PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 110704 (2018)

Editors' Suggestion

Universal representation of undulator phase errors

Takashi Tanaka'
RIKEN SPring-8 Center, Koto 1-1-1, Sayo, Hyogo 679-5148, Japan

® (Received 29 August 2018; published 26 November 2018)

The phase error is an important parameter to represent the quality of an undulator, which makes it
possible to quickly evaluate the reduction in photon intensity due to magnetic field errors without rigorous
numerical calculations. Although the phase error has been used as a standard to evaluate the undulator field
errors because of its simplicity, a couple of papers have reported that the phase error actually overestimates
the intensity reduction under practical conditions, and thus its tolerance tends to be too tight. In other
words, the applicability of the phase error defined in the conventional form is rather limited. To overcome
this difficulty, we derive a set of formulas to quickly evaluate the undulator quality based on an analytical
approach, which can be used in a more universal manner. Comparisons with rigorous numerical results
under various conditions show the validity and universality of the derived formulas. Analytical methods to
investigate the effects due to systematic errors in undulators are also presented as one of the important

applications of these formulas.
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I. INTRODUCTION

It is well known that the magnetic field of a real
undulator is not completely periodic because of various
error sources. Since such field errors result in a reduction in
photon intensity of undulator radiation (UR), they should
be corrected as much as possible to maximize the number
of photons available for users. It should be noted, however,
that a lot of efforts have to be made to improve the field
quality of undulators, and thus it is practically important to
specify the acceptable tolerance in terms of the normalized
intensity /,/1,, where I, is the photon intensity available
with an ideal undulator without any errors, while /, is that
available with the real one.

The most straightforward way to evaluate I,/ is to
numerically calculate the intensity of UR by means of
dedicated numerical codes [1-3]. Although the numerical
method enables an exact evaluation of the undulator
quality, it is more convenient to roughly and quickly
evaluate 1,/I, for many applications. This is the reason
why another solution using the well-known formula
derived by Walker [4] has been generally used, which is
given by

1,/1y = exp(~k3a3). (1)
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where k is the harmonic number of UR and o is the root
mean square (RMS) phase error that can be easily calcu-
lated once the magnetic field distribution is given. Because
of its simplicity, this formula has been widely used to
quickly evaluate the effects due to field errors of undu-
lators, and the tolerance on o is usually mentioned in the
specification documents for undulator manufacturers.

It is easy to understand that the above tolerance becomes
tighter for higher harmonics. For example, we have a
tolerance ko, < 27° to keep the intensity reduction within
20%, i.e., I,/I, > 0.8. To be specific, we need to satisfy
oy < 27° for the 1st harmonic, and o4 < 1.8° for the 15th
harmonic. The latter tolerance is so tight that we need to
eliminate a huge number of error sources to satisfy this
condition.

Recently, several authors have pointed out that the
tolerance on o, as discussed above is greatly relaxed under
practical conditions [5,6]. This is attributable to the fact that
Eq. (1) applies to the on-axis angular flux density of UR
emitted by a single electron, and is not necessarily valid for
other conditions. To be specific, I,/ is recovered once all
the effects having impacts on the intensity of UR are taken
into account, such as the finite emittance and energy spread
of the electron beam, and the finite collection angles
defined by the components installed in the beamline, which
are hereinafter referred to as the “recovery factors.” Under
the practical conditions in which the recovery factors play
an important role, Eq. (1) overestimates the effects due to
field errors, and does not correctly represent the undulator
quality.

To overcome the above difficulty, Walker has introduced
a new parameter “local phase error” 6,, [6] to specify the

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.21.110704&domain=pdf&date_stamp=2018-11-26
https://doi.org/10.1103/PhysRevAccelBeams.21.110704
https://doi.org/10.1103/PhysRevAccelBeams.21.110704
https://doi.org/10.1103/PhysRevAccelBeams.21.110704
https://doi.org/10.1103/PhysRevAccelBeams.21.110704
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

TAKASHI TANAKA

PHYS. REV. ACCEL. BEAMS 21, 110704 (2018)

undulator quality under the practical conditions, and has
shown that o,, correlates well with 1, /1 in a particular case
when the collection angle is sufficiently large. Although
evaluating /,/1, using 6,, is much more practical than that
using 6, it still cannot universally represent the undulator
quality; the correlation between 6,, and I,/ gets worse for
smaller collection angles.

The above discussion suggests that it is more useful to
have an expression to evaluate I,/I, under arbitrary
conditions. The purpose of this paper is to derive a new
parameter ¥, based on an analytical approach, which can
be used to represent the undulator quality in a more
universal manner. We also explain how X, relates with
o4 and o, together with its physical background. In
addition, the analytical method is applied to investigating
the effects due to systematic errors that usually result in
large phase errors (6,), to reveal that their impacts on the
actual undulator performance under practical conditions are
much lower than what is generally supposed.

II. ANALYTICAL FORMULATION

In what follows, we assume that the undulator is of a
planar type to mainly generate a magnetic field in the
vertical direction, and focus on the horizontally polarized
radiation. Let z be the main axis of the electron motion and
thus the optical axis of UR, x and y be the horizontal and
vertical axes perpendicular to z, and the coordinate origin
be the center of the undulator.

Although there are many parameters related to the
recovery factors, they can be actually represented by five
variables: the energy spread (o,) and angular divergences
(oy, oy) of the electron beam, and the collection angles
(A0, Af,) in the beamline. Note that the angular diver-
gence should be defined so that all the relevant beam
parameters are taken into account. To be specific,

02 +0%y(D - Z,)?
D b

O, =

and a similar expression for o,,, where D is the distance
from the undulator center (z = 0) to the components in the
beamline defining the collection angle, Z, is the beam
waist position, and o,y and o, are the beam size and
angular divergence at z = Z,, to be determined by the Twiss
parameters, dispersion functions, energy spread and emit-
tance of the electron beam. For reference, these definitions
are illustrated in Fig. 1. Then [,/1, is given as a function
of these variables, i.e., I,/ = p(o,,0,A0), with 6 =
(oy,0,) and AQ = (AG,, Af,) being introduced for sim-
plicity. In the following sections, we derive an explicit form
of the function p based on an analytical approach.

X
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FIG. 1.
A,.

Coordinate system and parameters to define o, and

A. Undulator radiation with field errors

Let us first derive a formula to represent the angular flux
density of UR emitted by a single electron moving in a real
undulator with field errors.

