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We present a general method to derive the magnetic field dependence of the surface resistance
of superconductors from the Q-curves obtained during the cryogenic tests of cavities. The results are
applied to coaxial half-wave cavities, TM-like “elliptical” accelerating cavities, and cavities of more
complicated geometries.
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I. INTRODUCTION

The well-known expressions for the surface resistance of
superconductors in electromagnetic fields, and its depend-
ence on frequency, temperature, and a few materials
parameters, were obtained as a perturbation theory under
the assumption that the magnitude of the electromagnetic
field is much smaller than the critical field [1–4]. This
resulted in a surface resistance independent of the magni-
tude of the electromagnetic field. There have been several
attempts at developing theories of the surface resistance at
high rf field [5–7], up to the critical field, but, at present,
there is no universally accepted consensus on the correct
fully self-consistent theory.
Experimentally, cryogenic tests of superconducting

cavities developed for particle accelerators have shown
that superconductors can display a strong dependence of
their surface resistance on the rf field. Furthermore, the
field dependence can vary greatly depending on the
history of the cavities: chemical treatment, high temper-
ature and low temperature [8,9] heat treatment, impurity
concentration [10,11], ambient magnetic field during
transition [12], cooling rate during transition [13], and
so on. Traditionally superconductors have shown an
increase of their surface resistance with rf field [14,15]
which puts a limit to the accelerating gradients achievable
for high-energy accelerators. More recently, processes
have been developed that yield a decrease of the surface
resistance with medium fields [16,17], a great benefit for

accelerators operating in cw mode. A strong dependence
of the surface resistance on magnetic field is also often
observed in cavities made by sputtering of Nb on Cu
[18,19] or in cavities made of Nb3Sn on Nb [20].
Developing a full understanding and theory of the rf field
dependence of the surface resistance of superconductors
will require accurate knowledge of that surface resistance
as a function of the rf field, and its dependence on
preparation and processing parameters. Experimentally
it has proven difficult to develop techniques where a
superconductor was exposed to a uniform electromagnetic
field. Until now, in all measurements, either the super-
conducting sample was exposed to a non-uniform field in
a test cavity or, more often, an entire cavity was made of
superconducting material that was exposed to a field that
ranged from 0 to a maximum value.
In this paper we present a method and formulae that

allow determination of the actual dependence of the surface
resistance from experiments where an “average” surface
resistance is derived from tests of superconducting reso-
nators. An underlying assumption is still that, while the
surface resistance has a magnetic field dependence, it does
not have a dependence on location. It is not always true as it
is known that superconducting cavities can have “hot
spots” where the surface resistance is higher and with a
stronger field dependence than in the rest of the cav-
ity [21,22].

II. ANALYTICAL METHOD

A cryogenic test of a superconducting cavity often
consists of the measurement of the quality factor Q as a
function of some field, either the average accelerating field
or a peak surface field. Here we assume that we exper-
imentally measure QðHpÞ as a function of the peak surface
magnetic field Hp.
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A characteristic property of an electromagnetic mode of
a cavity is its geometrical factor G defined as

G ¼ ωμ0

R
V jHj2dVR
S jHj2dS : ð1Þ

It depends only on the shape of the cavity and the
electromagnetic mode; it is independent of material and
frequency (or size).
If the surface resistance Rs is constant, then G ¼ QRs.

While the assumption of constant surface resistance may be
valid for normal conductors it often is not for super-
conductors as their surface resistance can display a strong
dependence on the local surface magnetic field.
Dividing the geometrical factor G by the measured

QðHpÞ we obtain a surface resistance R̄sðHpÞ. Since the
magnetic field is not constant over the whole surface, R̄s is
only an average surface resistance. The goal is to obtain the
actual RsðHÞ from the experimentally measured R̄sðHÞ.
The two are related by

R̄sðHpÞ
Z
S
jHðr⃗Þj2dS ¼

Z
S
RsðHðr⃗ÞÞjHðr⃗Þj2dS; ð2Þ

where the integrals are taken over the whole cavity area.
We define the function aðhÞ as the fraction of the total

cavity area where jHj ≤ hHp when Hp is the peak surface
magnetic field in the cavity. Clearly aðhÞ is a continuous
monotonically increasing function with að0Þ ¼ 0 and
að1Þ ¼ 1. Furthermore, for many of the normally shaped
cavities with some degree of symmetry, the peak surface
magnetic field Hp does not occur at a single point but on a
closed contour. This is the case for example for quarter-
wave, half-wave, spoke, and TM010 type cavities. In that
case we have da

dh jh¼1 ¼ ∞. For more complex geometries
where Hp occurs at a single point dadh jh¼1 can remain finite
but still take large values close to h ¼ 1.
Alternatively, aðhÞ can be interpreted as the probability

distribution for the surface magnetic field and da
dh as its

probability density.
Because of the continuity and monotonicity of aðhÞ we

can make a change of variable in the integrals in Eq. (2) and
integrate over the magnetic field instead of over the area.

