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We introduce a perturbation-theory, mode-analysis method for longitudinal multibunch instabilities
driven by the higher harmonic cavity (HHC) fundamental mode. The method, based on the exact solution
of the unperturbed particle motion in the rf bucket and suitable for modeling the effect of cavities with
general settings, is applied to study the feasibility of reutilizing the existing Advanced Light Source (ALS)
HHCs in the ALS Upgrade (ALS-U). We find that with ALS cavities the ALS-U would be susceptible to a
fast l ¼ 1 mode instability. Interestingly, the instability is driven by the imaginary rather than the real part
of the cavity fundamental-mode impedance.
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I. INTRODUCTION

The ALS-U is the Advanced Light Source (ALS) upgrade
to a multibend achromat lattice, diffraction-limited light
source [1]. While the upgrade entails the replacement of
most components, for obvious reasons it is desirable to
recycle as much as possible of the existing infrastructure,
including the rf systems and in particular the passive normal-
conducting higher-harmonic cavities (HHCs). HHCs are
widely employed in the new-generation light sources to
lengthen the bunches and reduce intrabeam scattering.
In passive operation, the basic HHC physics parameters

are the shunt impedance Rs and the fundamental-mode
resonance frequency ωr. Adopting common language,
we say that these parameters are “optimal” [2] if first
and second derivatives of the total rf voltage experienced by
the synchronous particle vanish (bunch profile maximally
flat). For a given circulating average beam current, there is a
unique pair of Rs and ωr meeting the optimum condition.
The ALS currently operates with three 3rd-harmonic

cavities, each with Rs ¼ 1.7 MΩ. As a result of a lower
main-cavity voltage requirement, in the ALS-U the optimum
HHC shunt impedance is only 1.35 MΩ. In principle, a
singleALSHHC, having shunt impedance close to optimum,
would then be sufficient. Unfortunately, the resulting power
losswould significantly exceed the cavity limit (about 5 kW).
The combined shunt impedance of two ALS cavities is

farther from optimum but two cavities would still achieve
the desired (∼4) bunch-lengthening factor and reduce

scattering effects as effectively, since the latter are not
critically dependent on the details of the bunch longitudinal
profile. A larger shunt impedance is accommodated by
tuning the HHCs further away from the 3rd-harmonic of the
rf generator frequency, and while this comes with some
advantages (lower dissipated power and Robinson insta-
bility growth rate) it has the potential to drive the
longitudinal l ¼ 1 coupled-bunch instability mode.
The study of this mode is the main topic of the paper.
The problem is investigated by mode analysis with the
primary goal of estimating the growth rates.
The framework for a perturbation-theory mode analysis

applicable to our problem goes back at least to Sacherer’s
work in the 1970s [3] and later refinements by Wang and
others [4–10], but to our knowledge it has always been
applied in the form specialized to optimum HHC configu-
ration, with more general cases handled by some heuristic
adaptation of this theory [11,12]. Our approach is based on
the exact numerical solution of the unperturbed particle
motion at equilibrium, similar to the method successfully
applied in the analysis of single-bunch broad-band imped-
ance driven instabilities [13–15], permitting an accurate
treatment of the more general HHC settings. Our main result
is a mode l ¼ 1 growth-rate estimate of about 5 ms−1. In
combination with the mode low oscillation frequency (less
than 50 Hz), this appears to place the instability out of reach
of existing longitudinal feed-back systems [16], thus under-
mining the feasibility of reusing two ALS HHCs as existing.
The content of the paper is as follows. In the next section

we establish notation and sketch the derivation of the
linearized Vlasov equation for mode analysis. In Sec. III
we write and solve the dispersion-relation equation for the
set-up with two ALS HHCs over a range of cavity tuning.
In Sec. IV we study the dispersion equation for optimum
HHCs in the approximate form found in the literature.
Although the latter would be expected to apply strictly only
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to the optimum case, we attempt to apply it also to
nonoptimum HHCs (tuned for comparable bunch length-
ening) and find reasonable agreement with the results from
Sec. III. We then work out asymptotic approximations to
the solutions and use them to recognize that while the
l ¼ 0 mode (Robinson’s) instability is driven by the real
part of the impedance, in the case of interest the l ¼ 1
mode instability is driven by the imaginary part. The
Appendices report formulas for beam loading (A), bunch
equilibrium and optimum HHC settings (B), details on the
numerical method (C), effective impedance for the modes
of interest (D), and useful formulas for motion in a purely
quartic potential (E).

II. LINEARIZED VLASOV EQUATION

We write the equations of motions for synchrotron
oscillations as

dz
dt

¼ αcδ; ð1Þ

dδ
dt

¼ eVrfðzÞ − U0

E0T0

; ð2Þ

where VrfðzÞ is the total rf voltage, E0 the design beam
energy, T0 the revolution time, U0 the energy per turn
lost to radiation, α > 0 the momentum compaction, δ ¼
ðE − E0Þ=E0 the particle relative energy, and z the longi-
tudinal coordinate. We adopt the sign convention z < 0 for
a particle in the bunch head and eVrf > 0 for energy gain
(elementary charge e > 0).
The total voltage VrfðzÞ ¼ V1ðzÞ þ V3ðzÞ results from

main and passively operated 3rd higher-harmonic cavities.
A cavity voltage has two contributions, one from the external
rf generator and the other from beam loading. For simplicity,
we model the main rf cavity voltage without distinguishing
between the two and credit the rf feed-back system with
maintaining the voltage amplitude V10 and phase ϕ1 to their
set values: V1ðzÞ ¼ V10 sinðk1zþ ϕ1Þ, where k1 ¼ ω1=c
withω1 ¼ hω0 being the rf generator frequency, h the (main
cavity) harmonic number, and ω0 ¼ 2π=T0 the revolution
frequency. Throughout this paperwe assume a uniformbeam
filling with all the rf buckets occupied by bunches having
particle population N and hence Iavg ¼ eNω1=2π ≡ eN=T1

average circulating current.
The voltage of passive HHCs, V3ðzÞ ¼ V3;0ðz; ρ0Þþ

V3;1ðz; ρ1Þ, is entirely due to beam loading and can be
distinguished into two components, one depending on the
bunch profile ρ0ðzÞ at equilibrium and the other on the time-
dependent deviation e−iΩtρ1ðzÞ from equilibrium occurring
during an instability, where Ω is the mode complex-number
frequency. The first has the form

V3;0ðz; ρ0Þ ¼ −2IavgRsF cosψ cosðk3zþ ψ −ΦÞ; ð3Þ

where F and Φ are the amplitude and phase of the Fourier
integral of the bunch profile ρ̃0ðk3Þ ¼ FeiΦ evaluated at the
third-harmonic k3 ¼ ω3=c ¼ 3ω1=c, and ψ is the HHC
tuning angle (see Appendix A). The second is

V3;1ðz;ρ1Þ¼−Iavge−iΩt
X∞
p¼−∞

ρ̃1ðωp;lÞZðωp;lþΩÞe−iωp;lz=c;

