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We have developed a parametrization of the linear optics in a theoretical minimum emittance cell with
three quadrupoles. It consists of five independent parameters: two phase advances, a dimensionless
horizontal beta function at the center of the dipole, and a bending angle ϕ and a length L of the dipole. For
the zero chromaticity cell, we again find that the dynamic aperture in the normalized phase space is scaled

according to, Ā ∝ ϕ
ffiffiffiffi
L

p
. Moreover, we study nonlinear dynamics near the third-order coupled resonances

in the framework of the resonance normal form. In particular, we derive the effective Hamiltonians using
the Lie algebra method and show that the periodic orbits in tracking can be interpreted as solutions of the
Hamilton’s equations. Surprisingly, we discover that the scheme is not only applicable to the single
resonance but also to the double resonances.
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I. INTRODUCTION

Historically, the theoretical minimum emittance (TME)
cell [1] has played an essential role in the advance to a lower
emittance in the electron storage rings. Teng illustrated how
the equilibrium emittance is scaled according to the beam
energy and deflecting angle of the dipole and perhaps, most
importantly, how it can be minimized to reach its theoretical
minimum without a specific design of the cell. The opti-
mization schemewas further advanced by Potier and Rivkin
[2,3] who characterized the cell with a set of the detuned
parameters, namely the ratio to theminimumvalues, relating
them to the horizontal phase advance. The parameterization
laid a solid foundation for a systematic approach [4] to the
design of the low-emittance storage rings [5] and the
damping rings [6].Theparametrizationprovides a strategical
guidance for designing a cell, but it still relies on a computer
program to find a periodic solution of the cell. In this sense,
the optimization scheme is not yet complete.
In this paper, we will develop a complete parametrization

of the TEM cell that consists of a dipole magnet, three
quadrupoles, and three sextupoles. For simplicity, the sextu-
poles are set to make the chromaticity zero. The system is
chosen to be a good approximation of theTME lattice andyet
simple enough to be studied analytically. For single-particle
dynamics, we will continue the work of the parameterized
alternating focusing and defocusing (FODO) cell [7] and

explore applications of the Kolmogorov-Arnold-Moser
(KAM) theory [8–11] to particle accelerators. To avoid
repetition, our focus will be placed only on the invariant
tori near the nonlinearly coupled resonances. Mostly, the
resonance studies [12–14] were carried out in the framework
of the canonical perturbation theory. Here, our investigation
will be from a modern viewpoint of the Lie algebra [15] with
an emphasis on comparisons to direct tracking.
We will introduce a geometrical parametrization of the

focusing system based on the paraxial optics and apply it to
a half cell with a reflection symmetry in Sec. II. Continuing
in Sec. III, we will develop the linear optics, derive the
emittance, and then compensate the chromaticities in the
periodic cell. Nonlinear aberrations will be given with a
brief outline in Sec. IV using the Lie algebra method. Most
importantly, we will study the Hamiltonian dynamics in
comparison to the tracking in Secs. V and VI for one and
two resonances respectively. Finally, in Sec. VII, we will
make some concluding remarks. A solution of the cubic
equation and the detailed derivation of the effective
Hamiltonian [16] in a vicinity of resonance and normal
form [17] will be given in the Appendix.

II. PARAMETRIZATION

A. Paraxial optics

The locations of the focusing point relative to its
principle plane illustrated in Fig. 1 characterize a conven-
tional optical system. Here, we will apply these well-known
properties to the optics of charged particles in the transverse
dimensions, namely the horizontal or vertical plane.
Given a 2-by-2 R-matrix [18] of the optical system, we

can show,
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p ¼ M22

M21

; q ¼ −
M11

M21

; f ¼ −
1

M21

; ð1Þ

whereM11,M21, andM22 are the elements of the R-matrix.
The derivation requires the symplecticity of the R-matrix
and validity of the paraxial approximation, tan θ ≈ θ, where
θ is the angle of the optical ray.
Inversely, given these geometrical parameters in the

optical system, we can rewrite its R-matrix as,

M ¼
 q

f
1
f ðpqþ f2Þ

− 1
f − p

f

!
: ð2Þ

B. Doublet

Let us consider a doublet drawn schematically in Fig. 2.
Its R-matrix can be obtained by multiplying the three
R-matrices of the elements. Then applying Eq. (1), we have
its geometrical parameters,

p ¼ f1ðg − f2Þ
f1 − f2 þ g

; q ¼ f2ðgþ f1Þ
f1 − f2 þ g

;

f ¼ f1f2
f1 − f2 þ g

: ð3Þ

Here we have to use the thin lens calculation for the
quadrupoles. Sometimes it is useful to have its inverse,

f1 ¼ −
f2 þ pq
f − q

; f2 ¼
f2 þ pq
f þ p

;

g ¼ f2 þ pq
f

: ð4Þ

To focus the charged particles in both transverse planes
simultaneously, a doublet is often required because a
magnetic quadrupole focuses in one plane while defocuses
in the other.

C. A half cell

We now consider a half of a cell with a reflection
symmetry as shown in Fig. 3, where the position s1 is the
starting and s2 the reflecting points. Here we represent the
doublet with their geometrical parameters, p, q, and f. And
L1, L2 are the distances between the doublet to s1, s2
respectively.
Using thematrix in Eq. (2) for the doublet and thematrix of

drift, we compute the transfer matrix from s1 to s2 and find,

Ms1→s2 ¼
 q−L2

f
1
f ½ðpþ L1Þðq − L2Þ þ f2�

− 1
f − ðpþL1Þ

f

!
: ð5Þ

Note that the matrix has the same functional form in Eq. (2)
with replacements q → q − L2 and p → pþ L1. This prop-
erty is consistent with the interpretation of the geometrical
parameters, p, q, and f. Also, the matrix can be represented
by [19],

Ms1→s2 ¼

0
BB@

ffiffiffiffi
β2
β1

q
cos πν

ffiffiffiffiffiffiffiffiffi
β1β2

p
sin πν

− 1ffiffiffiffiffiffiffi
β1β2

p sin πν
ffiffiffiffi
β1
β2

q
cos πν

1
CCA; ð6Þ

where β1, β2 are the beta functions [20] at the positions s1, s2
respectively, ν the betatron tune of the cell. Herewe have used
the property of the reflection points, namely α1 ¼ α2 ¼ 0.
Comparing it with the matrix in Eq. (5), we obtain,

FIG. 2. A schematic layout of a doublet. f1;2 are focus lengths
of the defocusing and focusing quadrupoles respectively. g is the
distance between the quadrupoles.