R̄sðHÞ
Z

1

0

ðhHÞ2 da
dh

dh ¼
Z

1

0

RsðhHÞðhHÞ2 da
dh

dh: ð3Þ

We now assume that the experimentally measured R̄sðHÞ
can be expanded in a sum of powers of the magnetic field

R̄s

�
H
H0

�
¼ R̄0

X
αi

rαi

�
H
H0

�
αi
: ð4Þ

The sum, which can be of any length, is not restricted to
integer powers as in Taylor series. The coefficients αi can
be any non-negative real numbers and can be chosen to

provide a best approximation to the experimental data. For
the sake of convenience we assume that α0 ¼ 0 and that the
suite is ordered (αi < αj if i < j).
The magnetic field H0 is arbitrary and is introduced to

make the coefficients rαi dimensionless. R̄0 is the zero-field
surface resistance and, since α0 ¼ 0, rα0 ¼ 1.
We assume the same power expansion for the actual

surface resistance but with the coefficients modified by the
factors βðαiÞ

Rs

�
H
H0

�
¼ R0

X
αi

βðαiÞrαi
�
H
H0

�
αi
; ð5Þ

with R0 ¼ R̄0 and βðα0Þ ¼ 1.
Replacing R̄sðH=H0Þ and RsðH=H0Þ by their expan-

sions in the integrals in Eq. (3) and equating identical
powers of ðH=H0Þ we obtain the factors βðαiÞ relating the
coefficients in the power expansion of the average and
actual surface resistance. The functional dependence of the
correction coefficients βðαÞ is given by

βðαÞ ¼

Z
1

0

h2
da
dh

dhZ
1

0

h2þα da
dh

dh
: ð6Þ

Since aðhÞ is monotonically increasing da
dh ≥ 0, and since

0 ≤ h ≤ 1, βðαiÞ > βðαjÞ for αi > αj. The function βðαÞ is
a smooth, continuous, monotonically increasing function
with βð0Þ ¼ 1, so it needs to be calculated only for a small
number of α and its value can be obtained for any other by
interpolation.
A hypothetical cavity with a uniform surface magnetic

field would have að0 ≤ h < 1Þ ¼ 0, að1Þ ¼ 1, and da
dh ¼

δð1 − hÞ, which would give from Eq. (6) βðαÞ ¼ 1; ∀ α as
expected.
For more complicated cavity geometries where aðhÞ

cannot be obtained analytically it may be more convenient
to use an equivalent relationship obtained by performing an
integration by parts in the above expression for βðαÞ.
Z

1

0

h2þα da
dh

dh ¼ h2þαaðhÞ
���1
0
− ð2þ αÞ

Z
1

0

h1þαaðhÞdh

¼ 1 − ð2þ αÞ
Z

1

0

h1þαaðhÞdh

¼ ð2þ αÞ
Z

1

0

h1þα½1 − aðhÞ�dh; ð7Þ

which yields

βðαÞ ¼
2

Z
1

0

h½1 − aðhÞ�dh

ð2þ αÞ
Z

1

0

h1þα½1 − aðhÞ�dh
: ð8Þ
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In the two integrals in the above equation the quantity in
brackets now represents the fraction of the cavity area that
sustains a magnetic field jHj > hHp.
Conceptually it would be even possible to assume a

continuum spectrum of exponents α where the surface
resistances would be of the form

R̄s

�
H
H0

�
¼ R̄0

Z
∞

0

rðαÞ
�
H
H0

�
α

dα;

Rs

�
H
H0

�
¼ R0

Z
∞

0

βðαÞrðαÞ
�
H
H0

�
α

dα: ð9Þ

rðαÞ would then be related to R̄s through a Laplace
transform and its inverse, and the factors βðαÞ would still
be given by Eqs. (6) or (8). It is not clear that such a
complication would be beneficial in practical applications
for realistic cavities and superconductors.