The complex amplitude of UR denoted as £ is given in a
dimensionless form by [7]

1 Ni,/2

= y(B. — 0,) expliwz(z)]dz, (2)
V™ J-N,/2

with

1
- 2%

(2) / N (0B(@) —0d2. (3)

where y is the Lorentz factor of the electron, 8, = (8., )
is its transverse relative velocity given as a function of z, 4,
is the periodic length of the undulator, N is the number of
periods, @ = (6,.0,) is the observation angle, 1 and w are
the wavelength and angular frequency of radiation, and c is
the speed of light. The angular flux density is then given by
|€|?, excluding the unit conversion factor for simplicity.

In an ideal undulator, we have f, = y~'K cos(2zz/4,)
and B, = 0, where K is known as the deflection parameter
of an undulator defined as

o 680/1,4

2zm,c’

with e and m, being the electron charge and mass, and B,
being the peak magnetic field of the undulator. Then we can
define the so-called fundamental frequency

) drcy? /A,
@ ="
‘ 1+ K22+ 70

which satisfies the phase matching condition wyz(z + 4,) =
wo7(z) + 27, and thus radiation is emitted in phase at

@ = wy. The phase error of a real undulator, in which
P # v 'K cos(2zz/4,) and B, # 0, is defined by
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¢; = w(0)[z(z;) = 70(2)]g—0

_ 2n/A, % K?
= mA [}’zﬂi(z) - 7] dz, (4)

with j=1,2,...,2N, where 7, denotes 7z for an ideal
undulator, and z; is the longitudinal position of the j-th
magnet pole, which, in an ideal undulator, is given by
7j = (j—N —1/2)4,/2. Thus, the phase error is usually
evaluated at the discrete positions z = z;, i.€., at the points of
emission of radiation. The RMS phase error o, is then
defined as the RMS of the discrete data set ¢;, and can be
used to evaluate I,/1,, using Eq. (1).

Although evaluating 1,/1, with ¢, defined above is
simple and useful, it usually underestimates the undulator
quality when the recovery factors are not negligible. We
thus need to investigate in more detail the impacts of ¢;
on [,/I, with the recovery factors taken into account.
To facilitate the following discussion, we introduce a
coordinate variable n = z/1,,.

In general, the transverse velocity # |, which is given by
integrating the magnetic distribution along the z axis, is
roughly expressed by

vB1 ~ [U(n)cos(2zn) + X'(n). Y'(n)]. (5)

where X’ and Y’ denote the horizontal and vertical slope
errors, while U describes the amplitude of the wiggling
motion. If the undulator is an ideal one, we have X'(n) =
Y'(n) = 0 and U(n) = const = K. For real undulators, it is
reasonable to define K as being the average of U(n).
Substituting Egs. (3) and (5) into Eq. (2), we have

A, [N _ .
= /1—“2 [K cos(2zn) — y0, + X'(n)] exp[i®(n)]dn,
V" J-N/2
(6)
with
®@(n) = mﬂf(”, r0x) + mff)(”), (7)

where y is the phase advance in an ideal undulator given by
1
1+ K?/2 4 y*6*
K?sin(4zn)
X —_——

x(n,X) =2nn+

—2KXsin(2zn) |, (8)

and ¢(n) = ¢(n) + A(n) denotes the phase error coming
from the field errors, where we have introduced two
functions

T n 20V =K?  _ _
©)
and
Aln) = 2KX'(n) sin(2zn) (10)

1+K?%/2

Note that two assumptions have been made to derive
Egs. (6), (9) and (10); (i) the deviation of U(n) from K
is small, and (ii) the trajectory wander given by integrating
y !X’ and y~'Y’" are not much larger than the wiggling
amplitude; in practice, the discrepancy between U(n) and
K in practical undulators is at least less than a few percent,
and the trajectory wander is of the order of a few times the
wiggling amplitude or less.

Because of the oscillating factor sin(2zn), A(n) rapidly
oscillates as n, and is referred to as the phase oscillation. In
contrast, ¢(n) does not explicitly contain the oscillating
factor, and is thus a slowly varying function of n.
Namely, ¢(n) does not vary significantly over the range
h<n<h+1, where h is an arbitrary number satisfy-
ing |h| < N/2.

The phase error function ¢(n) defined above is well
represented by the discrete data set ¢; evaluated with
Eq. (4), i.e., ¢; = ¢(n;), with n; = z;/4,. For later dis-
cussions, we introduce other data sets ¢; and A; defined by

¢ j = odd,

P = 11
v { (pjo1 + @ji1)/2; = even, ()
A =(h; = ¢j-1)/2. (12)

which represent the functions ¢(n) and A(n), ie., ¢; =
@(n;) and A; = A(n;). We also define 6,, and 6, as being
the RMS of ¢; and Aj, respectively. The reason why we
do not adopt a more straightforward definition of ¢; =
(¢; +¢j_1)/2 is that the resultant data set ¢; denotes the
phase error at the midpoint of two adjacent magnet poles
where no radiation is emitted, which is not suitable to
describe the intensity of UR. If ¢; and A; are statistically
uncorrelated, which is usually the case for general undu-
lators, we have a relation

(13)

2 2 2
Oy~ 0y + 04
Let us introduce two variables defined by

@ — kay(0) )
@o(0) ’

- },292 - 92
~ 1+K?/2 4No%’

a,\):

with
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Ao
2N,

oy =

being known as the angular divergence of UR at the
fundamental wavelength of 1y = 27z¢/@(0). In the follow-
ing discussions, we focus on the calculation of the kth
harmonic intensity near the optical axis; namely, we
assume @ < 1 and 0 < 1.

From the mathematical point of view, it is convenient to
modify Eq. (7) as follows

xln.y0, — X'(n)] +

@(n).
n(6) )"
Namely, the argument y0, in y is replaced with y0, — X' (n),
and the function ¢ is replaced with ¢. Then, recalling that ¢
is a slowly varying function of n, while y rapidly oscillates
as n, Eq. (6) reduces to

NJ2
E= Z Fely0e—X'(n)|exp{i[2zn(& + kO%) + kep(n)]},
n=-N/2
(14)
with
Fu(X) = % /_ jj z (K cos(2n) — X] expliky (n,X)]dn.

(15)

B. Simplifying into a convenient form

Although Egs. (14) and (15) can be used to exactly
calculate the angular flux density |£|* available with a real
undulator, they are not convenient to quickly evaluate its
quality under practical conditions, because we need to
perform a numerical calculation using the functions ¢(n)
and X'(n) represented by the given data sets ¢; and A;,
with the effects due to the recovery factors taken into
account. In the following sections, we further modify these
equations to derive a simple form to represent |E|*> as a
function of ¢, and o,, which is convenient for analytical
formulation to deal with the recovery factors.