ð4Þ

where ZðωÞ is the HHC fundamental-mode impedance, ρ̃1
is the Fourier integral of ρ1ðzÞ, and ωp;l ¼ ðphþ lÞω0,
with l ¼ 0; 1;…; h − 1 being the instability coupled-
bunch mode number of interest (for a justification of this
expression, see [5,6,17–19]). For brevity we will write ωp

without the mode index and introduce the notation
ω̂p ¼ ωp þΩ. The sum in (4) extends to �∞ but because
Z is narrowband centered in a neighborhood of ω3, to very
good approximation it can be restricted to p ¼ �3.
We then write the total rf potential as the sum of zero-
and first-order terms VrfðzÞ¼Vrf;0ðz;ρ0ÞþVrf;1ðz;ρ1Þ,
with Vrf;1ðz; ρ1Þ ¼ V3;1ðz; ρ1Þ.
The equations of motion are canonical with Hamiltonian

H ¼ αcδ2=2þ UðzÞ and potential UðzÞ ¼ U0ðzÞ þ U1ðzÞ,
with

U0ðzÞ ¼ −
Z

z eVrf;0ðz0; ρ0Þ − U0

E0T0

dz0; ð5Þ

U1ðzÞ ¼ −
Z

z eVrf;1ðz0; ρ1Þ
E0T0

dz0: ð6Þ

Similarly, we decompose the Hamiltonian asH¼H0þH1,
with H0 ¼ αcδ2=2þ U0ðzÞ and H1 ¼ U1ðzÞ.
Having introduced the action/anglevariables ðJ;φÞ for the

unperturbed motion and used the corresponding canonical
transformation to change the variables ðz; δÞ → ðJ;φÞ in the
perturbed system (in the following z ¼ ζðJ;φÞ will denote
the spacial coordinate part of this transformation), theVlasov
equation for the beam phase-space distribution reads

∂Ψ
∂t þ ∂Ψ

∂φ
∂H
∂J −

∂Ψ
∂J

∂H
∂φ ¼ 0: ð7Þ

Through first order

∂Ψ0

∂φ
∂H0

∂J −
∂Ψ0

∂J
∂H0

∂φ ¼ 0; ð8Þ

∂Ψ1

∂t þ ∂Ψ1

∂φ
∂H0

∂J −
∂Ψ0

∂J
∂H1

∂φ ¼ 0: ð9Þ

Any function Ψ0 of H0 solves (8) and is an equilibrium.
The physical equilibrium in an electron storage ring has the
particular form

Ψ0 ¼ Ae−H0=β; ð10Þ
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where A is a normalization constant and β is determined
so as to yield the thermal distribution ∼e−δ2=2σ2δ in energy
deviation, with σδ being the natural rms energy spread.
From inspection of the kinetic part of the Hamiltonian we
infer β ¼ αcσ2δ and therefore Ψ0 ¼ Ae−δ

2=2σ2δe−U0ðzÞ=αcσ2δ ¼
ð ffiffiffiffiffiffi

2π
p

σδÞ−1e−δ2=2σ2δ ρ0ðzÞ where

ρ0ðzÞ ¼
e−U0ðzÞ=αcσ2δR
e−U0ðz0Þ=αcσ2δdz0

; ð11Þ

has normalization
R
ρ0ðzÞdz ¼ 1. Note that (11) is a

nontrivial equation since the HHC part of the potential
U0ðzÞ depends on ρ0ðzÞ through F and Φ [20], see
Appendix B. Write Ψ ¼ Ψ0 þ e−iΩtΨ1 and the linearized
equation (9) becomes

−iΩΨ1 þ ωs
∂Ψ1

∂φ −
∂Ψ0

∂J
∂H1

∂φ ¼ 0; ð12Þ

whereωs ¼ ωsðJÞ ¼ ∂H0=∂J is the synchrotron oscillation
frequency. Representing the perturbation Ψ1ðφ; J;ΩÞ ¼P∞

m0¼−∞ Rm0 ðJÞeim0φ as a series of azimuthal modes, we
have

∂H1

∂φ ¼ −
eVrf;1ðζ; ρ1Þ

E0T0

dζ
dφ

¼ eIavg
E0T0

X
p¼�3

ρ̃1ðωpÞZðω̂pÞ
c

−iωp

d
dφ

e−iωpζ=c; ð13Þ

yielding

− i
X∞

m¼0−∞
ðΩ −m0ωsÞRm0eim

0φ

−
eIavg
E0T0

∂Ψ0

∂J
X
p¼�3

ρ̃1ðωpÞZðω̂pÞ
c

−iωp

d
dφ

e−iωpζ=c ¼ 0;

ð14Þ
with

ρ̃1ðωÞ¼
Z

∞

−∞
dzeiðω=cÞzρ1ðzÞ¼

Z
∞

−∞
dzdδeiðω=cÞzΨ1ðz;δÞ

¼
X∞

m0¼−∞

Z
∞

0

dJ0Rm0 ðJ0Þ
Z

2π

0

dφ0eiωζðJ0;φ0Þ=ceim0φ0
:

ð15Þ

Upon multiplying by e−imφ, integrating over φ, and defining
the following functions involving the canonical transforma-
tion ζ (see, e.g., Mosnier [14])

Hm;pðJÞ ¼
1

2π

Z
2π

0

eimφþiωpζðJ;φÞ=cdφ; ð16Þ

we finally write:

ðΩ−mωsÞRmþ2πim
eIavg
E0T0

∂Ψ0

∂J
X
p0¼�3

cZðω̂p0 Þ
ωp0

H�
m;p0 ðJÞ

×
X∞

m0¼−∞

Z
∞

0

dJ0Rm0 ðJ0ÞHm0;p0 ðJ0Þ ¼ 0: ð17Þ

For later convenience, we have renamed the index p → p0.

III. DISPERSION-RELATION EQUATION

In (17) multiply by Hm;pðJÞ, divide by ðΩ −mωsÞ and
integrate over J to find

Z
∞

0

dJRmðJÞHm;pðJÞþ2πim
eIavg
E0T0

X
p0¼�3

cZðω̂p0 Þ
ωp0

Gm;p;p0 ðΩÞ

×
X∞

m0¼−∞

Z
∞

0

dJ0Rm0 ðJ0ÞHm0;p0 ðJ0Þ¼0; ð18Þ

where

Gm;p;p0 ðΩÞ ¼
Z

∞

0

dJ
Hm;pðJÞH�

m;p0 ðJÞ
Ω −mωsðJÞ

∂Ψ0ðJÞ
∂J : ð19Þ

In its form, Eq. (19) is strictly valid for Im Ω > 0 (unstable
modes); it can be extended to the whole complex plane by
analytic continuation but for our purposes this will not be
necessary.
Upon truncating the sum on m0, Eq. (18) reduces to a

2ð2mmax þ 1Þ system of linear equations in the form

Xmmax

m¼−mmax

X
p0¼�3

Bm;m0;p;p0 ðΩÞXm0;p0 ¼ 0 ð20Þ

with Xm;p ¼ R
∞
0 dJRmðJÞHm;pðJÞ and

Bm;m0;p;p0 ðΩÞ¼ δm;m0δp;p0 þ2πim
eIavg
E0T0

cZðω̂p0 Þ
ωp0

Gm;p;p0 ðΩÞ;