III. APPLICATION TO COAXIAL
HALF-WAVE CAVITY

The above results are now applied to a coaxial half-
wave cavity of length L, center conductor radius a, and
outer conductor radius b, operating in any of the TEM
modes. We define the dimensionless parameters ρ ¼ a=b
and δ ¼ b=L.
Such a cavity, shown in Fig. 1, has been built and is

being used specifically for the investigation of the fre-
quency, rf field, and temperature dependence of the surface
resistance of superconductors [23,24]. Its dimensions are
a ¼ 19.5 mm, b ¼ 101 mm, and L ¼ 460 mm.
The area of the center conductor is A1¼2πaL¼2πρδL2.

The peak magnetic field on the center conductor is Hp and
the area that sustains a magnetic field jHj ≤ hHp is

A1ðhÞ ¼ 4ρδL2 arcsinðhÞ; ð10Þ

dA1ðhÞ
dh

¼ 4ρδ
L2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2

p : ð11Þ

The area of the outer conductor is A2 ¼ 2πbL ¼ 2πδL2.
The peak magnetic field on the outer conductor is ρHp and
the area that sustains a magnetic field jHj ≤ hHp is

A2ðhÞ ¼
�
4δL2 arcsinðh=ρÞ if 0 ≤ h < ρ;

2πδL2 if ρ ≤ h ≤ 1;
ð12Þ

dA2ðhÞ
dh

¼
� 4δ

ρ
L2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−ðh=ρÞ2
p if 0 ≤ h < ρ;

0 if ρ ≤ h ≤ 1:
ð13Þ

The area of the two end plates is 2πðb2 − a2Þ ¼
2πδ2L2ð1 − ρ2Þ. They sustain a maximum magnetic field
Hp and a minimummagnetic field ρHp. The area where the
magnetic field is jHj ≤ hHp is

A3ðhÞ ¼
�
0 if 0 ≤ h < ρ;

2πδ2L2ð1 − ðρ=hÞ2Þ if ρ ≤ h ≤ 1;
ð14Þ

dA3ðhÞ
dh

¼
�
0 if 0 ≤ h < ρ;
4πρ2δ2L2

h3 if ρ ≤ h ≤ 1:
ð15Þ

The contributions of the inner conductor, outer conduc-
tor, and end plates to the function aðhÞ and the function
aðhÞ itself are shown for a coaxial half-wave cavity with
b=L ¼ 0.25 in Fig. 2 for a=b ¼ 0.2, and in Fig. 3 for
a=b ¼ 0.5. The functions da

dh for the same cavities are shown
in Fig. 4 for a=b ¼ 0.2, and in Fig. 5 for a=b ¼ 0.5 In both
cases the singularities at h ¼ ρ and h ¼ 1 are clearly
visible.
From this we can calculate the coefficients in the

expansion of the surface resistance in powers of the
magnetic field using Eq. (6):

FIG. 1. Exploded view of the coaxial half-wave cavity.
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FIG. 2. Fractional areas of a coaxial half-wave cavity where
H ≤ hHp, and contributions from the cavity components. The
ratio of outer radius to length is 0.25 and the ratio of inner to outer
radii is 0.2.
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βðαÞ ¼
ρ

Z
1

0

h2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2

p dhþ ρ−1
Z

ρ

0

h2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðh=ρÞ2

p dhþ
Z

1

ρ
πρ2δh−1dh

ρ

Z
1

0

h2þαffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2

p dhþ ρ−1
Z

ρ

0

h2þαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðh=ρÞ2

p dhþ
Z

1

ρ
πρ2δh−1þαdh

¼ ð1þ ρÞ=4þ ρδ lnð1=ρÞ
1þ ρ1þα

2
ffiffiffi
π

p Γðα=2þ 3=2Þ
Γðα=2þ 2Þ þ ρδ

α
ð1 − ραÞ

: ð16Þ

The factors β calculated from Eq. (16) are shown as
function of α for various ρ in Fig. 6, and as function of ρ for
various α in Fig. 7. The latter clearly shows that the
coefficients βðαÞ first increase as a function of ρ and then
decrease. Actually, for all α, βðαÞ takes the same value for
ρ ¼ 0 and ρ ¼ 1.
The curve corresponding to ρ ¼ 0 in Fig. 6 is equivalent

to assuming that the behavior is dominated by the center
conductor and that only that area needs to be taken
into consideration. In that case the coefficients βðαÞ are
given by