FIG. 3. A schematic layout of a half cell for a cell with a
reflection symmetry. p, q, and f are the geometrical parameters
of the doublet. L1, L2 are the distances to the entry and exit of the
half cell respectively.

FIG. 1. Geometrical parameters in a conventional optical
system. F1;2 are the focus points, PP1;2 the principal planes,
and f the focus length of the optical system.
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p ¼ −L1 − β1 cot πν;

q ¼ L2 þ β2 cot πν;

f ¼
ffiffiffiffiffiffiffiffiffi
β1β2

p
csc πν: ð7Þ

Given these geometrical parameters, the focus lengths of the
quadrupoles and separation distance can be calculated.
Substituting Eq. (7) into Eq. (4), we have,

f1 ¼
β1β2 − L1L2 − ðL2β1 þ L1β2Þ cot πν

L2 þ β2 cot πν −
ffiffiffiffiffiffiffiffiffi
β1β2

p
csc πν

;

f2 ¼
L1L2 − β1β2 þ ðL2β1 þ L1β2Þ cot πν

L1 þ β1 cot πν −
ffiffiffiffiffiffiffiffiffi
β1β2

p
csc πν

;

g ¼ ðβ1β2 − L1L2Þ sin πν − ðL2β1 þ L1β2Þ cos πνffiffiffiffiffiffiffiffiffi
β1β2

p : ð8Þ

The formulas in this section are equally applicable to
either the horizontal or vertical plane. In this paper, we
choose the horizontal lattice functions to fix the physical
parameters such as the quadrupole strengths since one of
our main concerns is the natural emittance, to which the
horizontal tune: ν and the beta function: β2 at the center of
the bending dipole play essential roles [2,3].

III. PERIODIC CELL

A. Layout

We would like to illustrate how the map works using a
periodic TME cell that contains three quadrupoles as shown
in Fig. 4. The cell is chosen because it contains the most
essential ingredients in the common TME cell and yet is
analytically solvable. The quadrupoles and sextupoles are
lumped together as a thin multipole with a sector bending
dipole in between. Here ff and fd are the focal lengths of
the focusing and de-focusing quadrupoles, respectively.
Also ϕ and L are the bending angle and length of the
dipole.
Applying Eq. (8) with a substitution of L1 ¼ 0; L2 ¼

L=2; f1 ¼ 2fd and f2 ¼ ff, we find the settings of the
doublet,

f̄ ¼
ffiffiffiffiffi
β̄1

p
ðcot πν − 2β̄2Þ

2ð
ffiffiffiffiffi
β̄1

p
cot πν −

ffiffiffiffiffi
β̄2

p
csc πνÞ

;

d̄ ¼ β̄1ð2β̄2 − cot πνÞ
2ð1þ 2β̄2 cot πν − 2

ffiffiffiffiffiffiffiffiffi
β̄1β̄2

p
csc πνÞ

;

ḡ ¼
ffiffiffiffiffi
β̄1

p
ð2β̄2 sin πν − cos πνÞ

2
ffiffiffiffiffi
β̄2

p ; ð9Þ

where d̄ ¼ fd=L; f̄ ¼ ff=L are the dimensionless focus-
ing lengths of the quadrupoles, normalized by the bend
length L. Similarly, we use “bar” to note the scaling of
L for the other parameters in the formulas. As we will
show later, β̄1;2 can also be represented by a function of
the betatron tunes. As a result, these dimensionless
parameters can be plotted as a function of the betatron
tunes as shown in Fig. 5. The figure shows that higher
horizontal tune or smaller emittance is essentially
achieved by a combination of stronger focusing quadru-
pole and larger separation between the quadrupoles. The
larger the spacing between the quadrupoles in the
doublet, the smaller the packing factor of the magnets
is. This is a significant drawback in the TME cell at
high tunes.

FIG. 4. A periodic theoretical minimum emittance cell with
dipole, quadrupole, and sextupole magnets. ϕ and L are the
bending angle and length of the dipole, ff;d the focus lengths of
the quadrupoles, κf;d the strengths of the sextupoles.
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FIG. 5. Dimensionless parameters of the doublet as a function of the betatron tunes with various ratios: νy∶νx ¼1∶4; 1∶3, and 1∶2
represented by blue, red, and black color respectively.
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B. Optics

Given the importance of the dipole in generating the
natural emittance, we choose the reference point in the
middle of the dipole. The transfer map Mcell of the cell
can be obtained by initializing an identity map and then
concatenating it through the maps of the elements. Here
we use the explicit maps of Eqs. (2.5) and (2.6) in

Ref. [21] for the bends and kicks respectively. The
computation is carried out using Mathematica [22].
Taking the Jacobian of the transfer map for the R-matrix
and then comparing it with the Courant-Synder matrix
[20] of a periodical system, we find that the betatron
tunes, defined as the phase advances in units of 2π, are
given by,

νx ¼ 1 −
1

2π
cos−1

�
2d̄½f̄2 þ ḡ − f̄ð2ḡþ 1Þ� þ ðf̄ − ḡÞ½f̄ð2ḡþ 1Þ − ḡ�

2d̄f̄2

�
;

νy ¼
1

2π
cos−1

�
2d̄½f̄2 þ ḡþ f̄ð2ḡþ 1Þ� − ðf̄ þ ḡÞ½f̄ð2ḡþ 1Þ þ ḡ�

2d̄f̄2

�
: ð10Þ

Moreover, we have the beta functions at the center of the
dipole,

βx ¼
½4d̄ f̄−2d̄þ f̄ð2ḡþ 1Þ − ḡ�½f̄ð2ḡþ 1Þ − ḡ�L

4d̄f̄2 sin 2πνx
;

βy ¼
½4d̄ f̄þ2d̄ − f̄ð2ḡþ 1Þ − ḡ�½f̄ð2ḡþ 1Þ þ ḡ�L

4d̄f̄2 sin 2πνy
; ð11Þ

and the horizontal dispersion,

ηx ¼
ð8d̄ f̄þ4f̄ ḡ−2d̄þ f̄ − ḡÞLϕ

8ð2d̄ − f̄ þ ḡÞ : ð12Þ

αx;y ¼ 0 and ηpx
¼ 0 due to the reflection symmetry.

