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The phase error is an important parameter to represent the quality of an undulator, which makes it
possible to quickly evaluate the reduction in photon intensity due to magnetic field errors without rigorous
numerical calculations. Although the phase error has been used as a standard to evaluate the undulator field
errors because of its simplicity, a couple of papers have reported that the phase error actually overestimates
the intensity reduction under practical conditions, and thus its tolerance tends to be too tight. In other
words, the applicability of the phase error defined in the conventional form is rather limited. To overcome
this difficulty, we derive a set of formulas to quickly evaluate the undulator quality based on an analytical
approach, which can be used in a more universal manner. Comparisons with rigorous numerical results
under various conditions show the validity and universality of the derived formulas. Analytical methods to
investigate the effects due to systematic errors in undulators are also presented as one of the important
applications of these formulas.
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I. INTRODUCTION

It is well known that the magnetic field of a real
undulator is not completely periodic because of various
error sources. Since such field errors result in a reduction in
photon intensity of undulator radiation (UR), they should
be corrected as much as possible to maximize the number
of photons available for users. It should be noted, however,
that a lot of efforts have to be made to improve the field
quality of undulators, and thus it is practically important to
specify the acceptable tolerance in terms of the normalized
intensity Ir=I0, where I0 is the photon intensity available
with an ideal undulator without any errors, while Ir is that
available with the real one.
The most straightforward way to evaluate Ir=I0 is to

numerically calculate the intensity of UR by means of
dedicated numerical codes [1–3]. Although the numerical
method enables an exact evaluation of the undulator
quality, it is more convenient to roughly and quickly
evaluate Ir=I0 for many applications. This is the reason
why another solution using the well-known formula
derived by Walker [4] has been generally used, which is
given by

Ir=I0 ¼ expð−k2σ2ϕÞ; ð1Þ

where k is the harmonic number of UR and σϕ is the root
mean square (RMS) phase error that can be easily calcu-
lated once the magnetic field distribution is given. Because
of its simplicity, this formula has been widely used to
quickly evaluate the effects due to field errors of undu-
lators, and the tolerance on σϕ is usually mentioned in the
specification documents for undulator manufacturers.
It is easy to understand that the above tolerance becomes

tighter for higher harmonics. For example, we have a
tolerance kσϕ ≤ 27° to keep the intensity reduction within
20%, i.e., Ir=I0 ≥ 0.8. To be specific, we need to satisfy
σϕ ≤ 27° for the 1st harmonic, and σϕ ≤ 1.8° for the 15th
harmonic. The latter tolerance is so tight that we need to
eliminate a huge number of error sources to satisfy this
condition.
Recently, several authors have pointed out that the

tolerance on σϕ as discussed above is greatly relaxed under
practical conditions [5,6]. This is attributable to the fact that
Eq. (1) applies to the on-axis angular flux density of UR
emitted by a single electron, and is not necessarily valid for
other conditions. To be specific, Ir=I0 is recovered once all
the effects having impacts on the intensity of UR are taken
into account, such as the finite emittance and energy spread
of the electron beam, and the finite collection angles
defined by the components installed in the beamline, which
are hereinafter referred to as the “recovery factors.” Under
the practical conditions in which the recovery factors play
an important role, Eq. (1) overestimates the effects due to
field errors, and does not correctly represent the undulator
quality.
To overcome the above difficulty, Walker has introduced

a new parameter “local phase error” σψ [6] to specify the
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undulator quality under the practical conditions, and has
shown that σψ correlates well with Ir=I0 in a particular case
when the collection angle is sufficiently large. Although
evaluating Ir=I0 using σψ is much more practical than that
using σϕ, it still cannot universally represent the undulator
quality; the correlation between σψ and Ir=I0 gets worse for
smaller collection angles.
The above discussion suggests that it is more useful to

have an expression to evaluate Ir=I0 under arbitrary
conditions. The purpose of this paper is to derive a new
parameter Σϕ based on an analytical approach, which can
be used to represent the undulator quality in a more
universal manner. We also explain how Σϕ relates with
σϕ and σψ , together with its physical background. In
addition, the analytical method is applied to investigating
the effects due to systematic errors that usually result in
large phase errors (σϕ), to reveal that their impacts on the
actual undulator performance under practical conditions are
much lower than what is generally supposed.

II. ANALYTICAL FORMULATION

In what follows, we assume that the undulator is of a
planar type to mainly generate a magnetic field in the
vertical direction, and focus on the horizontally polarized
radiation. Let z be the main axis of the electron motion and
thus the optical axis of UR, x and y be the horizontal and
vertical axes perpendicular to z, and the coordinate origin
be the center of the undulator.
Although there are many parameters related to the

recovery factors, they can be actually represented by five
variables: the energy spread (σε) and angular divergences
(σx0 , σy0 ) of the electron beam, and the collection angles
(Δθx, Δθy) in the beamline. Note that the angular diver-
gence should be defined so that all the relevant beam
parameters are taken into account. To be specific,

σx0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x0 þ σ2x00ðD − ZwÞ2

q
D

;

and a similar expression for σy0, where D is the distance
from the undulator center (z ¼ 0) to the components in the
beamline defining the collection angle, Zw is the beam
waist position, and σx0 and σx00 are the beam size and
angular divergence at z ¼ Zw to be determined by the Twiss
parameters, dispersion functions, energy spread and emit-
tance of the electron beam. For reference, these definitions
are illustrated in Fig. 1. Then Ir=I0 is given as a function
of these variables, i.e., Ir=I0 ¼ ρðσε; σ;ΔθÞ, with σ ¼
ðσx0 ; σy0 Þ and Δθ ¼ ðΔθx;ΔθyÞ being introduced for sim-
plicity. In the following sections, we derive an explicit form
of the function ρ based on an analytical approach.

A. Undulator radiation with field errors

Let us first derive a formula to represent the angular flux
density of UR emitted by a single electron moving in a real
undulator with field errors.
The complex amplitude of UR denoted as E is given in a

dimensionless form by [7]

E ¼ 1

λγ2

Z
Nλu=2

−Nλu=2
γðβx − θxÞ exp½iωτðzÞ�dz; ð2Þ

with

τðzÞ ¼ 1

2γ2c

Z
z

0

½1þ ðγβ⊥ðz0Þ − γθÞ2�dz0; ð3Þ

where γ is the Lorentz factor of the electron, β⊥ ¼ ðβx; βyÞ
is its transverse relative velocity given as a function of z, λu
is the periodic length of the undulator, N is the number of
periods, θ ¼ ðθx; θyÞ is the observation angle, λ and ω are
the wavelength and angular frequency of radiation, and c is
the speed of light. The angular flux density is then given by
jEj2, excluding the unit conversion factor for simplicity.
In an ideal undulator, we have βx ¼ γ−1K cosð2πz=λuÞ

and βy ¼ 0, where K is known as the deflection parameter
of an undulator defined as

K ¼ eB0λu
2πmec

;

with e and me being the electron charge and mass, and B0

being the peak magnetic field of the undulator. Then we can
define the so-called fundamental frequency

ω0ðθÞ ¼
4πcγ2=λu

1þ K2=2þ γ2θ2
;

which satisfies the phase matching conditionω0τðzþ λuÞ ¼
ω0τðzÞ þ 2π, and thus radiation is emitted in phase at
ω ¼ ω0. The phase error of a real undulator, in which
βx ≠ γ−1K cosð2πz=λuÞ and βy ≠ 0, is defined by

z

x
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FIG. 1. Coordinate system and parameters to define σx0 and
Δθx.

