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The Microbunched Electron Cooling (MBEC) proposed by D. Ratner is a promising cooling technique
that can find applications in future hadron and electron-ion colliders. In this paper, we develop a new
framework for the study of MBEC which is based on the analysis of the dynamics of microscopic 1D
fluctuations in the electron and hadron beams during their interaction and propagation through the system.
Within this framework, we derive an analytical formula for the longitudinal cooling rate and benchmark it
against 1D computer simulations. We then calculate the expecting cooling time for a set of parameters of
the proposed electron-ion collider eRHIC in a simple cooling system with one chicane in the electron
channel. While the cooling rate in this system turns out to be insufficient to counteract the intrabeam
scattering in the proton beam, we discuss how the electron signal can be amplified by two orders of
magnitude through the use of plasma effects in the beam.
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I. INTRODUCTION

The idea of coherent electron cooling has been originally
proposed by Ya. Derbenev [1] as a way to achieve cooling
rates higher than those provided by the traditional electron
cooling technique [2,3]. The mechanism of the coherent
cooling can be understood in a simple setup shown in
Fig. 1. An electron beam with the same relativistic γ-factor
as the hadron beam, copropagates with the hadrons in a
section of length Lm called the “modulator.” In this section,
the hadrons imprint microscopic energy perturbations onto
the electrons via the Coulomb interaction. After the
modulation, the electron beam passes through a dispersive

chicane section, RðeÞ
56 , where the energy modulation of the

electrons is transformed into a density fluctuation referred
to as “microbunching”.1 Meanwhile, the hadron beam

passes through its dispersive section, RðhÞ
56 , in which more

energetic particles move in the forward direction with
respect to their original positions in the beam, while the
less energetic trail behind. When the beams are combined
again in a section of length Lk called the “kicker,” the
electric field of the induced density fluctuations in the
electron beam acts back on the hadrons. With a proper
choice of the chicane strengths, the energy change of the

hadrons in the kicker leads, over many passages through
the cooling section, to a gradual decrease of the energy
spread of the hadron beam. The transverse cooling is
achieved in the same scheme by introducing dispersion
in the modulator and the kicker of the hadron beam.
In most cases, the cooling rate in the simple setup shown

in Fig. 1 is not fast enough for practical applications. It can
be considerably increased if the fluctuations in the electron
beam are amplified on the way from the modulator to the
kicker. Litvinenko and Derbenev proposed to use for this
purpose the gain mechanism of the free electron laser (FEL)
[5]. While this may be sufficient for some applications, one
of the drawbacks of this approach is a narrow-band nature of
the FEL amplifier that may not provide enough gain before
the amplified signal saturates [6]. Following an earlier study
by Schneidmiller and Yurkov [7] of microbunching dynam-
ics for generation of coherent radiation, Ratner proposed a
broadband amplification mechanism [8] under the name of
the Microbunched Electron Cooling (MBEC) in which the
amplification is achieved through a sequence of drifts and
chicanes such that the density perturbations in the drifts
execute a quarter-wavelength plasma oscillation. In a recent
paper [9], Litvinenko and coauthors put forward an idea to

FIG. 1. Schematic of the microbunched electron cooling
system. Blue lines show the path of the electron beam, and
the red lines indicate the trajectory of the hadron beam.

1In a longmodulator section themicrobunching can be generated
directly in the modulator when the energy modulation is converted
into a density fluctuation through plasma oscillations [4].
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use a parametric instability in the electron beam when the
transverse size of the beam is periodically varied when it
propagates through the cooling system.
A considerable effort has been devoted to theoretical

and computational analysis of various aspects of coherent
cooling [4,8,10–12]. However, to our knowledge, the
theory is still lacking a simple formula that would allow
us to predict the cooling rate and its scaling with the main
parameters of the cooling system, similar to simple for-
mulas available for the traditional electron cooling [13].
In this paper, we derive such a formula, Eq. (67), for a
system shown in Fig. 1. While this system, as we will see
below, may not provide the required cooling rate for some
applications, we believe that its study constitutes a neces-
sary first step toward a more complex design which uses
amplification stages to increase the cooling rate. We plan to
carry out a quantitative analysis of MBEC with amplifi-
cation cascades in a separate work.
The original approach inRef. [8]was based on the analysis

of hadron-to-hadron interactions in the cooling system as
hadrons copropagate with the electrons through the drift
sections and pass through the chicanes. In this approach, the
self-interaction of hadrons, under certain conditions, can lead
to the cooling while the interaction of different particles
causes the energy diffusion in the beam. Conceptually a
similar treatment is used in the classical stochastic cooling
[14] where the Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) equations [15] are invoked to derive the kinetic
equation for the evolution of the distribution function of the
cooled hadron beam. A qualitative derivation of the MBEC
cooling rate using the same approach as the classical
stochastic cooling is given in Ref. [16].
In this paper, we adopt a framework that differs from

what has been used in the literature before. Instead of
considering individual hadrons affected by the fields
generated by electrons, we look at the dynamics of the
fluctuations in both beams. We assume that before the
beams start to interact, their density and energy fluctuations
can be described as uncorrelated shot noise. In the process
of interaction, the fluctuations in the electron and hadron
beams establish correlations, and when the beams are
recombined in the kicker the fluctuating electric field in
the electron beam acts in a way that decreases the energy
spread in the hadron beam. We believe that the language of
fluctuations is more appropriate for the description of the
coherent cooling because the interaction involves many
particles, in contrast to hadron-electron binary collisions in
the incoherent electron cooling.
The paper is organized as follows. In Sec. II we formulate

equations for 1D shot noise when the beam is treated as an
ideal gas of non-interacting particles. In Sec. III we consider
the interaction of the hadron and electron beams in the
modulator. This interaction is described in general terms of
the effective wakefield or, equivalently, impedance. To
simplify calculations and to clarify the physical mechanism

of the cooling, in Sec. IV, we assume a small dispersion
strength of the hadron chicane. In Sec. V we drop this
assumption andderivegeneral expressions for the cooling rate
and the energy diffusion in the process of coherent cooling. In
Sec. VI we calculate the effective interaction impedance due
to the Coulomb interaction of hadrons and electrons in the
modulator. In Sec.VIIweoptimize the strengthsof the hadron
and electron chicanes and derive the final formula, Eq. (67),
for the cooling rate. In Sec. VIII we estimate the energy
diffusion associated with the cooling and in Sec. IXwe apply
our formulas to the parameters of the eRHIC collider. In
Sec. Xwe compare our computer simulations with the theory
and we conclude with a discussion of our results in Sec. XI.
We use theGaussian systemof units throughout this paper.