C. Emittance

Substituting the physical parameters in Eq. (9) into
Eqs. (10)–(12) for the optical functions in the horizontal
plane, we obtain,

νx ¼ ν; βx ¼ β̄2L; ηx ¼
1

8
Lϕð1þ 4β̄2 cot πνÞ:

ð13Þ

The first two equations are merely a consistency check of
the parametrization introduced in the previous section. The
third equation, namely the relationship between the hori-
zontal tune and dispersion, was first derived by Rivkin [3].
Given the beta and dispersion functions, we evaluate the
radiation integrals [23] and derive the form factor,

F ¼ 1þ 10β̄22 þ 10β̄2 cot πνþ 30β̄22cot
2πν

120β̄2
; ð14Þ

which is defined by the natural emittance ϵx ¼ CqFγ2ϕ3

where Cq ¼ 3.8319 × 10−13 m and γ is the Lorentz factor.
It can be minimized and reduced to,

F ¼ 1

60

�
5 cot πνþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10þ 30cot2πν

p �
; ð15Þ

by setting,

β̄2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10þ 30cot2πν
p : ð16Þ

To minimize the emittance, we always use this optimal
value of β̄2 in this paper.
As shown in Fig. 6, it can be further minimized by

selecting: νmin ¼ 1 − 1
π cot

−1
ffiffiffiffiffiffiffiffi
5=3

p
with the well-known

minimum: [1] Fmin ¼ 1=12
ffiffiffiffiffi
15

p
. The reduction factor of

the emittance from ν ¼ 0.5 to νmin is about 2.45.

D. Linear stability

Similarly, we can calculate the optical parameters in the
vertical plane. In particular, we find that the betatron tune is
given by,
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FIG. 6. The form factor of emittance in Eq. (15) as a function of
the horizontal betatron tune.
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cos 2πνy ¼
1

2β̄1β̄2ð2β̄2 sin πν − cos πνÞ
�
8

ffiffiffiffiffiffiffiffiffi
β̄1β̄2

q
ðβ̄1 þ 4β̄2Þ − β̄2ð47β̄1 þ 16β̄2Þ cos πν

þ 8

ffiffiffiffiffiffiffiffiffi
β̄1β̄2

q
ðβ̄1 þ 2β̄2Þ cos 2πν − 3β̄1β̄2 cos 3πνþ ½30β̄1β̄22 − ðβ̄1 þ 8β̄2Þ� sin πν

þ 2

ffiffiffiffiffiffiffiffiffi
β̄1β̄2

q
½3 − 4ðβ̄1β̄2 þ β̄22Þ� sin 2πνþ β̄1ð2β̄22 − 1Þ sin 3πν

�
: ð17Þ

This condition has to be satisfied for a stable cell.
Essentially, it defines β̄1 since β̄2 should be set according
to Eq. (16) for a minimal emittance. In fact, β̄1 as a function
of νx, νy, β̄2 can be obtained explicitly by solving a cubic
equation. The solution is given in Appendix A. As a result,
we have found that five independent parameters, namely νx,
νy, β̄2;ϕ; L, can characterize a stable TME cell. It is worth
noting that the only dimensional parameter is the length of
the dipole L. The dimensionless horizontal beta functions
β̄1 and β̄2 as a function of the betatron tunes are shown in
Fig. 7. They depend similarly on the horizontal tune and
hardly any on the vertical tune.
We check the parameterization for the TME cell

at the minimum emittance against the computer program

MAD [24]. In particular, the lattice functions computed
numerically using MAD, shown in Fig. 8, excellently
agree to the analytical calculations. A drawback of
the cell is that the vertical beta function at the defocus-
ing quadrupole is too large. As we will see later,
that leads to larger nonlinear aberrations in the vertical
plane.

E. Chromatic compensation

The Courant-Synder parameters with δ dependence can
be calculated [21] using the symplectic maps. In particular,
by computing the phase advances up to the first-order of δ,
we derive the natural chromaticity,

ξx0 ¼ −
½4d̄ f̄þ3ḡ2 − 4f̄ ḡðḡþ 1Þ − 2d̄ f̄ð2ḡþ 1Þ þ f̄2ð2ḡþ 1Þ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf̄ − ḡÞð2d̄ − f̄ þ ḡÞ½f̄ð2ḡþ 1Þ − ḡþ 4d̄ f̄−2d̄�½f̄ð2ḡþ 1Þ − ḡ�

p ;

ξy0 ¼ −
½−4d̄ f̄þ3ḡ2 þ 4f̄ ḡðḡþ 1Þ − 2d̄ f̄ð2ḡþ 1Þ þ f̄2ð2ḡþ 1Þ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf̄ þ ḡÞð2d̄ − f̄ − ḡÞ½f̄ð2ḡþ 1Þ þ ḡ − 4d̄ f̄−2d̄�½f̄ð2ḡþ 1Þ þ ḡ�

p : ð18Þ

They are plotted in Fig. 9 as a function of the betatron
tunes. The amplitude of horizontal chromaticity increases
rapidly beyond νmin ≈ 0.79. From the viewpoint of the
chromaticity in the vertical plane, the ratio of νy∶νx ¼ 1∶4
or 1∶3 seems reasonable while 1∶2 is too high, largely
due to the high vertical beta function at the defocusing
quadrupole.