1. Formulation based on Fourier analysis

We first consider the case when the horizontal slope error
X' is so small that f;[yf, — X'(2zn)] in Eq. (14) hardly
depends on n. In other words, the phase oscillation term
A(n) is negligibly small. Then we have

|5|2 Fi(y0,) X Sin(@,0),

with Fi(y0,)=

|fk(7’9x)|2» Sk,N<&)v 0) = [s,n (@, 0) 2, and

N/2
sy (@, 0) = /_N/2 exp{i[2zn(® + k®?) + ko(n)] }dn.

(16)

Note that summation with respect to n in Eq. (14) has been
replaced with integration over n; this is possible because
the exponent in the above equation is a slowly varying
function of n in the sense explained in the preceding
section.

We now apply Fourier analysis to Eq. (16). Namely, ¢ in
the exponent is expanded into a Fourier series as follows

N
. (2zmn
n) :’;gam sin ( N +am), (17)
with
- T ~
Pm = ‘(pm|1 Ay = E - arg(¢m)’
where @,, is the Fourier coefficient defined as
N/2 27i
/ < mmn) .
N N/2 N
Substituting Eq. (17) into Eq. (16), and using the well-
known formula

S s@exsti).  (18)

I=—00

exp(ixsiny) =

we have

Sk,N (&)’6)

N/2
:/ exp[2zin(®+k©?)]
—N/2

x H { > Ji(ke,,)exp { (

|=—

) o

where J; is the /th order Bessel function of the 1st kind.
Except for the exponential phase factor, the integrand in
Eq. (19) is composed of products of Bessel functions

J1, (kg )1, (kps) - -+ T, (k) - Ty, (ko).

with /,, being an integer. Among them, we neglect the terms
containing (1) the 2nd or higher-order Bessel functions, and
(2) the quadratic or higher-order terms of J;, assuming that
kg,, <1 is satisfied.
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Based on the above simplification, Eq. (19) reduces to
N
sin(@,0) = N[H Jo(kfﬂm)]
X [ Z a,sinc[zN(& + k©?) + mﬂ]],
m=—N
with sinc(x) = sinx/x, and
1; m =0,
m = {%exp (i%a‘mo; |m| > 1.
Making use of approximate expressions of Bessel functions
Jo(x) ~1—x2/4, Ji(x) ~x/2,

which are valid when |x| < 1, we have

Sen(@®,©) = N? [1 B <k<02m>2]

=1

N
x Z b2 sinc? [ﬂN (c?) + k@®% + ;::)} ,

m=—N
with

{1; m=20,
b, =
k@ /25 |m| > 1,

where we have omitted the cross terms because of the delta-
function-like behavior of sinc(x).

Recalling that 6, is the standard deviation of ¢(n) given
by Eq. (17), it is easy to show

N
2i§
0¢—

m=1

’

N|'§N

with which we finally have

Sen(@.0) = N2(1-i202)

N
x 3 Blsinc? [ﬂN <é)+k®2+%)]. (20)

m=—N

Note that this formula has been derived under the condition
when the horizontal slope error X’ is small and thus the
phase oscillation term A(n) is negligible.

2. Effects due to the phase oscillation

Now let us consider the effects due to the phase
oscillation, which can be done by investigating the impact

of X’ on & through the function f;(X) defined in Eq. (15).
Instead of the rigorous formulation using Eq. (14), we
extend the discussions made in the preceding section, and
assume that the angular flux density is roughly given as

|5|2 = F(y0y.04) X Sin(@, ©).

In what follows, we derive an explicit expression for
F(y6,,0,) that is consistent with Egs. (14) and (15).

Although the integration in Eq. (15) can be done
analytically, the result is given as a complicated formula
composed of quadratic forms of Bessel functions [8], and is
not convenient to continue mathematical operations.
Instead of the exact expression, we thus derive a simple
form of f;(X) by making a few assumptions and approx-
imations as follows.

We first assume that the observation angle y# and the
horizontal slope error X’ are much less than K. Then we
make approximations

14+ K2/249%0* > 1 + K?/2,
in Eq. (8) and
K cos(2zn) — X — K cos(2zn),

in Eq. (15). Then we have

2kK 1/2
/ cos(2zn)

fi(X) Nm s

X exp{Zﬂik |:n ‘I—m

x (W —2KX sin(zzm)ﬂ }dn. (1)

The integrand in the above formula can be represented by
the Bessel functions using Eq. (18) and the integration can
be done analytically as has been done before; however, the
result is given as a sum of quadratic forms of Bessel
functions because the exponent in the above formula
contains two different sinusoidal functions. To avoid
the difficulty in dealing with them, we apply a rough
approximation

-1; —-i<n<o,

sin(2zn) = {

+1; 0<n<i,

to the last term of the exponent. Then Eq. (21) reduces
to
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fi(X)

T1+ K2 1/2

2kK [/_0 cos(2zn) exp{Zﬂik [ﬂ — <K2 . * ZKXH }dn

1+ K22 4

1/2
+ / cos(2zn) exp{Zm’k {n +
0

which can be analytically calculated to give an approximate
and simple form of f(X) as follows

2k
fk(X) = fk,o COos (%) ) (22)
with
w1 kK
fro=(=1)> T+ K22

AL o (kK24
[ —<1 +K2/2> - —<1 +K2/2>]’

where k is assumed to be an odd integer because even
harmonics are of no interest in the present work.

The validity of the above approximation should be
examined by comparing the approximate and exact for-
mulas given by Eqs. (15) and (22), respectively. For this
purpose, we computed |f;(X)|*> using the two formulas
with the parameters of K = 2.2 and k = 11. The results are
shown in Fig. 2, where we find that the approximate
formula (22) well reproduces the exact one (15) at least
within the range of |X| < 0.5, which is wide enough to
evaluate I,/I, near the optical axis.