TAKASHI TANAKA PHYS. REV. ACCEL. BEAMS 21, 110704 (2018)

110704-2



ϕj ¼ ω0ð0Þ½τðzjÞ − τ0ðzjÞ�θ¼0

¼ 2π=λu
1þ K2=2

Z
zj

0

�
γ2β2⊥ðzÞ −

K2

2

�
dz; ð4Þ

with j ¼ 1; 2;…; 2N, where τ0 denotes τ for an ideal
undulator, and zj is the longitudinal position of the j-th
magnet pole, which, in an ideal undulator, is given by
zj ¼ ðj − N − 1=2Þλu=2. Thus, the phase error is usually
evaluated at the discrete positions z ¼ zj, i.e., at the points of
emission of radiation. The RMS phase error σϕ is then
defined as the RMS of the discrete data set ϕj, and can be
used to evaluate Ir=I0 using Eq. (1).
Although evaluating Ir=I0 with σϕ defined above is

simple and useful, it usually underestimates the undulator
quality when the recovery factors are not negligible. We
thus need to investigate in more detail the impacts of ϕj

on Ir=I0 with the recovery factors taken into account.
To facilitate the following discussion, we introduce a
coordinate variable n≡ z=λu.
In general, the transverse velocity β⊥, which is given by

integrating the magnetic distribution along the z axis, is
roughly expressed by

γβ⊥ ∼ ½UðnÞ cosð2πnÞ þ X̄0ðnÞ; Ȳ 0ðnÞ�; ð5Þ

where X̄0 and Ȳ 0 denote the horizontal and vertical slope
errors, while U describes the amplitude of the wiggling
motion. If the undulator is an ideal one, we have X̄0ðnÞ ¼
Ȳ 0ðnÞ ¼ 0 and UðnÞ ¼ const ¼ K. For real undulators, it is
reasonable to define K as being the average of UðnÞ.
Substituting Eqs. (3) and (5) into Eq. (2), we have

E ¼ λu
λγ2

Z
N=2

−N=2
½K cosð2πnÞ − γθx þ X̄0ðnÞ� exp½iΦðnÞ�dn;

ð6Þ

with

ΦðnÞ ¼ ω

ω0ðθÞ
χðn; γθxÞ þ

ω

ω0ð0Þ
ϕðnÞ; ð7Þ

where χ is the phase advance in an ideal undulator given by

χðn; XÞ ¼ 2πnþ 1

1þ K2=2þ γ2θ2

×

�
K2 sinð4πnÞ

4
− 2KX sinð2πnÞ

�
; ð8Þ

and ϕðnÞ ¼ φðnÞ þ ΔðnÞ denotes the phase error coming
from the field errors, where we have introduced two
functions

φðnÞ¼ 2π

1þK2=2

Z
n

0

�
U2ðn0Þ−K2

2
þ X̄02ðn0Þþ Ȳ 02ðn0Þ

�
dn0;

ð9Þ

and

ΔðnÞ ¼ 2KX̄0ðnÞ sinð2πnÞ
1þ K2=2

: ð10Þ

Note that two assumptions have been made to derive
Eqs. (6), (9) and (10); (i) the deviation of UðnÞ from K
is small, and (ii) the trajectory wander given by integrating
γ−1X̄0 and γ−1Ȳ 0 are not much larger than the wiggling
amplitude; in practice, the discrepancy between UðnÞ and
K in practical undulators is at least less than a few percent,
and the trajectory wander is of the order of a few times the
wiggling amplitude or less.
Because of the oscillating factor sinð2πnÞ, ΔðnÞ rapidly

oscillates as n, and is referred to as the phase oscillation. In
contrast, φðnÞ does not explicitly contain the oscillating
factor, and is thus a slowly varying function of n.
Namely, φðnÞ does not vary significantly over the range
h ≤ n ≤ hþ 1, where h is an arbitrary number satisfy-
ing jhj < N=2.
The phase error function ϕðnÞ defined above is well

represented by the discrete data set ϕj evaluated with
Eq. (4), i.e., ϕj ¼ ϕðnjÞ, with nj ¼ zj=λu. For later dis-
cussions, we introduce other data sets φj and Δj defined by

φj ¼
�
ϕj; j ¼ odd;

ðϕj−1 þ ϕjþ1Þ=2; j ¼ even;
ð11Þ

Δj ¼ðϕj − ϕj−1Þ=2; ð12Þ

which represent the functions φðnÞ and ΔðnÞ, i.e., φj ¼
φðnjÞ and Δj ¼ ΔðnjÞ. We also define σφ and σΔ as being
the RMS of φj and Δj, respectively. The reason why we
do not adopt a more straightforward definition of φj ¼
ðϕj þ ϕj−1Þ=2 is that the resultant data set φj denotes the
phase error at the midpoint of two adjacent magnet poles
where no radiation is emitted, which is not suitable to
describe the intensity of UR. If φj and Δj are statistically
uncorrelated, which is usually the case for general undu-
lators, we have a relation

σ2ϕ ∼ σ2φ þ σ2Δ: ð13Þ

Let us introduce two variables defined by

ω̂ ¼ ω − kω0ð0Þ
ω0ð0Þ

; Θ2 ¼ γ2θ2

1þ K2=2
¼ θ2

4Nσ2r0
;

with
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σr0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
λ0

2Nλu

s

being known as the angular divergence of UR at the
fundamental wavelength of λ0 ¼ 2πc=ω0ð0Þ. In the follow-
ing discussions, we focus on the calculation of the kth
harmonic intensity near the optical axis; namely, we
assume ω̂ ≪ 1 and Θ2 ≪ 1.
From the mathematical point of view, it is convenient to

modify Eq. (7) as follows

ΦðnÞ ¼ ω

ω0ðθÞ
χ½n; γθx − X̄0ðnÞ� þ ω

ω0ð0Þ
φðnÞ:

Namely, the argument γθx in χ is replaced with γθx − X̄0ðnÞ,
and the function ϕ is replaced with φ. Then, recalling that φ
is a slowly varying function of n, while χ rapidly oscillates
as n, Eq. (6) reduces to

E¼
XN=2

n¼−N=2

fk½γθx− X̄0ðnÞ�expfi½2πnðω̂þkΘ2ÞþkφðnÞ�g;

ð14Þ

with

fkðXÞ¼
2k

1þK2=2

Z
1=2

−1=2
½K cosð2πnÞ−X�exp½ikχðn;XÞ�dn:

ð15Þ

B. Simplifying into a convenient form

Although Eqs. (14) and (15) can be used to exactly
calculate the angular flux density jEj2 available with a real
undulator, they are not convenient to quickly evaluate its
quality under practical conditions, because we need to
perform a numerical calculation using the functions φðnÞ
and X̄0ðnÞ represented by the given data sets φj and Δj,
with the effects due to the recovery factors taken into
account. In the following sections, we further modify these
equations to derive a simple form to represent jEj2 as a
function of σφ and σΔ, which is convenient for analytical
formulation to deal with the recovery factors.