Clearly, we can use the two sextupoles to zero out the
natural chromaticity. Solving two linear equations, we find
the necessary strengths,

κf ¼ 2ð2d̄ − f̄ þ ḡÞ
ð2d̄þ ḡÞf̄2L2ϕ

; κd ¼
ð2d̄ − f̄ − ḡÞ
d̄2f̄L2ϕ

: ð19Þ
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FIG. 7. The horizontal beta functions at the end (left) and center (right) of the cell as a function of the betatron tunes with various
ratios: νy∶νx ¼ 1∶4; 1∶3, and 1∶2 represented by blue, red, and black color respectively.
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It is worth noting that the settings are identical for the
values necessary for the local compensation. As a result, the
chromaticities are well corrected. With the formulas, we
plot the strengths of the sextupoles in Fig. 10, which shows

that the defocusing sextupole is stronger and it can be
significantly reduced by lowering the vertical tune.

IV. NONLINEARITY

For simplicity, we set the values of the sextupoles at the
zero chromaticity in the study of nonlinear dynamics. It is a
good approximation in a single cell because typical circular
accelerators contain many cells and each cell shares only
little positive chromaticities. Moreover, the zero chroma-
ticity reduces the impact of the path lengthening.
Given the settings of the sextupoles in Eq. (19), the third-

order Lie polynomial can be derived similarly to the
parametrized FODO cell [7] using the Dragt-Finn factori-
zation [25]. Since the chromaticity is well compensated, the
chromatic aberration is negligible. The geometric part
consists of five resonance driving terms and is given by,

f3 ¼
1

ϕ
ffiffiffiffi
L

p fðC2100J
3=2
x þ C1011J

1=2
x JyÞ cosðψx − πνxÞ

þ C3000J
3=2
x cos 3ðψx − πνxÞ

þ J1=2x Jy½C1020 cosðψx þ 2ψy − πνx − 2πνyÞ
þ C1002 cosðψx − 2ψy − πνx þ 2πνyÞ�g; ð20Þ
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ratios: νy∶νx ¼ 1∶4, 1:3, and 1∶2 represented by blue, red, and black color respectively.
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where Jx;y;ψx;y are the action and angle variables [26] in
the horizontal and vertical planes respectively. It should
be emphasized that the only dependence on the bending
angle ϕ and length L of the dipole is in a combination of
ϕ
ffiffiffiffi
L

p
in its denominator. This property leads to the

scaling law of the dynamic aperture in the normalized

coordinates. Here the coefficients Cjklm are functions of
the remaining parameters: νx;y and β̄2. Their subscripts
indicate the indices of power series in the complex
variables.
For the horizontal resonances, their coefficients can be

written as,

C2100 ¼
1

F

h ffiffiffiffiffiffiffiffiffi
β̄1β̄2

q
ð1þ 8β̄22Þ cos πνx − β̄2

�
1þ 4β̄1β̄2 þ 4β̄22 − 2

ffiffiffiffiffiffiffiffiffi
β̄1β̄2

q
sin πνx

�i
;

C3000 ¼
1

3F

h
β̄2ð1 − 4β̄1β̄2 þ 4β̄22Þ þ 2

ffiffiffiffiffiffiffiffiffi
β̄1β̄2

q
ð2β̄22 − 1Þ cos πνx

þ 2β̄2ð1 − 4β̄22Þ cos 2πνx −
ffiffiffiffiffiffiffiffiffi
β̄1β̄2

q
ð1 − 4β̄22Þ cos 3πνx

þ 6β̄2

ffiffiffiffiffiffiffiffiffi
β̄1β̄2

q
sin πνx − 8β̄22 sin 2πνx þ 4β̄2

ffiffiffiffiffiffiffiffiffi
β̄1β̄2

q
sin 3πνx

i
; ð21Þ

where F ¼ β̄22
ffiffiffiffiffiffiffi
2β̄1

p
ð2β̄2 − cot πνxÞ.

Moreover, we obtain the expressions for the three
coupled resonances as well. But the formulas are too
lengthy to write out. Here we choose to plot the coefficients
of two resonances: 3νx and νx þ 2νy in Fig. 11. Their
amplitudes are largely following the pattern of the natural
chromaticity in Fig. 9. This finding agrees with an estimate
by Levichev and Kvardakov [27].
To see the effects of the resonances, we use the formulas

in Eq. (9) to construct a cell with specified betatron tunes
and dipole parameters ϕ ¼ π=64 and L ¼ 5 m. Setting the
sextupoles according to Eq. (19), we scan the dynamic
aperture by tracking at various betatron tunes. The averaged
dynamic aperture in the normalized coordinates divided
by ϕ

ffiffiffiffi
L

p
is color coded on the map in Fig. 12. The sum

resonances: 3νx and νx þ 2νy are clearly seen and dominant
in the tune scan. The dynamic aperture is more than an
order of magnitudes smaller than the one in the para-
metrized FODO cell [7].
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FIG. 11. The coefficients of resonance driving terms: 3νx (left) and νx þ 2νy (right) as a function of the betatron tunes with various
ratios: νy∶νx ¼ 1∶4; 1∶3, and 1∶2 represented by blue, red, and black color respectively.

FIG. 12. A tune scan of the dynamic apertures. The color scale
represents the averaged dynamic aperture in the normalized
coordinates divided by ϕ

ffiffiffiffi
L

p
.
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Taking an example of the TME cell with the minimum
emittance shown in Fig. 8, 128 cells make an electron
storage ring with a circumference of 1210 meter. At an
energy of 6 GeV, the natural emittance is 135 pm, which
reaches the range of the incoming synchrotron light sources
[28]. Since there are no dispersion-free straights to place
the undulators in the ring, the comparison should be taken
only as an estimate. Moreover, the dynamic aperture at the
center of the dipole is 1 mm in the horizontal plane and
2 mm in vertical one, which is too small for off-axis
injection. To increase the dynamic aperture, the phase
advances should be carefully selected for cancellation of
the resonance driving terms [4,29].

V. SINGLE RESONANCE

Near the horizontal resonance 3νx, we obtain similar
results as in the study of the parameterized FODO cell [7].
To avoid repetition, we choose not to write out the finding.