Having verified the validity of Eq. (22), let us consider the
effects due to X’ and derive the expression for F(y0,,c,).
Recalling that the argument of £ in Eq. (14)is (y8, — X'), it
is reasonable to calculate F, with the following formula

—Exact |
' ' ' —— Approx.
0.3 ﬂ e
N 0.2
2
01
0.0 - i
1 n 1 n 1 n 1 n 1

-1.0 -0.5 0.0 0.5 1.0
X

FIG. 2. Comparison of |f;(X)|? computed with the exact (15)
and approximate (22) formulas when K = 2.2 and k = 11.

il

Y/ )2

s

for a given data set of X’; = X'(n;). In a more general
manner, this is rewritten as

1 s _ 5(/2 B
Fi= e [ IR0, - X exp (57
2n6x J- 20y,
where oy is the RMS of X’. Substituting Eq. (22), the above
formula reduces to

1o 4kK70, 1 [ 4kKoy \?
Fp="k081 EBYOx L _
T A SN eIy A A ey
Using the relation between A(n) and X'(n) defined in
Eq. (10), we finally have

4kKy0,

f2
Fk(}’ex,GA):% 1+COS TKQ/Z

) exp(_zkzo@] .
(23)

C. Considering the recovery factors

Using S,y and F; derived in the previous sections, the
angular flux density of UR, which is emitted by a single
electron moving in a real undulator with field errors, can be
calculated, at an arbitrary angle ® and frequency @. The
next step is to modify Egs. (20) and (23) to take into
account the recovery factors, i.e., the effects due to the
finite energy spread, emittance, and collection angles,
which are denoted as Sj 5 and Fj to be distinguished from
the original ones.

1. Effects due to the energy spread

To take into account the effects due to the energy spread,
we first consider how the derived formulas change for an
electron having a different energy y’ = y(1 + ¢), where we
assume |e| < 1. It is obvious that F; does not change
significantly, while S; 5 should be modified. This comes
from the fact that the fundamental frequency changes as
) = wo(1 + 2¢), and thus the normalized frequency
changes as @ = & — 2ke. In other words, the argument
@ in Sy y should be replaced with @ — 2ke for an electron
with the energy deviation of . Summing up all the photons
emitted by the electrons contained in the electron beam
with the RMS energy spread of o,, we have
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Sin(@,0) = / Sin (@ = e, ©)G(ey; 0y,) dey
= Sk,N<(ba 0) ® G(®;04,), (24)

with o4, = 2ko,, the operator @ denoting the convolution
operation, and

o) = 750 (~3a)
X;0
2o P\722
being a Gaussian function with the standard deviation of o.
Substituting Eq. (20) into Eq. (24), we have
Sin(@,0)

— N¥(1 - K%a2)

X Z b2 sinc? [ﬂN <c?) + k@®% + 7;)}

m=—N

® G(@;04,). (25)

The above equation describes the growth of the spectral
bandwidth because of the convolution with the Gaussian
function G(®; oy, ). Using Eq. (A2) in the Appendix A, we
can simplify the above formula to give

Sin(@,0)
— NN'(1-k262) S b2 N o+ ke + ™).
mEN ~.sinc |:7l' <a)+ +N
(26)
with
NN (27)

/1 —|—27rN20%6

We now focus on the peak angular flux density by
substituting @ = ® = 0 into Eq. (26), which results in

K
S x(0.0) = NN'(1 - Ka}) (1 - 32%,)’
with
N/
PN'm = PpSINC (ﬂﬁ m) . (28)

Introducing a function @(n; N'), whose Fourier coefficient
is given by @y, and using the Parseval’s theorem, we have

Sin(0,0) = NN'(1 - K*o2)(1 + kzﬁi.N,), (29)

with

=2 _ 1 N2 o(n: N’ Zd 0
By =7 |y P N )P (30)

being the RMS of the function @(n;N').
To clarify the meaning of the function @(n;N'), we
consider a rectangular function defined by

1; |n|<N'/2,

rectls V') = {0- |n| > N'/2

whose Fourier coefficient is given as

N/2 , 2rimn
T rect(n; N') exp
N —N/2 N
2N’ . N’
=——sinc|z—m |.
N N

Then Eq. (28) reduces to

_ N 1,
PN .m = 5(pmﬁv

which means that the Fourier coefficient of @(n; N') is
given as a product of the Fourier coefficients of ¢(n) and
rect(n; N')/N'. Thus @(n; N') is given as the convolution of
two functions ¢(n) and rect(n; N')/N’, namely,

. !

PN = pn) @ N 3y

In other words, @(n;N') is a moving average of ¢(n)
with a window size of N'. As Noy, grows, N' becomes
smaller, and @(n; N') approaches ¢(n).

It is relevant to mention that S} ,, defined in Eq. (29) is
given as a product of two factors, (1—k%s2) and
(1 + k%G, /). The former describes the intensity reduction

due to field errors, while the latter describes its recovery
because of the finite energy spread, which strongly depends
on the smoothness of ¢(n); if it is a smooth function of 7 in
the sense that it does not change significantly over the range
of N, we have G,y N ~ 0, and thus Siy— LIt is often the
case that ¢, is mostly attributable to a large but slow
variation of ¢(n) in a real undulator, and thus its impact on
I,./1, is in practice weakened under the practical condition
when the energy spread of the electron beam is finite.

2. Effects due to the emittance and collection angles

Unlike the effects due to the energy spread, the angular
divergences (o, 6,/) and collection angles (A6, Af,) have
impacts on both S7, and Fj, which are investigated
separately in the following discussions.

We first consider the impacts on Sy . Convoluting S y
with the angular profile of the electron beam, which is
given as a product of two Gaussian functions with the
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standard deviations of ¢, and o/, and integrating over the
collection angles A, and A6, we have

S¢ v(@) = /_ - /_ " d6,d6,rect(0,. A, )rect(6,. AD,)
X [G(ex;"x’)G(ey;Gy’)] ® Sk,N[va 6(9)]’

where we have omitted the argument © in S} . The above
formula can be rewritten as

Siu(@) = [ [ do.dos,.v10.000)
X [G(ex; Gx') ® reCt(ng Aex)]
x [G(0y;0,) @ rect(6,, AG,)].

Using Eq. (B2) in the Appendix B, we have

S¢ v(@) = A0, A0, / © / ~ d6,d0, S,y (6. ©(0)]
X G(0,:%0)G(0,: %), (32)

with

A
22,0,—1—(9), (33)
T

and a similar expression for X,.

Now we substitute Eq. (20) into Eq. (32), and decompose
as follows

S¢ (@) = N2A6,A6,(1 — 1262

Z bl (@), (34)

m=—N

with

1,(®) = //d9d9G9 )

<600, 2 sine v (0+ 00)+ 1) |.