ð21Þ

being the entries of the 2ð2mmax þ 1Þ × 2ð2mmax þ 1Þ
dimensional square matrix B, leading to the dispersion-
relation equation

detBðΩÞ ¼ 0: ð22Þ

An alternative approach, not adopted here but useful if we
are interested in determining the form of the eigenfunctions,
is to introduce SmðJÞ ¼ ½Ω −mωsðJÞ�RmðJÞ½∂Ψ0∂J �−1 and
rewrite
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SmðJÞþ2πim
eIavg
E0T0

X
p0¼�3

cZðω̂p0 Þ
ωp0

H�
mðJ;ωp0 Þ

×
X∞

m0¼−∞

Z
∞

0

dJ0
Sm0 ðJ0ÞHm0 ðJ0;ωp0 Þ

Ω−mωsðJ0Þ
∂Ψ0ðJ0Þ
∂J0 ¼ 0; ð23Þ

and then proceed with a discretization of SðJÞ on a grid [15].
Equation (22) is solved numerically searching for roots

with positive imaginary part for the l ¼ 0 and l ¼ 1
modes over a range of tuning angles ψ . Finding the
numerical solution entails determining the equilibrium
ρ0ðzÞ and associated potential U0ðzÞ (Appendix B);
and synchrotron frequency ωsðJiÞ, Hamiltonian H0;i ¼R Ji
0 ωsðJ0ÞdJ0, and canonical transformation ζðJi;φÞ on a
grid Ji, (see Appendix C). As a technical aside, the integral
in (19) is best computed after a change of integration
variable from J to r≡ zR ¼ ζðJ; 0Þ, where zR is the

coordinate of the right turning point of the unperturbed
orbit with action J.
The solutions, based on the ALS-U machine and HHC

parameters of Tables I and II, are shown in Fig. 1 indicating a
largel ¼ 1mode instability growth rate of about 5 ms−1, for
the design ψ ¼ 86.5o working point yielding the desired
bunch length. The dashed curve in the bottom right picture is
the approximate asymptotic expression (49) derived later in
Sec. IV B; the solid line is the expression (32), which applies
to the limit where the HHCs are effectively turned off. In the
bottom-left picture the solid line is Eq. (45), seen to track the
numerical result very closely over the entire tuning angle
range (wewill get back to this point). For later consideration,
notice that the ratio ImΩ=ReΩ is much smaller (larger) than
unity for l ¼ 0 (l ¼ 1).
We expect coupled-bunch mode l ¼ h − 1 (or equiv-

alently l ¼ −1) to have a similar growth rate as l ¼ 1. As
for the higher order modes l > 1 we expect them to lead to
weaker (if any) instabilities since the beam-spectrum lines
ω3 � lω0 probe the impedance tails farther away from the
resonance peak (see Fig. 6).
The bunch profiles for various HHC tuning are shown in

Fig. 2, while Fig. 3 highlights the bunch profile for the
nominal settings and related quantities of interest. The
numerical calculation was done by retaining only the jmj¼
1 dipole components; we verified that including the quadru-
pole components jmj ¼ 2 changes the results only slightly.
In the next section we specialize the calculation to the

dipole approximation and consider two limiting cases. One
where the HHCs are absent (quadratic potential) and the
other where they have optimum settings. We represent the rf
potential in the second case as a pure quartic and use a
simplified analytical expression for the canonical trans-
formation to derive the approximate dispersion-relation
equation in the form found in the literature. We solve this
equation numerically and we work out asymptotic approx-
imations to the solutions to gain insight into how the
impedance relates to the instability.

TABLE I. ALS-U v20r lattice parameters.

Ring circumference C 196.5 m
Revolution frequency ω0=2π 1.526 MHz
Beam energy E0 2 GeV
Average current Iavg 500 mA
Momentum compaction α 2.11 × 10−4

Natural energy spread σδ 0.943 × 10−3

Energy loss per turn U0 0.217 MeV
Synchronous phase (no HHCs) ϕ1 158.784 deg
Harmonic number h 328
Main rf cavity generator frequency ω1=2π 500.417 MHz
3rd-harmonic frequency ω3=2π 1501.251 MHz
Main cavity voltage V10 0.6 MV
Natural rms bunch length (no HHCs) σz0 3.54 mm
Synchrotron oscillation tune (no HHCs) νs0 1.75 × 10−3

Synchrotron oscillation frequency
(no HHCs)

ωs0=2π 2.68 kHz

Longitudinal radiation damping time τz 14 ms

TABLE II. HHC design options and settings.

Two ALS HHCs Optimal HHCs

HHC (total) shunt impedance (MΩ) Rs 3.4 1.35
HHC Q-factor Q 21,000 20,000
HHC tuning angle (rad/deg) ψ 1.5097=86.5o 1.4188=81.29o

HHC resonance frequency (MHz) ωr=2π 1501.835 1501.496
HHC tuning (kHz) ðωr − 3ω1Þ=2π 584 245
HHC (total) power loss (kW) P 5.1 12.6
Rms bunch length (mm) σz 14.7 14.24
Average synchrotron oscillation freq. (kHz) hωsi=2π 0.568 0.536
Average synchrotron oscillation tune hνsi 3.7 × 10−4 3.5 × 10−4

Form factor amplitude F 0.897 0.903
Form factor phase Φ −0.3 −4.5 × 10−3
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IV. DIPOLE APPROXIMATION

Introduce the usual definition of effective impedance
ZeffðΩÞ ¼

P
p¼�3

ωp;l

ω1
Zðωp;l þ ΩÞ, see Appendix D.

Noting H�
m;p ≃Hm;−p and H−m;p ¼ Hm;−p as ζðφÞ is an

even function, retaining only the dipole jmj ¼ 1 terms, and
as explained in Appendix D approximating ω�3;l ≃�3ω1

unless ω�3;l appears in the argument of Z, it can be shown
that the dispersion relation reads

FIG. 1. The two pictures on the right capture the main result of this paper. Shown are the real (top) and imaginary Im Ω≡ τ−1 part
(bottom) of the complex-number frequency for mode l ¼ 1 if two of the existing ALS HHCs are to be used in ALS-U. The quantities
are plotted vs. the tuning angle ψ ¼ 2Qðωr − ω3Þ=ω3. The lower end in the tuning angle ψ ¼ 86:5o, where the HHCs would be
expected to operate, corresponds to about a factor 4 bunch lengthening. At that setting, the growth rate of the instability is about 5 ms−1

(or 0.2 ms growth time) while the oscillation frequency is less than 50 Hz (or 20 ms period); the large disparity between the two
characteristic times places the instability out of reach of existing longitudinal feedback system. The pictures to the left are for the much
more benign l ¼ 0 (Robinson’s) instability. Note that for this instability the oscillation frequency of the mode remains very close to the
synchrotron oscillation frequency in the absence of HHCs (about 2.7 kHz, see Table I). See the text for the meaning of the curves in the
bottom pictures.