βðαÞ ≃
ffiffiffi
π

p
2

Γðα=2þ 2Þ
Γðα=2þ 3=2Þ ; ð17Þ

However, it is clear from Fig. 6 that, even for very small
ρ, βðαÞ is quite different from that given for ρ ¼ 0. This
means that the whole cavity area needs to be taken into
consideration and the outer conductor and end plates need
to be included.
These results are now applied to the half-wave cavity

shown in Fig. 1. Figure 8 shows a typical curve of the
quality factor Q as function of the peak surface magnetic
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FIG. 3. Fractional areas of a coaxial half-wave cavity where
H ≤ hHp, and contributions from the cavity components. The
ratio of outer radius to length is 0.25 and the ratio of inner to outer
radii is 0.5.
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FIG. 5. Derivative of the fractional areas of a coaxial half-wave
cavity where H ≤ hHp, and contributions from the cavity
components. The ratio of outer radius to length is 0.25 and
the ratio of inner to outer radii is 0.5.
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FIG. 4. Derivative of the fractional areas of a coaxial half-wave
cavity where H ≤ hHp, and contributions from the cavity
components. The ratio of outer radius to length is 0.25 and
the ratio of inner to outer radii is 0.2.
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FIG. 6. Dependence of the correction coefficients β on the
exponents α for various ratios of inner to outer conductor radii of
a coaxial half-wave cavity with b=L ¼ 0.25.
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field obtained at 4.35 K when the cavity is operated in the
325 MHz fundamental mode. In that mode, the geometrical
factor is G ¼ 57Ω, from which the average surface
resistance R̄s is obtained and shown as the dots in Fig. 9.
A polynomial fit to the experimental data, shown as the

green line going through the dots in Fig. 9 is

R̄s

�
B
B0

�
¼ 48.2

�
1þ 1.54

�
B
B0

�

þ 2.03

�
B
B0

�
2

þ 3.20

�
B
B0

�
3
�
; ð18Þ

where we have chosen B0 ¼ 100 mT and the surface
resistance is expressed in nΩ.
From Eq. (16) the correcting factors βðαÞ are

βð0Þ ¼ 1; βð1Þ ¼ 1.45; βð2Þ ¼ 1.76; βð3Þ ¼ 2.01;

ð19Þ

from which we obtain the actual surface resistance

Rs

�
B
B0

�
¼ 48.2

�
1þ 2.23

�
B
B0

�

þ 3.58

�
B
B0

�
2

þ 6.42

�
B
B0

�
3
�
: ð20Þ

which is also shown in Fig. 9.

IV. APPLICATION TO CAVITIES WITH
AXIAL SYMMETRY

A. TM010 mode of a spherical cavity

Another example where the function aðhÞ can be
obtained analytically is a spherical cavity operating in
the TM010 mode where the magnetic field on the surface
has a simple angular distribution: H ¼ Hp sin θ where θ is
the angle with respect to the axis. The fractional area aðhÞ
where jHj ≤ Hp and its derivative are easily obtained:

aðhÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2

p
da
dh

¼ hffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2

p ð21Þ

The coefficients βðαÞ relating the power expansion of the
measured and real surface resistance are then

βðαÞ ¼

Z
1

0

h3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2

p dh
Z

1

0

h3þαffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2

p dh
¼ 4

3
ffiffiffi
π

p Γðα=2þ 5=2Þ
Γðα=2þ 2Þ ; ð22Þ

and shown in Fig. 10.
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FIG. 8. Q-curve as function of peak surface magnetic field for
the cavity shown in Fig. 1 operated in the fundamental 325 MHz
mode at 4.32 K.
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FIG. 9. Experimental average surface resistance obtained from
Q-curve in Fig. 8 (blue dots) with polynomial fit given by
Eq. (18) (green line) and the derived real surface resistance given
by Eq. (20) (red line).
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B. TM010 accelerating cavities and cavities
with axial symmetry

For most cavities the function aðhÞ cannot be obtained
analytically but numerically. This is still relatively easy for
cavities whose geometry displays axial symmetry. This is
the case for the so-called “elliptical” TM010 accelerating
cavities and some coaxial quarter-wave and half-wave
cavities.
An example is the original CEBAF cavity. The shape of

the cavity and its surface magnetic field in the TM010 mode
obtained from Superfish [25] are shown in Fig. 11.
The function aðhÞ can then be obtained by a simple

numerical line integration of the shape and surface field
profiles. Because aðhÞ is obtained numerically, it is more
practical to use Eq. (8) to calculate the correcting coef-
ficients βðαÞ. The function ½1 − aðhÞ� and its product with
several powers of h is shown in Fig. 12. The correcting
coefficients βðαÞ are then calculated using Eq. (8). These
are shown in Fig. 13 for the original CEBAF cavity.