Although the integration in the above formula cannot be
done analytically, we can roughly evaluate its spectral
profile. First, we rewrite the above formula as follows

(@) / / d6,d6,G(0,.5.)G(6,. %)
x {5[@ + K20%(0)] ® sinc? {nN (a) + %)} }

where 6(x) is the Dirac’s delta function. Exchanging the
order of integration, we have

1,,(®) = sinc? [ﬂN <a) + %)} ® Io(d),

with
(@) / / d0,do,G(0,,Zy)
x G(0,,Z,)5[® + k*©?(0)].
Using I5(®), Eq. (34) can be written as

= N2A0,A0,(1—K262)

x ZN: b2 sinc? [nN(cb—k%)] ®1,(@), (35)

m=—N

Sin (@)

which has the same form as Eq. (25), if we substitute ® = 0
and replace G(®; oy,) with I5(®). In other words, Eq. (35)
describes the growth of the bandwidth due to the finite
emittance and collection angles. Thus, we can follow the
same analytical process taken in the preceding section by
approximating /(@) by G(&, 6, ), in which o, ; should
be determined to be consistent with the spectral profile of
I5(®). As an example, we evaluate the bandwidth of 7 (®)
in the same manner as the Gaussian function, i.e.,

IR Is(@)di
[oN} VKEEIG(O) . (36)

Calculations of the numerator and denominator of the
above formula can be done analytically, i.e.,

/°° To(@)dd = 1,

with which we have

2N63/ 1
k ZX/ZY«’

IG(O) =

kX
O - =
NG

Combining with the results derived in the preceding
section, the parameter N’ defined in (27) should be
modified according to

N
N = , (37)

V14278202, + 02,)

with which we have

S¢ y(0) = NN'AOAO,(1 - K262)(1 + K252

r/iN’)

Although the above formula is identical to Eq. (29) except
for the collection angle factor, it should be emphasized that
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the parameter N’ is calculated according to Eq. (37) instead
of Eq. (27).

Next we discuss the impacts on F}. In the same manner
as Eq. (32) for Sf y, we have

Fg = / ® 40,Fy(10,.04)G(6,: %),

6]

(38)

Using Eq. (23), the integration can be done analytically
to give

2
F§ = % [1 4 exp(=222 - 2k%63)],

with

N 2kKy%
Xy = 1+ K2 (39)

It should be mentioned that the above procedure to
separately calculate S and F'{, under the effects due to the
finite angular divergence and collection angles, is not
mathematically valid. Strictly speaking, we may need to
calculate

/ / 40,40, F (10,.05)Sx 10, ©(0,.0,)]
X G(QX; Zxr)G(Qy; Zyr),

to evaluate the product F{S7, instead of the independent
mathematical operations of (32) and (38). It is easy to
understand, however, that the integration in the above
equation cannot be analytically performed, and thus we
cannot derive any useful information in a convenient
manner if we stick to the rigorous treatment. This is the
reason why we calculate S{ and F'{ separately, and assume
that their product gives a good approximation to the
rigorous form. The validity of this assumptions should
be examined by comparing with the rigorous numerical
calculations, as discussed later in Sec. III.

3. Redefining the phase error

Now let us evaluate 7,/1, with all the recovery factors
taken into account. Summarizing the results gained so far,
we have

p(00,6,00) = (1 = Kop)(1+ K52 )

» 1+ exp(=2582 - 2k%63)
1 +exp(=252)

(40)

For reference, let us recall the definitions of the para-
meters; o, and o, are the RMS of the functions ¢ and A

defined in Egs. (9) and (10), while ,, 5 and ixr are defined
in Egs. (30) and (39), respectively.

As easily understood, the applicability of the above
expression is limited. For example, p becomes negative
when ko, > 1, which is physically incorrect. This is attrib-
utable to the assumption k¢,, <1 made in Sec. IIB.
Although this assumption is in most cases valid, it may be
useful to modify Eq. (40) to be applicable even withoutit, i.e.,
for large values of ko, and kG, 5. Recalling the well-known
approximation exp(x)~14x for |x| < 1, it is reasonable
to replace the Ist and 2nd factors by exp(—k’c2) and
exp(k255,.N,). Then, we also modify the 3rd factor to be
compatible with the 1st and 2nd factors, namely,

1 +exp(—282 - 2k%63)
1 +exp(-252) B

1 —exp(—2k*0%)
1+ exp(252)
2k*03
1+ exp(252)
2k% 03
1+ exp(2i§,)} '

~

— exp [—

As a result, we finally have

p(o,,0,A0) = exp(—szé), (41)
with
2 ) 2 2
Z{/):Jw—a Op» (42)

d + A7 .
#N 1+ exp(28%)

being the redefined phase error given in a universal form,
which takes into account the effects due to the recovery
factors. It is worth repeating that 6,,, 6, n7, ix/ and o, are

evaluated from the measured magnetic field distribution,
using Egs. (4), (11), (12), (30), (31), (33) and (39).

III. EXAMPLES

Because Eqgs. (41) and (42) have been derived based on
an analytical approach with a number of assumptions and
approximations, we need to examine their validities by
comparing with rigorous numerical calculations. For this
purpose, we need to prepare as many undulator models as
possible and perform calculations under various conditions
with different recovery factors, for better statistics and more
reliable results.

As an example, we consider the case when an electron
beam with the energy of 6 GeV and coupling constant of
10% is injected to an undulator with K =2.2 and
A, = 20 mm, which is installed in the straight section with
the horizontal and veritcal betatron functions of 6 m and
3 m, respectively. The fundamental photon energy of UR
with the above parameters is 5 keV and we focus on
harmonics up to 15th, corresponding to the maximum
photon energy of 75 keV.
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TABLE 1. Parameters to represent the recovery factors sup-
posed in the conditions (a)—(f). Note that the parameters N’ and
ix/ for each condition are those for N = 200 and k = 15.

Parameters
Conditions o, g, (m-rad) Ab/o, N’ o
(a) 0 0 0 200 0
() 1073 0 0 13 0
(©) 1073 10710 0 13 0.9
d 1073 10-10 4 9 2.2
(e) 1073 107° 0 9 2.8
® 1073 10~ 4 3 4.9

We then calculate the normalized intensity under 6
conditions (a)—(f) having different recovery factors defined
by the energy spread o,, natural emittance &,, and nor-
malized collection angle A@/c, as summarized in Table I,
where o), is the angular divergence of the photon beam at
the fundamental energy. We also assume that the normal-
ized collection angles in the horizontal and vertical direc-
tions are identical, i.e., A0,/c,, = A0, /0, and omitted
the subscripts for simplicity. Note that the effects due to the
recovery factors are more significant (smaller N’ and larger
$.) in the conditions that are alphabetically greater; e.g.,
the normalized intensity in (c) is recovered more than that
in (b), etc. This is obvious from the two columns indicating
the parameters N’ and ﬁx/, which are evaluated with N =
200 and k = 15 for each condition.