FIG. 2. Equilibrium bunch profiles in the presence of two ALS HHCs in ALS-U for various tuning (right), the corresponding rms
bunch length (top left), and power dissipated by each cavity (bottom left).
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1þ4πi
eIavgcZeffðΩÞ
9E0T0ω1

Z
∞

0

dJ
∂Ψ0ðJÞ
∂J

jH1;3ðJÞj2ωsðJÞ
Ω2−ωsðJÞ2

¼ 0:

ð24Þ

In particular, for short bunches ω3ζ=c ≪ 1:

H1;3ðJÞ ≃
1

2π

Z
2π

0

eiφ½1þ iω3ζ=c�dφ≡ iω3

c
ζ̃1ðJÞ; ð25Þ

where ζ̃mðJÞ ¼ ð2πÞ−1 R 2π
0 eimφζðJ;φÞdφ is the Fourier

integral of the canonical transformation. The dispersion-
relation equation then reduces to

1þ 4πi
eIavgω1ZeffðΩÞ

E0C

Z
∞

0

dJ
∂Ψ0ðJÞ
∂J

ζ̃21ðJÞωsðJÞ
Ω2 − ω2

sðJÞ
¼ 0:

ð26Þ

A. Quadratic potential

In the absence of harmonic cavities, the synchrotron
frequency is amplitude-independent ωsðJÞ ¼ ωs0, with the
bunch equilibrium having the form of a gaussian. The
relevant part of the canonical transformation to action/angle
variable is z¼ζðJ;φÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Jαc=ωs0

p
cosφ, yielding ζ̃1ðJÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Jαc=ωs0

p
=4π, and the dispersion equation (26) becomes

1þ 4πi
eIavgω1ZeffðΩÞ

E0C
αc

Ω2 − ω2
s0

Z
∞

0

dJ
∂Ψ0ðJÞ
∂J J ¼ 0;

ð27Þ

or equivalently, since
R∞
0 dJΨ0

0ðJÞJ¼−
R∞
0 dJΨ0ðJÞ¼−1,

Ω2 ¼ ω2
s0 þ iÎGZeffðΩÞ; ð28Þ

having defined the current parameter

ÎG ¼ eIavgω1α

E0T0

: ð29Þ

Consider two limiting cases depending on whether the
imaginary part Ωi of the complex mode frequency Ω ¼
Ωr þ iΩi is much larger or smaller than the real part Ωr:
(1) Case Ωi ≪ Ωr. We have Ω2

r þ 2iΩiΩr − ω2
s0 ≃

ÎGðiReZeff − ImZeffÞ and therefore

Ω2
r ¼ ω2

s0 − ÎGImZeff ; ð30Þ

Ωi ¼
ÎG
2Ωr

ReZeff : ð31Þ

If the detuning is small, we recover Sacherer’s equations
in the short-bunch limit (see [9,21]), Ωr ≃ ωs0 and

Ωi ≃
ÎG
2ωs0

ReZeffðωs0Þ. (2) Case Ωi ≫ Ωr. We have

2iΩiΩr−Ω2
i −ω2

s0≃ ÎGðiReZeff−ImZeffÞ and therefore
(assuming ImZeff > 0)

FIG. 3. Two ALS HHCs at nominal setting (ψ ¼ 86.5 deg). Bunch equilibrium profile (top left), scaled rf potential Eq. (B2) (bottom
left), synchrotron oscillation frequency ωsðrÞ with the bunch equilibrium profileΨ0ðrÞ in the background as a function of the amplitude
variable r (top right), and phase space in the rf bucket for a few representative particle orbits (bottom right).
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Ω2
i ¼ ÎGImZeff − ω2

s0; ð32Þ

Ωr ¼
ÎG
2Ωi

ReZeff : ð33Þ

B. Quartic potential
(approximate canonical transformation)

1. Exact numerical solution to the approximate
dispersion-relation equation

In a purely quartic potential the transformation from
canonical to physical coordinates has the approximate form
z ¼ rðJÞ cosφ with rðJÞ given by (E2) being a function
of J only; the approximation (amounting to neglecting
φ-harmonics of ζðJ;φÞ of order higher than one), is
accurate within 4–5% [6]. With this, the functionH1;3ðJÞ ¼
iJ1ðk3rðJÞÞ reduces to a Bessel function of the first kind J1.
After a change of integration variable, the dispersion-
relation equation reads

1− i
64π

9Γ3
1=4

eIavgαω1

E0T0hωsi2ðσzk1Þ2
ZeffðΩÞ

×
Z

∞

0

dx
x4J21ðc1xÞe−x

4

Ω̂2−x2
¼ 0; ð34Þ

where c1 ¼ 3Γ1=4

21=4
ffiffi
π

p k1σz ≃ 5.16k1σz, we have made use of

the expression (E5) for the equilibrium, introduced the
dimensionless scaled mode frequency (Appendix E)

Ω̂ ¼ Γ1=4

21=2π

Ω
hωsi

≃ 0.816 ×
Ω

hωsi
; ð35Þ

and used the notation Γ1=4 ≡ Γð1=4Þ for the Euler gamma
function. This is the equation usually found in the literature
in connection with HHCs, (in this form or with the
additional short-bunch approximation J1ðc1xÞ ≃ c1x=2).
Note that some authors present a version that differs from
(34) in that only the m ¼ þ1 term is included in the
derivation (with the result that the denominator in the

FIG. 4. Keil-Schnell diagrams representing the complex-number frequency solutions of the dispersion-relation equation Eq. (38) for
mode l ¼ 0 (left) and l ¼ 1 (right) for optimum HHCs (top). Equation (38) is derived from a quartic potential model but we also try to
apply it to the two ALS HHC case (bottom pictures) and find estimates that are within 10% of the more accurate results of Sec. III. A
mode with impedance parameter ζeff defined in (37) is stable (Landau damping) if ζeff falls within the region delimited by the dashed
curve containing the origin: this is the case for the l ¼ 1 mode in the presence of optimum HHCs (top-right picture). The values
appearing in the pictures are for the scaled frequency Ω̂ defined in Eq. (35); for the corresponding values in physical units see Table III.
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integrand is linear rather than quadratic in x); as pointed out
in [5,6] both m ¼ �1 should be included. Define

GðΩ̂Þ ¼
Z

∞

0

dx
x4J21ðc1xÞe−x

4

Ω̂2 − x2
; ð36Þ

and introduce the dimensionless effective-impedance
parameter

ζeffðΩ̂Þ ¼
64π

9Γ3
1=4

eIavgαω1

E0T0hωsi2ðσzk1Þ2
Zeff

�hωsiΩ̂
0.816

�
; ð37Þ

to write the dispersion-relation equation (34) in the form

−i
GðΩ̂Þ ¼ ζeffðΩ̂Þ: ð38Þ

We solve (38) numerically to study the l ¼ 0, 1
modes for optimum HHCs and represent the solutions
by Keil-Schnell diagrams, top pictures in Fig. 4.
In these plots, the solid red curves are drawn by letting

