and often better.

B. SLC damping ring with the improved
vacuum chamber

This case is reviewed in Refs. [13,18]. For an rf voltage
of 800 KeV the relevant parameters are the following:

νs ¼ 0.0116; σE ¼ 0.847 MeV;

σz ¼ 4.95 mm; I=N ¼ 2.60 × 10−12 pC=V: ð38Þ

For a typical bunch population of 5 × 1010 we have
I ¼ 0.14 pC=V.
In Figs. 4–6 we see a marked change in comparison

to the case of the original damping ring. In Fig. 6 (right)
the resistive component is shown to dominate the
inductive: b=a ¼ 2.66. The bunch leans forward in
the rf bucket, to compensate for the energy loss from
the resistive wake field. The bunch length tends to
saturate with increasing current, as is seen in Fig. 6
(left). The fall-off of charge density at the leading edge
becomes sharper and sharper as the current increases, as
is seen in Fig. 5.

C. KEKB low energy ring

This case is reviewed in Refs. [14,15]. For an rf voltage
of 8 MeV the relevant parameters are the following:

FIG. 4. Results for the SLC damping ring with improved vacuum chamber. Left: Wake potential WðqÞ; Right: Equilibrium charge
density for N ¼ 5 × 1010 (blue) and in the limit of zero current (red).

FIG. 5. Haïssinski charge density for SLC damping ring with improved vacuum chamber, for N ¼ ð5; 10; 20; 30Þ × 1010 (left) and
corresponding distorted potential well (right).
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νs ¼ 0.024; σE ¼ 2.54 MeV;

σz ¼ 4.58 mm; I=N ¼ 4.18 × 10−12 pC=V: ð39Þ

For a typical bunch population of 6.6 × 1010 we have
I ¼ 0.0275 pC=V. We plot the charge density for this N in
Fig. 7 (right) and the wake potential in Fig. 7 (left). The
behavior of the charge density and the potential well with
increasing current is shown in Fig. 8.
This ring was able to run with negative momentum

compaction. In Fig. 7 (right) we plot a charge density for
that case in the black curve. This was obtained by changing
the sign of I, while keeping all other parameters unchanged;
see (11). The steep fall-off at the back of the bunch is typical
for negative momentum compaction.
In this example the linear combination of inductive and

resistive components provides a remarkably accurate rep-
resentation of the collective force, as is seen in Fig. 9
(right). The inductive part dominates moderately, with
a=b ¼ 2.18, so that we see the inductive pattern of strong
bunch lengthening with relatively little forward tipping as

the current is increased. Compare the behavior of bunch
length versus current in Fig. 9 (left) with the corresponding
graph Fig. 6 (left) for the previous example, in which the
resistive part dominated.

D. DAFNE positron ring

See Refs. [16,17] for information on this case. For an rf
voltage of 250 kV we have

νs ¼ 0.011; σE ¼ 0.202 MeV;

σz ¼ 2 cm; I=N ¼ 1.15 × 10−11 pC=V: ð40Þ

For a typical bunch population of N ¼ 9 × 1010 we have
I ¼ 1.035 pC=V. Fig. 10 (right) shows the charge density
for this N, while Fig. 10 (left) displays the wake potential.
The charge density and potential well are plotted for
increasing current in Fig. 11.
Although the parameters of this ring are totally different

from those of KEKB, especially in the long bunch length,
the qualitative picture of wakes and bunch forms is

FIG. 6. Left: Bunch centroid hqi and r.m.s. length σq as a function of normalized current, for SLC damping ring with improved
vacuum chamber. For N ¼ 5 × 1010 the value of I is 0.140 pC=V. Right: A fit to FðqÞ by a linear combination of resistive and inductive
terms, with a ¼ 3.06 and b ¼ 8.14, at N ¼ 5 × 1010.

FIG. 7. Results for KEKB-LER. Left: Wake potentialWðqÞ; Right: Equilibrium charge density for N ¼ 6.6 × 1010 (blue), in the limit
of zero current (red), and for negative momentum compaction (black).

NUMERICAL SOLUTION OF THE HAÏSSINSKI… PHYS. REV. ACCEL. BEAMS 21, 124401 (2018)

124401-9



FIG. 8. Haïssinski charge density for KEKB-LER, for N ¼ ð6.6; 13.2; 26.4; 39.6Þ × 1010 (left) and corresponding distorted potential
well (right).

FIG. 9. Left: Bunch centroid hqi and r.m.s. length σq as a function of normalized current, for KEKB-LER. At N ¼ 6.6 × 1010 the
value of I is 0.0275 pC=V. Right: A fit to FðqÞ by a linear combination of resistive and inductive terms, with a ¼ 7.45 and b ¼ 3.41,
at N ¼ 6.6 × 1010.

FIG. 10. Results for DAFNE positron ring. Left: Wake potential WðqÞ; Right: Equilibrium charge density for N ¼ 9 × 1010 (blue),
and in the limit of zero current (red).
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remarkably similar in our normalized variables. Again we
have a very good fit to a sum of inductive and resistive
components, with almost a 2∶1 ratio of inductive to
resistive parts, as is seen in Fig. 12 (right). The pattern
of bunch forms and bunch length versus current is very
similar to that of KEKB.

VI. CONCLUSIONS AND OUTLOOK

We have demonstrated a simple and convenient method to
solve the Haïssinski equation, with quasirealistic wake
potentials for different kinds of electron storage rings. In
work not covered in this report, we have also verified that the
method works as well for the broad band resonator model of
the wake potential, with similar or better experience regard-
ing convergence. We have also applied the method with the
wake from coherent synchrotron radiation, accounting for
the “shielding” due to the vacuum chamber. The parallel
plate model of the vacuum chamber was invoked in [19], and
the toroidal model with resistive wall in [20].

There is scope for mathematical analysis of the
Haïssinski equation, which we hope to present in a later
paper. One can prove existence and uniqueness of
solutions at sufficiently small current, under weak con-
ditions on the wake potential. Also, a critique of previous
work on ideal models of the wake potential seems to be
in order. The models of purely inductive, purely resi-
stive, and purely capacitive wake potentials involve
some interesting mathematical questions that should be
re-examined.
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FIG. 11. Haïssinski charge density for DAFNE, forN ¼ ð9; 18; 36; 54Þ × 1010 (left) and corresponding distorted potential well (right).

FIG. 12. Left: Bunch centroid hqi and r.m.s. length σq as a function of normalized current, for DAFNE. AtN ¼ 9 × 1010 the value of I
is 1.035 pC=V. Right: A fit to FðqÞ by a linear combination of resistive and inductive terms, with a ¼ 7.45 and b ¼ 3.21, at
N ¼ 9 × 1010.
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