To facilitate the following discussions, we define 1,/1,
as the normalized intensity evaluated with the numerical
method, while p as that evaluated with Egs. (41) and (42).
The validity of the analytical formulation made in Sec. II
can be examined by comparing /,/I, and p.

A. Generating undulator models with field errors

To generate realistic undulator models with field errors,
we first assume that the transverse magnetic field is given in
a form

2N

B, (z) = By [Z rect(z;, ,/2)b j] sin(27z/ ),

=

with b; = (b, ;, 1+ b, ;), where B is the average peak
field and b, ; (b, ;) is the normal random number with the
standard deviation of ¢, specifying the field error of the jth
magnet pole. Typically, o, is of the order of 0.01 (1%) or
less, assuming that commercially available permanent
magnets are used. Note that the horizontal and vertical
components of b; are defined differently, meaning that the
vertical field is the principal component of B .

The random field errors introduced above deteriorate the
undulator quality and give rise to the phase and trajectory
errors, as usually found in the initial magnetic condition of

a real undulator just after assembly. In the following
discussions, the trajectory error in the x (y) direction
denoted as o,, (0,,) is defined as the RMS of the deviation
from the nominal trajectory. In the normal process of
undulator manufacturing, the phase and trajectory errors
are corrected by the so-called shimming technique. To
numerically emulate the shimming process, we apply two
types of corrections, local and global. The former is to
locally adjust the field deviations, namely, to modify b, ;
and b, ; of specific magnet poles dominating the trajectory
error, while the latter is to globally tune the peak field B, to
eliminate the smooth variation of the phase error.

In generating the undulator model, we apply the above
corrections so that the trajectory and phase errors are
reduced down to certain tolerances. It should be noted,
however, that we do not minimize these errors by fully
applying the corrections; what we need is to generate
realistic undulator models with typical trajectory and phase
errors.

As an example, Fig. 3(a) shows the phase errors
calculated for two different undulator models denoted as
A and B. Although both of them have the identical number
of periods (N) of 200 and phase error (c4) of 6°, the
parameters 6, 6,, and ¢, are different; (o, 0,,.0,,) =
(0.45%,0.20 ym,0.77 ym) in A, while (o},0,,0,,) =
(0.94%,0.58 um,0.85 um) in B. Note that the trajectory
amplitude of a 6-GeV electron moving in this undulator is
0.6 um, which is to be compared with o, and o,,.
Although the maximum values are similar (~15°), the
profiles of ¢; in the models A and B are quite different from
each other. To be specific, ¢; varies more rapidly as j in the
model B than in A; this becomes more clear if we turn to the
frequency domain as shown in Fig. 3(b), where the Fourier
coefficient ¢,, is plotted as a function of m. Low-frequency
components are more dominant in the model A than in B,
and ¢,, decays more rapidly as m.

To investigate how the difference in the phase error profile
as discussed above has impacts on I,/1,, we numerically
calculated the intensity of UR using the magnetic distribu-
tions corresponding to the undulator models A and B, under
the conditions (a)—(f). The calculations have been done with
the numerical code SPECTRA [3], the results of which are
shown in Figs. 4(a)—(f) as the spectra around the 15th
harmonic (75 keV), with the alphabets indicating the
conditions specifying the recovery factors. Note that the
spectrum in an ideal case without any field errors is also
shown for each condition, and the intensity is normalized by
the maximum value of the ideal spectrum. For reference, the
redefined phase errors for the models A and B (denoted as
Y44 and X p) are given in each condition.

Without the recovery factors as found in (a) and inset, the
peak intensities available with the undulator models A and
B are similar, and are about an order of magnitude lower
than the ideal value, meaning that /,./[ in this condition is
lower than 10%. Once the energy spread (c,) is taken into
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account, [, /I, in the model A is significantly recovered and
exceeds 50% as found in (b). This recovery becomes
more significant when other effects (¢,, Af) are taken into
account, and 1,/ I exceeds 70% with the conditions (d)—(f).
On the other hand, the recovery is much slower in the
model B; 1,/1, is slightly larger than 10% even with the
energy spread and still less than 30% in the condition (e).
Recalling that both undulator models have the same
phase error (6,) of 6° it is obvious that 1,/ does not
necessarily correlate well with ¢, under practical condi-
tions, where recovery factors are not negligible; specifying
the tolerance of the undulator quality with o, is thus not
practical.
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B. Comparison between numerical
and analytical results

From the spectral calculations described in the preceding
section, we can numerically evaluate /,/I, as the ratio of
the peak values available with the real undulator (for
example, with the undulator models A or B) and the ideal
one. To examine if the redefined phase error X, can
universally describe the effects due to the recovery factors,
we repeated the process to numerically evaluate 7,/1, for
different harmonic numbers under the conditions (a)—(f),
and compared with the analytical results given by Eqgs. (41)
and (42). The results are shown in Figs. 5(a)—(f), where the
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FIG. 4. Spectra of UR calculated with the magnetic field

distributions in the undulator models A and B, for six different
conditions (a)—(f) defined in Table I.

FIG. 5. The normalized intensity plotted as a function of the
harmonic number for the six conditions (a)—(f), which are
numerically (/,./I,, symbols) and analytically (p, solid lines)
evaluated. Red and blue colors indicate the results for the
undulator models A and B, respectively.
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numerical and analytical results are shown by the symbols
and solid lines, with the red and blue colors indicating the
results for the models A and B, respectively. Note that the
analytical results in the condition (a) are identical, and thus
are shown in common in the black line. It is reasonable to
say that the analytical results agree well with the rigorous
numerical results in all the conditions and harmonics
currently under discussion.

Having verified the validity and universality of Egs. (41)
and (42) using the undulator models A and B, we repeated
the above process with other undulator models generated
by the method described in Sec. Il A, assuming N = 100
or N = 200. To scan a wide range of realistic conditions,
we changed o, and other tolerances for each undulator
model, as well as the seed for the random number
generator, with the maximum values of 1% (o), 1 yum
(0. and o,,) and 6° (6,), respectively; they are large
enough to cover the possibility of undulators whose field
errors are not well corrected. We generated 300 undulator
models for each value of N =200 and N = 100, and
numerically calculated I, /I, under the conditions (a)—(f),
which are plotted in Fig. 6 as a function of kX evaluated by
Eq. (42), together with the analytical formula p given by
Eq. (41). We find a good correlation between /1, and p
for each condition, suggesting the universal validity of the
analytical formulas.