1. Formulation based on Fourier analysis

We first consider the case when the horizontal slope error
X̄0 is so small that fk½γθx − X̄0ð2πnÞ� in Eq. (14) hardly
depends on n. In other words, the phase oscillation term
ΔðnÞ is negligibly small. Then we have

jEj2 ¼ FkðγθxÞ × Sk;Nðω̂;ΘÞ;

with FkðγθxÞ¼jfkðγθxÞj2, Sk;Nðω̂;ΘÞ ¼ jsk;Nðω̂;ΘÞj2, and

sk;Nðω̂;ΘÞ ¼
Z

N=2

−N=2
expfi½2πnðω̂þ kΘ2Þ þ kφðnÞ�gdn:

ð16Þ

Note that summation with respect to n in Eq. (14) has been
replaced with integration over n; this is possible because
the exponent in the above equation is a slowly varying
function of n in the sense explained in the preceding
section.
We now apply Fourier analysis to Eq. (16). Namely, φ in

the exponent is expanded into a Fourier series as follows

φðnÞ ¼
XN
m¼1

φm sin

�
2πmn
N

þ αm

�
; ð17Þ

with

φm ¼ jφ̃mj; αm ¼ π

2
− argðφ̃mÞ;

where φ̃m is the Fourier coefficient defined as

φ̃m ¼ 2

N

Z
N=2

−N=2
φðnÞ exp

�
2πimn
N

�
dn:

Substituting Eq. (17) into Eq. (16), and using the well-
known formula

expðix sin yÞ ¼
X∞
l¼−∞

JlðxÞ expðilyÞ; ð18Þ

we have

sk;Nðω̂;ΘÞ

¼
Z

N=2

−N=2
exp½2πinðω̂þkΘ2Þ�

×
YN
m¼1

�X∞
l¼−∞

JlðkφmÞexp
�
i

�
2πmn
N

þαm

�
l

��
dn; ð19Þ

where Jl is the lth order Bessel function of the 1st kind.
Except for the exponential phase factor, the integrand in

Eq. (19) is composed of products of Bessel functions

Jl1ðkφ1ÞJl2ðkφ2Þ � � � JlmðkφmÞ � � � JlMðkφMÞ;

with lm being an integer. Among them, we neglect the terms
containing (1) the 2nd or higher-order Bessel functions, and
(2) the quadratic or higher-order terms of J1, assuming that
kφm ≤ 1 is satisfied.
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Based on the above simplification, Eq. (19) reduces to

sk;Nðω̂;ΘÞ ¼ N

�YN
m¼1

J0ðkφmÞ
�

×

� XN
m¼−N

amsinc½πNðω̂þ kΘ2Þ þmπ�
�
;

with sincðxÞ≡ sin x=x, and

am ¼
(
1; m ¼ 0;
J1ðkφjmjÞ
J0ðkφjmjÞ exp

	
i jmj
m αjmj



; jmj ≥ 1:

Making use of approximate expressions of Bessel functions

J0ðxÞ ∼ 1 − x2=4; J1ðxÞ ∼ x=2;

which are valid when jxj ≤ 1, we have

Sk;Nðω̂;ΘÞ ¼ N2

�
1 −

XN
m¼1

ðkφmÞ2
2

�

×
XN
m¼−N

b2msinc2
�
πN

�
ω̂þ kΘ2 þm

N

��
;

with

bm ¼
�
1; m ¼ 0;

kφjmj=2; jmj ≥ 1;

where we have omitted the cross terms because of the delta-
function-like behavior of sincðxÞ.
Recalling that σφ is the standard deviation of φðnÞ given

by Eq. (17), it is easy to show

σ2φ ¼
XN
m¼1

φ2
m

2
;

with which we finally have

Sk;Nðω̂;ΘÞ¼N2ð1−k2σ2φÞ

×
XN
m¼−N

b2msinc2
�
πN

�
ω̂þkΘ2þm

N

��
: ð20Þ

Note that this formula has been derived under the condition
when the horizontal slope error X̄0 is small and thus the
phase oscillation term ΔðnÞ is negligible.

2. Effects due to the phase oscillation

Now let us consider the effects due to the phase
oscillation, which can be done by investigating the impact

of X̄0 on E through the function fkðXÞ defined in Eq. (15).
Instead of the rigorous formulation using Eq. (14), we
extend the discussions made in the preceding section, and
assume that the angular flux density is roughly given as

jEj2 ¼ Fkðγθx; σΔÞ × Sk;Nðω̂;ΘÞ:

In what follows, we derive an explicit expression for
Fkðγθx; σΔÞ that is consistent with Eqs. (14) and (15).
Although the integration in Eq. (15) can be done

analytically, the result is given as a complicated formula
composed of quadratic forms of Bessel functions [8], and is
not convenient to continue mathematical operations.
Instead of the exact expression, we thus derive a simple
form of fkðXÞ by making a few assumptions and approx-
imations as follows.
We first assume that the observation angle γθ and the

horizontal slope error X̄0 are much less than K. Then we
make approximations

1þ K2=2þ γ2θ2 → 1þ K2=2;

in Eq. (8) and

K cosð2πnÞ − X → K cosð2πnÞ;

in Eq. (15). Then we have

fkðXÞ ∼
2kK

1þ K2=2

Z
1=2

−1=2
cosð2πnÞ

× exp

�
2πik

�
nþ 1

1þ K2=2

×

�
K2 sinð4πnÞ

4
− 2KX sinð2πnÞ

���
dn: ð21Þ

The integrand in the above formula can be represented by
the Bessel functions using Eq. (18) and the integration can
be done analytically as has been done before; however, the
result is given as a sum of quadratic forms of Bessel
functions because the exponent in the above formula
contains two different sinusoidal functions. To avoid
the difficulty in dealing with them, we apply a rough
approximation

sinð2πnÞ ¼
�−1; − 1

2
< n < 0;

þ1; 0 < n < 1
2
;

to the last term of the exponent. Then Eq. (21) reduces
to
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fkðXÞ ∼
2kK

1þ K2=2

�Z
0

−1=2
cosð2πnÞ exp

�
2πik

�
nþ 1

1þ K2=2

�
K2 sinð4πnÞ

4
þ 2KX

���
dn

þ
Z

1=2

0

cosð2πnÞ exp
�
2πik

�
nþ 1

1þ K2=2

�
K2 sinð4πnÞ

4
− 2KX

���
dn

�
;

which can be analytically calculated to give an approximate
and simple form of fkðXÞ as follows

fkðXÞ ¼ fk;0 cos

�
2kKX

1þ K2=2

�
; ð22Þ

with

fk;0 ¼ ð−1Þkþ1
2

kK
1þ K2=2

×

�
Jkþ1

2

�
kK2=4

1þ K2=2

�
− Jk−1

2

�
kK2=4

1þ K2=2

��
;

where k is assumed to be an odd integer because even
harmonics are of no interest in the present work.
The validity of the above approximation should be

examined by comparing the approximate and exact for-
mulas given by Eqs. (15) and (22), respectively. For this
purpose, we computed jfkðXÞj2 using the two formulas
with the parameters of K ¼ 2.2 and k ¼ 11. The results are
shown in Fig. 2, where we find that the approximate
formula (22) well reproduces the exact one (15) at least
within the range of jXj ≤ 0.5, which is wide enough to
evaluate Ir=I0 near the optical axis.
Having verified the validity of Eq. (22), let us consider the

effects due to X̄0 and derive the expression for Fkðγθx; σΔÞ.
Recalling that the argument of fk in Eq. (14) is ðγθx − X̄0Þ, it
is reasonable to calculate Fk with the following formula

Fk ∼
1

2N

X2N
j¼1

jfkðγθx − X̄0
jÞj2;

for a given data set of X̄0
j ≡ X̄0ðnjÞ. In a more general

manner, this is rewritten as

Fk ¼
1ffiffiffiffiffiffi
2π

p
σX0

Z
∞

−∞
jfkðγθx − X̄0Þj2 exp

�
−

X̄02

2σ2X0

�
dX̄0;

where σX0 is the RMS of X̄0. Substituting Eq. (22), the above
formula reduces to

Fk ¼
f2k;0
2

�
1þ cos

�
4kKγθx
1þK2=2

�
exp

�
−
1

2

�
4kKσX0

1þK2=2

�
2
��

:

Using the relation between ΔðnÞ and X̄0ðnÞ defined in
Eq. (10), we finally have

Fkðγθx; σΔÞ ¼
f2k;0
2

�
1þ cos

�
4kKγθx
1þ K2=2

�
expð−2k2σ2ΔÞ

�
:

ð23Þ

C. Considering the recovery factors

Using Sk;N and Fk derived in the previous sections, the
angular flux density of UR, which is emitted by a single
electron moving in a real undulator with field errors, can be
calculated, at an arbitrary angle Θ and frequency ω̂. The
next step is to modify Eqs. (20) and (23) to take into
account the recovery factors, i.e., the effects due to the
finite energy spread, emittance, and collection angles,
which are denoted as Sek;N and Fe

k to be distinguished from
the original ones.