II. SHOT NOISE IN BEAMS

We consider fluctuations in a beam on the scale that is
much smaller than the beam length. Locally, the beam can
be treated as having an average distribution function that
does not depend on the longitudinal coordinate z.
Throughout this paper we use the notation z for the
longitudinal coordinate inside the bunch, z ¼ s − v0t,
where s the longitudinal coordinate in the lab frame and
v0 is the nominal beam velocity. The analysis in this section
is applicable to both electron and hadron beams, so we do
not use indices that indicate a species. In subsequent
sections we will use e and h for electron and hadron
quantities, respectively.
We denote by η the relative energy deviation of a particle

in the beam, η ¼ ΔE=E0, where E0 ¼ γmc2 is the nominal
energy. The initial 1D distribution function, before the
beam enters the modulator, is

f0ðz; ηÞ ¼ n0FðηÞ þ δfðz; ηÞ; ð1Þ

where FðηÞ is the averaged energy distribution function
normalized by

R
dηFðηÞ ¼ 1, and n0 is the averaged 1D

density of the beam (the number of particles per unit
length). In this local analysis of fluctuations, the beam
is considered as infinitely long, so F does not depend on
the coordinate z. The function δfðz; ηÞ describes statistical
fluctuations in the beam; it has an average value equal
to zero, hδfðz; ηÞi ¼ 0. Generally speaking, fluctuations
evolve with time or, equivalently, along the beam path s,
but for brevity we omit the variable s from the arguments of
δf. In what follows, we will only need to calculate δfðz; pÞ
at several specific locations along the beam line.
We define the Fourier transformation of δf by the

following equations:

δf̂kðηÞ ¼
Z

∞

−∞
dze−ikzδfðz; ηÞ;

δfðz; ηÞ ¼ 1

2π

Z
∞

−∞
dkeikzδf̂kðηÞ: ð2Þ
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If we neglect the electromagnetic interaction between the
particles and treat the beam as an ideal gas, according to the
kinetic theory of gases [17], the correlator of two functions
δf taken at different points in the phase space is given by
the following formula

hδfðz; ηÞδfðz0; η0Þi ¼ n0FðηÞδðz − z0Þδðη − η0Þ; ð3Þ

which, after the Fourier transformation, gives

hδf̂kðηÞδf̂k0 ðη0Þi ¼ 2πn0FðηÞδðkþ k0Þδðη − η0Þ: ð4Þ

Equations (3) and (4) are the mathematical expressions of
the so called shot noise in the beam.
Introducing the density fluctuation δnðzÞ as

δnðzÞ ¼
Z

∞

−∞
dηδfðz; ηÞ; ð5Þ

we find by integrating Eq. (3) over η and η0,

hδnðzÞδnðz0Þi ¼ n0δðz − z0Þ; ð6Þ

which means that the density fluctuations in the shot noise
are uncorrelated. We can also calculate the Fourier spec-
trum of δnðzÞ,

δn̂k ¼
Z

∞

−∞
dze−ikzδnðzÞ ¼

Z
∞

−∞
dηδf̂kðηÞ: ð7Þ

Integrating Eq. (4) over η and η0 we obtain

hδn̂kδn̂k0 i ¼ 2πn0δðkþ k0Þ: ð8Þ

If we integrate Eq. (3) over η0 and make the Fourier
transformation over z0 we obtain an expression which will
need later:

hδfðz; ηÞδn̂ki ¼ n0FðηÞe−ikz: ð9Þ

III. DYNAMICS OF FLUCTUATIONS
IN THE HADRON BEAM

We now consider the dynamics of fluctuations in the
hadron beam as it propagates through the cooling section.
We assume that the initial distribution function for hadrons
is given by Eq. (1) and the beam is in a state with
uncorrelated shot noise as described in the previous section.
To distinguish the initial fluctuational part of the distribu-
tion function from its final counterpart we will change the
notation δf in Eq. (1) to δfðMÞ (M for the modulator). The
beam first interacts with electrons in the modulator where
each hadron creates a perturbation in the electron beam.
This perturbation is localized in a small vicinity of the
hadron. Strictly speaking, electrons also perturb the hadron
beam in this interaction, but for now we neglect this effect

in our analysis. After passing through the modulator, the
hadron beam goes through a chicane with the dispersion

characterized by the RðhÞ
56 element of the transport matrix,

for which we will use a simplified notation Rh. Passage
through the chicane Rh introduces a phase-space trans-
formation ðz; ηÞ → ðz0; η0Þ: z0 ¼ zþ Rhη, η0 ¼ η, and
changes the initial hadron distribution function f0 in the
modulator into a different function, f1, in the kicker,
f0 → f1. The new distribution function is obtained by
expressing the old arguments through the new ones2:

f1ðz;ηÞ ¼ f0ðz−Rhη;ηÞ ¼ n0hFhðηÞ þ δfðMÞðz−Rhη;ηÞ;
ð10Þ

where Fh is the averaged energy distribution function of
hadrons and n0h is the linear density of particles in the
hadron beam. The hadron beam then goes into the kicker
where it interacts with the electron beam again. This
interaction changes the relative energy of the hadrons
located at coordinate z by ΔηðhÞðzÞ, η0 ¼ ηþ ΔηðhÞðzÞ
(we will discuss the specific form of ΔηðhÞðzÞ below).
This results in a new hadron distribution function after the
kicker, f1 → f2,

f2ðz; ηÞ ¼ f1ðz; η − ΔηðhÞÞ
¼ n0hFhðη − ΔηðhÞÞ
þ δfðMÞðz − Rhηþ RhΔηðhÞ; η − ΔηðhÞÞ: ð11Þ

We will now look more closely at the hadron-electron
interaction in the kicker. We assume that this interaction can
be characterized by an effective wakefield wðzÞ such that
the energy change ΔEðzÞ of a hadron located at point z in
the beam after a passage through the kicker is

ΔEðzÞ ¼ ðZeÞ2
Z

∞

−∞
wðz − z0ÞδnðMÞðz0Þdz0; ð12Þ

(we use the convention that the positive wake corresponds
to the energy gain), where δnðMÞ is the hadron density
fluctuation in the modulator, δnðMÞðzÞ ¼ R

δfðMÞðz; ηÞdη,
and Ze is the hadron charge (throughout this paper we use
the notation e for the positive elementary charge). It is also
convenient to introduce the impedance ZðkÞ related to the
wake through the equation