Re Ω̂ vary in ½−∞;∞� while Im Ω̂ is set to the imaginary
part of the numerical solution, as indicated. Similarly, the
green curves are drawn by letting Im Ω̂ vary in ½0;∞� while
Re Ω̂ is set to the real part of the numerical solution as
indicated, so that the solutions are at the intersection of the
red and green curves. The red dashed curve, corresponding
to Im Ω̂ ¼ 0 is the stability boundary: if ζeff falls within the
region containing the origin, as in the top-right picture, the
mode is stable (Landau damping) [22].
We also make an attempt to apply (38) to the study of the

two nonoptimum ALS HHCs (bottom figures in Fig. 4).
In the calculation we used σz ¼ 14.7 mm as determined
from the exact equilibrium and then estimated hωsi using
Eq. (E6). We found results that are within 10% of the more
accurate solution obtained in Sec. III, see summary in
Table III. In the next section, we will then feel encouraged
to employ (38) as a basis to work out analytical asymptotic
expressions for studying the solutions in both the optimum
and nonoptimum HHC cases.
From the table, also notice that the Robinson (l ¼ 0)

instability is considerably larger in the optimum HHC case,
but still slow enough to be radiation damped (the radiation
damping time being τz ¼ 14 ms).

2. Asymptotic analytical solution to the
approximate dispersion-relation equation

Under the assumption jΩ̂j ≫ 1, we approximate the
denominator in the integrand of (36) as Ω̂2 − x2 ≃ Ω̂2

and write

GðΩ̂Þ ≃ 1

Ω̂2

Z
∞

0

dxx4J21ðc1xÞe−x
4

¼ 1

Ω̂2

c21
16

Γ5=4

�
1 − c21

Γ7=4

Γ5=4

�
; ð39Þ

having expanded the square of the Bessel function through
fourth order, in order to find the dispersion-relation
equation for the asymptotic approximation to the solution.
In terms of Ω, the mode frequency in physical units,
Eq. (38) reads

Ω2 ≃ iÎZeffðΩÞ; ð40Þ

with current parameter defined as

Î ¼
ffiffiffi
2

p
π2

Γ2
1=4

eIavgαω1

E0T0

�
1 −

27

4
k21σ

2
z

�
; ð41Þ

where
ffiffiffi
2

p
π2=Γ2

1=4 ≃ 1.06. Next, write Ω ¼ Ωr þ iΩi and
consider the following two subcases. (1) Case Ωi ≪ Ωr.
Relevant for mode l ¼ 0. We have Ω2

r þ 2iΩrΩi ≃
iÎReZeff − ÎImZeff , and therefore

Ω2
r ≃ −ÎImZeff ; ð42Þ

Ωi ≃
Î

2Ωr
ReZeff : ð43Þ

Specifically, for l ¼ 0 (see Appendix D)

Ω2
r ≃ 3ÎRs sinð2ψÞ; ð44Þ

Ωi ≃
2Î
ω1

RsQcos2ψ sinð2ψÞ: ð45Þ

It turns out that for l ¼ 0 and optimum HHCs, it is always
jΩ̂j ≫ 1, thus making the asymptotic analytic expression
(45) always valid. To show this, make use of (B8) with Φ
set to zero to find 3 sin 2ψ ¼ V1j cosϕ1j=ðIagvRsFÞ, insert
in (44), and recall (35) to find

Ω̂2
r ¼

3Γ2
1=4

23=2π2
1

Fk21σ
2
z

�
1 −

27

4
k21σ

2
z

�
: ð46Þ

Since F is on the order of unity and in electron machines
k1σz is naturally small, Ω̂r and hence Ω̂ are significantly
larger than unity (for ALS-U, k1σz ≃ 0.15 and Ω̂2

r ≃ 60).

TABLE III. Numerical solutions of the approximate dispersion-
relation equation (38).

Optimal HHCs Two ALS HHCs

Re Ω=2π (kHz) τ−1 (ms−1) Re Ω=2π (kHz) τ−1 (ms−1)

l ¼ 0 2.7 0.027 2.7 0.0046
l ¼ 1 � � � � � � 0.038 5.5

MARCO VENTURINI PHYS. REV. ACCEL. BEAMS 21, 114404 (2018)

114404-8



Equation (45) is an improvement in accuracy (albeit small,
about 10% for ALS-U size bunches) over, e.g., Eq. (8.115)
in [18]. Also, notice that it tracks remarkably well the
l ¼ 0 mode growth rate for nonoptimum HHCs over the
whole tuning range, (solid curve in the bottom-left
picture of Fig. 1). (2) Case Ωr ≪ Ωi. This is relevant
for mode l ¼ 1 when using two ALS HHCs. We have
−Ω2

i þ 2iΩrΩi;≃iÎReZeff − ÎImZeff , and therefore (for
ImZeff > 0)

Ω2
i ≃ ÎImZeff ; ð47Þ

Ωr ≃
Î

2Ωi
ReZeff : ð48Þ

Specifically, for l ¼ 1, see (Appendix D)

Ω2
i ≃ −

3

2
ÎRs½sinð2ψ1Þ þ sinð2ψ−1Þ�: ð49Þ

From Eq. (47), note that in this regime it is the imaginary,
not the real, part of the impedance that drives the instability,
see also Figs. 5 and 6 for a graphical explanation.

The accuracy of (49) as judged from Fig. 1, dashed curve,
is not as good as that of (45) as jΩ̂j ≃ 1.4 is only marginally
greater than unity and the asymptotic approximation not
fully valid.

FIG. 5. Comparing the instability drivers for thel ¼ 0 (left) andl ¼ 1 (right)mode instability. For thel ¼ 0mode it is the real part of the
HHCfundamentalmode impedance to be relevant and the instability growth rate dependson the difference between thevalues ofReZ on the
upperω3 þΩr and lowerω3 − Ωr sidebands, whereΩr is the (real) mode oscillation frequency, divided byΩr or, effectively, the derivative
of Re Z at ω ¼ ω3. The pictures indicate that the Re Z (positive) slope for the optimum HHCs (top) is larger than that for the ALS HHCs
(bottom) and therefore the instability higher. (For better illustration, in the picture Ωr is not to scale.) In contrast, for mode l ¼ 1, in the
regimewhere the asymptotic approximation (47), (49) applies, it is ImZ to be relevant: thegrowth rate is proportional to the square root of the
algebraic sum of the two contributions −ð3=2ÞRs sinð2ψ1Þ and −ð3=2ÞRs sinð2ψ−1Þ at ω3 þ ω0 and ω3 − ω0 respectively, see Eq. (D5).
When the resonance frequency ωr is to the right ofω3 (this is where HHCs are operated for bunch lengthening), the sum is always positive
but it is much larger for the ALS HHCs (bottom-right picture) since these are tuned further away from ω3. In fact, for optimumHHCs that
sum is small enough for Landau damping to suppress the instability (see the top-right picture in Fig. 4).