1. Effects due to the energy spread

To take into account the effects due to the energy spread,
we first consider how the derived formulas change for an
electron having a different energy γ0 ¼ γð1þ εÞ, where we
assume jεj ≪ 1. It is obvious that Fk does not change
significantly, while Sk;N should be modified. This comes
from the fact that the fundamental frequency changes as
ω0
0 ¼ ω0ð1þ 2εÞ, and thus the normalized frequency

changes as ω̂0 ¼ ω̂ − 2kε. In other words, the argument
ω̂ in Sk;N should be replaced with ω̂ − 2kε for an electron
with the energy deviation of ε. Summing up all the photons
emitted by the electrons contained in the electron beam
with the RMS energy spread of σε, we have

-1.0 -0.5 0.0 0.5 1.0

0.0

0.1

0.2

0.3

 Exact
 Approx.

|f k(x
)|

2

X

FIG. 2. Comparison of jfkðXÞj2 computed with the exact (15)
and approximate (22) formulas when K ¼ 2.2 and k ¼ 11.
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Sek;Nðω̂;ΘÞ ¼
Z

∞

−∞
Sk;Nðω̂ − εk;ΘÞGðεk; σkεÞdεk

¼ Sk;Nðω̂;ΘÞ ⊗ Gðω̂; σkεÞ; ð24Þ

with σkε ¼ 2kσε, the operator ⊗ denoting the convolution
operation, and

Gðx; σÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp

�
−

x2

2σ2

�
;

being a Gaussian function with the standard deviation of σ.
Substituting Eq. (20) into Eq. (24), we have

Sek;Nðω̂;ΘÞ ¼ N2ð1 − k2σ2φÞ

×
XN
m¼−N

b2msinc2
�
πN

�
ω̂þ kΘ2 þm

N

��

⊗ Gðω̂; σkεÞ: ð25Þ

The above equation describes the growth of the spectral
bandwidth because of the convolution with the Gaussian
function Gðω̂; σkεÞ. Using Eq. (A2) in the Appendix A, we
can simplify the above formula to give

Sek;Nðω̂;ΘÞ

¼ NN0ð1− k2σ2φÞ
XN
m¼−N

b2msinc2
�
πN0

�
ω̂þ kΘ2 þm

N

��
;

ð26Þ

with

N0 ¼ Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2πN2σ2kε

q : ð27Þ

We now focus on the peak angular flux density by
substituting ω̂ ¼ Θ ¼ 0 into Eq. (26), which results in

Sek;Nð0; 0Þ ¼ NN0ð1 − k2σ2φÞ
�
1þ k2

2

XN
m¼1

φ̄2
N0;m

�
;

with

φ̄N0;m ¼ φmsinc

�
π
N0

N
m

�
: ð28Þ

Introducing a function φ̄ðn;N0Þ, whose Fourier coefficient
is given by φ̄N0;m and using the Parseval’s theorem, we have

Sek;Nð0; 0Þ ¼ NN0ð1 − k2σ2φÞð1þ k2σ̄2φ;N0 Þ; ð29Þ

with

σ̄2φ;N0 ¼ 1

N

Z
N=2

−N=2
½φ̄ðn;N0Þ�2dn; ð30Þ

being the RMS of the function φ̄ðn;N0Þ.
To clarify the meaning of the function φ̄ðn;N0Þ, we

consider a rectangular function defined by

rectðn;N0Þ ¼
�
1; jnj ≤ N0=2;

0; jnj > N0=2;

whose Fourier coefficient is given as

rm ¼ 2

N

Z
N=2

−N=2
rectðn;N0Þ exp

�
2πimn
N

�

¼ 2N0

N
sinc

�
π
N0

N
m

�
:

Then Eq. (28) reduces to

φ̄N0;m ¼ N
2
φm

rm
N0 ;

which means that the Fourier coefficient of φ̄ðn;N0Þ is
given as a product of the Fourier coefficients of φðnÞ and
rectðn;N0Þ=N0. Thus φ̄ðn;N0Þ is given as the convolution of
two functions φðnÞ and rectðn;N0Þ=N0, namely,

φ̄ðn;N0Þ ¼ φðnÞ ⊗ rectðn;N0Þ
N0 : ð31Þ

In other words, φ̄ðn;N0Þ is a moving average of φðnÞ
with a window size of N0. As Nσkε grows, N0 becomes
smaller, and φ̄ðn;N0Þ approaches φðnÞ.
It is relevant to mention that Sek;N defined in Eq. (29) is

given as a product of two factors, ð1 − k2σ2φÞ and
ð1þ k2σ̄2φ;N0 Þ. The former describes the intensity reduction
due to field errors, while the latter describes its recovery
because of the finite energy spread, which strongly depends
on the smoothness of φðnÞ; if it is a smooth function of n in
the sense that it does not change significantly over the range
of N0, we have σ̄φ;N0 ∼ σφ, and thus Sek;N → 1. It is often the
case that σφ is mostly attributable to a large but slow
variation of φðnÞ in a real undulator, and thus its impact on
Ir=I0 is in practice weakened under the practical condition
when the energy spread of the electron beam is finite.

2. Effects due to the emittance and collection angles

Unlike the effects due to the energy spread, the angular
divergences (σx0 , σy0) and collection angles (Δθx, Δθy) have
impacts on both Sek;N and Fe

k, which are investigated
separately in the following discussions.
We first consider the impacts on Sek;N . Convoluting Sk;N

with the angular profile of the electron beam, which is
given as a product of two Gaussian functions with the
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standard deviations of σx0 and σy0 , and integrating over the
collection angles Δθx and Δθy, we have

Sek;Nðω̂Þ ¼
Z

∞

−∞

Z
∞

−∞
dθxdθyrectðθx;ΔθxÞrectðθy;ΔθyÞ

× ½Gðθx; σx0 ÞGðθy; σy0 Þ� ⊗ Sk;N½ω̂;ΘðθÞ�;

where we have omitted the argument Θ in Sek;N . The above
formula can be rewritten as

Sek;Nðω̂Þ ¼
Z

∞

−∞

Z
∞

−∞
dθxdθySk;N ½ω̂;ΘðθÞ�

× ½Gðθx; σx0 Þ ⊗ rectðθx;ΔθxÞ�
× ½Gðθy; σy0 Þ ⊗ rectðθy;ΔθyÞ�:

Using Eq. (B2) in the Appendix B, we have

Sek;Nðω̂Þ ¼ ΔθxΔθy
Z

∞

−∞

Z
∞

−∞
dθxdθySk;N½ω̂;ΘðθÞ�

× Gðθx;Σx0 ÞGðθy;Σy0 Þ; ð32Þ

with

Σ2
x0 ¼ σ2x0 þ

�
Δθx
π

�
2

; ð33Þ

and a similar expression for Σy0.
Now we substitute Eq. (20) into Eq. (32), and decompose

as follows

Sek;Nðω̂Þ ¼ N2ΔθxΔθyð1 − k2σ2φÞ
XN
m¼−N

b2mImðω̂Þ; ð34Þ

with

Imðω̂Þ ¼
Z

∞

−∞

Z
∞

−∞
dθxdθyGðθx;Σx0 Þ

×Gðθy;Σy0 Þsinc2
�
πN

�
ω̂þ k2Θ2ðθÞ þm

N

��
:

Although the integration in the above formula cannot be
done analytically, we can roughly evaluate its spectral
profile. First, we rewrite the above formula as follows

Imðω̂Þ ¼
Z

∞

−∞

Z
∞

−∞
dθxdθyGðθx;Σx0 ÞGðθy;Σy0 Þ

×

�
δ½ω̂þ k2Θ2ðθÞ� ⊗ sinc2

�
πN

�
ω̂þm

N

���
;

where δðxÞ is the Dirac’s delta function. Exchanging the
order of integration, we have

Imðω̂Þ ¼ sinc2
�
πN

�
ω̂þm

N

��
⊗ IGðω̂Þ;

with

IGðω̂Þ ¼
Z

∞

−∞

Z
∞

−∞
dθxdθyGðθx;Σx0 Þ

×Gðθy;Σy0 Þδ½ω̂þ k2Θ2ðθÞ�:

Using IGðω̂Þ, Eq. (34) can be written as

Sek;Nðω̂Þ¼N2ΔθxΔθyð1−k2σ2φÞ

×
XN
m¼−N

b2msinc2
�
πN

�
ω̂þm

N

��
⊗ IGðω̂Þ; ð35Þ

which has the same form as Eq. (25), if we substituteΘ ¼ 0
and replace Gðω̂; σkεÞ with IGðω̂Þ. In other words, Eq. (35)
describes the growth of the bandwidth due to the finite
emittance and collection angles. Thus, we can follow the
same analytical process taken in the preceding section by
approximating IGðω̂Þ by Gðω̂; σω̂;IÞ, in which σω̂;I should
be determined to be consistent with the spectral profile of
IGðω̂Þ. As an example, we evaluate the bandwidth of IGðω̂Þ
in the same manner as the Gaussian function, i.e.,

σω̂;I ¼
R∞
−∞ IGðω̂Þdω̂ffiffiffiffiffiffi

2π
p

IGð0Þ
: ð36Þ

Calculations of the numerator and denominator of the
above formula can be done analytically, i.e.,

Z
∞

−∞
IGðω̂Þdω̂ ¼ 1; IGð0Þ ¼

2Nσ2r0
k

1

Σx0Σy0
;

with which we have

σω̂;I ¼
k

2
ffiffiffiffiffiffi
2π

p
N

Σx0Σy0

σ2r0
:

Combining with the results derived in the preceding
section, the parameter N0 defined in (27) should be
modified according to

N0 ¼ Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2πN2ðσ2kε þ σ2ω̂;IÞ

q ; ð37Þ

with which we have

Sek;Nð0Þ ¼ NN0ΔθxΔθyð1 − k2σ2φÞð1þ k2σ̄2φ;N0 Þ:

Although the above formula is identical to Eq. (29) except
for the collection angle factor, it should be emphasized that
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the parameter N0 is calculated according to Eq. (37) instead
of Eq. (27).
Next we discuss the impacts on Fe

k. In the same manner
as Eq. (32) for Sek;N, we have

Fe
k ¼

Z
∞

−∞
dθxFkðγθx; σΔÞGðθx;Σx0 Þ: ð38Þ

Using Eq. (23), the integration can be done analytically
to give

Fe
k ¼

f2k;0
2

½1þ expð−2Σ̂2
x0 − 2k2σ2ΔÞ�;

with

Σ̂x0 ¼
2kKγΣx0

1þ K2=2
: ð39Þ

It should be mentioned that the above procedure to
separately calculate Sek and Fe

k, under the effects due to the
finite angular divergence and collection angles, is not
mathematically valid. Strictly speaking, we may need to
calculateZ

∞

−∞

Z
∞

−∞
dθxdθyFkðγθx; σΔÞSk;N ½ω̂;Θðθx; θyÞ�

×Gðθx;Σx0 ÞGðθy;Σy0 Þ;

to evaluate the product Fe
kS

e
k, instead of the independent

mathematical operations of (32) and (38). It is easy to
understand, however, that the integration in the above
equation cannot be analytically performed, and thus we
cannot derive any useful information in a convenient
manner if we stick to the rigorous treatment. This is the
reason why we calculate Sek and Fe

k separately, and assume
that their product gives a good approximation to the
rigorous form. The validity of this assumptions should
be examined by comparing with the rigorous numerical
calculations, as discussed later in Sec. III.

3. Redefining the phase error

Now let us evaluate Ir=I0 with all the recovery factors
taken into account. Summarizing the results gained so far,
we have

ρðσε; σ;ΔθÞ ¼ ð1 − k2σ2φÞð1þ k2σ̄2φ;N0 Þ

×
1þ expð−2Σ̂2

x0 − 2k2σ2ΔÞ
1þ expð−2Σ̂2

x0 Þ
: ð40Þ

For reference, let us recall the definitions of the para-
meters; σφ and σΔ are the RMS of the functions φ and Δ
defined in Eqs. (9) and (10), while σ̄φ;N0 and Σ̂x0 are defined
in Eqs. (30) and (39), respectively.

As easily understood, the applicability of the above
expression is limited. For example, ρ becomes negative
when kσφ > 1, which is physically incorrect. This is attrib-
utable to the assumption kφm ≤ 1 made in Sec. II B.
Although this assumption is in most cases valid, it may be
useful tomodifyEq. (40) to be applicable evenwithout it, i.e.,
for large values of kσφ and kσ̄φ;N0 . Recalling thewell-known
approximation expðxÞ∼1þx for jxj ≪ 1, it is reasonable
to replace the 1st and 2nd factors by expð−k2σ2φÞ and
expðk2σ̄2φ;N0 Þ. Then, we also modify the 3rd factor to be
compatible with the 1st and 2nd factors, namely,

1þ expð−2Σ̂2
x0 − 2k2σ2ΔÞ

1þ expð−2Σ̂2
x0 Þ

¼ 1 −
1 − expð−2k2σ2ΔÞ
1þ expð2Σ̂2

x0 Þ

∼ 1 −
2k2σ2Δ

1þ expð2Σ̂2
x0 Þ

→ exp

�
−

2k2σ2Δ
1þ expð2Σ̂2

x0 Þ

�
:

As a result, we finally have

ρðσε; σ;ΔθÞ ¼ expð−k2Σ2
ϕÞ; ð41Þ

with

Σ2
ϕ ¼ σ2φ − σ̄2φ;N0 þ 2

1þ expð2Σ̂2
x0 Þ

σ2Δ; ð42Þ

being the redefined phase error given in a universal form,
which takes into account the effects due to the recovery
factors. It is worth repeating that σφ, σ̄φ;N0 , Σ̂x0 and σΔ are
evaluated from the measured magnetic field distribution,
using Eqs. (4), (11), (12), (30), (31), (33) and (39).