ZðkÞ ¼ −
1

c

Z
∞

−∞
dzwðzÞe−ikz;

wðzÞ ¼ −
c
2π

Z
∞

−∞
dkZðkÞeikz: ð13Þ

2Here we implicitly assume that the ion motion from the kicker
to the modulator is Hamiltonian and the distribution function
remains constant along the trajectories in the phase space.
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Being a Fourier transform of a real function, the real and
imaginary parts of ZðkÞ are respectively even and odd
functions of k,Zð−kÞ ¼ Z�ðkÞ. The relative energy change
of a hadron at coordinate z can now be written as

ΔηðhÞðzÞ ¼ −
rhc
2πγ

Z
∞

−∞
dkZðkÞδn̂ðMÞ

k eikz; ð14Þ

where ΔηðhÞ ¼ ΔE=γmhc2, γmhc2 is the nominal energy of

the beam, δn̂ðMÞ
k is the Fourier transform of δnðMÞ

h ðzÞ, and
rh ¼ ðZeÞ2=mhc2. Introducing the Fourier transform Δη̂ðhÞk
as defined by Eqs. (2), we obtain

Δη̂ðhÞk ¼ −
rhc
γ

ZðkÞδn̂ðMÞ
k : ð15Þ

It is important to remember that here δn̂ðMÞ
k is associated

with the density fluctuations in the modulator—the place
where the hadron fluctuations are imprinted on the elec-
trons. These fluctuation should be calculated with the initial
fluctuational part of the distribution function δfðMÞðz; ηÞ.
When hadrons arrive to the kicker having been longitudi-
nally displaced in the chicane their distribution function
changes to f2 given by Eq. (11). The hadron fluctuations in
the kicker differ from the initial noise in the modulator
described by equations in Sec. II.

IV. COHERENT COOLING IN THE LIMIT OF A
SMALL VALUE OF THE CHICANE STRENGTH

As a result of the passing through the cooling section,
the distribution function of the hadron beam changes.
Introducing the difference

Δfðz; ηÞ ¼ f2ðz; ηÞ − n0hFhðηÞ; ð16Þ

where f2ðz; ηÞ is the distribution function after the kicker,
we should not expect that the averaged value hΔfi
vanishes, in contrast to the zero value of hδfðMÞi in the
initial state. We associate the average value of Δf with the
change of the averaged distribution function in one revo-
lution in the ring:

n0hT
∂Fh

∂t ¼ hΔfi; ð17Þ

where T is the revolution period. As we will see below, this
equation describes a gradual decrease of the hadron beam
energy spread due to the coherent cooling.
We will now calculate hΔfi. To simplify analysis, in this

Section we will assume that Rh is small and use the Taylor
expansion in Eq. (11) keeping terms linear in Rh. In
addition, we will use the smallness of the fluctuations in
the beam and treat ΔηðhÞ and δfðMÞ as small quantities ∼ϵ
and neglecting terms of order ϵ3 and higher. Using Eq. (11),
we find

hΔfi ≈
�
1

2
n0hðΔηðhÞÞ2F00

hðηÞ − ΔηðhÞ∂ηδfðMÞ þ RhηΔηðhÞ∂zηδfðMÞ þ RhΔηðhÞ∂zδfðMÞ
�

¼ 1

2
n0hhðΔηðhÞÞ2iF00

hðηÞ − hΔηðhÞ∂ηδfðMÞi þ RhhΔηðhÞ∂zηðηδfðMÞÞi; ð18Þ

where we have omitted the arguments ðz; ηÞ in the function
δfðMÞ and took into account that hδfðMÞi ¼ 0 and
hΔηðhÞi ¼ 0. We expect that the last term on the right-
hand side of this equation is associated with the cooling
because it is proportional to the product of the chicane
strength and the energy change ΔηðhÞ in the interaction.
With the help of Eqs. (14) and (9) we can write this term as

RhhΔηðhÞ∂zηðηδfðMÞÞi

¼ −
Rhrhc
2πγ

Z
∞

−∞
dkZðkÞeikz∂zηðηhδn̂ðMÞ

k δfiÞ

¼ Rhrhc
2πγ

n0h∂ηðηFhÞ
Z

∞

−∞
ikZðkÞdk: ð19Þ

From Eq. (13) it follows that

Z
∞

−∞
ikZðkÞdk ¼ −

2π

c
w0
lð0Þ; ð20Þ

so that the right-hand side of Eq. (19) can be written as

−w0
lð0Þ

Rhrh
γ

n0h∂ηðηFhÞ: ð21Þ

Substituting this into the right-hand side of Eq. (17) yields

∂Fh

∂t ¼ −w0
lð0Þ

Rhrh
Tγ

∂ðηFhÞ
∂η : ð22Þ

To see how Eq. (22) describes evolution of the rms energy
spread of the beam, σh, with time we multiply it by η2 and
integrate over η,
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dσ2h
dt

¼
Z

∞

−∞
dηη2

∂Fh

∂t ¼ −w0
lð0Þ

Rhrh
Tγ

Z
dηη2

∂ηFh

∂η
¼ 2w0

lð0Þ
Rhrh
Tγ

σ2h: ð23Þ

Hence, for w0
lð0ÞRh < 0, we have an exponential cooling

with the time constant

t−1c ≡ σ−2h
dσ2h
dt

¼ 2
rh
Tγ

jRhw0
lð0Þj: ð24Þ

The physical mechanism of this effect is the following [8].
Assuming for simplicity wlð0Þ ¼ 0 and also Rh > 0 and
w0
lð0Þ < 0, we see that hadrons passing through the chicane

with the energy higher than the nominal one are shifted in
the forward direction by positive Rh, and their energy is
decreased by the negative wake in the kicker. Particles with
the energy smaller then the nominal are shifted by the
chicane backward, and their energy is increased by the
positive wake. As a result, the repetitive passages through
the cooling system lead to a gradual decrease of the energy
spread of the hadron beam.
We now consider the second term on the right-hand side

of Eq. (18). Again using Eqs. (14) and (9) we find,

−∂ηhΔηðhÞδfðMÞi ¼ rhc
2πγ

Z
∞

−∞
dkZðkÞeikz∂ηhδn̂ðMÞ

k δfðMÞi

¼ n0hF0
hðηÞ

rhc
2πγ

Z
∞

−∞
dkZðkÞ: ð25Þ

The integral
R
∞
−∞ dkZðkÞ can be expressed through the

value of the wake at the origin, wð0Þ, and Eq. (25) can be
written as

−n0hF0
hðηÞ

rh
γ
wð0Þ: ð26Þ

This term can be interpreted as a change of the particle
energy due to its own wake, if the wake at the origin is not
zero, wð0Þ ≠ 0. When the process is repeated every
revolution period T, this term contributes to the time
evolution equation for Fh:

∂Fh

∂t ¼ −
rh
Tγ

wð0Þ ∂Fh

∂η : ð27Þ

Multiplying this equation by η and integrating it over η
gives the following equation for the average rate of the
energy loss3

1

E0

dE0

dt
¼ rh

Tγ
wð0Þ: ð28Þ

Clearly this term is of no interest for the cooling process.
Moreover, for the space charge interaction considered in
Sec. VI the value of the wake at the origin is equal to zero,
and this term vanishes.
Finally, the first term in Eq. (18) can be written as

follows:

1

2
n0hF00

hðηÞhðΔηðhÞÞ2i ¼
1

2
n0hF00

hðηÞ
�
rhc
2πγ

�
2
Z

∞

−∞
dkdk0ZðkÞZðk0Þeikzþik0zhδn̂ðMÞ

k0 δn̂ðMÞ
k i

¼ 1

4π
n20hF

00
hðηÞ

�
rhc
γ

�
2
Z

∞

−∞
dkjZðkÞj2; ð29Þ

where we have used the relation (8). Its contribution to the
time derivative of Fh is a diffusionlike term:

∂Fh

∂t ¼ D
∂2Fh

∂2η
; ð30Þ

with the diffusion coefficient

D ¼ n0h
4πT

�
rhc
γ

�
2
Z

∞

−∞
dkjZðkÞj2: ð31Þ

This diffusion is caused by the shot noise in the hadron
beam that is transferred through the interaction with the

electron beam and then applied back to the hadrons in the
kicker.
The averaged energy loss, Eq. (28), and the diffusion

coefficient, Eq. (31), can also be derived in a single-particle
treatment of the beam as shown in Appendix.
Taking into account both the cooling and diffusion, we

need to combine Eqs. (22) and (30),

∂Fh

∂t ¼ 1

2tc

∂ðηFhÞ
∂η þD

∂2Fh

∂2η
: ð32Þ

3In the case when the wake wðzÞ is due to the interaction with
accelerating cavities, this energy is lost to the excitation of cavity
modes—the well known effect of the beam loading.
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Multiplying this equation by η2 and integrating it over η, as
was done in Eq. (23), we obtain

dσ2h
dt

¼ −
σ2h
tc

þ 2D: ð33Þ

From this equation it follows that for a cooling effect to
prevail over the diffusion, the value of D should not be too
large,

D <
σ2h
2tc

: ð34Þ

In the opposite limit, the heating due to the diffusion
overcomes the cooling and the initial energy spread of the
hadron beam grows with time, dσ2h=dt > 0.
It follows from Eq. (24) that for a faster cooling one

would like to have a larger value of the dispersion strength
Rh. However, our analysis in this section assumed a small
Rh and hence cannot be applied to arbitrary values of Rh.
The assumption of the small chicane strength will be
dropped in the next section.

V. COOLING FOR ARBITRARY VALUE
OF THE CHICANE STRENGTH

We now return to Eq. (11) and repeat the derivation of
Δf without making an assumption that Rhη is small (but
still assuming the smallness of RhΔηðhÞ which is propor-
tional to the small quantity ΔηðhÞ). Instead of Eq. (18) we
now obtain

hΔfi¼ 1

2
n0hhðΔηðhÞÞ2iF00

hðηÞ− hΔηðhÞ∂2δfðMÞðz−Rhη;ηÞi
þhRhΔηðhÞ∂zδfðMÞðz−Rhη;ηÞi; ð35Þ

where ∂2δfðMÞ denotes the partial derivative with respect to
the second argument of δfðMÞ. The first term here, as the
first term in Eq. (18), is responsible for the energy diffusion
(30). This term will not be considered below. The cooling
effect is due to the second and the last terms that involve Rh,
but they also include the average energy loss of the hadrons
if wlð0Þ ≠ 0, as described by Eq. (27).
We begin with the calculation of the average of the last

term in Eq. (35):

RhhΔηðhÞ∂zδfðMÞðz − Rhη; ηÞi

¼ −
Rhrhc
2πγ

Z
∞

−∞
dkZðkÞeikz∂zhδn̂ðMÞ

k δfðMÞðz − Rhη; ηÞi:

ð36Þ

Similar to the derivation of Eq. (9) it is easy to find that

hδn̂ðMÞ
k δfðMÞðz − Rhη; ηÞi ¼ n0hFhðηÞe−ikðz−RhηÞ; ð37Þ

which gives

RhhΔηðhÞ∂zδfðMÞðz − Rhη; ηÞi

¼ in0hFhðηÞ
Rhrhc
2πγ

Z
∞

−∞
dkkZðkÞeikRhη: ð38Þ

For the second term in Eq. (35) we have

− hΔηðhÞ∂2δfðMÞðz − Rhη; ηÞi

¼ rhc
2πγ

Z
∞

−∞
dkZðkÞeikzhδn̂ðMÞ

k ∂2δfðMÞðz − Rhη; ηÞi:

ð39Þ

Again, following the derivation of Eq. (9), we find

hδn̂ðMÞ
k ∂2δfðMÞðz − Rhη; ηÞi ¼ n0hF0

hðηÞe−ikðz−RhηÞ; ð40Þ

which gives

− hΔηðhÞ∂2δfðMÞðz − Rhη; ηÞi

¼ rhc
2πγ

n0hF0
hðηÞ

Z
∞

−∞
dkZðkÞeikRhη: ð41Þ

Adding the right-hand sides of Eqs. (38) and (41), we will
subtract the effect of the wake at the origin, Eq. (25), to
obtain

n0h
rhc
2πγ

Z
∞

−∞
dkZðkÞ½ikRhFhðηÞeikRhη þ F0

hðηÞðeikRhη − 1Þ�:

ð42Þ
In the limit of small Rh, this expression reduces to Eq. (19)
and hence it generalizes the cooling term on the right-hand
side of the kinetic equation (22) to arbitrary values of Rh.
Note that in this regime the right-hand side of the kinetic

equation for function Fh differs from a simple form,
Eq. (32), valid in the limit of small Rh. In particular, the
cooling term in this equation is not equal any more to
the derivative ∂ðηFhÞ=∂η divided by the twice the cooling
time—it will now involve a more complicated expression
with the integral from Eq. (42). However, we still can
define the cooling time tc as an inverse rate of change of σ2h,

t−1c ¼
�Z

∞

−∞
dηη2

∂Fh

∂t
��Z

∞

−∞
dηη2Fh

�
−1
:

Repeating the derivation of Eq. (23) we find,

t−1c ¼ −
rhc

2πγσ2hT

Z
∞

−∞
dkZðkÞ

×
Z

∞

−∞
η2dη½ikRhFhðηÞeikRhη þ F0

hðηÞðeikRhη − 1Þ�;

ð43Þ
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assuming that the right-hand side of this equation is
positive. The integrand in this expression as a function
of k has the same symmetry as ZðkÞ—changing the sign of
k makes it a complex conjugate. Using this symmetry we
can rewrite Eq. (43) in explicitly real form,

t−1c ¼ −
rhc

πγσ2hT
Re

Z
∞

0

dkZðkÞ

×
Z

∞

−∞
η2dη½ikRhFhðηÞeikRhη þ F0

hðηÞðeikRhη − 1Þ�:

ð44Þ

To proceed further, we need to specify the impedance
ZðkÞ and then to find Rh that minimizes the cooling time.

