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A problem of coupled-beam instability is solved for two multibunch beams with slightly different
revolution frequencies, as in the Fermilab Recycler Ring (RR). Sharing of the interbunch growth rates
between the intrabunch modes is described. The general analysis is applied to the RR; possibilities to
stabilize the beams by means of chromaticity and feedback are considered.
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I. INTRODUCTION

Slip-stacking is a method to increase beam intensity in a
synchrotron by merging two beams. When the first beam is
moving along its orbit, the second one is injected at a
slightly different energy, so that it slips along the first beam
while its rf buckets are gradually filled. As soon as that
injection is over, when bunches of the first and second
beams line up with each other, a sufficiently high rf
voltage captures these bunch pairs in the same buckets.
Schematically, such slipping motion is shown in Fig. 1.
This method is successfully realized in the RR [1,2], with
about 500 bunches in each beam. Such a high number of
bunches makes coupled-bunch interaction a powerful
source of collective instabilities. However, the relative
motion of the two beams prevents a straightforward
application of the existing theory, and requires certain
modifications. This paper presents a general solution of
this coupled-beam problem as well as some details about
the distribution of the interbunch tune shifts between the
intrabunch modes, with an application of all that to the
Recycler Ring.

II. MAIN EQUATIONS

To begin, let us consider every bunch as a macroparticle,
with a transverse dynamic offset of kth bunch of the faster
beam xþk , and the same thing for the slower beam x−k . The
equations of motion for these offsets can be presented as
follows:

ẍþk ðtÞ þ ω2
bx

þ
k ðtÞ ¼ Fþþ

k ðtÞ þ Fþ−
k ðtÞ

ẍ−k ðtÞ þ ω2
bx

−
k ðtÞ ¼ F−þ

k ðtÞ þ F−−
k ðtÞ;

Fþþ
k ðtÞ ¼ 2ωb

X∞
n¼1

Wðnτ0Þxþkþnðt − nτ0Þ;

Fþ−
k ðtÞ ¼ 2ωb

X∞
n¼1

Wðnτ0 − τÞx−kþnðt − nτ0 þ τÞ;

F−þ
k ðtÞ ¼ 2ωb

X∞
n¼0

Wðnτ0 þ τÞxþkþnðt − nτ0 − τÞ;

F−−
k ðtÞ ¼ 2ωb

X∞
n¼1

Wðnτ0Þx−kþnðt − nτ0Þ;

x�kþM ¼ x�k ; τ ¼ τ0t=T: ð1Þ

Here t is time, ωb ¼ Qxω0 is the betatron frequency, with
ω0 as the revolution frequency and Qx as the betatron tune,
while meanings of bunch separations τ and τ0 should be
clear from Fig. 1; T is time required for the slippage per
bucket (i.e., per τ0), and M is the number of bunches per

FIG. 1. Two slipping multibunch beams in the Recycler Ring,
when one with a slightly higher energy (blue, marked with þ)
slowly outruns another (red, marked with −). Bunch numbers are
indicated as ð�; nÞ; the transverse offsets of ðþ; 0Þ and ð−; 0Þ
bunches, x�0 , are shown.

*burov@fnal.gov

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 114401 (2018)

2469-9888=18=21(11)=114401(11) 114401-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.21.114401&domain=pdf&date_stamp=2018-11-02
https://doi.org/10.1103/PhysRevAccelBeams.21.114401
https://doi.org/10.1103/PhysRevAccelBeams.21.114401
https://doi.org/10.1103/PhysRevAccelBeams.21.114401
https://doi.org/10.1103/PhysRevAccelBeams.21.114401
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


beam, so the total number of bunches in the machine is 2M.
The normalized wake function W is a product of the
conventional dipole wake function of the whole ring W⊥
(see, e.g., Ref. [3]) and the intensity coefficient
Nbr0c=ð4πγQxÞ, where Nb is the number of particles
per bunch, r0 is the classical radius, c is the speed of
light, and γ is the relativistic factor. With the slip factor
η ¼ −ðp=ω0Þdω0=dp and the beam-beam relative momen-
tum separation δp=p, the revolution time T0 ¼ 2π=ω0, the
slippage period

T ¼ −
T0

Mηðδp=pÞ : ð2Þ

Due to spacial periodicity, the offsets can be expa-
nded over Fourier components, so that for each spacial
coupled-bunch harmonic x�k ðtÞ ¼ x�0 ðtÞ expðiϕkÞ, with
ϕ ¼ 2πμ=M, where the mode numbers μ areM consecutive
integers starting at an arbitrary one. The next step is
transition to slow amplitudes, which is conventionally done
by the substitution x�0 ðtÞ¼a�ðtÞexpð−iωbtÞ. However, this
representation of the coupled-beam oscillations is not quite
satisfactory yet for slipping beams, since it associates mode
amplitudes with specific (zero) bunches. It is important that
these bunches do not remain at the same distance from each
other. If at t ¼ 0 the bunches ðþ; 0Þ and ð−; 0Þ exactly align,
after time T the bunch ðþ; 0Þ aligns with the bunch ð−; 1Þ,
while the bunch ð−; 0Þ aligns with ðþ;−1Þ. Thus, the
association of the mode amplitudes with specific reference
bunches is not adequate to the problem of coupled oscil-
lations of slipping beams. Two-beam collective motion
requires such amplitudes that a time shift by t ¼ T, when
τ → τ þ τ0, would not change relative phases of the neigh-
bor þ and − bunches. This goal is achieved with the
following modified amplitudes:

b� ¼ a� exp½∓ iϕτ=ð2τ0Þ�: ð3Þ

For the amplitudes b�, the relative phases of the aligned
bunches are fully determined by the relative phases of the
amplitudes, without any time-dependent explicit factors. For
instance, at t ¼ T, when τ ¼ τ0, the offset of the bunch ð−; 0Þ
is x−0 ðTÞ ¼ b−e−iϕ=2 (the common factor e−iωbT is omitted).
At that moment, the bunch is aligned with the one numbered
ðþ;−1Þ, which offset is xþ−1ðTÞ ¼ bþeiϕ=2e−iϕ ¼ bþe−iϕ=2,
so their relative phases are equal to those ofb− and bþ, as it is
the case for any aligned pair of bunches any time the bunches
are aligned.
In terms of the slipping-beam amplitudes b�, the

equations of motion can be written,

T _bþ ¼ −i
ϕ

2
bþ þ iSbþ þ iOðτ0 − τÞb−;

T _b− ¼ i
ϕ

2
b− þ iSb− þ iOðτÞbþ;

OðτÞ ¼
X∞
n¼0

Wðnτ0 þ τÞ exp½iψðnþ τ=τ0Þ�;

S ¼ Oðτ0Þ; ψ ¼ ϕþ ωbτ0: ð4Þ

Here, the wake Fourier series S and O describe actions of
the same (S) and other (O) beams. For a given wake
function, they can be computed and tabulated as certain
functions of the coupled-bunch mode, represented by the
mode parameter ψ, and the slippage phase τ̃ ¼ τ=τ0,
0 < τ̃ ≤ 1. Without loss of generality, the mode phase ψ
can be chosen so that jψ j ≤ π, the convention held below.
When the beam-beam interaction is suppressed for one or
another reason, the other term O can be dropped, and the
well-known single-beam coupled-bunch formulas can be
obtained.
Let us now take one more step and include an important

parameter, unaccounted for as of yet, chromaticity
ξ ¼ pdQx=dp. With time measured in the units of the
slipping period T, this yields,

_bþ ¼ −i
ϕþ χ

2
bþ þ iSbþ þ iOðτ0 − τÞb−;

_b− ¼ i
ϕþ χ

2
b− þ iSb− þ iOðτÞbþ; ð5Þ

where the chromatic beam-beam phase

χ ¼ −
ξ

η

2π

M
ð6Þ

is the chromatic frequency shift ω0ξδp=p in the units of the
inverse slippage period T.
Before going into details of the general solution of

Eqs. (5), it would be reasonable to solve them for an
important case when the bunch-to-bunch phase ψ is so
small that the beam-beam interaction function OðτÞ can be
taken as constant, OðτÞ ¼ S, which allows to treat the
beams as coasting. Substituting b� ∝ expð−iωtÞ, the two
eigenfrequencies are obtained,

ω ¼ −S�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ ðϕþ χÞ2=4

q
; ð7Þ

which can also be found from Eq. (6.258) of Ref. [3],
assuming the beam longitudinal distribution to consist of
two delta-functions. This solution shows that there are two
extreme situations with respect to the beam-beam inter-
action. If the slip phase is small in comparison with the
interaction function, jϕþ χj=2 ≪ jSj, the two beams are
either in phase, with the common mode frequency
ω ≈ −2S, or out of phase, when their wakes almost cancel
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each other out. In the opposite situation of a large slip
phase, jϕþ χj=2 ≫ jSj, the beams essentially do not
interact; each of them oscillates with its own frequency
ω ¼ −S� ðϕþ χÞ=2. Due to wake properties, the self-
interaction function SðψÞ corresponds to instability,
ℑSðψÞ < 0, only if its argument −π < ψ < 0. At first
glance, one may conclude from here that the maximally
effective suppression of the instability by the chromaticity
requires the conventional rule for the chromaticity sign
to be obeyed: the sign of the chromatic phase χ has to
be negative, i.e., the sign of the chromaticity ξ has to be
negative below transition and positive above. As it will be
seen below in this paper, the situation is, in fact, more
complicated.
Let us come back now to the general case of arbitrary

bunch-to-bunch phase ψ , Eq. (5). This pair of linear
ordinary differential equations can be further simplified
with the substitution b� ¼ c�eiS, which eliminates the
time-independent same-beam factor S:

_cþ ¼ −iðψ þ ΔψÞcþ=2þ iOðτ0 − τÞc−;
_c− ¼ iðψ þ ΔψÞc−=2þ iOðτÞcþ; ð8Þ

where Δψ ¼ χ − ωbτ0 can be termed the beam-beam phase
shift. Thereby, the problem is reduced to the pair of
ordinary linear homogeneous differential equations with
time-dependent coefficients. Its periodical map P can be
obtained by numerical integration:

cð1Þ ¼ Pcð0Þ; c ¼ ðcþ; c−ÞT: ð9Þ

Slipping-beam collective modes are described by the
eigensystem of the matrix P. Its eigenvalues λ1;2 give
the growth rates r1;2 and phase shifts ΔΦ1;2,

r1;2¼T−1 ln jλ1;2j; ΔΦ1;2¼−ðargλ1;2∓ϕ=2Þ: ð10Þ

Equations (8) have a symmetry with respect to reflection
of time: this pair of equations does not change after the
following transformation:

τ → τ0 − τ; cþ → c−; c− → −cþ:

This CT-symmetry entails that the eigenvalues λ1;2
are mutually inverse and that the eigenvectors v1;2 are
orthogonal:

λ1λ2 ¼ 1; v1 · v2 ¼ vþ1 v
þ
2 þ v−1 v

−
2 ¼ 0: ð11Þ

This circumstance does not necessarily mean that only one
of the two slipping-beam modes is unstable, since on top of
these eigenvalues the same-beam factor eiS contributes to
the growth rate as well. However, the mode with jλj > 1 is
more unstable, so it is reasonable to limit our attention to
this mode only.

Equations of motion (8) select two special mode
phases ψ , where the growth rate may be maximal.
The first one is selected by the wake; it is the phase
where the wake provides maximal interaction, i.e., where
its Fourier images S and O reach their maxima. For
example, a resonator wake with the frequency ωr selects
the resonating phase ψ ¼ −ωrτ0; a thick-wall resi-
stive wake selects the phase ψ ¼ −0, where its images
S and O go to infinity, with negative signs of their
imaginary parts, etc. The second special phase, selected
by Eqs. (8), corresponds to a resonance between the
beams, when the relative phase advance per the slippage
time is a multiple of 2π, i.e.,

ψ þ Δψ ≡ ϕþ χ ¼ 2πn; n ¼ 0;�1;�2…: ð12Þ

Whatever the chromatic phase χ, there is one and only
one beam-beam mode, corresponding to the resonance
(12), where the beam-beam interaction is enhanced. The
phase parameter of this resonating mode may also be
expressed as

ϕres ¼ −χðmod 2πÞ: ð13Þ

From here, one may generally conclude that it is
beneficial to set the chromatic phase χ, Eq. (6), so that

ðχ − ωbτ0Þðmod 2πÞ < 0: ð14Þ

In this case, the self-interaction is stabilizing at the beam-
beam resonance, ℑS > 0, so the detrimental effect of the
beam-beam resonance is reduced. Examples of that will
be shown below.

III. RESISTIVE WALL

In this section the described method is applied to the case
of a thick resistive wall,WðsÞ ∝ 1=

ffiffiffi
s

p
. Real and imaginary

parts of the function

OðτÞ ¼ w0

X∞
n¼0

exp½iψðnþ τ̃Þ�ffiffiffiffiffiffiffiffiffiffiffi
nþ τ̃

p ≡ w0ϒðψ ; τ̃Þ; τ̃≡ τ=τ0

ð15Þ

are presented in Figs. 2 and 3; the same-beam growth factor
S is shown in Fig. 4. At jψ j ≪ 1 the following approx-
imations, found by the author, can be useful:

S=w0 ¼ ϒðψ ;1Þ≈
ffiffiffiffiffiffiffiffiffi
π

2jψ j
r

ð1þ isgnψÞ− 1.45− 0.66i
ψ

π
;

ϒðψ ; τ̃Þ ≈ϒðψ ; 1Þ þ 1ffiffiffĩ
τ

p − τ̃ − 0.5jψ jτ̃ð1− τ̃Þ: ð16Þ

This approximation for the function SðψÞ is especially
remarkable: for all jψ j ≤ π=2 it is valid within the accuracy
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of 1% or better. For the functionOðψ ; τÞ, the same accuracy
is reached only at jψ j ≤ 0.1.
For long coupled-bunch waves, jψ j ≪ 1, the dependence

of the interaction function ϒðψ ; τ̃Þ on the slipping phase τ̃
can be neglected, so the resulting coupled-bunch modes
turn out to be identical to the conventional coupled-bunch
modes of the doubled beam with 2M bunches. However,
for the short waves, jψ j ≥ 1, such reduction does not take
place. Without slippage, the phase τ̃ is frozen, while the
coupled-bunch interaction depends on its value. Thus,

collective tune shifts for the short waves depend on the
specific frozen value of τ̃. When the beams are slipping,
this phase is running, and the collective tune shifts result
from the proper integration over that. From here, one may
conclude that the whole approach of this paper assumes that
the growth rates of the short waves do not exceed the
slippage period T by much.
For a round vacuum chamber with the circumference C0,

aperture radius d, conductivity σ, the conventionally
normalized transverse wake function is [3]:

W⊥ðτÞ ¼ W0

ffiffiffiffi
τ0
τ

r
; W0 ¼

2

π

C0

d3
1ffiffiffiffiffiffiffi
στ0

p :

For a flat chamber, the thick-wall resistive wake is reduced
by the Yokoya factors π2=12 vertically and π2=24 horizon-
tally. The dimensionless slipping-beam intensity parameter
w0 can be written,

w0 ¼
Nbr0W0β

2γ

T
T0

¼ Nbr0W0β

2γMjηδp=pj :

HereNb is the bunch population, r0 is the classical radius, β
is the average beta-function, and γ is the relativistic factor.
In general, the spectrum of slipping-beam modes

is determined by two dimensionless values: the intensity
parameter w0, and the beam-beam phase shift
Δψ ¼ χ−ωbτ0. If the latter is small enough, jΔψ j ≪ 1,
the results are almost the same as for its zero value, so only
one parameter, w0, remains.
In the next Section, the example of the Fermilab

Recycler Ring (RR) is considered, first, for zero beam-
beam phase shift, Δψ ¼ 0, and then it will be shown how
chromaticity may change the results.