III. EXAMPLES

Because Eqs. (41) and (42) have been derived based on
an analytical approach with a number of assumptions and
approximations, we need to examine their validities by
comparing with rigorous numerical calculations. For this
purpose, we need to prepare as many undulator models as
possible and perform calculations under various conditions
with different recovery factors, for better statistics and more
reliable results.
As an example, we consider the case when an electron

beam with the energy of 6 GeV and coupling constant of
10% is injected to an undulator with K ¼ 2.2 and
λu ¼ 20 mm, which is installed in the straight section with
the horizontal and veritcal betatron functions of 6 m and
3 m, respectively. The fundamental photon energy of UR
with the above parameters is 5 keV and we focus on
harmonics up to 15th, corresponding to the maximum
photon energy of 75 keV.
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We then calculate the normalized intensity under 6
conditions (a)–(f) having different recovery factors defined
by the energy spread σε, natural emittance εn, and nor-
malized collection angle Δθ=σp as summarized in Table I,
where σp is the angular divergence of the photon beam at
the fundamental energy. We also assume that the normal-
ized collection angles in the horizontal and vertical direc-
tions are identical, i.e., Δθx=σpx ¼ Δθy=σpy and omitted
the subscripts for simplicity. Note that the effects due to the
recovery factors are more significant (smaller N0 and larger
Σ̂x0) in the conditions that are alphabetically greater; e.g.,
the normalized intensity in (c) is recovered more than that
in (b), etc. This is obvious from the two columns indicating
the parameters N0 and Σ̂x0 , which are evaluated with N ¼
200 and k ¼ 15 for each condition.
To facilitate the following discussions, we define Ir=I0

as the normalized intensity evaluated with the numerical
method, while ρ as that evaluated with Eqs. (41) and (42).
The validity of the analytical formulation made in Sec. II
can be examined by comparing Ir=I0 and ρ.

A. Generating undulator models with field errors

To generate realistic undulator models with field errors,
we first assume that the transverse magnetic field is given in
a form

B⊥ðzÞ ¼ B0

�X2N
j¼1

rectðzj; λu=2Þbj
�
sinð2πz=λuÞ;

with bj ¼ ðbx;j; 1þ by;jÞ, where B0 is the average peak
field and bx;j (by;j) is the normal random number with the
standard deviation of σb specifying the field error of the jth
magnet pole. Typically, σb is of the order of 0.01 (1%) or
less, assuming that commercially available permanent
magnets are used. Note that the horizontal and vertical
components of bj are defined differently, meaning that the
vertical field is the principal component of B⊥.
The random field errors introduced above deteriorate the

undulator quality and give rise to the phase and trajectory
errors, as usually found in the initial magnetic condition of

a real undulator just after assembly. In the following
discussions, the trajectory error in the x (y) direction
denoted as σex (σey) is defined as the RMS of the deviation
from the nominal trajectory. In the normal process of
undulator manufacturing, the phase and trajectory errors
are corrected by the so-called shimming technique. To
numerically emulate the shimming process, we apply two
types of corrections, local and global. The former is to
locally adjust the field deviations, namely, to modify bx;j
and by;j of specific magnet poles dominating the trajectory
error, while the latter is to globally tune the peak field B0 to
eliminate the smooth variation of the phase error.
In generating the undulator model, we apply the above

corrections so that the trajectory and phase errors are
reduced down to certain tolerances. It should be noted,
however, that we do not minimize these errors by fully
applying the corrections; what we need is to generate
realistic undulator models with typical trajectory and phase
errors.
As an example, Fig. 3(a) shows the phase errors

calculated for two different undulator models denoted as
A and B. Although both of them have the identical number
of periods (N) of 200 and phase error (σϕ) of 6°, the
parameters σb, σex and σey are different; ðσb; σex; σeyÞ ¼
ð0.45%; 0.20 μm; 0.77 μmÞ in A, while ðσb; σex; σeyÞ ¼
ð0.94%; 0.58 μm; 0.85 μmÞ in B. Note that the trajectory
amplitude of a 6-GeV electron moving in this undulator is
0.6 μm, which is to be compared with σex and σey.
Although the maximum values are similar (∼15°), the
profiles of ϕj in the models A and B are quite different from
each other. To be specific, ϕj varies more rapidly as j in the
model B than in A; this becomes more clear if we turn to the
frequency domain as shown in Fig. 3(b), where the Fourier
coefficient φm is plotted as a function of m. Low-frequency
components are more dominant in the model A than in B,
and φm decays more rapidly as m.
To investigate how the difference in the phase error profile

as discussed above has impacts on Ir=I0, we numerically
calculated the intensity of UR using the magnetic distribu-
tions corresponding to the undulator models A and B, under
the conditions (a)–(f). The calculations have been donewith
the numerical code SPECTRA [3], the results of which are
shown in Figs. 4(a)–(f) as the spectra around the 15th
harmonic (75 keV), with the alphabets indicating the
conditions specifying the recovery factors. Note that the
spectrum in an ideal case without any field errors is also
shown for each condition, and the intensity is normalized by
the maximum value of the ideal spectrum. For reference, the
redefined phase errors for the models A and B (denoted as
Σϕ;A and Σϕ;B) are given in each condition.
Without the recovery factors as found in (a) and inset, the

peak intensities available with the undulator models A and
B are similar, and are about an order of magnitude lower
than the ideal value, meaning that Ir=I0 in this condition is
lower than 10%. Once the energy spread (σε) is taken into

TABLE I. Parameters to represent the recovery factors sup-
posed in the conditions (a)–(f). Note that the parameters N0 and
Σ̂x0 for each condition are those for N ¼ 200 and k ¼ 15.

Parameters

Conditions σε εn (m · rad) Δθ=σp N0 Σ̂x0

(a) 0 0 0 200 0
(b) 10−3 0 0 13 0
(c) 10−3 10−10 0 13 0.9
(d) 10−3 10−10 4 9 2.2
(e) 10−3 10−9 0 9 2.8
(f) 10−3 10−9 4 3 4.9
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account, Ir=I0 in the model A is significantly recovered and
exceeds 50% as found in (b). This recovery becomes
more significant when other effects (εn, Δθ) are taken into
account, and Ir=I0 exceeds 70%with the conditions (d)–(f).
On the other hand, the recovery is much slower in the
model B; Ir=I0 is slightly larger than 10% even with the
energy spread and still less than 30% in the condition (e).
Recalling that both undulator models have the same
phase error (σϕ) of 6°, it is obvious that Ir=I0 does not
necessarily correlate well with σϕ under practical condi-
tions, where recovery factors are not negligible; specifying
the tolerance of the undulator quality with σϕ is thus not
practical.