FIG. 6. Real (blue) and imaginary (red) part of the effective
impedance for mode l ¼ 1 for two ALS HHCs (solid) and
optimum HHCs (dashed). The picture highlights how the ALS
HHCs operating tuning range is at larger angles ψ (i.e., away
from the resonance peak) compared to the optimum HHCs
reflecting a larger shunt impedance. The left ends of the two
ranges correspond to about a factor 4 lengthening in both cases.
The larger ALS-HHC Im Zeff is the reason for the higher
sensitivity to the l ¼ 1 mode instability.
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We recognize that the asymptotic expressions derived
here are very similar in form to those valid for a quadratic
potential (previous section) with current parameter ÎG
replaced by Î. The two normalized current parameters
are also very close

Î ¼
ffiffiffi
2

p
π2

Γ2
1=4

�
1 −

27

4
k21σ

2
z

�
ÎG

≃ 1.06 ×

�
1 −

27

4
k21σ

2
z

�
ÎG ≃ 0.9 × ÎG; ð50Þ

having used k1σz ≃ 0.15. In other terms, in the regimewhere
the asymptotic approximation applies, the instability growth
rates calculated using a Gaussian-profile approximation for
the bunches are off by only 10%. We should note that this is
the regime where Landau damping is absent.
This is a good place to pause and call attention to

confusing statements on Landau damping occasionally
found in the literature. Sometimes (e.g., [18], p. 333), a
growth rate is first estimated invoking a quadratic form for
the potential as in Sec. IVA, accompanied by the (correct)
disclaimer that the naive derivation ignores Landau damp-
ing, with Landau then credited as yielding damping with a
rate equal to some fraction of the system frequency spread,
possibly restoring stability if the latter is large enough.
Not always emphasized is the crucial qualification that in
order for Landau damping to appear, the real part of the
frequency of the mode of interest should overlap with
the system natural frequency spread (here due to the rf
bucket nonlinearities). In fact, this overlap does not occur
for the HHC-induced Robinson instability since, as noticed
in the comment made below Eq. (46), we always
have jΩ̂j ≫ 1.
In other words, (45) is an already accurate growth-rate

estimate and Landau cannot be expected to come to the
rescue (nor in this case would Landau’s help be needed,
since the combined main and higher-harmonic cavity
system tends to be Robinson stable even before radiation
damping is factored in). For instabilities other than
Robinson’s (e.g., due to HOMs) Landau damping from
the HHC-induced synchrotron-oscillation frequency spread
may or may not materialize, depending on the character-
istics of the impedance and other relevant machine param-
eters. In fact, in many cases the presence of HHCs can
aggravate the longitudinal instabilities, a known but not
widely acknowledged fact [8,23,24]. On the other hand,
the l ¼ 1 mode damping found for optimal HHCs is an
example where Landau damping is effective. Somewhat
analogously, in the transverse plane HHCs help with
damping instabilities in the presence of finite chromaticities
[25] but may worsen the TMCI instability [26]. Further
complicating the matter, we should add that there are
other potential sources of Landau damping to multibunch
longitudinal instabilities not considered here, like

bunch-to-bunch synchrotron oscillation variations due to
nonuniform beam filling [27,28].

V. SUMMARY AND CONCLUSIONS

In conclusion, we have shown that use of two of the
existing ALS HHCs in the upgraded ALS can achieve the
sought bunch lengthening but at the cost of driving a fast
l ¼ 1 longitudinal mode instability difficult to control. The
reason is a shunt impedance of the two combined cavities
significantly larger than the ALS-U optimum, forcing a
large detuning that pushes the HHC fundamental mode to
overlap with the ω3 þ ω0 beam-spectrum line.
Short of installing a newly designed system, a conceiv-

able solution to the problem is to add the third ALS HHC in
the bunch-shortening mode (negative tuning angle ψ < 0)
while the other two are retuned to maintain the desired
bunch lengthening. This helps in two ways: it forces the
resonance peak of the other two cavities closer to the 3rd-
harmonic and creates a negative contribution to Im Zeff ,
thus compensating the other two cavities’ positive contri-
bution. We have found a combination of tuning angles that
would work in principle and result in complete (Landau)
damping of the offensive mode. However, it remains to be
determined if the solution is practical as the cavities power
loss would be close to the limit. A more detailed discussion
will be reported elsewhere.
While the relevance of the most immediate conclusion is

somewhat restricted to the particular ALS/ALS-U circum-
stances, our study includes findings that are of more general
interest. Summarizing, we have established: (i) a formula
[Eq. (45)] that improves, albeit slightly, on the commonly
found expression for the HHC-induced Robinson insta-
bility; (ii) that this instability is generally not Landau
damped [Eq. (46)]; (iii) that the mode l ¼ 1 may or may
not be Landau damped depending on the HHC parameters
and that in the case of interest the instability is driven by
the imaginary rather than the real part of the impedance
[Eq. (47)]; (iv) a consistent set of equations to frame the
problem of determining the optimum HHC settings
(Appendix B); (v) a simple formula for the power loss
for optimum HHCs [Eq. (B14)].
We emphasize that the analysis of the l ¼ 1 mode

cannot be carried out using the familiar Sacherer’s formulas
(which relate the instability to the real part of the imped-
ance [9,21]), and doing so would result in a large error.
Finally, our calculation was carried out under the

assumption (not fulfilled by the ALS-U) of uniform beam
filling. While we do not expect the presence of the eleven
10 ns gaps envisioned in the ALS-U beam for swap-out
injection to alter the result substantially, it is possible that
the presence of the gaps could have some stabilizing effect.
This will be addressed in future studies. Also left to future
work is the extension of mode analysis to include the
relevant and desirable regime where the bunch is over-
stretched (double-well rf potential), [29,30].
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APPENDIX A: BEAM LOADING IN THE HHC

Coupling of the circulating beam with a passive cavity is
modeled by the wake potentialWðtÞ and/or the correspond-
ing impedance ZðωÞ:

WðtÞ ¼ 1

2π

Z
∞

−∞
dωe−iωtZðωÞ: ðA1Þ

Causality implies that WðtÞ ≠ 0 only for t ≥ 0. We assume
the resonator model

ZðωÞ ¼ Rs

1þ iQðωr
ω − ω

ωr
Þ≡ Rs cosψωe−iψω ; ðA2Þ

with

tanψω ¼ Q

�
ωr

ω
−

ω

ωr

�
≃ 2Q

ωr − ω

ωr
: ðA3Þ

The effect of a passive HHC on beam dynamics is fully
described by the shunt impedance Rs, quality factor Q, and
resonant frequency ωr. Notice our sign convention, where
the tuning angle ψω is positive for frequency ω below the
cavity resonant frequency, ω < ωr. To simplify notation in
this section introduce τ ¼ z=c in units of time to denote the
longitudinal coordinate.
Assume the beam consists of a uniform train of bunches

separated by T1 ¼ T0=h (all buckets are occupied), with
identical profile ρðτÞ and N particles/bunch. The voltage
experienced by a test particle with coordinate τ in one
bunch is affected by the passage of that bunch and particles
of other bunches that passed earlier:

VðτÞ ¼ −eN
X∞
m¼0

Z
∞

−∞
dτ0ρðτ0ÞWðτ − τ0 þmT1Þ; ðA4Þ

where the sign is consistent with eV < 0 indicating energy
loss. Because of causality, the sum over m can be extended
to −∞ without changing the result. Using (A1) and