As is clear from Fig. 11, that cavity was designed to have
as constant magnetic field on its surface as possible in order
to minimize the peak surface magnetic field. From Fig. 12
we see that the surface field is larger than 95% of its peak
value over 50% of its area. We should expect, as is
confirmed by Fig. 13, that the correcting coefficients
βðαÞ should remain close to 1.
A Q-curve measured on that cavity [16] is shown in

Fig. 14 and the experimentally-derived R̄sðHÞ as the dots
in Fig. 15.
A polynomial fit to R̄sðHÞ is shown as the green line and

is of the form

R̄s

�
B
B0

�
¼ 10.3

�
1 − 1.61

�
B
B0

�

þ 1.78

�
B
B0

�
2

− 0.58

�
B
B0

�
3
�
; ð23Þ
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FIG. 11. Radius and surface magnetic field as function of
distance on the axis from the midplane for the CEBAF original
cavity shape.
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FIG. 13. Dependence of the correction coefficients β on the
exponents α for the CEBAF original cavity shape.
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exponents α for a spherical cavity operating in the TM010 mode.
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where we have chosen B0 ¼ 100 mT and the surface
resistance is expressed in nΩ.
From Eq. (8) and Fig. 12 the correcting factors βðαÞ are

βð0Þ ¼ 1; βð1Þ ¼ 1.06; βð2Þ ¼ 1.10; βð3Þ ¼ 1.14;

ð24Þ

from which we obtain the actual surface resistance

Rs

�
B
B0

�
¼ 10.3

�
1 − 1.71

�
B
B0

�

þ 1.96
�
B
B0

�
2

− 0.66
�
B
B0

�
3
�
: ð25Þ

which is also shown in Fig. 15.
As expected from the fact that the magnetic field is

almost constant near its maximum value over a large
fraction of the surface area, there is very little difference

between R̄sðHÞ and RsðHÞ. Any difference would become
apparent only for very strong dependence of the surface
resistance on magnetic field.

V. CAVITIES OF MORE COMPLEX
GEOMETRY

In the case of cavities of more complicated geometry the
distribution function of the surface magnetic field aðhÞ
must be obtained by sampling the magnetic field over the
whole surface. This can be accomplished using the finite
element field solver Omega3P [26]. Omega3P utilizes
second-order curved tetrahedron elements and higher-order
(up to order 6) field interpolation functions so that high
accuracy can be achieved in rf field and geometry surface
area calculations for the function aðhÞ.
Using the Omega3P solver, the minimum (0) and

maximum (Hp) values of the surface magnetic field
are obtained using the postprocessing tool. The fields
are then normalized to hmax ¼ 1. To calculate the
function aðhÞ the range h ∈ ½0; 1� is divided into a
number N of intervals. The h-field at each surface
element is determined and added to the corresponding
h-field bin. Because of the unstructured grid, the surface
areas associated with the points on the surface are
different and are determined by the element size they
belong to. The surface areas of the points that fall into a
h-bin are summed up to obtain the total surface dSðhiÞ
associated with hi. The function aðhÞ is then obtained by
a summation and normalization.

aðhnÞ ¼
P

n
1 dSðhiÞP
N
1 dSðhiÞ

ð26Þ

By its very nature, the function aðhÞ is defined only in
the interval h ∈ ½0; 1�. As mentioned previously, for nor-
mally shaped cavities, dadhjh¼1 is either infinite or exhibits a
large peak. Since the correction coefficients βðαÞ are
mostly affected by the behavior of aðhÞ near h ¼ 1,
especially for larger values of α, the calculations need to
include a large enough number of h-bins to resolve the
singularity near h ¼ 1. Similar singularities in da=dh can
also occur for other values of h—see for example aðhÞ for
the coaxial half-wave cavities in Figs. 2 and 3—but those
are less important than the one at h ¼ 1 since they
contribute less to the integrals for the calculation of βðαÞ.
An example of a cavity of more complicated geometry