A. Sum resonance

In the vicinity of the sum resonance: νxþ2νy¼pþΔν,
where p is an integer, the effective Hamiltonian can be
written as,

H ¼ 2πΔν
5

ðJx þ 2JyÞ

−
πΔνC1020

ϕ
ffiffiffiffi
L

p
sin πðpþ ΔνÞ J

1=2
x Jy cosðψx þ 2ψyÞ: ð22Þ

A derivation will be given in Appendix B. Rewriting the
Hamiltonian in termsof thenormalizedcoordinates,wehave,

H ¼ πΔν
5

½ðx̄2 þ p̄x
2Þ þ 2ðȳ2 þ p̄y

2Þ�
þ θ½x̄ðȳ2 − p̄y

2Þ − 2ȳp̄xp̄y�; ð23Þ

where θ is given by,

θ ¼ −
πΔνC1020

2ϕ
ffiffiffiffiffiffi
2L

p
sin πðpþ ΔνÞ : ð24Þ

It is important to know thatK ¼ ðx̄2 þ p̄x
2Þ − ðȳ2 þ p̄y

2Þ=2
is an invariance in this Hamiltonian system. The invariance
can be checked easily by showing that the Poisson bracket of
H and K is zero.

1. Invariant tori

Even with the invariance, the general solution of the
Hamilton’s equation is not known. Here, we would like to
find a specific solution,

x̄ ¼ Ax cosð−2μnÞ; p̄x ¼ −Ax sinð−2μnÞ;
ȳ ¼ Ay cosðμnÞ; p̄y ¼ −Ay sinðμnÞ; ð25Þ

where n is the turn number as the time variable.
Substituting it into the Hamilton’s equation, we find that
it is indeed a solution provided,

4πΔνþ 10Axθ − 5μ ¼ 0;

5A2
yθ þ 2AxðπΔνþ 5μÞ ¼ 0: ð26Þ

Together with the constant of motion, K ¼ A2
x − A2

y=2, we
solve these equations and obtain,

Ax ¼
−πΔνþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2Δν2 þ 12Kθ2

p

6θ
;

Ay ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2Δν2 − 12Kθ2 − πΔν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2Δν2 þ 12Kθ2

p

θ2

s
: ð27Þ

Note that there are other solutions but they are not seen in
the tracking.
The solution requires that the condition, π2Δν2þ

12Kθ2 ≥ 0, is satisfied. Most importantly, the largest
invariant tori is determined by, π2Δν2 þ 12Kθ2 ¼ 0, and
we have,

AðmaxÞ
x ¼ −

πΔν
6θ

; AðmaxÞ
y ¼

ffiffiffi
2

p

3

���� πΔνθ
����: ð28Þ

The special solution is compared against tracking with
the same initial condition in the vertical plane as shown in
Fig. 13. The large amplitudes, the bigger deviation is
between the tracking and analytical solution, indicating
strongly the higher order nonlinear effects in the tracking.
The equal increment beyond the largest tori shown in the
figure is unstable in tracking. This is predicted according to
the maximal tori in Eq. (28), which is plotted as the black
lines in the figure.
It is worth noting that these invariant tori were first

discovered in the Hamiltonian perturbation theory by
Franchetti and Schmidt [30], who called them “fixed lines”
in the 4D phase space. In fact, they are the periodic orbits.

2. Dynamic aperture

In the design of storage rings, an adequate dynamic
aperture is often required. To compute the dynamic
aperture, we track the particles with different amplitudes
as shown in Fig. 14.
Taking a similar approach for the parametrized FODO

cell [7], we would like to examine contours defined by a
constant value of the Hamiltonian in Eq. (23) and find a
singular contour. The difference here is that there is another
constant of motion K. This allows us first to solve p̄x with a
fixed value of K and substitute it into the Hamiltonian and
then solve p̄y. We find a singularity at,
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ȳ ¼ 1ffiffiffi
2

p x̄ −
πΔν
2
ffiffiffi
2

p
θ
: ð29Þ

This singularity defines a contour that leads to infinity in
the direction of the momentum p̄y. This line along with an

arc with a radius,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAðmaxÞ

x Þ2 þ ðAðmaxÞ
y Þ2

q
¼ j πΔν

2θ j, are
plotted in Fig. 14 for a comparison to the tracking. The
theory gives a reasonably good estimate of the dynamic
aperture.

B. Difference resonance

The effective Hamiltonian near the vicinity of the
difference resonance: νx − 2νy ¼ pþ Δν, where p is an
integer, can also be derived similarly to the sum resonance
and is given by,

H ¼ 2πΔν
5

ðJx − 2JyÞ

−
πΔνC1002

ϕ
ffiffiffiffi
L

p
sin πðpþ ΔνÞ J

1=2
x Jy cosðψx − 2ψyÞ: ð30Þ

Here K ¼ ðx̄2 þ p̄x
2Þ þ ðȳ2 þ p̄y

2Þ=2 is the invariance in
the Hamiltonian system. Rewriting the Hamiltonian in the
normalized coordinates, we have,

H ¼ πΔν
5

½ðx̄2 þ p̄x
2Þ − 2ðȳ2 þ p̄y

2Þ�
þ θ½x̄ðȳ2 − p̄y

2Þ þ 2ȳp̄xp̄y�; ð31Þ

where θ is given by,

θ ¼ −
πΔνC1002

2ϕ
ffiffiffiffiffiffi
2L

p
sin πðpþ ΔνÞ : ð32Þ

FIG. 14. Comparison of the dynamic apertures between the theory
(blue solid and black dashed lines) and the tracking (red cross) at a
vicinity of the sum resonance: νx þ 2νy ¼ 1þ Δν with Δν ¼ 0.01.