B. Comparison between numerical
and analytical results

From the spectral calculations described in the preceding
section, we can numerically evaluate Ir=I0, as the ratio of
the peak values available with the real undulator (for
example, with the undulator models A or B) and the ideal
one. To examine if the redefined phase error Σϕ can
universally describe the effects due to the recovery factors,
we repeated the process to numerically evaluate Ir=I0 for
different harmonic numbers under the conditions (a)–(f),
and compared with the analytical results given by Eqs. (41)
and (42). The results are shown in Figs. 5(a)–(f), where the
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conditions (a)–(f) defined in Table I.
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numerical and analytical results are shown by the symbols
and solid lines, with the red and blue colors indicating the
results for the models A and B, respectively. Note that the
analytical results in the condition (a) are identical, and thus
are shown in common in the black line. It is reasonable to
say that the analytical results agree well with the rigorous
numerical results in all the conditions and harmonics
currently under discussion.
Having verified the validity and universality of Eqs. (41)

and (42) using the undulator models A and B, we repeated
the above process with other undulator models generated
by the method described in Sec. III A, assuming N ¼ 100
or N ¼ 200. To scan a wide range of realistic conditions,
we changed σb and other tolerances for each undulator
model, as well as the seed for the random number
generator, with the maximum values of 1% (σb), 1 μm
(σex and σey) and 6° (σϕ), respectively; they are large
enough to cover the possibility of undulators whose field
errors are not well corrected. We generated 300 undulator
models for each value of N ¼ 200 and N ¼ 100, and
numerically calculated Ir=I0 under the conditions (a)–(f),
which are plotted in Fig. 6 as a function of kΣϕ evaluated by
Eq. (42), together with the analytical formula ρ given by
Eq. (41). We find a good correlation between I0=Ir and ρ
for each condition, suggesting the universal validity of the
analytical formulas.
Figure 7 shows the statistics of the difference between

Ir=I0 and ρ, where histograms of Ir=I0 − ρ are plotted for
the conditions (a)–(f), together with the RMS values. We
can conclude that the analytical formula can predict the
normalized intensity with an accuracy at least better than
10% in any conditions from (a) to (f), which is obviously

good enough to quickly examine the effects due to the field
errors.

C. Relation between σϕ, σψ and Σϕ

Now we show that the redefined phase error Σϕ, which
can represent the undulator quality under general condi-
tions, reduces to the conventional phase error σϕ or the
local phase error σψ in a specific condition.
We first consider the case when the recovery factors are

negligibly small, namely, σε → 0, σ → 0 and Δθ → 0,
which results in Σ̂x0 → 0 and N0 → N. Recalling
σ̄φ;N ¼ 0, we have Σϕ → σϕ, if Eq. (13) holds.
Next let us consider the case when the recovery factors

are sufficiently large so that N0 is small and Σ̂x0 is large.
Then the 3rd term of the left-hand side of Eq. (42) can be
omitted and we have

Σ2
ϕ ¼ σ2φ − σ̄2φ;N ¼ 1

2

XN
m¼1

φ2
m

�
1 − sinc2

�
π
N0

N
m

��
: ð43Þ

Using Eq. (A1) in the Appendix A and assuming that
πðN0=NÞm ≪ 1 is satisfied, we have

sinc2
�
π
N0

N
m

�
∼ exp

�
−π

N02

N2
m2

�
∼ 1 − π

N02

N2
m2; ð44Þ

to give

Σ2
ϕ ¼ N02

4π

1

2

XN
m¼1

�
2πm
N

φm

�
2

:
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FIG. 6. Ir=I0 (symbol) numerically calculated as a function of
kΣϕ defined by Eq. (42) for each undulator model, in comparison
with the analytical formula ρ (line) defined by (41).
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Recalling that the local phase error σψ is defined as the
RMS of the derivative of φðnÞ with respect to n, we have

Σϕ →
N0

2
ffiffiffi
π

p σψ :

The above equation suggests that Σϕ correlates well with
σψ , if the approximation (44) is valid. This is examined in
Fig. 8, where the correlation plots between Σϕ and σψ in the
conditions (a)–(f) are shown. We find that the correlation,
which is quite poor in the condition (a), becomes better in
the alphabetically greater conditions, because of the larger
recovery factors. In particular, we can say that Σϕ can be
substituted for by σψ in the condition (f), and thus σψ can
well represent the undulator quality. For other conditions,
however, the correlation is not necessarily good, which
suggests that we cannot apply the approximation (44), and
evaluating the normalized intensity with σψ can overesti-
mate the undulator quality. We thus need to use Σϕ in these
conditions where the recovery factors are not sufficiently
large.

IV. EFFECTS DUE TO LOW-FREQUENCY
SYSTEMATIC ERRORS

The undulator models used in the previous section are
based on an assumption that the peak field varies randomly
at each magnetic pole, which comes from the variation in
quality and dimension of permanent magnets. Besides such
random errors, we need to consider the impacts of
systematic errors, which come from the common mechani-
cal structure of undulators, and have nothing to do with the
quality of the permanent magnets.

The magnetic blocks of undulators are usually assembled
onto a common rigid girder, which is supported by a few
driving shafts to enable the gap motion. In such a conven-
tional structure, the strong attractive force between the top
and bottom girders potentially brings two systematic errors;
one is the deformation of the girder, and the other is the
motion error of the driving shaft, both of which cause a
systematic gap variation along the undulator axis, which
ranges from the entrance to the exit of the undulator and is
given by a low-order polynomial function of the longi-
tudinal coordinate n. It is obvious that the resultant phase
error ϕðnÞ is dominated by low-frequency components;
namely, the Fourier coefficient φm decays rapidly as m.
In what follows, we investigate the effects due to this kind
of systematic error, which is referred to as a low-frequency
systematic error (LFSE).
Let us introduce a function ηðnÞ

ηðnÞ ¼ B0ðnÞ − B0

B0

;

with B0ðnÞ being the peak field at n, and B̄0 being the
average of B0ðnÞ over the whole undulator. Then, recalling
that ηðnÞ is a slowly varying function of n, we have [9]

ϕðnÞ ¼ 2π
2K2

2þ K2

Z
n

0

ηðn0Þdn0;

which allows us to analytically calculate the phase error, if
ηðnÞ is a polynomial function. Let us first consider the case
when the gap variation is linear and thus ηðnÞ is given by a
linear function,

ηðnÞ ¼ 2η0
N

n;

with η0 being the peak field deviation at the end of the
undulator (n ¼ �N=2) with respect to its center (n ¼ 0).
Then it is easy to show

ϕðnÞ ¼ 2π
2K2

2þ K2

η0
N
n2:

It is worth mentioning that the phase-oscillation term ΔðnÞ
can be neglected for the LFSE, because the slow variation
of the gap does not cause the trajectory error; we thus
have φðnÞ ¼ ϕðnÞ.
The phase error σϕ, or the standard deviation of ϕðnÞ,

can be analytically calculated to give

σϕ ¼ 2π
2K2

2þ K2

η0N

6
ffiffiffi
5

p :

As an example, let us consider the case when the top and
bottom girders of the undulator with the parameters
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FIG. 8. Correlation plots between Σϕ and σψ in the conditions
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supposed in Sec. III, are tilted by �1 μrad. Assuming that
the undulator consists of a Halbach array, this leads to a
field variation of η0 ¼ 6.3 × 10−4, which results in the
phase error of σϕ ¼ 5° for N ¼ 200.
The phase error of 5° found in the above condition is

often unacceptable, because the normalized intensity Ir=I0,
evaluated without taking into account the recovery factors,
will be extremely low for high-harmonic (k ≥ 11) radia-
tion. This is the reason why a lot of efforts have to be made
to reduce the LFSE as much as possible. As we have seen,
however, Ir=I0 is actually much higher for practical
conditions; it is thus interesting to evaluate the phase error
Σϕ to investigate how the recovery factors work in this
particular condition.
To derive an analytical form of Σϕ, we first calculate the

Fourier coefficient φm, which can be done analytically to
give

φm ¼ σϕ
6

ffiffiffi
5

p

π2m2
:

Substituting into Eq. (43), we have

Σ2
ϕ

σ2ϕ
¼ 90

π4
XN
m¼1

1

m4

�
1 − sinc2

�
π
N0

N
m

��
: ð45Þ

Because of the relatively large exponent of 4 (m4), the
above summation converges rapidly with m. As a result,
Σϕ=σϕ, which denotes the reduction of the phase error due
to the recovery factors, hardly depends on N, as long as
N0=N is kept constant. In other words, Σϕ=σϕ is given as a
universal function of N0=N. As an example, Σϕ=σϕ is
plotted as a function of N0=N in the solid line in Fig. 9,
where the conditions assumed in Sec. III are indicated by
arrows with alphabets. In the practical conditions (b–f), the

phase error is reduced by nearly one order of magnitude
(Σϕ=σϕ ∼ 0.1). As a result, σϕ of 5° generated by the tilt
angle of 1 μrad reduces to a small error of Σϕ < 0.5°, which
corresponds to Ir=I0 > 0.98 at the 15th harmonic.
Although the above discussion is limited to the linear

systematic error, it can be easily extended to more general
ones represented by higher-order polynomials. Following
the mathematical operation given above, we have

Σ2
ϕ

σ2ϕ
¼ 945

π6
XN
m¼1

1

m6

�
1 − sinc2

�
π
N0

N
m
��

;

for a quadratic error, and

Σ2
ϕ

σ2ϕ
¼ 450

π8
XN
m¼1

ðm2π2 − 6Þ2
m8

�
1 − sinc2

�
π
N0

N
m

��
;

for a cubic error, where η0 is again the peak field deviation
at the end of the undulator with respect to its center.
In Fig. 9, Σϕ=σϕ for the quadratic and cubic errors are
plotted in the dashed and dotted lines, respectively, in
addition to that for the linear error. We now find that Σϕ=σϕ
is rapidly reduced as decreasing N0=N, and is less than 0.3
for N0=N < 0.1 as long as the polynomial order is less than
3. This suggests that the tolerance for the LFSE, which
potentially causes a large phase error (σϕ), can be greatly
relaxed under practical conditions.
For example, let Ir=I0 > 0.9 be the tolerance criterion

for the LFSE, which corresponds to Σϕ < 1.2° at the 15th
harmonic. To satisfy this condition without the recovery
factors, namely σϕ < 1.2°, the mechanical specification of
the undulator should be extremely stringent in terms of the
stiffness of the girder and robustness of the driving system,
which is obvious from the example mentioned above;
1-μrad tilt of the girder results in σϕ of 5°. In practice,
the specification can be significantly relaxed with the
recovery factors taken into account. Assuming a reasonable
condition of Σϕ=σϕ ¼ 0.2, we have a relatively moderate
condition of σϕ < 6.0°, which significantly relaxes the
mechanical tolerance of the undulator.

V. SUMMARY

We derived a new parameter Σϕ to quickly evaluate the
undulator quality, as an alternative to the conventional
phase error σϕ and the local phase error σψ. In contrast to
these parameters whose applicability is rather limited to a
specific condition when the recovery factors are negligibly
small (σϕ) or sufficiently large (σψ ), Σϕ can be used in a
more universal manner, as verified by comparing with the
rigorous numerical calculations using an extensive set of
parameters. It is also worth repeating that σϕ and σψ are the
asymptotic forms of Σϕ for small and large recovery
factors, respectively. It goes without saying that evaluating
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FIG. 9. Reduction of the phase error brought by the systematic
errors due to the recovery factors represented by N=N 0; the solid,
dashed, and dotted lines correspond to the linear, quadratic, and
cubic variations of the magnetic field.
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the undulator quality using Σϕ is much simpler and faster
than the numerical calculations.
As an important application of Σϕ, we also investigated

the effects due to the LFSE, and analytically revealed that
its impact on the normalized intensity Ir=I0 would be
significantly diminished by the recovery factors. This
suggests that the mechanical specification of the undulator,
which tends to be too tight because of the high sensitivity of
σϕ to the LFSE, should be carefully defined to be consistent
with the actual performance degradation evaluated with Σϕ.
Before closing, we repeat that Σϕ has been analytically

derived assuming that the peak-field deviation and trajec-
tory wander are small in the sense mentioned in Sec. II A. If
these conditions are not satisfied, rigorous numerical
calculations should be made.
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APPENDIX A: APPROXIMATE FORM OF
THE CONVOLUTION OF GAUSSIAN

AND sinc2 FUNCTIONS

Let us consider the convolution of Gaussian and sinc2

functions, Gðx; σÞ ⊗ sinc2ðπNxÞ. Although the integration
cannot be done analytically, the resultant function can be
well represented by Gðx; σ0Þ or sinc2ðπN0xÞ, where σ0 and
N0 are new parameters to be determined. First, we make an
approximation as follows

sinc2ðπNxÞ ∼ 1

N
G

�
x;

1ffiffiffiffiffiffi
2π

p
N

�
: ðA1Þ

The coefficient and standard deviation have been deter-
mined so that the peak value given at x ¼ 0 and the total
area given by integrating over x have the same value (¼ 1)
in both functions [7]. Then the convolution can be done
analytically to give

Gðx; σÞ ⊗ sinc2ðπNxÞ ∼ 1

N
G

�
x;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ 1

2πN2

r �
;

which is represented as a Gaussian function. Recalling the
relation between the Gaussian and sinc2 functions (A1), it
is easy to give an alternative form as follows

Gðx; σÞ ⊗ sinc2ðπNxÞ

∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2πN2σ2
p sinc2

�
πNxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2πN2σ2
p

�
: ðA2Þ

APPENDIX B: APPROXIMATE FORM OF THE
CONVOLUTION OF GAUSSIAN AND

RECTANGULAR FUNCTIONS

Let us consider the convolution of Gaussian and rec-
tangular functions, Gðx; σÞ ⊗ rectðx;ΔxÞ≡ Rðx; σ;ΔxÞ.
Using the error function

erfðxÞ ¼ 2ffiffiffi
π

p
Z

x

0

expð−t2Þdt;

R can be represented as

Rðx; σ;ΔxÞ ¼ 1

2

�
erf

�
Δx=2 − xffiffiffi

2
p

σ

�
þ erf

�
Δx=2þ xffiffiffi

2
p

σ

��
:

ðB1Þ
The above equation is not convenient for further math-
ematical operations because the error function is not an
elementary function. To derive an approximate form
R0ðx; σ;ΔxÞ, we make an approximation as follows

rectðx;ΔxÞ ∼ Gðx; cΔxÞΔx;
where c is a parameter to be determined. Then by
convoluting the two Gaussian functions, we have an
alternative form

R0ðx; σ;ΔxÞ ¼ Gðx;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ c2Δx2

p
ÞΔx:

The parameter c should be determined so that R0 defined
above is consistent withR defined in Eq. (B1). In Sec. II C 2,
we need to focus on the peak value given at x ¼ 0 as in
Eq. (36), and thus we substitute x ¼ 0 in both equations to
compare the results, namely,

Rð0; σ;ΔxÞ ¼ erf

�
Δx

2
ffiffiffi
2

p
σ

�
;
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FIG. 10. FunctionsR andR0 plotted as a function ofΔx=σ. Three
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and

R0ð0; σ;ΔxÞ ¼ Δx=σffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2ðΔx=σÞ2

p :

In Fig. 10,R0ð0; σ;ΔxÞ is plotted as a function ofΔx=σ for
three different values of c ¼ 1=2π, 1=π, and 2=π, together
with the exact expression Rð0; σ;ΔxÞ. Obviously, c ¼ 1=π
is the optimum value and the error defined as jR − R0j=R is
less than 0.1 in the region ofΔx=σ ≤ 10, which is practically
sufficient.
Summarizing the above discussions, we have an approxi-

mate form of the convolution of Gaussian and rectangular
functions as follows

Gðx; σÞ ⊗ rectðx;ΔxÞ ∼Gðx;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ Δx2=π2

q
ÞΔx: ðB2Þ
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