with no simple symmetry is a 400 MHz rf-dipole prototype
cavity developed for the LHC High Luminosity Upgrade
[27,28] shown in Fig. 16. For this particular cavity it was
found that dividing h ∈ ½0; 1� into N ¼ 1600 intervals was
sufficient to provide the required accuracy. The “proba-
bility density” da=dh for that cavity is shown in Fig. 17 and
the distribution aðhÞ in Fig. 18.
Since aðhÞ is obtained numerically, the correction

coefficients are more easily obtained using Eq. (8) which
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)
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FIG. 15. Experimental average surface resistance obtained from
Q-curve in Fig. 14 (blue dots)with polynomial fit given by
Eq. (23) (green line) and the derived real surface resistance given
by Eq. (25) (red line).
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FIG. 14. Q-curve of a CEBAF original shape cavity [16].
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requires the integration of the products of ½1 − aðhÞ� with
powers of h. These functions are shown in Fig. 19 for the rf-
dipole cavity. The calculated correction coefficients βðαÞ
are shown in Fig. 20.
Figure 21 shows aQ-curve measured at 4.33 K following

the standard BCP chemical processing, a 600 C heat

treatment for 10 hours, and a 120 C bake for 24 hours.
From the geometrical factor G ¼ 107Ω the average
surface resistance R̄s is obtained and shown as the dots
in Fig. 22.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a(
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FIG. 18. Fractional area aðhÞ where jHj ≤ hHp for the rf-
dipole cavity shown in Fig. 16.
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FIG. 17. Function daðhÞ=dh for the rf-dipole cavity shown in
Fig. 16.
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FIG. 21. Q-curve for the 400 MHz rf-dipole cavity measured at
4.33 K.

FIG. 16. Design of a 400 MHz rf-dipole deflecting/crabbing
cavity [27,28].
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FIG. 19. Products of the fraction of the surface area of the rf-
dipole cavity, shown in Fig. 16, where the surface magnetic field
is larger than the fraction h of the peak field with several powers
of h.
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FIG. 20. Dependence of the correction coefficients β on the
exponents α for the rf-dipole cavity shown in Fig. 16.
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A polynomial fit to the experimental data, shown as the
green line going through the dots in Fig. 22, has the
functional form

R̄s

�
B
B0

�
¼ 27.8

�
1þ 0.77

�
B
B0

�

− 1.44

�
B
B0

�
2

þ 6.00

�
B
B0

�
3
�
; ð27Þ

where we have chosen B0 ¼ 100 mT and the surface
resistance is expressed in nΩ.
From Eq. (8) and Fig. 19 the correcting factors βðαÞ are

βð0Þ ¼ 1; βð1Þ ¼ 1.24; βð2Þ ¼ 1.44; βð3Þ ¼ 1.63;

ð28Þ

from which we obtain the actual surface resistance

Rs

�
B
B0

�
¼ 27.8

�
1þ 0.95

�
B
B0

�

− 2.07

�
B
B0

�
2

þ 9.76

�
B
B0

�
3
�
: ð29Þ

which is also shown in Fig. 22.

VI. SUMMARY AND CONCLUSIONS

We have presented a general method to obtain to
magnetic field dependence of a superconducting material
from measurement of the Q-curve of a superconducting
cavity. The method relies on a distribution function aðhÞ (or
its derivative) of the fraction of the cavity surface where the
surface magnetic field is less than the fraction h of the peak
surface magnetic field. In a few cases aðhÞ can be obtained
analytically, more often it needs to be obtained numerically.

From the measurement of the “average” surface resistance,
formulae have been presented relating the power expansion
of the real surface resistance to that of the “average” surface
resistance. The formulae are quite general in that the power
expansions are arbitrary in size and not limited to integer
powers. While the magnetic field dependence is obtained,
the method still relies on the assumption that the super-
conductor has uniform properties over the whole surface.
The results have been applied to coaxial half-wave

cavities, TM010 cavities, and cavities of complex 3-D
geometries. This method can also be straightforwardly
applied to test cavities where the superconducting sample
constitutes only a fraction of the whole system.
In the examples presented in this paper we have used

polynomial expansions with integer exponents since they
are relatively easy to obtain. As mentioned earlier our
method is not restricted to integer exponents but can use
any non-negative real numbers as exponents. For example
we could have included half-integer exponents that could
also have provided an excellent fit to the data but with a
different power expansion. So, although this method can be
expected to give reasonable numerical values for the actual
surface resistance, caution should be exercised in drawing
conclusions as to the functional dependence on the mag-
netic field. All that can be concluded is that the functional
dependence is consistent with the assumed model.
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