FIG. 13. A set of invariant tori in the normalized 4D phase spaces near the sum resonance: νx þ 2νy with νx ¼ 0.618 and νy ¼ 0.196. The
red dots represent the periodic orbits from tracking with bend length L ¼ 5 m and angle ϕ ¼ π=64, the blue lines are the special solutions of
the Hamiltonian in Eq. (23) with Δν ¼ 0.01 and θ ¼ −76.73 m−1=2, the black lines are the maximal tori predicted by the theory.
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1. Invariant tori

Again, we would like to find a specific solution,

x̄ ¼ Ax cosð2μnÞ; p̄x ¼ −Ax sinð2μnÞ;
ȳ ¼ Ay cosðμnÞ; p̄y ¼ −Ay sinðμnÞ: ð33Þ

Note a different sign in the horizontal oscillation in
comparison to the sum resonance. Solving the
Hamilton’s equation, along with the constant of motion,
K ¼ A2

x þ A2
y=2, we obtain,

Ax ¼
πΔνþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2Δν2 þ 12Kθ2

p

6θ
;

Ay ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−π2Δν2 þ 12Kθ2 − πΔν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2Δν2 þ 12Kθ2

p

θ2

s
:

ð34Þ

Unlike the sum resonance, the condition: π2Δν2 þ
12Kθ2 ≥ 0 is always satisfied and therefore does not
provide any restriction on the stability.
Similarly, the special solution is compared against

tracking as shown in Fig. 15. At small amplitude, we
see good agreement between the theory and tracking. As
the amplitude grows large, so does the deviation between
the theory and tracking. It strongly reflects the higher order
nonlinear effects.

2. Tune shifts

It is well known [31] that the most important nonlinear ef-
fects in the next order are the amplitude-dependent tune shifts,

νxðJx; JyÞ ¼ νx þ αxxJx þ αxyJy;

νyðJx; JyÞ ¼ νy þ αxyJx þ αyyJx; ð35Þ
where the three coefficients can be computed using the
normal form [17] or the Hamiltonian perturbation theory
[26]. As outlined in Appendix C, here we have modified the
normal form to avoid the so-called small denominator near
the resonance. For the case being studied, we numerically
evaluate the resonance normal form using differential
algebra [32] and findαxx ¼ 1.23 × 103 m−1,αxy ¼ −6.13 ×
103 m−1 and αyy ¼ 1.30 × 104 m−1. These values are quite
large for a single cell, specially in the vertical plane.
Based on the normal form in Eq. (C8), the effective

Hamiltonian in Eq. (31) is a function of the same nonlinear
normalized coordinates as the fourth-order Hamiltonian
that generates the tune shifts. Combining them according to
the Cambell-Baker-Hausdorf (CBH) theorem, we derive
the fourth-order effective Hamiltonian,

H¼πΔν
5

½ðx̄2þ p̄x
2Þ−2ðȳ2þ p̄y

2Þ�

þθ½x̄ðȳ2− p̄y
2Þþ2ȳp̄xp̄y�þ

π

4
½αxxðx̄2þ p̄x

2Þ2

þ2αxyðx̄2þ p̄x
2Þðȳ2þ p̄y

2Þþαyyðȳ2þ p̄y
2Þ2�: ð36Þ

FIG. 15. A set of invariant tori in the normalized 4D phase spaces near the difference resonance: νx − 2νy with νx ¼ 0.618 and
νy ¼ 0.314. The red dots represent the orbits from tracking with bend length L ¼ 5 m and angle ϕ ¼ π=64 and the blue lines are the
special solutions of the Hamiltonian in Eq. (31) with Δν ¼ −0.01 and θ ¼ 72.81 m−1=2.
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The solution in Eq. (33) remains a special solution of the
Hamilton’s equation with the following conditions,

πðαxx − 4αxy þ 4αyyÞA3
x − 6θA2

x

þ 2π½Δνþ ðαxy − 2αyyÞK�Ax þ 2Kθ ¼ 0; ð37Þ

and Ay ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðK − A2

xÞ
p

. The cubic equation can be solved
analytically using the third root: x2 in Appendix A. The
special solution is compared again to the tracking in the
nonlinear normalized coordinates with the same K values
as shown in Fig. 16. The displayed orbits have been
transformed to the normalized coordinates by a third-order
Taylor map obtained in the normal form procedure as
outlined in Appendix C.

VI. DOUBLE RESONANCES

At the vicinity of two resonances: νx þ 2νy ¼ pþ Δν
and 3νx ¼ qþ δν, where p, q are integers, the third-order
effective Hamiltonian defined by the three-turn map can be
derived similarly to the sum resonance. First, since the Lie
operator associated with the integer p and q is again an
identity, we have

e∶−3H0∶ ¼ e∶−π½2δνJxþð3Δν−δνÞJy�∶; ð38Þ

where, H0 ¼ 2πðνxJx þ νyJyÞ, is the free Hamiltonian.
Secondly, we go through the same derivation in

Appendix B with the replacements, − 6πΔν
5

J → −π½2δνJx þ
ð3Δν − δνÞJy� and μJ → H0. As a result, Eq. (B6) should
be replaced by,

−3H ¼ −π½2δνJx þ ð3Δν − δνÞJy�

þ ∶ − π½2δνJx þ ð3Δν − δνÞJy�∶
ð1 − e∶H0∶Þ fðrÞ3 ; ð39Þ

where fðrÞ3 cab be read from Eq. (20),

fðrÞ3 ¼ 1

ϕ
ffiffiffiffi
L

p ½C3000J
3=2
x cos 3ðψx − πνxÞ

þ C1020J
1=2
x Jy cosðψx þ 2ψy − πνx − 2πνyÞ�: ð40Þ

Finally, after some lengthy but straightforward algebra, we
obtain the effective Hamiltonian,

H ¼ π

3
½2δνJx þ ð3Δν − δνÞJy�

−
πδνC3000

ϕ
ffiffiffiffi
L

p
sin πðqþ δνÞ J

3=2
x cos 3ψx

−
πΔνC1020

ϕ
ffiffiffiffi
L

p
sin πðpþ ΔνÞ J

1=2
x Jy cosðψx þ 2ψyÞ: ð41Þ

Note that the resonance driving terms are identical to the ones
in the case of the single resonance respectively. Again the
small denominator problem is resolved since it does not
become singular when δν or Δν approaches to zero.