VI. IMPEDANCE FOR MBEC

We will now discuss the effective impedance Z of the
MBEC cooling method in a simple setup shown in Fig. 1.
This impedance is generated when the electron beam first
interacts with hadrons in the modulator, travels through its

chicane, RðeÞ
56 , and then interacts with hadrons again in the

kicker section. For the hadron-electron interaction we will
adopt a model in which the interaction is treated as if a
hadron were a disk of charge Ze with an axisymmetric
Gaussian radial distribution with the rms transverse size
equal to the rms transverse size of the beam. The electron is
also modeled by a Gaussian disk of charge −e with the
same transverse profile. We believe that this model is more
accurate that the one developed in Ref. [8] where the
interaction was treated as between a uniformly charged disk
and a point charge on the axis of the beam. A similar
Gaussian-to-Gaussian interaction model was used in 1D
simulations of a longitudinal space charge amplifier in
Ref. [18].
In this model, a hadron of charge Ze at the origin of the

coordinate system exerts a force fz on an electron at
coordinate z,

fzðzÞ ¼ −
Ze2

Σ2
Φ
�
zγ
Σ

�
; ð45Þ

where Σ is the rms beam radius and the function Φ is
defined by the following expression [19],

ΦðxÞ ¼ 1

2

�
x
jxj −

x
ffiffiffi
π

p
2

exp

�
1

4
x2
�
erfc

�
1

2
jxj

��
; ð46Þ

with erfc the complementary error function. The functionΦ
is odd, Φð−xÞ ¼ −ΦðxÞ; its plot for positive x is shown in
Fig. 2. Neglecting the relative longitudinal displacements
of a hadron and an electron in the modulator, the force (45)
causes the relative energy change Gη in an electron located
at coordinate z,

GηðzÞ ¼ −
ZreLm

γΣ2
Φ
�
zγ
Σ

�
; ð47Þ

where Lm is the length of the modulator and re ¼ e2=mec2

is the classical electron radius.
The function Gη can also be considered as a Green

function for the energy modulation of electrons induced by
a delta-function density perturbation in the hadron beam.
With the help of this Green function an energy modulation
ΔηðeÞ in the electron beam in the modulator induced by a
1D density modulation if the hadron beam δnðMÞðzÞ can be
written as

ΔηðeÞðzÞ ¼
Z

∞

−∞
dz0δnðMÞðz0ÞGηðz − z0Þ: ð48Þ

We denote the averaged electron distribution function by
ne0FeðηÞ. In what follows, we neglect fluctuations in the
electron beam and hence do not introduce the δf term,
as in Eq. (1), for electrons. After the interaction with
the hadrons, the electron energy distribution becomes
ne0Feðη − ΔηðeÞðzÞÞ. The chicane in the electron path with

the RðeÞ
56 ≡ Re matrix element shifts electrons in the longi-

tudinal direction, z0 ¼ zþ Reη, and hence the distribution
function after the electron chicane becomes

n0eFe½η − ΔηðeÞðz − ReηÞ�: ð49Þ

Let us now calculate the density perturbation of the electrons
after the chicane, δnðeÞ, in the kicker:

δnðeÞðzÞ ¼ n0e

Z
∞

−∞
dη½Feðη − ΔηðeÞðz − ReηÞÞ − FeðηÞ�

≈ −n0e
Z

∞

−∞
dηF0

eðηÞΔηðeÞðz − ReηÞ; ð50Þ

where we have used the Taylor expansion keeping only a
linear term inΔηðeÞ. For the Fourier transform of the electron
density perturbation we find

FIG. 2. Function ΦðxÞ for positive values of the argument.
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δn̂ðeÞk ¼
Z

∞

−∞
dze−ikzδnðeÞðzÞ ¼ −n0egðkÞΔη̂ðeÞk ; ð51Þ

where

gðkÞ ¼
Z

∞

−∞
dηF0

eðηÞe−ikReη; ð52Þ

andΔη̂ðeÞk is the Fourier transformofΔηðeÞðzÞ. For aGaussian
distribution function of electrons, Fe ¼ ð ffiffiffiffiffiffi

2π
p

σeÞ−1e−η2=2σ2e ,
with σe is the rms relative energy spread, we have

gðkÞ ¼ ikRee−k
2R2

eσ
2
e=2: ð53Þ

Using Eqs. (47) and (48) we find that

Δη̂ðeÞk ¼ −ZζðkÞδn̂ðMÞ
k ; ð54Þ

with

ζðkÞ≡ −
1

Z

Z
∞

−∞
dze−ikzGηðzÞ ¼ −

2ireLm

γ2Σ
H

�
kΣ
γ

�
; ð55Þ

and

HðxÞ ¼
Z

∞

0

dξΦðξÞ sinðxξÞ: ð56Þ

Substituting Eq. (54) into Eq. (51) we obtain

δn̂ðeÞk ¼ Zne0gðkÞζðkÞδn̂ðMÞ
k : ð57Þ

Having found the electron density perturbation we can
now calculate the longitudinal force acting on hadrons in
the kicker (after the chicane). This is the force that changes
the hadron energy. For this force, we will use the same
model as above replacing an electron by a disk with a
Gaussian distribution with the rms size Σ and using Eq. (45)
(we assume the same transverse size of both beams in the
kicker as in the modulator). Following the derivation of
Eqs. (54)–(57) it is then straightforward to derive the
following formula for the Fourier component of the force
f̂zk acting on the hadrons,

f̂zk ¼
2iZ2e2n0e

Σγ
gðkÞζðkÞH

�
kΣ
γ

�
δn̂ðMÞ

k : ð58Þ

Again, neglecting the relative motion of electrons and
hadrons in the kicker, we multiply f̂zk by the length of the
kicker Lk and divide it by γmhc2 to obtain the Fourier

component of the energy change Δη̂ðhÞk ,

Δη̂ðhÞk ¼ 2ie2Z2n0eLk

Σγ2mhc2
gðkÞζðkÞH

�
kΣ
γ

�
δn̂ðMÞ

k : ð59Þ

Comparing this formula with Eq. (15) we find the effective
impedance ZðkÞ for the MBEC cooling section,

Z ¼ −
2in0eLk

cΣγ
gðkÞζðkÞH

�
kΣ
γ

�

¼ −
4iIeLmLk

cΣ2γ3IAσe
qeϰe−ϰ

2q2e=2H2ðϰÞ; ð60Þ

where we have introduced the dimensionless parameters

ϰ ¼ kΣ
γ
; qe ¼

Reσeγ

Σ
; ð61Þ

and used the electron beam current Ie ¼ en0ec and the
Alfvén current IA ¼ mec3=e ≈ 17 kA. This impedance
is purely imaginary and the corresponding wake wðzÞ, as
was already indicated above, has a zero value at the origin.