IV. SLIPPING-BEAM MODES AT THE
RECYCLER RING

For the RR with C0 ¼ 3.3 km, γ ¼ 9.5, β ¼
22 m, η ¼ −0.0087, δp=p ¼ 0.0027, and with Proton
Improvement Plan II values Nb¼7.6×1010 and M ¼ 504,
the slipping-beam intensity parameter w0 comes out as
w0 ¼ 0.12. For that number of bunches and the betatron
tune Qy ¼ 24.4, the bunch-to-bunch phase advance
ϕbb ¼ 0.30 and bunch-to-bunch slipping time T=T0 ¼
ðMjηδp=pjÞ−1 ¼ 90 revolutions.

A. Zero beam-beam phase shift, Δψ = 0

The growth rate versus the negated coupled-bunch phase
is shown in Fig. 5. It is clear that the same beam interaction
S dominates the other one O when the mode phase ψ is
sufficiently large. The condition for this dominance can be
estimated from Eqs. (7), (8)

jψ j ≫ w2=3
0 ð2πÞ1=3;

FIG. 2. The real part of the function Oðψ ; τÞ ¼ w0ϒðψ ; τ̃Þ is an
even function of the mode parameter ψ.

FIG. 4. Real (even) and imaginary (odd) parts of the same-beam
growth factor S ¼ Oðτ0Þ with their common low-phase asymp-
tote. The unstable modes with ℑS < 0 are at −π < ψ < 0. Note
that the imaginary part approaches its asymptote much sooner
than the real one.

FIG. 3. The imaginary part of the function Oðψ ; τÞ is an odd
function of the mode parameter ψ. The unstable modes are
at −π < ψ < 0.
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yielding jψ j=π ≫ 0.14 for the RR parameters above, which
agrees with Fig. 5.
Generally, the conventional coupled-bunch growth rate

is exactly zero for jψ j ¼ π and any sort of wake. As one can

see in Fig. 5, this is not the case for the slipping beams:
although at jψ j ¼ π the growth rate is low compared with
its values at small coupled-bunch phases, it is still not zero.
For w0 ≪ 1, this rate is well fitted by r ≈ 0.5w2

0. Figure 6
demonstrates the phase advance shift of the unstable mode,
which may be important for Landau damping if the phase
advance shift exceeds the growth rate, or is at least
comparable to it. The parametric plot presented in Fig. 7
can be used to determine whether or not that is the case.
While for small phases jψ j ≤ 1 the entire phase advance
shift jΔΦþℜSj is comparable with the total growth rate
r − ℑS, closer to jψ j ¼ π the phase advance shift may be
much higher than the growth rate.
Two plots for the eigenvectors are given in Figs. 8 and 9.

B. The coupled-beam spectrum for arbitrary
chromaticity

At zero beam-beam phase shift, Δψ ≡ χ − ωbτ0 ¼ 0, the
beams are in resonance for the samemode phaseψ , where the
interaction functions S and O are maximal, i.e., at ψ ¼ −0.
However, this would not be so for arbitrary chromaticity, as it
was discussed at the end of Sec. II. For a given chromatic
factor χ, Eq. (6), the resonant coupled-beammode phase ψ is
found to be

FIG. 5. Growth rate in units of 1=T, i.e., r1T of Eq. (10), for the
specified parameters of the RR versus the coupled-bunch phase
−π ≤ ψ < 0. The yellow line gives the contribution of the same
beam, ℑS, while the blue one shows the growth rate caused by
the other beam. The total rate (not shown in this figure) is the sum
of the two. The beam-beam phase shift is zero, Δψ ¼ 0

FIG. 6. Phase advance shift ΔΦ of the unstable mode. It is
negative at small phases, and then it changes the sign. The beam-
beam phase shift is zero, Δψ ¼ 0.

FIG. 7. Parametric plot of the total phase advance shift versus
total growth rate, as well as their two contributions, same and
other. The phase ψ changes from −0.05π (upper right corner) to
−1.95π. For a more convenient comparison, the total values are
divided by 2.

FIG. 8. Modulus of the ratio of the eigenvector components.