FIG. 16. A set of invariant tori in the nonlinear normalized 4D phase spaces near the difference resonance: νx − 2νy with νx ¼ 0.618
and νy ¼ 0.314. The red dots represent the transformed periodic orbits from tracking and the blue lines are the special solutions of the
Hamiltonian in Eq. (36).
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Adding the tune shifts term, we write the fourth-order
effective Hamiltonian in the normalized coordinates,

H ¼ π

6
½2δνðx̄2 þ p̄2

xÞ þ ð3Δν − δνÞðȳ2 þ p̄2
yÞ�

þ κx̄ðx̄2 − 3p̄2
xÞ þ θ½x̄ðȳ2 − p̄2

yÞ − 2ȳp̄xp̄y�
þ π

4
½αxxðx̄2 þ p̄x

2Þ2 þ 2αxyðx̄2 þ p̄x
2Þ

× ðȳ2 þ p̄y
2Þ þ αyyðȳ2 þ p̄y

2Þ2�: ð42Þ
where,

κ ¼ −
πδνC3000

2ϕ
ffiffiffiffiffiffi
2L

p
sin πðqþ δνÞ ; ð43Þ

and θ is given by Eq. (24).
The numerical solution of the Hamilton’s equation is

compared to the tracking in the nonlinear normalized
coordinates with the same initial conditions as shown in
Fig. 17. The displayed tracking orbits have been trans-
formed to the normalized coordinates by a third-order
Taylor map obtained in the normal form procedure. The

parameters used in the numerical integration are tabulated
in Table I. The agreement between the tracking and theory
is excellent.

VII. CONCLUSION

We have analytically solved the linear optics in a TME
cell with three quadrupoles. The cell can be completely
characterized by five independent parameters: its betatron
tunes νx, νy, the dimensionless horizontal beta function at the
center of the dipole β̄2, bending angle ϕ, and length L of the
dipole. Ideally, β̄2 should be fixed according to a minimum
emittance. Formulas of the lattice functions, emittance, and
natural chromaticity are derived. Three sextupoles in two
families are introduced to zero out the chromaticity.
After the chromatic compensation, we derive the com-

plete third-order Lie factor, including chromatic and geo-
metric aberrations. The chromatic aberration has been
reduced to a minimum because of the local compensation
and hence neglected. The geometric aberration contains an
explicit overall factor of 1=ϕ

ffiffiffiffi
L

p
, leading to a scaling law,

Ā ∝ ϕ
ffiffiffiffi
L

p
, of the dynamic aperture in the normalized phase

FIG. 17. A set of invariant tori in the nonlinear normalized 4D phase spaces on the resonance 3νx and near the sum resonance: νx þ 2νy
with νx ¼ 2=3 and νy ¼ ð1=6Þ þ 0.005. The red dots represent the transformed periodic orbits from tracking and the blue lines are the
numerical solution in Eq. (42).

TABLE I. Parameters for the Double Resonances.

δν Δν θ [m−1=2] κ [m−1=2] αxx [m−1] αxy [m−1] αyy [m−1]

0.00 0.01 −90.2402 −22.9766 −6.6074 × 102 1.3255 × 103 2.4174 × 104
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space. We find that the dynamic aperture is much smaller
than that in the FODO cell.
We have studied the third-order coupled resonances in the

framework of the resonance normal form. Near a single sum
resonance νx þ 2νy, the third-order effective Hamiltonian is
sufficient to explain the dynamics, including the dynamic
aperture. It is a strong resonance resulting in a very small
stable region, which is confined by the largest invariant tori.
For the single difference resonance νx − 2νy, again its

invariant tori can be described by the effective Hamiltonian
but with the tune-shift terms. More importantly, it is a weak
resonance with a large stable region. The Hamiltonian
seems not to define the stability. Finally, we find that the
double resonances 3νx and νx þ 2νy can be analyzed
similarly to the single resonance. Its stable region is also
similar to the case of the single sum resonance νx þ 2νy.
Our model is greatly simplified in comparison to realistic

circular accelerators. Dynamics of the off-momentum
particles can significantly differ from the on-momentum
ones. Especially, we have ignored the high-order terms in
energy for the chromaticity or momentum compaction
factor, which can play an important role in full six-
dimension tracking with synchrotron oscillation. To
include these effects, the model has to be extended to
include a straight section without any dispersion so that a rf
cavity can be placed. A double-bend [33] or multibend [34]
achromat could be a good choice for the next investigation.
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APPENDIX A: SOLUTION
OF THE CUBIC EQUATION

Setting x ¼
ffiffiffiffiffi
β̄1

p
, the stability condition in Eq. (17) can

be rewritten as a cubic equation,

ax3 þ bx2 þ cxþ d ¼ 0; ðA1Þ

with the coefficients,

a¼−8
ffiffiffiffiffi
β̄2

q
ð1þ cos2πν− β̄2 sin2πνÞ;

b¼ 3β̄2 cos3πνþ β̄2ð47− 2cos2πνyÞcosπν
þ 2½1− 16β̄22þð1− 2β̄22Þcos2πνþ 2β̄22 cos2πνy�sinπν;

c¼ 2

ffiffiffiffiffi
β̄2

q
½ð4β̄22 −3Þ sin2πν− 8β̄2ð2þ cos2πνÞ�;

d¼ 8β̄2ð2β̄2 cosπνþ sinπνÞ: ðA2Þ

The solution of the cubic equation is well known. One
needs to compute first,

Δ0 ¼ b2 − 3ac;

Δ1 ¼ 2b2 − 9abcþ 27a2d;

Ω ¼
Δ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1 − 4Δ3
0

q
2

ðA3Þ

And then the roots are given by,

xk ¼−
1

3a

�
bþξkΩ1=3þ Δ0

ξkΩ1=3

	
; k∈ f0;1;2g; ðA4Þ

where ξ ¼ − 1
2
þ i

2

ffiffiffi
3

p
. In this paper, we use β̄1 ¼ x20.