VII. MAXIMIZATION OF THE COOLING RATE

We now rewrite Eq. (44) introducing the cooling time
measured in revolution periods, Nc ¼ tc=T, and using the
normalized variables (61) together with qh ≡ Rhσhγ=Σ,
where σh is the rms relative energy spread of the hadrons,

N−1
c ¼ −

rhc
πΣ

Re
Z

∞

0

dϰZðϰÞ

×
Z

∞

−∞
ξ2dξ½iϰqhFhðξÞeiϰqhξ þ F0

hðξÞðeiϰqhξ − 1Þ�:

ð62Þ

In this equation, the integration variable is ξ ¼ η=σh, the
distribution function Fh is considered as a function of
this variable (with F0

h being the derivative with respect to
ξ), and the impedance is expressed as a function of the
variable ϰ. Substituting the impedance (60) into Eq. (62)
we find the following expression for N−1

c ,

N−1
c ¼ 4IerhLmLk

πΣ3γ3IAσeσh
½qeRe

Z
∞

0

dϰϰe−ϰ
2q2e=2H2ðϰÞRðϰÞ�;

ð63Þ

where

RðϰÞ¼ iσh

Z
∞

−∞
ξ2dξ½iϰqhFhðξÞeiϰqhξþF0

hðξÞðeiϰqhξ−1Þ�:

ð64Þ

For a Gaussian distribution function, FhðξÞ ¼
ð ffiffiffiffiffiffi

2π
p

σhÞ−1e−ξ2=2, the integral in Eq. (64) can be done
analytically:

RðϰÞ ¼ 2ϰqhe
−ϰ2q2h=2: ð65Þ
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With this analytical expression for R, the expression in the
square brackets in Eq. (63), which we denote by I,

Iðqh; qeÞ ¼ qe

Z
∞

0

dϰϰe−ϰ
2q2e=2H2ðϰÞRðϰÞ

¼ 2qhqe

Z
∞

0

dϰϰ2e−ϰ
2ðq2eþq2hÞ=2H2ðϰÞ; ð66Þ

can be maximized numerically with respect to the variables
qh and qe (that is the strengths of the hadron and electron
chicanes in the cooling system). Note that I is symmetric,
Iðqh; qeÞ ¼ Iðqe; qhÞ, hence the maximum of the integral is
attained when qh ¼ qe. The plot of function Iðq; qÞ is
shown in Fig. 3; its maximum value is 0.079 at q ¼ 0.6.
Substituting this maximum value in Eq. (63) we arrive at
the following cooling rate,

N−1
c ¼ 0.10

1

γ3σhσe

Ie
IA

rhLmLk

Σ3
: ð67Þ

We remind the reader that in this expression rh stands for
the classical radius calculated with the charge and the mass
of the hadron, rh ¼ ðZeÞ2=mhc2.

For the optimal values of qh and qe found above, one can
now calculate the interaction impedance Z. It is more
interesting, however, to find the interaction wake w related
toZ by Eq. (13). This wake is plotted in Fig. 4 as a function
of the normalized variable zγ=Σ; the wake is normalized by
the scaling factor4 w0 ¼ 4IeLmLk=πΣ3γ2IAσe. This wake is
an antisymmetric function of z and, as has been pointed out
above, is equal to zero at the origin. Numerical value of the
wake for the parameters of eRHIC collider is calculated
in Sec. IX.

VIII. CALCULATION OF THE DIFFUSION
COEFFICIENTS

We can now calculate the diffusion coefficient given by
Eq. (31) for the parameters of the optimal cooling. Using
Eq. (60) for the impedance we find

D¼ n0h
4πT

γ

Σ

�
4rhIeLmLk

Σ2γ4IAσe

�
2

q2e

Z
∞

−∞
dϰH4ðϰÞϰ2e−ϰ2q2e : ð68Þ

Calculating the integral for the optimal value qe ¼ 0.6 we
find

q2e

Z
∞

−∞
dϰH4ðϰÞϰ2e−ϰ2q2e ¼ 5.3 × 10−3: ð69Þ

The diffusion coefficient (68) can now be written as

D ¼ 0.66N−2
c

IhΣ
TIAreγ

σ2h; ð70Þ

where Ih ¼ en0hc is the hadron current. The requirement
(34) that the diffusion does not overcome the cooling is
now expressed as follows,

0.66
Σ
γre

Ih
IA

< 0.5Nc: ð71Þ

In the next section we will estimate it for the parameters of
the eRHIC collider.

IX. ESTIMATES FOR ERHIC COLLIDER

As a numerical illustration of the general theory devel-
oped in the previous sections we will estimate the opti-
mized cooling rate for the nominal parameters of the
electron-hadron collider eRHIC [20]. The parameters of
the proton beam in eRHIC and hypothetical parameters of
the electron beam in the cooling system are given in Table I.
Because the cooling rate (67) depends on the local

electron beam current that varies within the electron bunch,
one has to average Eq. (67) taking into account the finite

FIG. 4. Dimensionless wake for the hadron-electron interaction
in the cooling system.

FIG. 3. Plot of function Iðq; qÞ versus q.