ρðτÞ ¼ 1

2π

Z
∞

−∞
dωe−iωτρ̃ðωÞ ðA5Þ

into (A4) yields VðτÞ ¼ −eNð2πÞ−1P∞
m¼−∞

R∞
−∞ dω×

ρ̃ðωÞe−iωðτþmTÞZðωÞ. Next, use the Poisson sum ruleP∞
m¼−∞ e−imωT1 ¼ 2π

P∞
p¼−∞ δðωT1 − 2πpÞ and obtain

VðτÞ ¼ −Iavg
X∞
p¼−∞

ρ̃ ðω1pÞZðω1pÞe−iτω1p ðA6Þ

with Iavg ¼ eN=T1. Assuming the HHC resonance to be
sufficiently narrow, only the terms p ¼ �3 (third-harmonic
cavity) in the sum will contribute appreciably. Finally,
making use of (A2) we conclude

VðτÞ ≃ −Iavg½ρ̃ðω3ÞZðω3Þe−iω3τ þ c:c:�
¼ −2IavgRsF cosψ cosðω3τ þ ψ −ΦÞ; ðA7Þ

having expressed the bunch form factor at the third
harmonic frequency ω3 ¼ 3ω1 in terms of amplitude and
phase: ρ̃ðω3Þ≡ FeiΦ. In the above equation and through-
out the paper ψ ≡ ψω3

is the HHC tuning angle.

APPENDIX B: BEAM EQUILIBRIUM AND
OPTIMUM HHC SETTINGS

At equilibrium the combined total rf voltage from main
and higher-harmonic cavities is

Vrf;0ðz; ρ0Þ ¼ V10 sinðk1zþ ϕ1Þ
− 2IavgRsF cosψ cosðk3zþ ψ −ΦÞ: ðB1Þ

Introduce the scaled potentialuðz;F;ΦÞ ¼ U0ðzÞ=ðαcσ2δÞ ¼
−
R
z½eVrf;0ðz0; ρ0Þ − U0�dz0=ðαcσ2δE0T0Þ. In explicit form:

uðz;F;ΦÞ ¼ u1½cosðk1zþ ϕ1Þ − cosϕ1�
þ u3 cosψ ½F sinðk3zþ ψ −ΦÞ
− F sinðψ −ΦÞ� þ u0z; ðB2Þ

with cosϕ1 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ϕ1

p
, where u0 ¼ U0=ðασ2δE0CÞ,

u1 ¼ eV1=ðασ2δE0Ck1Þ, u3 ¼ 2eIavgRs=ðασ2δE0Ck3Þ. The
expression (11) for the bunch profile at equilibrium with
normalization

R
ρ0ðzÞdz ¼ 1 reads

ρ0ðzÞ ¼
e−uðz;F;ΦÞR
e−uðz0;F;ΦÞdz0

: ðB3Þ

We choose the coordinate system so that ðz ¼ 0; δ ¼ 0Þ
corresponds to the synchronous particle at equilibrium.
Energy balance for the synchronous particle requires
eVrf;0ð0; ρ0Þ ¼ U0, or from Eq. (B1)

V10 sinϕ1 ¼ U0 þ 2IavgRsF cosψ cosðψ −ΦÞ: ðB4Þ

Equation (B3) can be regarded as a functional equation
in the unknown ρ0ðzÞ, similar in form to a Haissinski
equation or an algebraic equation in the two unknowns F
and Φ. Adopting the latter interpretation we proceed to
evaluate the FT of (B3) at k ¼ k3 and write
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ρ̃0ðk3Þ ¼
Z

eik3zρ0ðzÞdz ¼
R
eik3ze−uðz;F;ΦÞdzR
e−uðz;F;ΦÞdz

ðB5Þ

or, after equating the real and imaginary parts of both sides,

F cosΦ ¼
R
cosðk3zÞe−uðz;F;ΦÞdzR

e−uðz;F;ΦÞdz
; ðB6Þ

F sinΦ ¼
R
sinðk3zÞe−uðz;F;ΦÞdzR

e−uðz;F;ΦÞdz
: ðB7Þ

For the given shunt impedance Rs and tuning angle ψ ,
Eq.’s (B6) and (B7) in combination with (B4) can be solved
numerically for F, Φ, and ϕ1. Optimally designed HHCs
are defined as yielding an rf potential Vrf;0ðz; ρ0Þ with
vanishing first and second derivative at z ¼ 0, i.e.,

k1V10 cosϕ1 þ 2IavgRsFk3 cosψ sinðψ −ΦÞ ¼ 0; ðB8Þ

−k21V10 sinϕ1 þ 2IavgRsFk23 cosψ cosðψ −ΦÞ ¼ 0: ðB9Þ

The exact determination of the optimum settings
entails the simultaneous numerical solution of the five
equations (B4) and (B6)–(B9) for the five unknowns F, Φ,
ϕ1, Rs, and ψ . However, anticipating that the rf potential is
accurately approximated by retaining only the quartic term
(an even function, implying Φ ¼ 0), one can easily work
out the following simple and fairly accurate analytical
expressions. From (B6), expanding cosðk3zÞ through
second order, F≃

R ½1−ðk3zÞ2=2�ρ0ðzÞdz¼1−ðk3σzÞ2=2,
and from (B4), (B8), and (B9)

sinϕ1 ¼
9

8

U0

eV10

; ðB10Þ

tanψ ¼ 3

j tanϕ1j
; ðB11Þ

IavgRsF ¼ U0=e
16cos2ψ

; ðB12Þ

consistent with, e.g., [18]. For ALS-U parameters, with
natural bunch length σz0 ≃ 3.5 mm and bunch lengthening
factor ∼4 [see Eq. (E7) in Appendix E], we have F ≃ 0.9
and the optimum Rs can be quickly determined from (B12)
once the tuning angle is derived from the two previous
equations. To avoid confusion, note that (B12) is strictly
valid only for ψ given by the optimal value (B11).
The beam power lost to the HHCs is calculated by

averaging the voltage over a bunch and multiplying by the
average circulating current

Pcav ¼ Iavg

Z
V3;0ðz; ρ0Þρ0ðzÞdz

¼ 2I2avgRsF2cos2ψ ; ðB13Þ

valid for arbitrary values of shunt impedance and
tuning angle; the second equality follows fromR
dzρ0ðzÞ cosðk3zþ ψ −ΦÞ ¼ F cosψ . Interestingly, for

optimum HHCs combining (B12) and (B13) yields the
following handy formula exhibiting no explicit dependence
on shunt impedance or tuning angle

Pcav ¼ Iavg
FðU0=eÞ

8
¼ F

8
Prad; ðB14Þ

where Prad ¼ IavgU0=e is the power lost to radiation.
Observe that in the limit of vanishing radiation energy
loss (U0 → 0), Pcav vanishes. In this limit, both the main
and higher-harmonic cavities are operated at the zero-
voltage crossing phase and in a bunch with symmetric
profile as many particles lose as gain energy.