APPENDIX B: EFFECTIVE HAMILTONIAN OF
THE SUM RESONANCE: νx + 2νy

Near the sum resonance, it is well known in the canonical
perturbation theory [35] that J ¼ Jx þ 2Jy is the new
action and K ¼ 2Jx − Jy is an invariance. Moreover, the
free part of the Hamiltonian can be written as,

−2πνxJx− 2πνyJy ¼−
2πðνxþ 2νyÞ

5
J−

2πð2νx− νyÞ
5

K:

ðB1Þ

Since K is a constant of the motion, the second term can be
dropped out from an effective Hamiltonian. To transfer to
the rotating frame, we define the effective Hamiltonian by
the three-turn map,

M3 ¼ e∶−3H∶: ðB2Þ
This treatment is so obvious as in the case of 3νx [16],
seeing a slower variation of the horizontal betatron phase
every three-turn in the tracking. Here, we see a similar
pattern in the tracking of the invariant tori, especially in the
vertical plane.
Given μ ¼ 2πðνx þ 2νyÞ=5, we compute the three-turn

map,

M3 ¼ ðe∶−μJ∶e∶fðrÞ3
∶Þ3

¼ e∶−3μJ∶e∶2μJ∶e∶f
ðrÞ
3
∶e∶−2μJ∶e∶μJ∶e∶f

ðrÞ
3
∶e−∶μJ∶e∶f

ðrÞ
3
∶

¼ e∶−3μJ∶e∶e
∶2μJ∶fðrÞ

3
∶e∶e

∶μJ∶fðrÞ
3
∶e∶f

ðrÞ
3
∶ ðB3Þ

We start with inserting two identity maps and then apply
the similarity transformation to the Lie operators. Since the
Lie operator associated with the integer p is an identity, the
first Lie operator is reduced to,

e∶−3μJ∶ ¼ e∶−
6πΔν
5
J∶: ðB4Þ

For the next three, we use the CBH theorem for the

approximation up to the first order of fðrÞ3 and combine
them into a single Lie operator,
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e∶e
∶2μJ∶fðrÞ

3
∶e∶e

∶μJ∶fðrÞ
3
∶e∶f

ðrÞ
3
∶

≈ e∶ðe
∶2μJ∶þe∶μJ∶þ1ÞfðrÞ

3
∶

¼ e∶ð
1−e∶3μJ∶

1−e∶μJ∶
ÞfðrÞ

3
∶

¼ e∶ð
1−e

∶6πΔν
5

J∶

1−e∶μJ∶
ÞfðrÞ

3
∶ ðB5Þ

Applying the second form of the CBH theorem to combine
two Lie operators in Eqs. (B4) and (B5) and using the
definition of the effective Hamiltonian, M3 ¼ e∶−3H∶,
we have,

−3H ≈ −
6πΔν
5

J þ ∶ − 6πΔν
5

J∶
ð1 − e∶

6πΔν
5
J∶Þ

ð1 − e∶
6πΔν
5
J∶Þ

ð1 − e∶μJ∶Þ fðrÞ3

¼ −
6πΔν
5

J þ ∶ − 6πΔν
5

J∶
ð1 − e∶μJ∶Þ f

ðrÞ
3 : ðB6Þ

In addition, the resonance driving term can be read directly
from Eq. (20),

fðrÞ3 ¼ C1020

ϕ
ffiffiffiffi
L

p J1=2x Jy cosðψx þ 2ψy − πνx − 2πνyÞ: ðB7Þ

After some straightforward algebra of computing the
Poisson brackets, we obtain the Hamiltonian,

H ¼ 2πΔν
5

ðJx þ 2JyÞ

−
πΔνC1020

ϕ
ffiffiffiffi
L

p
sin πðpþ ΔνÞ J

1=2
x Jy cosðψx þ 2ψyÞ: ðB8Þ

It is worth noting that it is consistent with the reflection
symmetry and more importantly well behaved as Δν
approaches zero.

APPENDIX C: NORMAL FORM IN
VICINITY OF SINGLE RESONANCE

OR DOUBLE RESONANCES

We start from the well-known procedure of the normal
form [17]. For a nonlinear Taylor map M truncated at an
order o, we make a following transformation,

R−1AMA−1 ¼ I2; ðC1Þ

whereA−1 is a linear map that transforms to the normalized
coordinates,R ¼ e∶−2πðνxJxþνyJyÞ∶ the rotation maps, and I2
is a nonlinear map near the identity. Its lowest perturbation
is the second order, indicated with its subscript.
Similarly, we would like to make a transformation in the

next order of perturbation,

e−∶N3ðzÞ∶R−1e∶F3ðzÞ∶AMA−1e−∶F3ðzÞ∶ ¼ I3: ðC2Þ

Here we would like to absorb the second-order terms in I2
to F3 and N3. N3 is the driving term of a single resonance.
Inserting an identity map after e∶F3∶,

e−∶N3ðzÞ∶R−1e∶F3ðzÞ∶RR−1AMA−1e−∶F3ðzÞ∶ ¼ I3: ðC3Þ
and using Eq. (C1), and then performing a similarity
transformation of the Lie operator e∶F3∶, we obtain,

e−∶N3ðzÞ∶e∶F3ðR−1zÞ∶I2e−∶F3ðzÞ∶ ¼ I3: ðC4Þ
To solve F3 and N3, we could rewrite this equation as,

e−∶N3ðzÞ∶e∶F3ðR−1zÞ∶e∶f
ðnÞ
3

ðzÞþfðrÞ
3
ðzÞ∶e−∶F3ðzÞ∶ ¼ Ī3; ðC5Þ

where fðnÞ3 þ fðrÞ3 is the Lie operator that generates I2 and
applying again the CBH theorem, we obtain

e−∶N3ðzÞþF3ðR−1zÞþfðnÞ
3

ðzÞþfðrÞ
3
ðzÞ−F3ðzÞ∶ ¼ ¯̄I3: ðC6Þ

The solution is given by,

F3ðzÞ ¼ fðnÞ3

�
1

1 −R−1 z

	
; N3ðzÞ ¼ fðrÞ3 ðzÞ: ðC7Þ

It is clear from the solution that N3 has been introduced to
absorb all terms that have 1 −R−1 near zero value. Once
F3 and N3 are calculated, we can compute I3 using
Eq. (C4) and proceed to the next order of perturbation.
This procedure can be continued until the right-hand side

becomes identity due to the order of the truncation of the
map. Inverting the Lie operators and maps, we derive the
normal form presentation of the map,

M ¼ A−1e−∶F3ðz⃗Þ∶…e−∶Foþ1ðz⃗Þ∶Re∶f
ðrÞ
3
ðz⃗Þ∶…e∶Noþ1ðz⃗Þ∶

e∶Foþ1ðz⃗Þ∶…e∶F3ðz⃗Þ∶A: ðC8Þ
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