4In the Gaussian system of units the wake has dimension of
inverse length. To convert it to the SI system, one has to multiply
it by Z0c=4π.
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electron bunch length which we denote by σðeÞz . Assuming a
Gaussian current distribution in the electron beam,

Ie ¼ ½Qec=
ffiffiffiffiffiffi
2π

p
σðeÞz � exp½−z2=2ðσðeÞz Þ2�, it is straightfor-

ward to calculate that the average electron current that a
hadron sees over many passages through the electron beam
is equal to

Īe ¼
Qecffiffiffiffiffiffi

2π
p ½ðσðeÞz Þ2 þ ðσðhÞz Þ2�1=2

: ð72Þ

For an electron beam several times shorter than the hadron

one, we can neglect in this formula σðeÞz in comparison with

σðhÞz . In this limit, replacing Ie in Eq. (67) by Īe, we obtain
for the cooling rate

N−1
c ¼ 0.10

1

γ3σhσe

Qecffiffiffiffiffiffi
2π

p
σðhÞz IA

rhLmLk

Σ3
: ð73Þ

Substituting parameters from Table I into this equation
gives for the cooling time

Nc ¼ 1.15 × 1010; ð74Þ

which, with the revolution period in the RHIC ring of
13 μs, corresponds to 41 hours. The diffusion rate esti-
mated with Eq. (70) turns out to be much smaller than the
cooling rate, so that Eq. (71) is well satisfied—the ratio of
the right-hand side of Eq. (71) to its left-hand side is about
0.7 × 104. The optimal parameters of the electron and
proton chicanes are Rh

56 ¼ 0.31 cm and Re
56 ¼ 1.4 cm. Of

course, such a long cooling time is not sufficient for the
eRHIC collider, where the intrabeam scattering (IBS) time
scale for the emittance doubling is estimated in the range of
2 hours. We conclude that a simple setup shown in Fig. 1
needs to be augmented by some kind of amplification in the
electron channel, as mentioned in the Introduction. We will
discuss the needed amplification factor and some of the
issues related to the amplification in Sec. XI.

Our assumption that the hadron-electron interaction
results only in the energy perturbation of electrons in the
modulator, and not their density, is justified if plasma
effects in the electron beam can be ignored. Plasma
oscillations convert energy perturbations in the beam into
density modulations and vice versa in a quarter of the
plasma wavelength λp, so these effects can be ignored if
1
4
λp is much larger than the modulator and kicker lengths.

To estimate 1
4
λp in the electron beam we can use the

following formula, (see, e.g., Ref. [7]),

1

4
λp ∼ γ3=2Σ

ffiffiffiffiffi
IA
Ie

s
: ð75Þ

Substituting parameters from Table I in this formula, and
taking for the electron peak current Ie ¼ 30 A we find
1
4
λp ¼ 84 m and hence 1

4
λp ≳ Lm; Lk if the electron beam

current is limited by Ie ≲ 30 A.
We end this section with the calculations of the wake

scaling factor w0 pertinent to Fig. 4. For the eRHIC
parameters, assuming the electron peak current Ie ¼ 30

A, we find Σ=γ ¼ 2.4 μm and w0 ¼ 1.1 × 1019 V=C. This
means that the maximum/minimum values of the potential
are located at z ¼ �2 μm from the origin, and the maxi-
mum/minimum cooling potential created by a single proton
in the electron beam in the kicker is �1.75 V.

X. COMPUTER SIMULATION
OF COHERENT COOLING

To test our analytical theory we carried out computer
simulations of MBEC. In these simulations, electrons and
hadrons are represented by macroparticles that interact with
the force given by Eq. (45). Initially, Ne electron macro-
particles are randomly distributed in the interval 0 < z <

Δz with the energy ηðeÞi of i-th electron randomly assigned
from a Gaussian distribution with the rms width σe.
Periodic boundary conditions are set at the boundaries of
the interval ½0;Δz�. A hadron particle, with an energy ηðhÞ
randomly selected from a Gaussian distribution with the
rms width σh, is placed at a random location within the
interval and the energy of each electron i is changed by

ΔηðeÞi ¼ fz;iLm=γmec2, where fz;i is the force exerting by
the hadron on electron i. In the next step, corresponding
to the passage through the chicanes, the hadron and
each electron are shifted longitudinal by Rhη

ðhÞ and

ReðηðeÞi þ ΔηðeÞi Þ, respectively. Finally, in the kicker, the
hadron energy is changed from ηðhÞ to ηðhÞ þ ΔηðhÞ with
ΔηðhÞ ¼ PNe

i¼1 fz;iLk=γmhc2, where now fz;i denotes the
force acting on the hadron from ith electron. This procedure
is repeated M times and the cooling rate is estimated as an
average overM runs of the difference ðηðhÞ þ ΔηðhÞÞ2 − σ2h.

TABLE I. Parameters of the eRHIC collider with a hypothetical
MBEC cooling section.

Proton beam energy 275 GeV
RMS length of the proton beam, σðhÞz 5 cm
RMS relative energy spread of the
proton beam, σh

4.6 × 10−4

Peak proton beam current, Ih 23 A
RMS transverse size of the beam in the
cooling section, Σ

0.7 mm

Electron beam charge, Qe 1 nC
RMS relative energy spread of the
electron beam, σe

1 × 10−4

Modulator and kicker length, Lm and Lk 40 m
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By properly scaling all dimensional variables of the
simulation problem, one can find that it involves five
dimensionless parameters. The first one, ν ¼ n0eΣ=γ, is
equal to the number of electrons on the length Σ=γ and is
proportional to the electron beam current. Two more
parameters, A1 and A2, characterize the interaction strength
in the modulator and the kicker normalized by the electron
and hadron energy spread, respectively,

A1 ¼
ZreLm

γΣ2σe
; A2 ¼

rhLk

ZγΣ2σh
: ð76Þ

Finally, the last two parameters are the dimensionless
strengths of the chicanes, qe and qh, defined in Secs. VI
and VII. In the simulations we assumed qe ¼ qh ¼ q.
Calculating numerical values of ν, A1 and A2 for the

eRHIC parameters from Table I and assuming the electron
current Ie ¼ 30 A, we find

ν¼ 1.5× 106; A1 ¼ 7.8× 10−6; A2 ¼ 9.3× 10−10:

ð77Þ
Simulations with these values are extremely difficult due to
a required large number of macroparticles and small values
of the interaction strengths, so we used larger values for A1

and A2 and a smaller value for ν:

ν¼ 5× 102; A1 ¼ 1× 10−2; A2 ¼ 9.4× 10−7; ð78Þ

with the same ratio A2=A1 as in Eqs. (77). Because A1 and
A2 are proportional to the square of the charge, the
increased values of A2 and A1 can be interpreted as if
macroparticles carry a charge larger than the elementary
charge e. Our parameter choice (78) can be interpreted as if
each macroparticle has a charge of approximately 36e.
We used Ne ¼ 104 electron macroparticles and the

length of the “electron bunch” Δz ¼ 20Σ=γ in the simu-
lations. The averaging was done over M ¼ 5 × 106 runs.
The plot of the simulated cooling times as a function of the

dimensionless chicane strength q is shown in Fig. 5 by
blue squares. The solid curve is calculated using Eq. (63).
One can see that Equation (63) is in good agreement with
the simulations which we consider as a confirmation of the
correctness on our analytical results.