Figure 7 shows the statistics of the difference between
I,./1, and p, where histograms of [,/I, — p are plotted for
the conditions (a)—(f), together with the RMS values. We
can conclude that the analytical formula can predict the
normalized intensity with an accuracy at least better than
10% in any conditions from (a) to (f), which is obviously

0.0
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FIG. 6. 1,/I, (symbol) numerically calculated as a function of
kX4 defined by Eq. (42) for each undulator model, in comparison
with the analytical formula p (line) defined by (41).
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FIG.7. Histograms of the difference in the normalized intensity

evaluated with the analytical formula and numerical calculation.

good enough to quickly examine the effects due to the field
errors.

C. Relation between 6, 6, and X

Now we show that the redefined phase error X, which
can represent the undulator quality under general condi-
tions, reduces to the conventional phase error o, or the
local phase error o, in a specific condition.

We first consider the case when the recovery factors are
negligibly small, namely, 6, - 0, 6 - 0 and A@ — 0,
which results in Z‘;r —-0 and N — N. Recalling
o,n = 0, we have X, — o, if Eq. (13) holds.

Next let us consider the case when the recovery factors
are sufficiently large so that N’ is small and 2, is large.
Then the 3rd term of the left-hand side of Eq. (42) can be
omitted and we have

1 N’
2= -2y =23 d {1  sin? (ﬂNm)]. (43)

m=1

Using Eq. (Al) in the Appendix A and assuming that
7n(N'/N)m < 1 is satisfied, we have

N/ N12 N/2
sinc? (ﬂﬁm) ~ exp (—ﬂﬁn’ﬂ) ~1- ”sz’ (44)

to give
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Recalling that the local phase error o, is defined as the
RMS of the derivative of ¢(n) with respect to n, we have

NI

Xy = maw.

The above equation suggests that X, correlates well with
o, if the approximation (44) is valid. This is examined in
Fig. 8, where the correlation plots between X and 6, in the
conditions (a)—(f) are shown. We find that the correlation,
which is quite poor in the condition (a), becomes better in
the alphabetically greater conditions, because of the larger
recovery factors. In particular, we can say that £ can be
substituted for by o, in the condition (f), and thus o, can
well represent the undulator quality. For other conditions,
however, the correlation is not necessarily good, which
suggests that we cannot apply the approximation (44), and
evaluating the normalized intensity with o, can overesti-
mate the undulator quality. We thus need to use X in these
conditions where the recovery factors are not sufficiently
large.

IV. EFFECTS DUE TO LOW-FREQUENCY
SYSTEMATIC ERRORS

The undulator models used in the previous section are
based on an assumption that the peak field varies randomly
at each magnetic pole, which comes from the variation in
quality and dimension of permanent magnets. Besides such
random errors, we need to consider the impacts of
systematic errors, which come from the common mechani-
cal structure of undulators, and have nothing to do with the
quality of the permanent magnets.

The magnetic blocks of undulators are usually assembled
onto a common rigid girder, which is supported by a few
driving shafts to enable the gap motion. In such a conven-
tional structure, the strong attractive force between the top
and bottom girders potentially brings two systematic errors;
one is the deformation of the girder, and the other is the
motion error of the driving shaft, both of which cause a
systematic gap variation along the undulator axis, which
ranges from the entrance to the exit of the undulator and is
given by a low-order polynomial function of the longi-
tudinal coordinate n. It is obvious that the resultant phase
error ¢p(n) is dominated by low-frequency components;
namely, the Fourier coefficient ¢,, decays rapidly as m.
In what follows, we investigate the effects due to this kind
of systematic error, which is referred to as a low-frequency
systematic error (LFSE).

Let us introduce a function n(n)

Bo(n) — By

n(n) = B

with By(n) being the peak field at n, and B, being the

average of By(n) over the whole undulator. Then, recalling
that n(n) is a slowly varying function of n, we have [9]

2K? n
2ﬂm£ n(n’)dn’,

which allows us to analytically calculate the phase error, if
n(n) is a polynomial function. Let us first consider the case
when the gap variation is linear and thus 7(n) is given by a
linear function,

$(n) =

. 21
n(n) =—7n.
with 7, being the peak field deviation at the end of the

undulator (n = £N/2) with respect to its center (n = 0).
Then it is easy to show

. 2K? 1o
2+ K*N

P(n) =2 n2.
It is worth mentioning that the phase-oscillation term A(n)
can be neglected for the LFSE, because the slow variation
of the gap does not cause the trajectory error; we thus
have ¢(n) = ¢(n).

The phase error 6, or the standard deviation of ¢(n),
can be analytically calculated to give

2 2K2 ﬂoN
Of — LN ——F=——=.
¢ 2+ K265

As an example, let us consider the case when the top and
bottom girders of the undulator with the parameters
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supposed in Sec. III, are tilted by £1 prad. Assuming that
the undulator consists of a Halbach array, this leads to a
field variation of 7, = 6.3 x 107*, which results in the
phase error of o4 = 5° for N = 200.

The phase error of 5° found in the above condition is
often unacceptable, because the normalized intensity 7,/ 1,
evaluated without taking into account the recovery factors,
will be extremely low for high-harmonic (k > 11) radia-
tion. This is the reason why a lot of efforts have to be made
to reduce the LFSE as much as possible. As we have seen,
however, I,/I, is actually much higher for practical
conditions; it is thus interesting to evaluate the phase error
%, to investigate how the recovery factors work in this
particular condition.

To derive an analytical form of X, we first calculate the
Fourier coefficient ¢,,, which can be done analytically to
give

6v/5

Pm =0 3 3"
Substituting into Eq. (43), we have

%O90N 1 N’
%:;Z% {l—sincz(ﬂNm)]. (45)
m=1

%

Because of the relatively large exponent of 4 (m*), the
above summation converges rapidly with m. As a result,
24/ 04, which denotes the reduction of the phase error due
to the recovery factors, hardly depends on N, as long as
N'/N is kept constant. In other words, /6, is given as a
universal function of N'/N. As an example, X,/0, is
plotted as a function of N’/N in the solid line in Fig. 9,
where the conditions assumed in Sec. III are indicated by
arrows with alphabets. In the practical conditions (b—f), the

1.0 [
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0.6

be
~
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=

0.4

FIG. 9. Reduction of the phase error brought by the systematic
errors due to the recovery factors represented by N/N’; the solid,
dashed, and dotted lines correspond to the linear, quadratic, and
cubic variations of the magnetic field.

phase error is reduced by nearly one order of magnitude
(Zy/04 ~0.1). As a result, o, of 5° generated by the tilt
angle of 1 urad reduces to a small error of X, < 0.5°, which
corresponds to 1,/I, > 0.98 at the 15th harmonic.