FIG. 9. Relative argument of the eigenvector components in the
units of π, ½argðvþÞ − argðv−Þ�=π. The beam-beam phase shift is
zero, Δψ ¼ 0, as for all the figures above.
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ψ res ¼ −Δψðmod 2πÞ ¼ ð−χ þ ωbτ0Þðmod 2πÞ; ð17Þ

assuming, as everywhere above, jψ j ≤ π. While the inter-
bunch betatron phaseωbτ0 is given by the beam structure, the
chromaticity is a variable parameter, normally used to make
the beams more stable. Changing the chromatic phase χ
moves up and down the resonant mode ψ res. Its optimal
position depends on the damper bandwidth and should be
considered with the intrabunch head-tail motion taken into
account; in its completeness, the latter problem lies outside
the framework of this article. To illustrate how the coupled-
beam growth rates can be influenced by chromaticity,
Eqs. (8) have been solved for theRRparameters and different
chromaticities; the growth rates in units of the inverse
slipping period 1=T are presented in Figs. 10–12. The first
of them, Fig. 10, shows that while the beam-beam phase shift
generally suppresses beams interaction, it makes the reso-
nance mode ψ ≈ 0.5π ¼ −Δψ unstable. Figure 11 demon-
strates that the positive sign of chromaticity below transition
is not necessarilyworse than its negative sign, from thebeam-
beam instability point of view. The same conclusion is
additionally supported by Fig. 12. While a difference of

the chromaticity ξ by a couple of units considerably changes
the beam-beam interaction in the RR, as one may conclude
from comparison of Figs. 10 and 12, this difference corre-
sponds to just a tiny value of the single-bunch head-tail phase
ζ ¼ ξσp=Qs, where σp is the relative rms momentum spread
within the bunch, and Qs ¼ ωs=ω0 is the synchrotron tune.

V. DISTRIBUTION OF COUPLED-BUNCH RATES
OVER THE HEAD-TAIL MODES

Let us imagine now that the coupled-bunch and beam-
beam coherent tune shifts are all found, and ask how are
they are distributed between the head-tail modes. In those
cases when the wake fields of preceding bunches can be
considered constant at the bunch length, i.e., flat, the
problem is reduced to a single-bunch dynamic equation
where the coupled-bunch forces are taken into account in
the same way as the bunch-by-bunch damper, see, e.g.,
[4–7]. Below, the problem is considered for two limit cases:
for zero space charge (ZSC), ΔQsc ≪ Qs, and for the
strong space charge (SSC), ΔQsc ≫ Qs, with ΔQsc ¼
Δωsc=ω0 as the space charge tune shift at the bunch center.
In both cases, only coupled-bunch wake forces will be
taken into account, and they will be assumed flat on the
bunch length, while the intrabunch wakes will be neglected.
For the ZSC case, following Ref. [7], the intrabunch

pattern of a mode can be expanded over the nested head-tail
basis in the synchrotron phase space

Ψlα ¼ expðilφþ iζα cosφÞ;

where l ¼ 0;�1;�2;…, φ is the synchrotron phase, ζα is
the chromatic head-tail phase at the radial position α.
Components of that expansion Xlα satisfy the following
equation:

ðν − lωsÞXlα ¼ Δωi−lJlðζαÞX̄;
X̄ ¼ n−1r

X
mβ

imJmðζβÞXmβ; ð18Þ

FIG. 10. Growth rates for the coupled-beam modes versus their
phase number ψ for the RR parameters. The beam-beam phase
shift Δψ ¼ −0.5π, corresponding to the chromaticity ξ ¼ −0.8.
Note the beam-beam resonance at ψ ¼ 0.5π, in agreement with
Eq. (17). Red vertical lines show relation between the phase ψ
and the frequency f ¼ ψ=ð2πτ0Þ.

FIG. 11. The same as Fig. 10, but with the beam-beam phase
shiftΔψ ¼ 1.5π, i.e., 2π larger than there. The resonance location
is same, but its strength dropped.

FIG. 12. Growth rates for Δψ ¼ −1.5π, leading to the mirror-
symmetric beam-beam contribution in comparison with Fig. 11.
The corresponding RR chromaticity ξ ¼ −2.8.
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where Δω ¼ ΔΦþ ir is the complex frequency shift of
the coupled-bunch wake and pointlike bunches, nr is the
number of the radial rings representing the bunch in the
longitudinal phase space (ideally nr → ∞);

JlðζαÞ ¼
i−l

2π

Z
2π

0

expðilφþ iζα cosφÞdφ

is the Bessel function as the dipole moment of the basis
function Ψlα and ν is the sought-for eigenvalue. Note that
for a rigid-bunch motion, when the bunch moves as a whole
with the amplitude X̄,

Xlα ¼ i−lJlðζαÞX̄:

From Eq. (18), a dispersion equation on the eigenvalues ν
follows:

Δω
X
l

Fl

ν − lωs
¼ 1; ð19Þ

Fl ¼
Z

∞

0

J2l ðζrÞfðrÞrdr;
Z

∞

0

fðrÞrdr ¼ 1; ð20Þ

where fðrÞ is the normalized longitudinal phase space
density, and the values FlðζÞ will be called the head-tail or
dipole form factors. Note that

X∞
l¼−∞

FlðζÞ ¼ 1

for any chromatic factor ζ and any distribution function
fðrÞ. For the Gaussian distribution, fðrÞ ¼ e−r

2=2, the form
factor integrals can be analytically taken:

FlðζÞ ¼ e−ζ
2

Ilðζ2Þ; ð21Þ

where Il is the modified Bessel function. Some of these
form factors are shown in Fig. 13. Roughly speaking, if the

head-tail phase jζj > 1, the ZSC form factors Fl up to jlj ≃
jζj are close to their common asymptotic value ð2πζ2Þ−1=2,
while those of the higher modes could be neglected.
The eigenvalues ν are easily found in two opposite limit

cases, for small and large values of the coupled-bunch
frequency shift Δω. If it is small compared with the
synchrotron frequency, jΔωj ≪ ωs, all the unperturbed
collective frequencies lωs just slightly shift, sharing the
total coherent shift according to their form-factors Fl:

νl ¼ lωs þ ΔωFlðζÞ: ð22Þ

In the opposite limit, when jΔωj ≫ ωsjk −mj for all k;m
with non-negligible form-factors, i.e., for jΔωj ≫ ωsjζj,
Eq. (19) shows that a single eigenvector essentially takes
the entire tune shiftΔω. This dominant mode is nothing but
the rigid-bunch motion, while all other eigenvectors are of
very small dipole moment. Thus, the high coupled-bunch
tune shift gives rise to the rigid-bunch motion; note that
notwithstanding the chromaticity, there is no chromatic
traveling wave in that powerful mode. As to the other
eigenvectors, for such a high coupled-bunch tune shift,
each of them becomes of almost zero dipole moment. Thus,
growth of jΔωj from very small to very high values first
leads to the proportional growth of all the head-tail tune
shifts, but as soon as the jΔωj becomes comparable with the
band of the participating harmonics, the common rigid-
bunch mode is formed, tending to take the entire tune
shift Δω.
Although that lies outside the scope of this paper, it is

still worth noting that in the limit of a very large number of
terms in Eq. (19), its sum can be replaced with an integral,
and the equation transforms into a conventional dispersion
equation of a medium, consisting of many harmonic
oscillators affected by a collective force proportional to
their common dipole moment. In that case, the transfer
from the perturbed intrabunch modes to the powerful rigid-
bunch mode, which happens at jΔωj ≃ jζjωs, is similar to
the appearance of a discrete common mode above a
continuous incoherent van Kampen spectrum and the loss
of Landau damping [8,9].
Now let us see how the coupled-bunch modes are shared

between the intra-bunch modes in the case of the strong
space charge, SSC. For the RR, the space charge is strong:
the maximal space charge frequency shift Δωsc exceeds
both the synchrotron frequency ωs and the coherent
frequency shifts Δω by about an order of magnitude.
For the strong space charge, the head-tail degree of freedom
becomes one-dimensional; its eigensystem can be found
from the ordinary integro-differential equation of Ref. [4].
Being expanded over the orthonormal basis of the space
charge harmonics y0k, k ¼ 0; 1; 2…, this equation is reduced
into the standard algebraic eigensystem problem. When the
wake fields are dominated by flat coupled-bunch (and
possibly feedback) terms, this set of linear homogeneous

n

n

n

n

n

n

FIG. 13. ZSC (zero space charge) dipole formfactors Fn ¼
e−ζ

2

Inðζ2Þ for a Gaussian bunch versus the rms head-tail phase ζ;
In is the modified Bessel function.
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equations on the eigenfunction components Bk can be
written,

ðν − ν0kÞBk ¼ ΔωIk
X
m

BmI�m; ð23Þ

Ik ¼
Z

∞

−∞
eiζsρðsÞy0kðsÞds; ð24Þ

where ρðsÞ is the bunch normalized line density,R
∞
−∞ ρðsÞds ¼ 1, ν is the eigenvalue to be found and ν0k ≃
k2ω2

s=Δωsc is its kth no-wake value. The italicized symbol
Ik for the dipole moments of the basis functions is not to be
confused with the straight one used for the modified Bessel
functions Ik.
Equation (23) can be solved similarly to the zero space

charge case; a dispersion equation for the sought-for
eigenvalues ν follows:

Δω
X
m

jImj2
ν − ν0m

¼ 1: ð25Þ

Formally, this equation is of the same type as its
counterpart for the ZSC case, Eq. (19). The dipole form
factors now are Fl ¼ jIlj2 since the dipole moments of the
basis functions are IlðζÞ for SSC, instead of ilJlðζαÞ for
ZSC. Thanks to orthonormalization of the basis,

Z
∞

−∞
ykðsÞylðsÞρðsÞds ¼ δkl; ð26Þ

it is true that X
k

jIkj2 ¼ 1: ð27Þ

For a Gaussian bunch, these functions are presented in
Fig. 14. Similarly to the ZSC case, SSC form factor of the
kth mode reaches its maximum at the head-tail phase
jζj ≃ k, being insignificant even a few units below that

value. However, the SSC formfactor behaves differently
above its maximum. While for ZCS all the non-negligible
formfactors follow the same asymptotic ∝ jζj−1, the SSC
ones exponentially decay soon after reaching their maxima.
So, for any chromaticity there are not more than 2 to 4 SSC
harmonics, which are sufficient to be taken into account.
One more important difference is that for SSC the distance
between the neighbor unperturbed lines, ν0k and ν