APPENDIX C: NUMERICAL DETERMINATION
OF THE CANONICAL TRANSFORMATION

From the unperturbed Hamiltonian H0 ¼ αcδ2=2þ
uðzÞαcσ2δ we derive the action variable:

J ¼ 1

2π

I
δðzÞdz ¼ 1

π

Z
zR

zL

�
2H0

αc
− 2uðzÞσ2δ

�
−1=2

dz; ðC1Þ

where zL < zR are the left/right turning points determined
as the two z-roots of 2H0=ðαcÞ − 2uðzÞσ2δ ¼ 0. (Our
analysis is restricted to the case where there is only a
single pair of turning points, excluding the double-well
potential case). From the synchrotron oscillation period

Ts ¼ 2

Z
Ts=2

0

dt ¼ 2

Z
zR

zL

dz
αcδðzÞ

¼ 2

αc

Z
zR

zL

dz

½2H0

αc − 2uðzÞσ2δ�1=2
ðC2Þ

one deduces the synchrotron oscillation frequency
ωsðJÞ ¼ 2π=Ts. To determine the canonical transformation
z ¼ ζðJ;φÞ we proceed as follows. (i) Establish zmax > 0

such that e−uðzmaxÞ < ε, for ε sufficiently small. Set
H0;max ¼ uðzmaxÞαcσ2δ and find z ¼ zmin < zmax as the
second root of H0;max ¼ uðzÞαcσ2δ. Verify that
e−uðzminÞ < ε; if not, choose a larger zmax and repeat.
(ii) Determine ze, the coordinate of the elliptical (stable)
equilibrium point by solving u0ðzeÞ ¼ 0. On a uniform grid,
introduce the turning points to the right of ze, zR;i ¼ iΔz,
i ¼ 0; 1;…nz − 1, with Δz ¼ ðzmax − zminÞ=nz. Each zR;i
identifies a distinct orbit, with left turning point zL;i
obtained by finding the second root of H0;i ¼ uðzÞαcσ2δ,
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where H0;i ¼ uðzR;iÞαcσ2δ . (iii) From (C1) and (C2) deter-
mine the action Ji and period Ts;i corresponding to the orbit
with turning point zR;i. (iv) Solve the equations of motion
for the unperturbed Hamiltonian numerically with initial
conditions zðt ¼ 0Þ ¼ zR;i and δðt ¼ 0Þ ¼ 0, to find the
orbit ðzðtj; iÞ; δðtj; iÞÞ on a uniform grid tj. Use φj ¼
ωsðJiÞtj, relating the angle coordinate φ to time, and thus
determine the canonical transformation ζðJi;φjÞ ¼ zðtj; iÞ
on a rectangular grid.

APPENDIX D: EFFECTIVE IMPEDANCE

Following established conventions,we define the effective
impedance as

Zeff;lðΩÞ ¼
X
p¼�3

ωp;l

ω1

Zðωp;l þ ΩÞ; ðD1Þ

where ωp;l ¼ ðphþ lÞω0. We are specifically interested in
the effective impedance associated with the fundamental
mode of a third-harmonic cavity, to which only the terms
p ¼ �3 contribute significantly. For vanishing or small
mode number l ≪ h the coefficient in front of Z can be
approximated as ω�3;l=ω1 ≃�3 and therefore

Zeff;lðΩÞ ≃ 3Zðω3;l þ ΩÞ − 3Zðω−3;l þΩÞ; ðD2Þ

where ω�3;l ¼ �ω3 þ lω0. Expressions in the small Ω
limit: (i) Effective impedance for l ¼ 0 mode:

Zeff;l¼0ðΩÞ ≃ 4RsQcos2ψ sinð2ψÞ Ω
ω1

− 3iRs sinð2ψÞ þOðΩ2Þ: ðD3Þ

(ii) Effective impedance for l ¼ 1 mode. Define the tuning
angles ψ�1:

tanψ�1 ¼ Q

�
ωr

ω3 � ω0

−
ω3 � ω0

ωr

�
: ðD4Þ

We have:

Zeff;l¼1ðΩÞ ≃ 3Rsðcos2ψ1 − cos2ψ−1Þ

− i
3Rs

2
½sinð2ψ1Þ þ sinð2ψ−1Þ� þOðΩÞ:

ðD5Þ

For instability analysis the Ω dependence can effectively be
ignored. Also, observe that mode l ¼ h − 1 (equivalent to
l ¼ −1) has the same ImZeff as l ¼ 1 and therefore can be
expected to exhibit similar growth rate.

APPENDIX E: USEFUL FORMULAS FOR
MOTION IN A PURELY QUARTIC POTENTIAL

For the reader’s convenience, here we report useful
formulas for particle motion in a quartic potential uðzÞ,
relevant when 3rd-harmonic cavities are operated with
optimum settings, see, e.g., [6,26] for the details. The
Hamiltonian is H ¼ αcδ2=2þ αcλz4=4, with

λ ¼ 4

3

eV10k31
αcE0T0

j cosϕ1j: ðE1Þ

The action depends on the turning point r ¼ zR (because of
the symmetry, the left turning point is −r) as

J ¼ Γ2
1=4

6π3=2
ffiffiffi
λ

p
r3; ðE2Þ

where Γ1=4 ≡ Γð1=4Þ ≃ 3.62 is the Euler function with
argument 1=4. The synchrotron frequency ωs and equilib-
rium bunch distribution Ψ0 are more simply expressed in
terms of the amplitude r rather than the action. We have

ωsðrÞ ¼
23=4π3=2

Γ2
1=4

hωsi
r
σz

≃ 0.712 × hωsi
r
σz

; ðE3Þ

with hωsi ¼
R
dφ

R
dJΨ0ðJÞωsðJÞ being the synchrotron-

oscillation frequency averaged over the bunch population

hωsi ¼
2 × 23=4π

Γ2
1=4

αcσδ
σz

≃ 0.803 ×
αcσδ
σz

; ðE4Þ

and

Ψ0ðrÞ ¼
23=4

Γ2
1=4σzσδ

exp

�
−
2π2

Γ4
1=4

r4

σ4z

�
; ðE5Þ

where σz is the bunch rms length

σ2z ¼ σδ
2ffiffiffi
λ

p Γ3=4

Γ1=4
: ðE6Þ

Finally, it is useful to derive an approximate estimate
of the bunch lengthening factor σz=σz0. In the
absence of HHCs, the synchrotron frequency is ω2

s0 ¼
αceV1k1j cosϕ1j=ðE0T0Þ, with synchronous phaseϕ1 given
by sinϕ1 ¼ U0=eV10. With HHCs the phase is only slightly
different, see Eq. (B10), and therefore we make a small error
if upon recalling the equation σz0 ¼ σδcα=ωs0 for the natural
bunch length, we write λ ≃ ð4=3Þσ2δk21=σ2z0 for the parameter
(E1). In combination with (E6) this results into

σz
σz0

¼
� ffiffiffi

3
p

Γ3=4

Γ1=4

�1=2
1ffiffiffiffiffiffiffiffiffiffiffi
σz0k1

p ≃
0.76ffiffiffiffiffiffiffiffiffiffiffi
σz0k1

p : ðE7Þ

For ALS-U parameters this ratio is very close to 4.
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