Although the above discussion is limited to the linear
systematic error, it can be easily extended to more general
ones represented by higher-order polynomials. Following
the mathematical operation given above, we have

22 o451 N’
¢ o .
o= g — [1 — sinc? <7r—N mﬂ ,
for a quadratic error, and

2 450 N (mPr? —6)2 N’
b .
_035 =5 E: — {1 — sinc? (7[ i m)] ,

m=1

for a cubic error, where 7, is again the peak field deviation
at the end of the undulator with respect to its center.
In Fig. 9, £;/0, for the quadratic and cubic errors are
plotted in the dashed and dotted lines, respectively, in
addition to that for the linear error. We now find that X, /o,
is rapidly reduced as decreasing N'/N, and is less than 0.3
for N'/N < 0.1 as long as the polynomial order is less than
3. This suggests that the tolerance for the LFSE, which
potentially causes a large phase error (o), can be greatly
relaxed under practical conditions.

For example, let 1,/ > 0.9 be the tolerance criterion
for the LFSE, which corresponds to X, < 1.2° at the 15th
harmonic. To satisfy this condition without the recovery
factors, namely o, < 1.2° the mechanical specification of
the undulator should be extremely stringent in terms of the
stiffness of the girder and robustness of the driving system,
which is obvious from the example mentioned above;
l-purad tilt of the girder results in o, of 5° In practice,
the specification can be significantly relaxed with the
recovery factors taken into account. Assuming a reasonable
condition of X, / o, = 0.2, we have a relatively moderate
condition of o, < 6.0°, which significantly relaxes the
mechanical tolerance of the undulator.

V. SUMMARY

We derived a new parameter X to quickly evaluate the
undulator quality, as an alternative to the conventional
phase error o, and the local phase error o,,. In contrast to
these parameters whose applicability is rather limited to a
specific condition when the recovery factors are negligibly
small (o) or sufficiently large (), 4 can be used in a
more universal manner, as verified by comparing with the
rigorous numerical calculations using an extensive set of
parameters. It is also worth repeating that 64 and 6,, are the
asymptotic forms of X, for small and large recovery
factors, respectively. It goes without saying that evaluating
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the undulator quality using % is much simpler and faster
than the numerical calculations.

As an important application of X, we also investigated
the effects due to the LFSE, and analytically revealed that
its impact on the normalized intensity I,/I, would be
significantly diminished by the recovery factors. This
suggests that the mechanical specification of the undulator,
which tends to be too tight because of the high sensitivity of
o, to the LFSE, should be carefully defined to be consistent
with the actual performance degradation evaluated with Z.

Before closing, we repeat that £, has been analytically
derived assuming that the peak-field deviation and trajec-
tory wander are small in the sense mentioned in Sec. IT A. If
these conditions are not satisfied, rigorous numerical
calculations should be made.
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APPENDIX A: APPROXIMATE FORM OF
THE CONVOLUTION OF GAUSSIAN
AND sinc? FUNCTIONS

Let us consider the convolution of Gaussian and sinc®
functions, G(x;6) ® sinc?(zNx). Although the integration
cannot be done analytically, the resultant function can be
well represented by G(x;¢’) or sinc?(zN'x), where ¢’ and
N’ are new parameters to be determined. First, we make an
approximation as follows

sinc?(zNx) ~11]G( (A1)

1
X — .
\/27/7N>

The coefficient and standard deviation have been deter-
mined so that the peak value given at x = 0 and the total
area given by integrating over x have the same value (= 1)
in both functions [7]. Then the convolution can be done
analytically to give

1 1
G(x;0) ® sinc?(zNx) ~ NG(X; %+ 5 NQ)’
T

which is represented as a Gaussian function. Recalling the
relation between the Gaussian and sinc? functions (A1), it
is easy to give an alternative form as follows

G(x;0) ® sinc?(zNx)
aNx

1
—————sinc? (7> . (A2)
V1 + 2zN%6> V1 + 2zN26>

~

APPENDIX B: APPROXIMATE FORM OF THE
CONVOLUTION OF GAUSSIAN AND
RECTANGULAR FUNCTIONS

Let us consider the convolution of Gaussian and rec-
tangular functions, G(x;0) ® rect(x; Ax) = R(x; 0, Ax).
Using the error function

erf(x) = = / " exp(=£2)dt1,
0

T

R can be represented as

R(x;0, Ax) = % [erf (%) +oerf <%)] .

(B1)

The above equation is not convenient for further math-
ematical operations because the error function is not an
elementary function. To derive an approximate form
R'(x;0, Ax), we make an approximation as follows

rect(x; Ax) ~ G(x; cAx)Ax,

where ¢ is a parameter to be determined. Then by
convoluting the two Gaussian functions, we have an
alternative form

R'(x;0,Ax) = G(x;V 6% + ?Ax?)Ax.

The parameter ¢ should be determined so that R’ defined
above is consistent with R defined in Eq. (B1). In Sec. I1 C 2,
we need to focus on the peak value given at x = 0 as in
Eq. (36), and thus we substitute x = 0 in both equations to
compare the results, namely,

Ax
R(0;0,Ax) = erf( >
2\/56
10" .
—R
R (c=1/2m)
—_ — R (c=1/n) P
% 100 L ——R(e=2/m —
3
or
©
g; 10"
o
2
10 e I
107 10° 10
AX/o

FIG. 10. Functions R and R’ plotted as a function of Ax/c. Three
different values of c=1/2x, 1/x, and 2 /7 are assumed for R'.
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and

Ax/oc
V27\/1+ 2(Ax/o)

InFig. 10, R'(0; o, Ax) is plotted as a function of Ax/¢ for
three different values of ¢ = 1/2x, 1/z, and 2/x, together
with the exact expression R(0; s, Ax). Obviously, ¢ = 1/x
is the optimum value and the error defined as |R — R'|/R is
less than 0.1 in the region of Ax/c < 10, which is practically
sufficient.

Summarizing the above discussions, we have an approxi-
mate form of the convolution of Gaussian and rectangular
functions as follows

G(x;0) ® rect(x; Ax) ~ G(x; /06> + Ax?/n?) Ax.

R (0;0,Ax) =

(B2)
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