0
kþ1, grows

∝ k, while for ZSC this distance is constant. As a result,
the threshold of the rigid-bunch mode in both cases is
proportional to chromaticity. While for the ZSC case this
threshold is jΔωj ≃ jζjωs, for the SSC one it is jΔωj≃
jζjω2

s=Δωsc ≪ jζjωs.
Another stabilizing effect of the chromaticity relates to

Landau damping. The rigid-bunch mode is known to not
have any Landau damping. If this mode is not formed, i.e.,
if the coupled-bunch tune shift does not exceed the distance
between neighboring head-tail modes, it excites them
independently according to their form factors. Thus, every
participating head-tail mode is Landau-damped with its no-
wake rate [4,10], assuming the single-bunch wake to be
small enough. A consequence of that is very strong
dependence of the intrinsic Landau damping on the
chromaticity for the SSC case, as fast as ∝ ζ4, so a
sufficiently high chromaticity should suppress the insta-
bility. For ZSC, the higher harmonics contribute more to
Landau damping from the longitudinal degree of freedom.
For both the ZSC and SSC cases, i.e., for both Eq. (18)

and Eq. (23), the following general theorems can be proven
(see the Appendix): (1) The sum of the head-tail tune shifts
driven by the coupled-bunch interaction is equal to the total
coupled-bunch tune shift,

P
kðνk − ν0kÞ ¼ Δω. For the ZSC

case, ν0k ¼ kωs, and k ¼ 0;�1;�2;…, while for SSC
ν0k ≃ k2ω2

s=Δωsc, and k ¼ 0; 1; 2;…. (2) The sign of each
head-tail growth rate caused by the coupled-bunch inter-
action is the same as the sign of the total coupled-bunch
growth rate, 0 ≤ ℑνk=ℑΔω ≤ 1. This theorem limits maxi-
mal growth rate of each head-tail mode and denies the
possibility for a resistive damper to cause an instability of
any of them; as soon as ℑΔω ≤ 0, for all partial growth
rates ℑνk ≤ 0 as well. (3) For a purely reactive damper,
when ℑΔω ¼ 0, the head-tail eigenvectors are real and
orthogonal, Bp · Bq ¼ δpq, and the same goes for X.
Otherwise they are, generally, neither real nor orthogonal.
This theorem may be useful for the analysis of perturba-
tions of the head-tail modes formed by a strong reactive
damper.
Strictly speaking, these theorems become invalid as soon

as single-bunch wakes are taken into account, but various
problems of such sort are beyond the scope of this article;
some examples of common action of a damper and a single-
bunch wake are presented in Refs. [7,11,12]. However, if
the single-bunch wake is sufficiently small, it can be taken
into account as a perturbation of the coupled-bunch
eigensystem fBg. To do that, the Hermitian adjoint set

FIG. 14. Chromatic form factors of the coupled-bunch con-
tributions to head-tail modes k ¼ 0, 1, 2, 3, 4 (black, red, orange,
green and blue) at strong space charge for a Gaussian bunch.
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of the eigenvectors B̃ corresponding to complex-conjugate
tune shift Δω� has to be computed. As soon as it is done,
the diagonal matrix elements of the single-bunch wake
hpjWjpi≡ B̃ðpÞ ·WBðpÞ provide the tune shifts through
the presumably small perturbation represented by the
single-bunch matrix

Wmn ¼
ZZ

Wðs − s0Þeiζðs−s0ÞρðsÞρðs0Þy0mðsÞy0nðs0Þdsds0:

ð28Þ
The assumption that the single-bunch wake is small is
justified if the absolute value of its tune shift ∝ jhpjWjpij
is much smaller than the distance between the neighbor
tunes jνðpÞ − νðp�1Þj.
The coupled-bunch instability can be considered inde-

pendently of the single-bunch wakes as soon as the
coupled-bunch wake forces exceed the single-bunch ones.
For the resistive wall wake, this condition is satisfied if the
coupled-bunch mode phase number ψ is sufficiently small.
To quantify this condition, the coupled-bunch kick ∼S can
be compared with the kick that the bunch in the rigid mode
gets from its own wake. Using the low-frequency approxi-
mation, jψ j ≪ 1, for the coupled-bunch factor S and taking
the average of the single-bunch wake along the Gaussian
bunch in the rigid-bunch mode, one gets the condition for
the coupled-bunch dominance:

SðψÞffiffiffiffi
τ0

p ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2jψ jτ0

r
>

1ffiffiffiffiffiffiffi
2στ

p ; ð29Þ

where στ is the rms bunch length. From here, the upper
limit on the mode phase ψ follows,

jψ j < ψSB ≡ πστ=τ0: ð30Þ

This condition can be also expressed in terms of the
coupled-bunch frequency f ¼ jψ j=ð2πτ0Þ:

f < fSB ≡Mf0στ=ð2τ0Þ; ð31Þ

with f0 as the revolution frequency. For the RR M ¼ 500
bunches, which rms length στ ¼ 40 cm, the last condition
results in f < 1.6 MHz. From here one may conclude that a
feedback damper with the bandwidth ≃2 MHz would
effectively suppress the related band of the coupled-bunch
modes, while effectiveness of further broadening of the
damper bandwidth requires a special consideration, where
the single-bunch wakes cannot be neglected. As it was
shown in Ref. [12], the combined action of the damper and
a single-bunch wake may lead to a special absolute-
convective instability, if the single-bunch wake amplitude
is comparable to its ZSC transverse mode-coupling insta-
bility threshold value. The question of how far this limit is
for the current and planned intensity of the RR lies outside
the scope of this paper.

Since that sort of low-frequency damper was proposed in
the first version of this paper [13], the specified low-
frequency damper was designed and installed in the RR
[14], which allowed the chromaticity to be reduced from
−20 down to−7. As a result, the total loss was reduced by a
factor of almost two with losses at the Abort and Muon
Extraction Lambertsons reduced significantly. The ability
to run with much lower chromaticity also provided much
more freedom in choosing the working point and to remove
the injection phase offsets [15].