XI. COOLING ACCELERATION
WITH AMPLIFICATION STAGES

As was mentioned in Sec. IX, the cooling rate of the
simple system shown in Fig. 1 is not sufficient for the
eRHIC collider without some kind of amplification system
added in the electron channel. A detailed study of the
specific amplification method is beyond the scope of this
paper, however, based on the results of Sec. IX we can
rather easily estimate the required gain factor that would
allow to lower the cooling time below the 2 hours limit
required for eRHIC. For the MBEC amplification cascades
[8] the gain factor G is a broadband function of the
frequency, and for a crude estimate, one can take it as
a constant.5 ThenG appears as a multiplication factor in the
expression for the impedance Z, and the cooling rate
increases by the same factor. Hence, to get the cooling time
in the range of 1 hour one needs the gain factor G≳ 50.
Using the results of Ref. [7], the amplification factor in one
cascade of MBEC (consisting of a drift in which density
perturbations execute one quarter of plasma oscillations
followed by a chicane) can be estimated as

G ∼
1

σe

ffiffiffiffiffiffiffi
Ie
γIA

s
: ð79Þ

From the parameters from Table I, assuming Ie ¼ 30 A, we
find G ∼ 24, so we conclude that two amplification
cascades should be enough to achieve the MBEC cooling
time in eRHIC below one hour. A detailed theory of the
MBEC cooling with amplification cascades will be pub-
lished in a separate paper.
Amplification of the signal also amplifies the noise and

increases the diffusion effects in the coherent cooling with
the diffusion coefficient (31) scaling as G2. In the inequal-
ity (71), the left-hand side scales as G2, while the right-
hand side is proportional to G. As was mentioned in
Sec. IX, without the amplification the left-hand side is
about four orders of magnitude smaller than the right-hand
side. Hence, we conclude that for G < 100 the effect of the
noise diffusion is still smaller than the cooling effect.
It is interesting to derive the maximum amplification

factor, Gmax, for which the diffusion becomes of the same
order as the cooling. This factor is given by the ratio of the
right-hand side of Eq. (71) to the left-hand side,

FIG. 5. Cooling time as a function of dimensionless chicane
strength.

5In contrast to MBEC, the FEL amplification is intrinsically
narrowband, and our analysis in this section is not applicable to it.
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Gmax ∼ Nc

�
Σ
γre

Ih
IA

�
−1
: ð80Þ

For this maximum gain, the cooling rate becomes

GmaxN−1
c ∼

γre
Σ

IA
Ih

∼
γn0h
Σ

: ð81Þ

The last expression has a simple meaning—it is a number
of protons in the amplification bandwidth Σ=γ—in agree-
ment with the general principles of the stochastic cooling
[21]. For the parameters from Table I, this bandwidth is
estimated as cγ=Σ ≈ 2π × 20 THz, and is much larger than
the typical bandwidth of several GigaHertz in a typical
classical stochastic cooling setup.

XII. DISCUSSION

In this paper, we derived the cooling rate for the
longitudinal, or momentum, cooling using a simple 1D
model that treats particles as charged disks interacting
through the Coulomb force. There are several effects that
are neglected in this model. Clearly, the transverse dynam-
ics due to the beam focusing is ignored, as well as
longitudinal displacement of particles due to this focusing.
We also ignored plasma oscillations in the electron beam in
the modulator and the kicker regions. This is justified if the
length of the modulator and the kicker is smaller than a
quarter of the plasma period in the electron beam. As was
estimated in Sec. IX, this requirement is satisfied for the
parameters of a MBEC cooler for eRHIC.
In our analysis, we assumed a round cross section of the

beams with a Gaussian radial density distribution. This
assumption can be easily dropped and other transverse
distributions (e.g., with unequal vertical and horizontal sizes)
used for the particle interaction. This will only change the
specific form of the interaction potential (46), with the rest of
the calculations of the cooling rate remaining the same.
Finally, we note that the 1D theory can also be extended to

include the effects of the transverse cooling. This type of
cooling is achieved through the introduction of the dispersion
in the modulator and the kicker regions, as it was proposed
for the optical stochastic cooling scheme [22,23]. A pre-
liminary consideration of the vertical emittance cooling in
MBEC has been carried out in Ref. [24].
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APPENDIX: DERIVATION BASED ON ANALYSIS
OF PARTICLE-TO-PARTICLE INTERACTIONS

The averaged energy loss (28) and the diffusion coef-
ficient (31) can also be obtained from a straightforward
consideration of particle interactions through the wakefield.
The relative energy change Δηi of a particle i due to such
interaction is

Δηi ¼
1

E0

ΔEj ¼
e2

E0

�
wð0Þ þ

X
l≠i

wðzi − zlÞ
�
; ðA1Þ

where we have included the term wð0Þ responsible for the
interaction of the particle with itself. Calculating the aver-
aged value hΔηii one has to take into account that the average
value of the sum on the right-hand side of Eq. (A1) is equal
to zero, because in an infinitely long uniform bunch the
averaging can be replaced by the integration over zi and the
wake function has a zero average,Z

∞

−∞
dzwðzÞ ¼ 0: ðA2Þ

Hence hΔηii ¼ e2wð0Þ=E0 which is equivalent to say that
the average energy loss is given by Eq. (28).
The diffusion coefficient (31) can be expressed through

the averaged square of the energy deviation in one step:

D ¼ 1

2T
hðΔη − hΔηiÞ2i ¼ 1

2T
½hðΔηÞ2i − hΔηi2�: ðA3Þ

For the averaged square we have

hΔη2ji¼
e4

E2
0

�
wð0Þþ

X
l≠j

wðzj− zlÞ
��

wð0Þþ
X
m≠j

wðzj− zmÞ
�

¼hΔηi2þ e4

E2
0

X
l;m≠j

wðzj− zlÞwðzj−zmÞ: ðA4Þ

In the last term on the right-hand side we have both
2-particle (when m ¼ l) and 3-particle (when m ≠ l)
interactions. The non-zero contribution comes from the
2-particle interactions only, which can be expressed
through the impedance,

hðΔηÞ2i − hΔηi2

¼ e4

E2
0

X
m≠j

wðzj − zmÞ2 →
e4

E2
0

n0

Z
∞

−∞
dzwðzÞ2

¼ e4

E2
0

�
c
2π

�
2

n0

Z
∞

−∞
ds

Z
∞

−∞
dkdk0ZðkÞZðk0Þe−iðkþk0Þs

¼ e4c2

2πE2
0

n0

Z
∞

−∞
dkjZðkÞj2: ðA5Þ

Substituting this term to Eq. (A5) gives the diffusion
coefficient (31).
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