VI. SUMMARY

Coupled-bunch modes are described for two slipping
beams in a storage ring, as it is the case in the Fermilab
Recycler Ring. Distribution of the inter-bunch growth rates
between the intra-bunch head-tail modes is considered.
Possibilities to stabilize the beams by means of chroma-
ticity and feedback are shown.
Since this paper was written, the proposed low-fre-

quency damper has been built, installed [14] and has
demonstrated its effectiveness [15].
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APPENDIX: THEOREMS ON DISTRIBUTION
OF THE COUPLED-BUNCH TUNE SHIFT

OVER THE INTRABUNCH MODES

Here the three theorems mentioned in Sec. V are proved.
Since the proofs are similar for ZSC and SSC, only the
latter case is presented.

1. Theorem of the sum of tune shifts

The dispersion equation (25) can be transformed into a
polynomial one by multiplying it with the productQ

kðν − ν0kÞ. The leading coefficient of the resulting poly-
nomial equation is 1, and the next one is −Δω −

P
k ν

0
k.

Due to a general property of polynomial equations, the
negated value of the latter is the sum of the roots νk. Thus,
the sum of the head-tail tune shifts νk − ν0k is equal to the
total tune shift: X

k

ðνk − ν0kÞ ¼ Δω: ðA1Þ

Since the unperturbed tunes are all real, it follows that sum
of all the head-tail growth rates is the coupled-bunch
growth rate
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X
k

ℑνk ¼ ℑΔω: ðA2Þ

2. Theorem of the growth rate signs

Let us prove that all the growth rates ℑνk have the same
sign; in other words, the intrabunch modes are either all
stable or all unstable, depending on the sign of the total
growth rate ℑΔω. First, let us slightly rewrite Eq. (23):

νBk ¼ ν0kBk þ ΔωIk
X
m

BmI�m: ðA3Þ

Then, this equation can be multiplied by B�
k and summed

over all the components k, resulting in,

ν ¼ ν̄0 þ ΔωjȲj2; ðA4Þ
where

Ȳ ≡X
k

BkI�k ≡ B · I

is the dipole moment associated with the normalized
eigenvector B,

B · B≡X
k

BkB�
k ¼ 1;

and ν̄0 ≡P
kν

0
kjBkj2. Taking the imaginary part of Eq. (A4)

leads to

ℑν
ℑΔω

¼ jȲj2 ≥ 0; ðA5Þ

which proves the theorem. Due to the Cauchy inequality,

jȲj2 ≤ 1:

By virtue of Eq. (A2), the sum of the dipole form factors
jȲj2 over all the eigenvectors (distinguished by the super-
script ðpÞ) is equal to 1:X

p

jȲðpÞj2 ≡X
p

jBðpÞ · Ij2 ¼ 1: ðA6Þ

Thus, one single intrabunch mode can take the entire tune
shift Δω if and only if its eigenvector is identical to the
dipole moment vector, B ¼ I, which means the mode has
to be the rigid-bunch one. That happens when the value of
the total tune shift exceeds the bandwidth of the harmonics
involved. In that case, all other modes have a negligibly
small dipole moment and share almost no growth or
damping rate from the coupled-bunch interaction.

3. Theorem of the orthogonality of eigenvectors

This subsection formulates a sufficient condition for the
eigenvectors’ orthogonality. To do that, we have to deal
simultaneously with two different eigenvectors; to distin-
guish them, the parenthesized superscripts will be used.

Let us write Eq. (A3) for an eigenvector BðpÞ and multiply
it, left to right, by the eigenvector BðqÞ:

νðpÞBðpÞ ·BðqÞ ¼
X
l

ν0l B
ðpÞ
l BðqÞ�

l þ ΔωȲðpÞȲðqÞ�;

with Ȳ ≡B · I as the dipole moment of the eigenvector B.
The same equation (A3) can be written for the eigenvector
BðqÞ, which can then be multiplied, right to left, by the
eigenvector BðpÞ. After that, the second equation can be
subtracted from the first, yielding,

ðνðpÞ − νðqÞ�ÞBðpÞ ·BðqÞ ¼ 2iℑΔωȲðpÞȲðqÞ�: ðA7Þ

Therefore, as soon as the coupled-bunch tune shift is real,
ℑΔω ¼ 0, all the eigenvectors are orthogonal and their
eigenvalues are real as well. If the eigenvectors are
normalized, then

BðpÞ ·BðqÞ ¼ δpq: ðA8Þ

Although the interbunch tune shift is not real for typical
wake fields, it is for a purely reactive damper. In that case
this theorem might be useful.
This theorem is a consequence of a more general

statement about orthogonality of eigenvectors of
Hermitian adjoint matrices: if B is a set of eigenvectors
of a matrixM, and B̃ is the same for the Hermitian adjoint
matrix M†, then after a proper normalization B̃ðpÞ ·BðqÞ¼
δpq. For Eq. (A3), the matrix Mmn ¼ ν0mδmn þ δωImI�n is
self-adjoint if and only if ℑΔω ¼ 0. Thus, for a real
coupled-bunch tune shift Δω, the vectors BðpÞ are
orthogonal.
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